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The developing neocortex in the mammalian brain is composed of multiple cell types

including apical progenitors (AP), basal progenitors (BP), and neurons that populate

three different layers, the ventricular zone (VZ), the subventricular zone (SVZ), and

the cortical plate (CP). Despite recent advances, the diversity of the existing cell

populations including those which are differentiating and mature, their biogenesis and the

underlying gene regulatory mechanisms remain poorly known. Recent studies have taken

advantage of the rapidly emerging single-cell technologies to decode the heterogeneity

of cell populations at the transcriptome level during cortical development and their

molecular details. Here we review these studies and provide an overview of the steps in

single-cell transcriptomics including both experimental and computational analysis. We

also discuss how single-cell genomics holds a big potential in future for brain research

and discuss its possible applications and biological insights that can be achieved from

these approaches. We conclude this review by discussing the current challenges in the

implementation of single-cell techniques toward a comprehensive understanding of the

genetic and epigenetic mechanisms underlying neocortex development.
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DECIPHERING THE GENE REGULATORY NETWORK
UNDERLYING DEVELOPMENT OF NEOCORTEX USING
SINGLE-CELL GENOMICS

The mammalian brain is one of the most complex organs in the body and plays a fundamental
role in higher cognitive function (Striedter, 2005). During brain development, the transition
of proliferative and multipotent neuroepithelial cells to fully differentiated neurons is called
neurogenesis (Urban and Guillemot, 2014). The neurogenesis mainly occurs between embryonic
day (E) 11–17 in mouse and gestational week (GW) 8–28 in human (Malik et al., 2013;
Taverna et al., 2014; van den Ameele et al., 2014). During this period, neuroepithelium
transforms into three different layers including the ventricular zone (VZ), the subventricular
zone (SVZ), and the cortical plate (CP) by the sequential events of differentiation (Gotz
and Huttner, 2005). Each of the germinal zones is known to be composed of distinct
cell types such as apical progenitor cells (AP), basal progenitor cells (BP), and neurons,
whose location of mitosis, polarity, and proliferative potential are different (Taverna et al.,
2014). Especially, APs include three subtypes such as neuroepithelial cells, derivative apical
radial glia (aRG) which express astroglial markers, and apical intermediate progenitors
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(aIPs) which undergo one round of symmetric neurogenic
division. BPs can be further categorized into proliferative basal
radial glia (bRG) and neurogenic basal intermediate progenitors
(bIPs) whose diversity and composition determine the rate of
neuron production and cortical expansion across the species
(Florio and Huttner, 2014; Taverna et al., 2014; Dehay et al.,
2015). Those progenitor cells differentiate into neurons and
constitute the diverse laminar (L1–L6) and areal identities
in the cortical plate as a spatiotemporal manner to establish
specialized function and neuronal circuit formation (Franco and
Muller, 2013; Jabaudon, 2017). During this process, some of
the neural progenitors in the germinal zones are differentiating
and migrating into the CP in the early stage of neurogenesis,
while some of them are still dividing and proliferating until
the later time point of neurogenesis. In addition, while they
are neurogenic at the early stages of cortical development, they
gradually switch to astrogliogenesis in the later stages. This
shows that the cell fate commitment of the progenitor cells is
highly dynamic and tightly regulated. How many cell fates exist
during neurogenesis and how such dynamic cell fate changes are
programmed in the gene regulatory network within individual
cells is not well-understood.

Current technological advances in single-cell genomics
enabled us to isolate individual cells from complex tissues and
explore their molecular profiles at the single cell level, which
offers the possibility to characterize the cellular heterogeneity and
subpopulations (Yuan et al., 2017). Recently, these technologies
were implemented to investigate multiple cell types of neural
progenitors and mature neurons generated during neurogenesis
(Poulin et al., 2016; Telley et al., 2016). In this mini-review, we
introduce current workflow in single-cell genomics, biological
insights obtained by single-cell neurogenesis studies, and future
challenges in the application of single-cell technologies toward
a comprehensive understanding of the genetic and epigenetic
mechanisms at the single-cell resolution.

CURRENT WORKFLOW OF SINGLE-CELL
TECHNOLOGIES IMPLEMENTED IN THE
NEUROGENESIS RESEARCH

Current workflow of single-cell genomics is organized in the
set of steps: defining the biological system, appropriate isolation
of relevant single cells, sequencing library preparation, high-
throughput sequencing, and computational analysis (Figure 1).

The two very popular biological systems to investigate cortical
development using single-cell genomics have been embryonic
cortical tissues and brain organoids. (Figure 1, Step1) For
example, single-cell studies have been performed in E13.5 and
E14.5 cortex from mouse brain (Fan et al., 2016; Telley et al.,
2016) and micro-dissected cortex from 14 to 16 GW and 16
to 18 GW from human fetal brain (Camp et al., 2015; Pollen
et al., 2015; Table 1). As an alternative method to overcome the
limited accessibility to the fetal human tissues, researchers have
developed 3D in vitro culture “brain organoid” using human
pluripotent stem cells, in which cells self-organize into complex
structures. In this technology, inductive signaling molecules

mimic endogenous patterning drive dorsal and ventral forebrain
differentiation which generate proliferative ventricular-like zones
containing neural stem cells that produce a multilayered cortical-
like structure expressing markers of deep- and superficial-layer
neurons (Di Lullo and Kriegstein, 2017). The brain organoid
imitates the features of the developing human brain in vivo
(Kelava and Lancaster, 2016), and it has been successfully used
for single-cell transcriptome studies. For example, Camp et al.
profiled single-cell transcriptome from 333 cells of human brain
organoid and found that human cerebral organoids recapitulate
gene expression programs of fetal neocortex development (Camp
et al., 2015). Quadrato et al. profiled transcriptome from
80,000 single cells from 31 human brain organoids and showed
that organoids could generate a broad diversity of cell types
that reflect endogenous classes (Quadrato et al., 2017). Given
their ability to recapitulate the cell diversity of the cortical
development, the brain organoids in combination with single-
cell techniques will continue to provide useful information
on human neurogenesis and neurodevelopmental disorders
(Bershteyn et al., 2017; Table 1).

To isolate individual cells (Figure 1, Step2), Fluorescence-
activated cell sorting (FACS) (Fan et al., 2016; Telley et al.,
2016) and microfluidic systems (Fluidigm C1) (Camp et al.,
2015; Pollen et al., 2015; Mora-Bermudez et al., 2016; Bershteyn
et al., 2017) have been most widely applied. FACS isolate cells
of interest using the targeted cell-surface markers so that it
provides the possibility to enrich for fluorescently-labeled cells of
interest as described before (Telley et al., 2016). The microfluidic
system such as Fluidigm C1 uses the microfabrication techniques
and microfluidic chambers to isolate single-cells (Saliba et al.,
2014). On the other hand, Drop-seq was currently developed as
microdroplet system using microfluidic technologies to isolate
single cells in aqueous droplets in a non-aqueous suspension
which serve as individual nanoliter-scale aqueous reaction
chambers for reverse transcription of PCR (Macosko et al., 2015;
Poulin et al., 2016). Drop-seq was recently implemented for the
study of 80,000 cells from human brain organoid (Quadrato et al.,
2017). It seems that for hundreds to thousands of cells, FACS
or microfluidic system (Fluidigm C1) is recommended for cell
isolation, while to scale-up to thousands to tens of thousands of
cells, Drop-seq technique is suitable (Poulin et al., 2016) though it
has limitation of low gene-per-cell sensitivity compared to other
scRNA-seq methods (Ziegenhain et al., 2017).

Following single cell isolation, cells are lysed and the RNA
is captured for reverse transcription into cDNA to construct
sequencing library. Previous single-cell genomics applied in
the neurogenesis research mostly implemented template-switch-
based protocols including Smart-seq and DROP-seq (Figure 1,
Step3) (Camp et al., 2015; Pollen et al., 2015; Fan et al., 2016;
Mora-Bermudez et al., 2016; Telley et al., 2016; Bershteyn
et al., 2017; Quadrato et al., 2017). In case of Smart-seq,
commercially available Smart-seq kit (Clontech) is used to
generate full-length double-stranded cDNA which is converted
into sequencing libraries by tagmentation (Nextera, Illumina)
(Ziegenhain et al., 2017). Smart-seq2 protocol is similar to Smart-
seq which generates full-length libraries, but it had improved
reverse transcription, template switching, and pre-amplification

Frontiers in Neuroscience | www.frontiersin.org 2 February 2018 | Volume 12 | Article 31

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Jeong and Tiwari Cortical Development and Single-Cell Transcriptomics

FIGURE 1 | Current workflow of single-cell technologies to study cortical development. Step1. Biological systems to study brain development. Upper panel shows in

vivo mouse embryonic brain and below panel indicates in vitro human brain organoid which is commonly used for the single-cell neurogenesis studies. Step2. Cell

isolation methods. Individual cells can be isolated using FACS, Microfluidic ChIP, or Drop-seq approaches. Step3. Library preparation. The common protocols include

polyA+ mRNA capture, reverse transcription, cDNA amplification using PCR, and tagmentation. Step4. Sequencing of the library. Step5. Computational analysis.

After the preprocessing of sequencing reads, visualization using t-SNE, unsupervised clustering, and correlation analysis with bulk RNA-seq is followed to identify

subtypes of cells and characterize their identities.

to increase yield and length of cDNA libraries from single
cells (Picelli et al., 2013; Ziegenhain et al., 2017). In Drop-seq,
a flow of beads are suspended in lysis buffer and a flow of
a single-cell suspension is brought together in a microfluidic
chip, which generates nanoliter-sized emulsion droplets. Here
each bead contains covalently bound oligo-dT primers carrying
a unique molecular identifier (UMI) and a unique, bead-
specific barcodes. UMI is a barcode of the individual molecule
to estimate the number of transcribed molecules that is
independent of amplification biases (Stegle et al., 2015), while
bead-specific barcode provides the information of cell-of-origin
(Macosko et al., 2015). Following cell lysis, their mRNA gets
attached to the oligo-dT-carrying beads, and then as droplets
are broken, cDNA and library are generated for all cells in
parallel.

Prepared libraries undergo sequencing using next-generation
sequencing platforms such as Illumina Hi-Seq and Nextseq
(Figure 1, Step4). Both single-end (Chu et al., 2016; Xu et al.,
2016) and paired-end (Telley et al., 2016) library preparation
are used for the single-cell transcriptomic analysis. For the
special purpose of investigation of transcript isoforms, paired-
end sequencing is suitable to quantify multiple isoforms with
high confidence. In terms of sequencing depth, the recent single-
cell transcriptomics from the neurogenesis research sequenced
0.1–5 million reads per cell (Table 1). To get a saturated gene
detection, 1 million reads per cell is generally recommended
(Svensson et al., 2017). However, the sequencing depth has
to be decided based on the purpose, as not all studies need
to saturate detection but some of them more focus on the
finding of the new cluster of cells which requires a large
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number of cells rather than high sequencing depth. For
example, Pollen et al. performed down-sampling analysis from
the 301 single-cells of developing cerebral cortex and found
that 0.05 million reads per cell is sufficient for unbiased cell-
type classification and biomarker identification (Pollen et al.,
2014).

Following sequencing, an extensive computational analysis
is performed including read alignment, quantification,
visualization of data, unsupervised clustering, and differential
expression analysis to interpret these large-scale data sets
(Figure 1, Step5). After the read alignment and quantification
using Tophat (Kim et al., 2013), STAR (Dobin et al., 2013),
Cufflinks (Trapnell et al., 2012), or Kallisto (Ntranos et al., 2016),
the low-quality cells with small library size or high portion of
mitochondrial reads need to be excluded from downstream
analysis. Toward the visualization of single-cell transcriptomes
at the collective level, most studies in past implemented Principal
component analysis (PCA) and t-SNE to obtain the overview
and structure of subpopulations (Poirion et al., 2016). For the
unsupervised clustering, ConsensusClusterPlus R (Wilkerson
and Hayes, 2010), EMCluster (Jung et al., 2014), SC3 (Kiselev
et al., 2017), SNN-Cliq (Xu and Su, 2015), SCUBA (Marco
et al., 2014), BackSPIN (Zeisel et al., 2015), and PAGODA (Fan
et al., 2016) provide methods to identify the subpopulation
from the single-cell transcriptome profiles. Following clustering,
DESeq2 (Love et al., 2014), SCDE (Kharchenko et al., 2014),
and MAST (Finak et al., 2015) are used to identify differentially
expressed genes between clusters. Pseudotime is another
important concept in the computational analysis of single-cell
transcriptome, which estimates the cells’ progress through
the transition. The computational tools like TSCAN (Ji and
Ji, 2016), Monocle (Trapnell et al., 2014), Waterfall (Shin
et al., 2015), Sincell (Julia et al., 2015), Oscope (Leng et al.,
2015), and Wanderlust (Bendall et al., 2014) provide in silico
defined pseudotime for each single-cell during the cell fate
transition.

To gain the first glimpse into the characteristic of
single-cell clusters, typically the expression of marker
genes such as proliferation, neuronal onset, and neuronal
differentiation/maturation genes (Telley et al., 2016) and/or
correlation with bulk-cell transcriptome profiles is integrated.
For example, Camp et al. performed unsupervised clustering
of 226 single-cells from human embryonic neocortex, and
examined the characteristics of each clusters (Camp et al.,
2015) using the correlation with existing bulk-cell RNA-seq
profiled from cortical layers (VZ, ISVZ, OSVZ, and CP;
Fietz et al., 2012) and FAC-sorted subpopulations (aRG,
bRG, and N; Florio et al., 2015). Furthermore, Mora-
Bermudez et al. performed single-cell RNA-seq from 344
cells of Chimpanzee cerebral organoids and compared
each cell cluster with bulk-RNA-seq from germinal layers
of the human embryonic brain (Fietz et al., 2012; Mora-
Bermudez et al., 2016). These abovementioned steps are
the most widely followed in the current single-cell studies
to decode heterogeneity in cell populations during cortical
development.

NOVEL BIOLOGICAL INSIGHTS INTO
CORTICAL DEVELOPMENT USING
SINGLE-CELL TECHNOLOGIES

Current single-cell genomics studies (Table 1) have provided
unprecedented biological insights into the cellular diversity and
its molecular code which was difficult to obtain using previous
approaches. For example, a recent study performed single-cell
RNA-seq of isochronic VZ cells after 6, 12, 24, and 48 h of birth
(Telley et al., 2016). Following this, computational pseudotime
modeling which projects each cell into the differentiation
trajectory identified sequential waves of gene expression patterns,
perturbation of which restricted formation of proper neuronal
layers. Furthermore, epigenetic factors such as Kdm3a (lysine
demethylase 3A) and MeCP2 (Methyl CpG binding protein-2)
belonged to different sequential waves, suggesting that distinct
epigenetic players contribute at defined steps of neurogenesis.

Interestingly further, single-cell transcriptome analysis in
combination with an unsupervised clustering has not only
been able to dissect cellular heterogeneity but also characterize
molecular details of the identified subpopulations of cells. For
example, a previous study revealed that the most significant
aspect of heterogeneity was originating from genes associated
with neuronal maturation and growth, which is closely tied
to the spatial organization of their expression patterns across
three layers (VZ, SVZ, and CP) of the developing cortex (Fan
et al., 2016). In another study, two different radial glial cell
populations oRG and vRG were separated based on the single-
cell transcriptome profiles and it further allowed a thorough
investigation of differences in the gene expression profiles
between these two cell populations (Pollen et al., 2015). For
example, the key regulators such as HOPX and PTPRZ1
were found to be differentially expressed between oRG and
vRG and may guide future studies aimed to decipher the
differential transcriptome underlying identity of oRG and vRG
cells.

Another considerable point of single-cell RNA-seq analysis
is that the identification of similarities and differences of cell
populations between in vivo and in vitro neurogenesis, or
between species. For instance, single-cell transcriptomes from in
vitro human brain organoids could faithfully reconstruct genetic
and cellular networks involved in germinal zone organization,
neural progenitor cell (NPC) proliferation, and NPC-to-neuron
differentiation in vivo (Camp et al., 2015). In this study, over
80% of genes that were differentially expressed across the fetal
cortex lineages have similar expression profiles in organoid and
fetal cerebral cortex (Camp et al., 2015). Furthermore, in a study
comparing AP populations between species, about 12% of the
genes specific to AP or neurons in both human and chimpanzee
were found not specific to these cell types in the mouse, implying
an involvement of certain specific developmental mechanisms
during the development of the primate cerebral cortex (Mora-
Bermudez et al., 2016). Altogether, these examples vouch for
the strong and unprecedented discovery power that single-cell
transcriptomics has conferred researchers in the field of cortical
development.
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CHALLENGES IN SINGLE-CELL
TECHNOLOGIES FOR CORTICAL
DEVELOPMENT RESEARCH

Despite exciting advances in single-cell genomics, there are
several challenges toward deciphering the gene regulatory
network and epigenetic mechanisms of cell fate specification
during neurogenesis at the single cell level (Poulin et al.,
2016). Current single-cell transcriptome studies in neurogenesis
research implemented dissociation of cells from the tissue which
involves external physical stress (Liu and Trapnell, 2016). In
addition, this procedure requires the removal of cell-cell contacts.
Since niche microenvironment and cell-cell adhesion are also
means of signal transduction, it is not clear how much the loss
of these properties influences the transcriptome at the single cell
level. To reduce these issues, alternative single-cell transcriptome
techniques such as in situ sequencing (Ke et al., 2013) and
Fluorescent in situ sequencing (FISSEQ) (Lee et al., 2015) could
be considered for future neurogenesis studies.

Furthermore, current single-cell transcriptome only gives a
snap-shot of the analyzed cell at the time of capture. These
transcriptome data also have a large sparsity with a very high
proportion of genes that show zero read counts (Vallejos et al.,
2017). This zero count can come from biological reasons (a
transient state where a gene is not expressed) as well as technical
reasons such as dropout events and read depth of sequencing.
Therefore, it is not fully clear how much of the single-cell
transcriptome data and resulting clusters are influenced by any
of these variables. To reduce the bias from the technical issue,
more effort to increase capture efficiency is needed for library
preparation (Liu and Trapnell, 2016). In parallel, thorough
normalization of data and quality control processes are needed
to address the technical issues come from sparsity of the data
or cell cycle phase transition (Vallejos et al., 2017). Also, it is
essential to combine dual measurements from the same cell that
allows transcriptome analysis simultaneous to another readout
of the cellular state. Along these lines, new techniques combining
live-cell imaging and single-cell sequencing (Lane et al., 2017),
or electrophysiology and single-cell sequencing (Cadwell et al.,
2016), which can track cellular state in parallel with genome-
wide gene expression profiles are increasingly getting popular
and should be applied to the studies of cortical development.

The recent decade has shown that epigenetic mechanisms are
critical for gene regulatory programs underlying cell-fate changes
during development. Recently, single-cell ATAC-seq (Buenrostro
et al., 2015) was applied to neurogenesis study (Preissl et al., in
review) to measure chromatin accessibility at the single cell level.
However, many other single-cell epigenomics methods including
DROP-ChIP (Rotem et al., 2015), scRRBS (Guo et al., 2013), and
scHi-C (Ramani et al., 2017) to measure chromatin landscape,
DNA methylatome and higher-order chromatin structures at
the single cell level remained to be applied to study brain
development. Furthermore, those protocol can be combined into
single-cell multi-omics technique such as scMT-seq (Hu et al.,
2016), scTrio-seq (Hou et al., 2016), and scNMT-seq (Clark et
al., in review). Current single-cell epigenome technology has the

limitation of low coverage of genome so that the clustering of cells
are biased by easily profiled genomic regions. If this limitation is
improved, these single-cell epigenomic technologies will enable
us to decipher epigenetic control of cortical development and its
contribution to the sequential waves of transcriptional changes
that underlie neurogenesis. In addition, single-cell epigenomics
also holds potential to identify new cell subpopulations during
cortical development that were not detected by single-cell
transcriptome analysis.

Given that the field of single-cell genomics is relatively new,
the researchers also encountered challenges in having universally
accepted and robust pipelines for the computational analysis
of single-cell datasets. Compared to conventional bulk RNA-
seq analysis, single-cell RNA-seq analysis requires more rigorous
quality control and normalization to minimize the bias arising
from low capture efficiencies and confounding factors like cell
cycle state changes. Although individual tools specialized for
the analysis of single-cell data are increasingly available (Poirion
et al., 2016), a standard pipeline that includes quality controls,
normalization, clustering, finding the identity of clusters and
differential expression analysis should be established to provide
robust and comparable results between different laboratories.
Also, novel analysis ideas which can find new insight from the
data, or improve the quality of unsupervised clustering need to
be developed continuously.

Importantly further, it is also possible to use the existing
single-cell transcriptome profiles from neurogenesis in vivo and
in vitro to analyze splicing, non-coding RNA species, and intronic
transcripts. While most of the single-cell transcriptome profiling
protocols so far employed poly-A selection, a subset of the
non-coding RNAs which contain poly-A tail can be assessed.
The intronic reads from nascent RNAs can be measured from
the single-cell transcriptome to study splicing and actual rates
of transcription (Gaidatzis et al., 2015). Recently developed
approaches including BRIE (Huang and Sanguinetti, 2017),
WemIQ (Zhang et al., 2015), and SingleSplice (Welch et al.,
2016) will help analyzing alternative splicing from the existing
single-cell transcriptomes of neurogenesis. Given that alternative
splicing (Vuong et al., 2016) and non-coding RNA-mediated
gene regulation (Yao et al., 2016) are known to be important
for neurogenesis, investigation of splicing regulation, non-coding
RNA, and nascent RNA expression from the existing single-cell
transcriptomes will provide novel insights into the heterogeneity
of cell populations and molecular programs underlying cortical
development.

CONCLUSIONS AND PERSPECTIVES

Recent single-cell transcriptome studies allowed novel
discoveries on various aspects of cortical development including
sequential waves of gene expression, cellular heterogeneity, and
comparative analysis of cell populations across embryonic stages,
species, and origins (in vitro/in vivo). Future studies should
invest more effort to improve library preparation protocols
to increase the molecular capture efficiency to reduce the bias
from the technical issue. Also, simultaneous assessment of
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cellular state such as live cell imaging and electrophysiology
in addition to gene expression profiling at the single-cell level
need to be considered. Moreover, efforts should be made
to measure single-cell transcriptome without detachment of
cells from cortex and organoids to allow proper assessment
of cellular states and transcriptional programs underlying
neurogenesis. These assessments will also remain incomplete
unless complemented by a systematic investigation into the
epigenetic landscape of single-cells using technologies such as
DROP-ChIP, scMT-seq, and scTrio-seq. Those multi-omics
approaches will enable the generation of mechanistic models
relating genetic/epigenetic variation and transcript expression
dynamics in neurogenesis (Macaulay et al., 2017). Additionally,
development of robust and universally accepted computational
pipelines is required to obtain more conclusive biological
findings and their comparability across different laboratories.

At the same time, existing single-cell genomics data can be
further analyzed by novel computational methodologies to
profile alternative splicing, non-coding transcripts, and nascent
RNAs. Importantly, all of these comprehensive single-cell
genomics analysis should be performed at various stages of
cortical development for the comprehensive understanding
of cellular subpopulations. Altogether, with these advances,
we will get closer to decoding the complexity of cell types
and underlying gene regulatory network during cortical
development.
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