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We show that a non-Hermitian two coupled Sachdev-Ye-Kitaev (SYK) model can provide thermody-
namic structure equivalent to a Hermitian two coupled SYKmodel. The energy spectrum, the entanglement
degree of the ground states and the low energy effective action of this model are not influenced by the non-
Hermiticity. The novel biorthogonal ground states demonstrates that two SYK sites, one of which can be in
the ground state and the other in the Schwarzian excited state by tuning the non-Hermiticity. We find
evidence that the free energy is independent of the non-Hermiticity.
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I. INTRODUCTION

Recently, non-Hermitian physics has gained widespread
attention, such as non-Hermitian linear response theory [1],
non-Hermitian topological systems [2,3] and non-
Hermitian holography [4,5]. One of the primary reasons
for those studies is due to the probability in nature
effectively becomes nonconserving due to the presence
of energy, particles, and information regarding the external
degrees of freedom that are out of the Hilbert space. In a
non-Hermitian system experiencing an exceptional point in
the wave momentum, the corresponding eigenfrequencies
change from real to complex numbers [6–10]. However,
seminal work by Bender and Boettcher demonstrates that
in the physics of non-Hermitian systems, a huge class of
nonconservative Hamiltonians can exhibit entirely real
spectra as long as they commute with the parity-time
(PT) operator [11]. Moreover, all the PT symmetric
Hamiltonians studied reported in the literature exhibited
such property [12–14]. The similarity transformations can
also enable one to construct a non-Hermitian Hamiltonian
with real spectrum [14–16].
In a quantum many-body system, the quantum two-level

system can be simulated by coupling two copies of the
Sachdev-Ye-Kitaev (SYK) model. The SYK mode, which
is well-known as a disordered and strongly-coupled quan-
tum system composed of Majorana fermions [17–19], has

recently emerged as an exemplary model providing insight
into the nature of non-Fermi liquids [20], quantum chaos
[21], holography [22,23], strange metallic transport [24,25]
and high temperature superconducting [26,27]. The SYK
model is closely related to two-dimensional dilaton gravity
describing excitations above the near horizon external
black hole [28,29]. Therefore, an eternal traversable worm-
hole can be constructed by considering two copies of SYK
models coupled by a simple interaction. This Maldacena-Qi
(MQ) model demonstrates that at low temperature, the
coupling can drive phase transitions to a phase holograph-
ically dual to an eternal traversable wormhole with an AdS2
throat [30]. Conversely, at a higher temperature, the system
reduces to two gapless black hole phases [30]. However,
in the non-Hermitian setup, one may expect this gapped-
gapless physical picture drastically changed.
The main goal of this paper is to prove that the worm-

hole-black hole picture is robust not only in a Hermitian
two coupled SYK model, but also in a non-Hermitian two
coupled SYK model. For this purpose, we propose a novel
non-Hermitian two-site SYK model. We first prove that the
system yields real energy spectrum. Furthermore, we show
that the degree of entanglement, the low energy effective
action and the phase structure are non-Hermiticity inde-
pendent. As illustrated in Fig. 1, even though these two
SYK sites are approaching a “ground state/excited state”
picture in the regime of strong non-Hermitian limit, the
thermodynamic phase structure indicates three distinct
properties at different temperatures.

II. NON-HERMITIAN TWO COUPLED
SYK MODEL

We consider a non-Hermitian two coupled SYK model
with the Hamiltonians
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XN
ijkl

Jijkl
X
A¼R;L

ðc1CA†
i CA†

j CA
kC

A
l

þ c2C
A†
i CA

j C
A†
k CA

l Þ þHint;

Hint ¼ iμ
XN
i

ðe−2αCL†
i CR

i − e2αCR†
i CL

i Þ; ð1Þ

where A ¼ L, R refers to the “left” and “right” side of the
two identical copies, and c1 and c2 are two real valued
constants. We choose c1 ¼ 2 and c2 ¼ 4 in what follows to
match to the MQ model [30]. Note that other choices of
positive c1 and c2 do not change the total physical picture.
The parameter α is a real number controlling the strength of
non-Hermiticity, which is introduced by a non-Hermitian
particle-hole similarity transformation (see Appendix A for
details). Under the self-similarity transformation, Dirac
fermions C and C† are introduced to replace the
Majorana fermions ψ in the MQ model. The coupling
Jijkl are random real numbers, which obey the Gaussian
distribution and satisfy Jijkl ¼ −Jjikl ¼ −Jijlk ¼ Jklij with
hJijkli ¼ 0, hJ2ijkli ¼ J2

8N3. For this reason, we call this
model a pseudo-complex SYK to distinguish from the
usual complex SYK. By analytically continued to an
imaginary value α → iα, one can recover the Hermitian
Hamiltonian.

III. ENERGY SPECTRUM AND DEGREE
OF ENTANGLEMENT

The energy spectrum is an important feature of the non-
Hermitian quantum system. We compute the energy spec-
trum by using exact diagonalization techniques. The energy
spectrum is real and independent of the non-Hermitian
parameter α, as demonstrated in Fig. 2.
For non-Hermitian systems, we need to construct the

ground state by introducing a biorthogonal set fjψ l
ni; jψ r

nig
[14–16,31]. The right/left eigenstates are defined as

Hjψ r
ni ¼ Enjψ r

ni; H†jψ l
mi ¼ E�

mjψ l
m: ð2Þ

The eigenstates satisfy the properties as follows:

X
n

jψ l
nihψ r

nj ¼ I; hψ l
njψ r

mi ¼ δnm: ð3Þ

We impose the constraints that system yields the ground
state energy as those of [32] by takingH†

intjψ l
0i ¼ −μNjψ l

0i,
Hintjψ r

0i ¼ −μNjψ r
0i and hψ l

0jψ r
0i ¼ 1. Without loss of

generality, the generated ground states are proposed as

jψ r
0i ¼

YN
j

ðÃj1iL;jj0iR;j þ iB̃j0iL;jj1iR;jÞ; ð4Þ

jψ l
0i ¼

YN
j

ðC̃j1iL;jj0iR;j þ iD̃j0iL;jj1iR;jÞ; ð5Þ

where the coefficients Ã; B̃; C̃ and D̃ satisfy the relation B̃ ¼
Ãe2α and D̃ ¼ C̃e−2α. The constraint hψ l

0jψ r
0i ¼ 1 further

leads to Ã C̃ ¼ B̃ D̃ ¼ 1
2
. The ground states can return to the

ground state of the Hermitian case (α ¼ 0) consistently if
setting

Ã ¼ 1ffiffiffi
2

p ; B̃ ¼ e2αffiffiffi
2

p ; C̃ ¼ 1ffiffiffi
2

p ; D̃ ¼ e−2αffiffiffi
2

p : ð6Þ

In the biorthogonal set, the usual orthogonal normalization
is not applicable.
In our non-Hermitian model, the degree of entanglement

turns out to be

PE ¼ −trðρA log ρAÞ ¼ 1; ð7Þ

which can be derived from the von-Neumann entropy of the
reduced density matrix,

ρLR ¼ jψ r
0ihψ l

0j ¼ Ã C̃ j10ih01j þ iB̃ C̃ j01ih01j
− iÃ D̃ j10ih10j þ B̃ D̃ j01ih10jÞ: ð8Þ

ρL ¼ trRðρLRÞ ¼
�
Ã C̃ 0

0 B̃ D̃

�
: ð9Þ

Because of PE ¼ 1, which is independent of α, the ground
states are maximally entangled between two systems.

FIG. 1. Sketched phase diagram for the physical picture. Left: a
geometry connecting the two sides in the low temperature regime.
The left Sachdev-Ye-Kitaev (SYK) and right SYK are in different
states because of the non-Hermitian parameter. Middle: an
unstable geometry connecting two SYK sites. Right: two separated
SYK sites at high temperature represent the gapless two black hole
phases. The non-Hermitian parameter can change the states of the
left and right SYK sites, which are marked in orange and green
colors. When α ¼ 0, the phase diagram recovers that of [30].

FIG. 2. Plots of the spectrum with μ ¼ 0.15, N ¼ 8 for the
values of α ¼ 0 (a) and for the values of α ¼ 3 (b).
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The ground states (4) and (5) will approach the pure state
for large α, but the degree of entanglement remains
unchanged. Taking the limit α → −∞, we have

jψ r
0i→

YN
j

1ffiffiffi
2

p j1iL;jj0iR;j; jψ l
0i→

YN
j

ie−2αffiffiffi
2

p j0iL;jj1iR;j;

ð10Þ

while in the limit α → þ∞, we obtain

jψ l
0i→

YN
j

iffiffiffi
2

p j0iL;jj1iR;j; jψ r
0i→

YN
j

ie2αffiffiffi
2

p j0iL;jj1iR;j:

ð11Þ

Therefore, the left and right SYK sites are no longer
symmetric as illustrated in Fig. 1.

IV. LOW ENERGY EFFECTIVE ACTION

In order to see the effects of the non-Hermitian param-
eter, we study low energy properties of both in the extended
SYK model and the gravity description. In the low energy
limit, the model simplifies due to the emergence of a
conformal symmetry. The retarded Green’s function of the
non-Hermitian system is defined as

GABðτ1; τ2Þ ¼
1

N

X
n

hψ l
njTCA†

i ðτ1ÞCB
i ðτ2Þjψ r

ni; ð12Þ

where A;B ¼ L, R. The saddle-point equations are invari-
ant under the time reparametrization τ → hðτÞ and theUð1Þ
symmetry, which is the same as the complex SYK model
in [33–36]:

G̃ABðτ1; τ2Þ ¼ ½h0Aðτ1Þh0Bðτ2Þ�ΔGABðhðτ1Þ; hðτ2ÞÞ
eiϕAðτ1Þ−iϕBðτ2Þ;

Σ̃ABðτ1; τ2Þ ¼ ½h0Aðτ1Þh0Bðτ2Þ�1−ΔΣABðhðτ1Þ; hðτ2ÞÞ
eiϕBðτ2Þ−iϕAðτ1Þ:

In the absence of the interacting term, the Schwarzian
effective action of the left or right copy turns out to be

SA ¼ −NαS

Z
dτ

�
tanh

hAðτÞ
2

; τ

�

þ NK
2

Z
dτðϕ0

AðτÞ þ iεAh0AðτÞÞ2; ð13Þ

where εA is related to the Uð1Þ charge QA and αS is
determined by four-point calculation of the SYK model.
The above effective action is given by the Schwarzian
derivative,

fh; τg ¼ h000ðτÞ
h0ðτÞ −

3

2

�
h00ðτÞ
h0ðτÞ

�
2

:

The effective action of the coupled part is written as

Sint ¼
μ

2

Z
dτ

�
bh0LðτÞh0RðτÞ

cosh2 hLðτÞ−hRðτÞ
2

�
Δ
coshðεhLðτÞ − εhRðτÞÞ

× ½eiðϕL−ϕRÞ−2α þ e−iðϕL−ϕRÞþ2α�: ð14Þ
This action has the global SLð2Þ ×Uð1Þ symmetry gen-
erated by

δhL ¼ ϵ0 þ ϵþeihL þ ϵ−e−ihL ;

δhR ¼ ϵ0 − ϵþeihR − ϵ−e−ihR ;

δϕA ¼ −iεδhA þ ϵ; ð15Þ
where εL ¼ εR ¼ ε.
The total action could be simplified to

S
N
¼−2αS

Z
dτ
�
tanh

hðτÞ
2

;τ
�
þK

Z
dτðϕ0ðτÞþ iεh0ðτÞÞ2

þ μ

22ðΔ−1Þ

Z
dτðh0ðτÞÞ2Δ; ð16Þ

with the solution

hL ¼ hR ¼ hðτÞ; ϕL ¼ ϕR − 2iα ¼ ϕðτÞ; ð17Þ
wherewe have chosen bΔ ¼ N. InAppendixB,we derive the
SLð2Þ Noether charges. The SLð2Þ Noether charge vanishes
withthesimplesolutionhðτÞ ¼ t0τ,soitcanbetreatedasgauge
symmetry. The solutions of Eq. (17) lead to Q� ¼ 0, and

Q0=N ¼ 2e−ϕ½−ϕ00 − e2ϕ þ Δμe2Δϕ� ¼ 0; ð18Þ
by introducing ϕ ¼ logh0. We can derive the equations of
motionfromtheactionofanonrelativisticparticle inapotential

S ¼ N
Z

du½ðϕ0Þ2 − ðe2ϕ − μeϕ=2Þ�: ð19Þ

The effective potential is independent of the non-Hermitian
parameterα,butthesameasthatoftheMQmodel[30].Onecan
thereforeconclude that there is anα-independentenergygapat
low energy.
We can thus add a boundary interaction to the bulk action

Sint ¼ g
XN
i¼1

Z
duðe−2αOi†

L ðuÞOi
RðuÞ − e2αOi†

R ðuÞOi
LðuÞÞ;

ð20Þ
where O is a set of N operators with dimension Δ and g is
proportional to the coupling μ. When α and g are small, the
interacting term in Eq. (20) corresponds to the interaction
term of the low energy effective action in Eq. (14). The
coupling of left and right black holes ð1 − 2αÞOi†

LO
i
R; ð1þ

2αÞOi†
RO

i
L are not symmetric. The two sides of AdS2 are
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directly coupled by the double trace deformation. Since e2α

or e−2α is always positive, the double trace interaction
generates negative null energy in the bulk without violating
causality the same as that of [37]. Therefore quantum
entangled states at left and right boundaries are connected.

V. THERMODYNAMIC PHASE STRUCTURE
BEYOND THE LOW ENERGY LIMIT

At finite temperature, the retarded Green’s function
receives a great contribution from the non-Hermitian param-
eterα.But thewhole thermodynamicphase structure remains
unchanged as the non-Hermitian parameter α varies.
The effective action can be obtained as

Seff
N

¼ − log detðσAB − ΣABÞ

−
Z

dτ1dτ2

�
ΣBAðτ2; τ1ÞGABðτ1; τ2Þ

þ 36

4
J2G2

ABðτ1; τ2ÞG2
BAðτ2; τ1Þ

�
; ð21Þ

where

σAB ¼
�

∂τ iμe−2α

−iμe2α ∂τ

�
: ð22Þ

The corresponding equations can be written as

ΣABðτ1; τ2Þ ¼ −36J2G2
ABðτ1; τ2ÞGBAðτ2; τ1Þ;

GLLðiωn; αÞ ¼
−iωn − ΣLLðiωn; αÞ

Dðiωn;αÞ
;

GRRðiωn; αÞ ¼
−iωn − ΣRRðiωn; αÞ

Dðiωn; αÞ
;

GLRðiωn; αÞ ¼
−iμe−2α þ ΣLRðiωn; αÞ

Dðiωn; αÞ
;

GRLðiωn; αÞ ¼
iμe2α þ ΣRLðiωn; αÞ

Dðiωn; αÞ
;

Dðiωn; αÞ ¼ ð−iωn − ΣLLÞð−iωn − ΣRRÞ
þ ðiμe−2α − ΣLRÞðiμe2α þ ΣRLÞ; ð23Þ

with the Matsubara frequency ωn ¼ 2πðnþ 1
2
Þ=β. The

numerical results in Fig. 3(a) show that GRRðiωn; αÞ ¼ GLL
ðiωn; αÞ, GLRðiωn; αÞ ¼ −GRLðiωn;−αÞ. When α ¼ 0,
the model recovers the pseudo-complex SYK model at
zero chemical potential [32]. Green’s function decays
exponentially,

GabðτÞ ∼ e−Egapτ ð24Þ
(see Appendix C for details) within a certain α region at low
temperature, and the correlators decay as a power law like
SYK behavior at high temperatures, as shown in Fig. 3(b).
The Green’s functions can be considered as the order
parameter. When α is large enough, the off-diagonal
Green’s function decays exponentially no matter at low
temperature T ¼ 0.005 or high temperature T ¼ 0.05, and
Egap decreases as temperature increases from T ¼ 0.005
to T ¼ 0.05 [see Figs. 3(c) and 3(d)]. According to the
approximate behavior of the saddle-point equations
[Eq. (23)], as α → þ∞, the off-diagonal Green’s function
GRL ∼ − 1

ΣLR
dominates while as α → −∞, the term GLR ∼

− 1
ΣRL

dominates. The approximate solutions are indicative of
decoupled SYK behavior in the IR limit (G ∼ − 1

Σ). The
results with α ¼ 10 support this statement numerically in
Figs. 3(c) and 3(d).
We evaluate the free energy of this non-Hermitian

coupled model in this section. Substituting the saddle-
point solutions into the action in Eq. (21) as the method in
[38], we obtain the free energy

F
N

¼ −T
logZ
N

¼ T
Seff
N

¼ −T
�
2 log 2þ

X
ωn

log
Dðiωn; αÞ
ðiωnÞ2

þ
X
ωn

�
3

4
ΣLLðiωn; αÞGLLðiωn; αÞ þ

3

4
ΣRRðiωn; αÞ

×GRRðiωn; αÞ þ
3

4
ΣLRðiωn; αÞGRLðiωn; αÞ

þ 3

4
ΣRLðiωn; αÞGLRðiωn; αÞ

��
: ð25Þ

FIG. 3. (a) Green’s function with α ¼ 0;�0.3 at temperature
T ¼ 0.01. (b) Green’s function with α ¼ 0.2 at low temperature
T ¼ 0.005 or high temperature T ¼ 0.05. (c) Green’s function
with α ¼ 10 at low temperature T ¼ 0.005 or high temperature
T ¼ 0.05. (d) Green’s function with α ¼ −10 at low temperature
T ¼ 0.005 or high temperature T ¼ 0.05.
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The free energy as a function of temperature is plotted in
Fig. 4. The free energy obtained in Fig. 4 is analogous to the
free energy of the pseudo-complex SYK model with the
Hermitian coupled term in Refs. [32,39,40]. The first-order
phase transition from the low temperature traversable worm-
hole phase to the high temperature two black hole phase ends
at a second-order critical point (Tc ¼ 0.25, μc ¼ 0.7), which
is not influenced by the non-Hermitian parameter.

VI. CONCLUSION AND DISCUSSION

We have constructed a novel non-Hermitian two coupled
SYK model yielding a real energy spectrum. This is a
pseudo-Hermitian Hamiltonian, where the non-Hermiticity
is reflected in the coupling between two copies of the
pseudo-complex SYK model. The ground states of the total
Hamiltonian receive a contribution from the non-Hermitian
parameter. In the strong non-Hermitian limit, the wave
function jψ r

0i approaches the “ground states” on the left and
“excited states” on the right or vice versa. The effective
action and the free energy are α independence, although the
left and right side states are actually α dependent. To
understand this, let us analyze the non-Hermitian parameter
dependence of the free energy. As mentioned previously,
only GLR ∼ − 1

ΣRL
exists in Eq. (25) when α → −∞, and

only GRL ∼ − 1
ΣLR

exists in Eq. (25) when α → þ∞.
Since Green’s function and the self-energy satisfy
ΣLRðiωn;αÞ ¼ −ΣRLðiωn;−αÞ, the free energy does not
change in the limit α ¼ �∞ obviously. Low energy
analysis further reveals an α-independent energy gap.
However, a key observation is that the off-diagonal
Green’s functions GLR and GRL are no longer symmetric
and strongly α dependent. Note that the transmission
amplitude of particles across the traversable wormhole is
proportional to the retarded Green’s function. Thus, this
may elucidate the observable aspects of the dynamics.
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APPENDIX A: NON-HERMITIAN SIMILARITY
TRANSFORMATION

In this section, we provide more details about a similarity
transformation on the left-hand side and the right-hand side
Majorana fermion. One can generalize the phase ϕ from a
real number to an imaginary number ϕ ¼ −iα and the
imaginary phase transformation becomes a non-Hermitian
particle-hole similarity transformation C → e�αC and
C† → e�αC†. It can be written as

ψL
2i−1¼eαCL

i þe−αCL†
i ; ψL

2i¼ iðeαCL
i −e−αCL†

i Þ
ψR
2i−1¼e−αCR

i þeαCR†
i ; ψR

2i¼ iðe−αCR
i −eαCR†

i Þ: ðA1Þ

After the self-similarity transformation, the Majorana fer-
mions become non-Hermitian ðψLÞ† ≠ ðψLÞ, ðψRÞ† ≠ ψR

as long as α ≠ 0 in which the fermions CL; CR; CL†; CR†

satisfy the anticommutation relations as follows:

fCA†
i ; CB

j g ¼ δijδAB; fCA†
i ; CB†

j g ¼ fCA
i ; C

B
j g ¼ 0:

We consider the ψ2i−1 case for simplicity of our calculation.
In principle, the parameter α could be introduced by
performing the non-Hermitian particle-hole similarity trans-
formation on the MQ model,

H ¼ −
XN
ijkl

JijklðψL
2i−1ψ

L
2j−1ψ

L
2k−1ψ

L
2l−1

þ ψR
2i−1ψ

R
2j−1ψ

R
2k−1ψ

R
2l−1Þ þ iμ

X
i

ψL
2i−1ψ

R
2i−1: ðA2Þ

Note that all the nonphysical terms should be dropped out
after the similarity transformation. So the Hamiltonian of the
α ¼ 0 case is not exactly that of the MQ model.

APPENDIX B: NOETHER CHARGE

In this section, we discuss the Noether charges associ-
ated with the SLð2Þ symmetry in the low energy effective
action. The action is given by the combination of (13) and
(14) in the main text. The general form of the Noether
charge is described by

Q ¼
XN
k≥1

�
d
dτ

�
k−1

�
Y
XN
m≥k

�
m
k

��
−

d
dτ

�
m−k ∂L

∂hðmÞ

�
; ðB1Þ

where the infinitesimal transformation is given by τ →
τ þ aY with a small parameter a. Since the effective

FIG. 4. The free energy as a function ofT with different coupling
μ for the values of jαj ¼ 0, 10 and J ¼ 1=6. Starting from the high
temperature, we decrease the temperature to low value, and then
increase it again back to the high temperature value.
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Lagrangian contains up to third-derivative terms, the
Noether charge can be explicitly written as

Q ¼ Y

�
∂L
∂h0

−
�
∂L
∂h00

�0
þ
�
∂L
∂h000

�00�

þ dY
dτ

�
∂L
∂h00

− 3

�
∂L
∂h000

�0�
þ d2Y

dτ2

�
∂L
∂h000

�
: ðB2Þ

Considering the SLð2Þ transformation generated by (15) in
the main text, the corresponding charges are given by

Q0

N
¼ Q0½hL;ϕL� þQ0½hR;ϕR� þ

�
1

h0L
þ 1

h0R

�
Ic; ðB3Þ

Qþ
N

¼ Qþ½hL;ϕL� −Qþ½hR;ϕR� þ
�
eihL

h0L
−
eihR

h0R

�
Ic; ðB4Þ

Q−

N
¼Q−½hL;ϕL�−Q−½hR;ϕR� þ

�
e−ihL

h0L
−
e−ihR

h0R

�
Ic; ðB5Þ

where

Q0½h;ϕ� ¼ iεKðϕ0 þ iεh0Þ − αS

�
h0 þ h000

h02
−
h002

h03

�
; ðB6Þ

Qþ½h;ϕ� ¼ eih
�
iεKðϕ0 þ iεh0Þ − αS

�
−
h00

h0
þ h000

h02
−
h002

h03

��
;

ðB7Þ

Q−½h;ϕ� ¼ e−ih
�
iεKðϕ0 þ iεh0Þ − αS

�
h00

h0
þ h000

h02
−
h002

h03

��
;

ðB8Þ

Ic ¼ μΔ
�

bh0Lh
0
R

cosh2 hL−hR
2

�
Δ
coshðεhL − εhRÞ

× coshð2α − iϕL þ iϕRÞ: ðB9Þ

Therefore, the zero charge conditions Qþ ¼ Q− ¼ 0 are
satisfied if we set hL ¼ hR. In addition, we study the
constraint on the relation between ϕL and ϕR by consid-
ering the invariance of the effective action under the
transformation of ha and ϕa [40]. Then, we require

0 ¼ δ
X
A

ðϕ0
A þ iεh0AÞ2

¼ 2
X
A

ðδϕ0
A þ iεδh0AÞðϕ0

A þ iεh0AÞ; ðB10Þ

and

0 ¼ δ coshð2α − iϕL þ iϕRÞ
¼ sinhð2α − iϕL þ iϕRÞδðϕL − ϕRÞ; ðB11Þ

where we have assumed hL ¼ hR. These conditions are
satisfied if ϕL ¼ ϕR − 2iα and δϕL ¼ −δϕR ¼ ϵðτÞ, where
ϕL and ϕR are constants and ϵðτÞ is an arbitrary infini-
tesimal function. To be self-consistent, the Noether charge
associated with the variation of δϕL ¼ −δϕR ¼ ϵðτÞ is
given by

Qϕ=N ¼ K½ðϕ0
L − ϕ0

RÞ þ iεðh0L − h0RÞ�; ðB12Þ

which vanishes if hL ¼ hR and ϕL ¼ ϕR − 2iα.

APPENDIX C: ENERGY GAP

As mentioned in the main text, the Green function
decays exponentially GabðτÞ ∼ e−Egapτ. In Fig. 5, we show
that the energy gap extracted from the exponential decay of
GABðτÞ in which the gap scaling Egap ∼ μ2=3, same as that
of the Hermitian two coupled SYK model in [30]. The gap
scaling in Fig. 5 indicates that our non-Hermitian model
returns to the Hermitian model consistently if setting α ¼ 0.

FIG. 5. The energy gap extracted from the exponential decay at
low temperature T ¼ 0.001 with α ¼ 10. The red line represents
the power law behavior Egap ∼ μ2=3.
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