Received 27 November 2017; revised 21 January 2018; accepted 26 January 2018. Date of publication 2 February 2018; date of current version 23 February 2018. The review of this paper was arranged by Editor M. Liu.

Digital Object Identifier 10.1109/JEDS.2018.2801219

# Novel Boosting Scheme Using Asymmetric Pass Voltage for Reducing Program Disturbance in 3-Dimensional NAND Flash Memory

DAE WOONG KWON<sup>®</sup><sup>1</sup>, JUNIL LEE<sup>1</sup> (Student Member, IEEE), SIHYUN KIM<sup>1</sup>, RYOONGBIN LEE<sup>1</sup>, SANGWAN KIM<sup>®</sup><sup>2</sup> (Member, IEEE), JONG-HO LEE<sup>®</sup><sup>1</sup> (Fellow, IEEE),

## AND BYUNG-GOOK PARK<sup>10</sup> 1 (Member, IEEE)

1 Inter-University Semiconductor Research Center and Department of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-744, South Korea 2 Department of Electrical and Computer Engineering, Ajou University, Suwon 16944, South Korea

CORRESPONDING AUTHOR: B.-G. PARK (e-mail: bgpark@snu.ac.kr)

This work was supported by in part by the Brain Korea 21 Plus Project in 2017, and in part by the Future Semiconductor Device Technology Development Program funded by Ministry of Trade, Industry and Energy and Korea Semiconductor Research Consortium under Grant 10067739.

**ABSTRACT** In this paper, novel boosting scheme using asymmetric pass voltage ( $V_{pass}$ ) is proposed to obtain high channel boosting potential and to reduce program disturbance in 3-D NAND flash memory. The proposed scheme has the same program bias and timing conditions as conventional self-boosting except for  $V_{pass}$  voltages applied to both adjacent word-lines of selected word-line ( $WL_{sel}$ ). Reduced  $V_{pass}$  ( $V_{pass1} = V_{pass} - \Delta V$ ) is applied to previous word-line ( $WL_{n-1}$ ) of  $WL_{sel}$  and increased  $V_{pass}$  ( $V_{pass2} = V_{pass} + \Delta V$ ) is applied to next word-line ( $WL_{n+1}$ ). In this scheme, the  $V_{pass1}$  cuts the channel off and causes local boosting when the channel potentials of inhibit strings are boosted up. Meanwhile, the  $V_{pass2}$  compensates the program speed reduction of selected cell (cell<sub>sel</sub>) induced by the decreased voltage of the  $V_{pass1}$ . Through the measurements of program disturbance in fabricated devices, it is revealed that the program disturbance is significantly improved without the reduction of program speed by the proposed scheme. Furthermore, the  $V_{pass1}$  and  $V_{pass2}$  are optimized to maximize the improvement.

**INDEX TERMS** 3-D NAND flash memory, asymmetric pass voltage, local-boosting scheme, program disturbance.

#### I. INTRODUCTION

Program disturbance which eventually causes program failure in erase state is one of the key challenges to realize multi-bit NAND flash devices with reliable operation characteristics. Typically, the program disturbance consists of the disturbances by program voltage ( $V_{pgm}$ ) and  $V_{pass}$ . The  $V_{pgm}$  disturbance occurs at the  $WL_{sel}$  of inhibit string, while the  $V_{pass}$  disturbance is generated by soft-program at the unselected WLs ( $WL_{unsel}$ ) of program string. There is trade-off between  $V_{pgm}$  and  $V_{pass}$  disturbances because the higher  $V_{pass}$  enhances the channel boosting potential of inhibit string, whereas it accelerates the undesirable soft-program at the  $WL_{unsel}$  of program string. Therefore,  $V_{pass}$  window margin in NAND flash can be defined as the error-free region for both  $V_{pgm}$  and  $V_{pass}$  disturbances as a function of  $V_{pass}$ . Many approaches have been discussed to improve the

program disturbance [1]–[3]. Above all things, It has been considered that local-boosting scheme is one of the most effective methods to improve channel boosting potential and to reduce back-pattern dependency in inhibit string where unselected memory cells (cell<sub>unsel</sub>) have various threshold voltages ( $V_{th}$ ) [4]–[6].

However, in the local-boosting scheme, a relatively low voltage ( $V_{local}$ ) compared to  $V_{pass}$  is required to cut-off the channel of inhibit string and a graded bias condition should be adopted to suppress the Gate Induced Drain Leakage (GIDL)-induced disturbance caused by the large potential difference between  $V_{local}$  and  $V_{pass}$  [7]–[10]. Moreover, to prevent the disturbance generated by Drain-Induced Barrier Lower (DIBL), Erase-Area Self-Boosting (ESAB) scheme has been used since it can reduce the potential difference between source-side



**FIGURE 1.** (a) Conventional self-booting scheme [3]. (b) Proposed asymmetric V<sub>pass</sub> boosting scheme. (c) Timing condition that is used at proposed asymmetric V<sub>pass</sub> boosting scheme.

and drain-side channels based on  $V_{local}$  during channel boosting [11]. Thus, the introduction of an additional low voltage generator circuit is inevitable and the increase of the channel potential by the local-boosting is reduced by the graded bias than expected.

In this letter, we propose the novel boosting scheme with the same bias and timing conditions as conventional selfboosting scheme except for  $V_{pass}$  voltages applied to both adjacent WLs of WL<sub>sel</sub>. In the proposed scheme, WL<sub>n-1</sub> cell (cell<sub>n-1</sub>) can turn off and thus local boosting occurs by applying  $V_{pass1}$  with small voltage reduction ( $\Delta V$ ) from  $V_{pass}$  to WL<sub>n-1</sub> without the introduction of an additional low voltage generator circuit and complex timing condition. Furthermore, the reduced program speed of cell<sub>sel</sub> by  $V_{pass1}$ can be completely compensated by applying  $V_{pass2}$  with increased  $\Delta V$  to WL<sub>n+1</sub>. From the TCAD simulations and the measurements of fabricated devices, the validity of the proposed boosting scheme is rigorously investigated.

### **II. EXPERIMENT**

In order to clarify the program disturbance mechanisms, the measurements of fabricated devices are performed. The measured gate-stack type 3-D flash memory has thin tube-type polycrystalline silicon (poly-Si) body, gate dielectric stacks including SiN layer, and virtual source/drain. The cell string is similar to that of the p-BiCS structure [12], [13]. The gate length (Lg), space between vertical WLs, and tube diameter are all less than 100 nm. In 3-D NAND arrays, there are additional cellunsels that should be inhibited in different ways from conventional 2-D NAND arrays. Fig. 2(a) shows the inhibition cases of the cellunsels according to bit-line (BL) and string select line (SSL) gate biases. Among them, it has been reported that BL: 0V, SSL: 0V case (cell<sub>INH2</sub>) has the worst program disturbance due to the leakage current flowing from boosted channel to BL [14]. The Vth of the cell<sub>INH2</sub> in erase state is extracted each time applying Incremental Step Program Pulse (ISPP) at 90 °C to analyze the program disturbance under the worst condition.  $\triangle V_{pgm}$  of 0.5 V is used in the ISPP and all the Vths are extracted by a constant current method at 5 x  $10^{-9}$  A. Before the ISPP, erase (E), program1 (P1), program2 (P2), and program3 (P3) states are set to the  $V_{th}$ s of -2 V, -0.4 V, 1.3 V, and 3 V, respectively. To compare the proposed boosting scheme with the self-boosting scheme, the bias and timing conditions of Figs. 1(a) and (b) are used.



FIGURE 2. (a) Program and inhibition cases of 3-D NAND flash memory. (b) V<sub>pass</sub> window optimization. V<sub>pass</sub> window is extracted from one of center word lines by using conventional self-boosting method. (c) Measured program speed of cell<sub>sel</sub> in PGM string according to  $\Delta V$ . (d) Measured V<sub>pgm</sub> disturbance of cell<sub>sel</sub> in INH2 string according to  $\Delta V$ . (e) Repeatability of V<sub>pgm</sub> disturbance improvement in proposed boosting scheme with  $\Delta V$  of 3 V.

### **III. RESULTS AND DISCUSSION**

Firstly, V<sub>pass</sub> is optimized through V<sub>pass</sub> window measurements as can be seen Fig. 2(b). The V<sub>pass</sub> window is extracted by using self-boosting scheme after block erase. Then, the effects of  $V_{pass1}$  and  $V_{pass2}$  with various  $\Delta Vs$  on the  $V_{pgm}$ disturbance of the cell<sub>INH2</sub> are measured after block erase. Note that the proposed scheme is the same as self-boosting scheme in the case of  $\Delta V = 0$  V. Fig. 2(d) shows that the disturbance gets improved with the increased  $\Delta V$  and the disturbance is no longer improved from  $\Delta V = 5$  V. Over  $\Delta V = 5$  V, the disturbance starts to be degraded slightly. To clarify the disturbance improvement, the V<sub>pgm</sub> disturbance is measured repeatedly with  $\Delta V$  of 3 V. Fig. 2(e) shows that the reduction of the V<sub>pgm</sub> disturbance appears repeatedly. Furthermore, Fig. 2(c) indicates that the program speed of the cellsel in the program string is nearly unchanged regardless of  $\Delta V$  because the reduced  $\Delta V$  of the V<sub>pass1</sub> is completely compensated by the increased  $\Delta V$  of the V<sub>pass2</sub>. Thus, the improved disturbance characteristics should result from the enhancement of the boosted channel potential by the proposed scheme.

To investigate the change of the disturbance as a function of the  $\Delta V$ , TCAD simulations are carried out by using Synopsys Sentaurus. Figs. 3(a) and (b) show the simulated cross-sectional structures of 3-D NAND flash memory which



**FIGURE 3.** Figures are cross-sectional and half images of tube-type 3-D NAND flash memory with gate-all-around (GAA) structure. (a) Simulation results show that higher channel potential can be obtained when the proposed boosting scheme is applied with proper  $\Delta V$ . (b) Electron-hole pair generated between  $WL_{sel}$  and  $WL_{n-1}$ . (c) Measured  $V_{pgm}$  disturbance of  $WL_{sel}$  in INH2 string according to  $\Delta V$  with  $WL_{n-1}$  of P3 state. (d) Potential profile according to channel direction and illustration of hot-carrier disturbance at  $WL_{sel}$ .

are composed of nine WLs, one SSL, and one ground select line (GSL) for simplicity. Program operations are simulated under the bias and timing conditions of Figs. 1(a) and (b) after block erase. Figs. 3(a) show that the channel potential beneath the cell<sub>sel</sub> is more boosted as the V<sub>pass1</sub> becomes deceased. This phenomenon can be explained by the fact that the turn-off condition of the cell<sub>n-1</sub> (V<sub>pass1</sub> – channel potential of cell<sub>n-1</sub> < V<sub>th</sub> of cell<sub>n-1</sub>) is achievable when V<sub>PGM</sub> pulse is rising and the channel potential of the cell<sub>n-1</sub> is boosted up by the V<sub>PGM</sub> as can be seen in Figs. 3(a). Consequently, the stronger turn-off of the cell<sub>n-1</sub> occurs and thus the channel potential of the cell<sub>sel</sub> becomes increased with the reduced V<sub>pass1</sub>.

To investigate the influence of the  $cell_{n-1}$  V<sub>th</sub> on the V<sub>pgm</sub> disturbance under the proposed boosting scheme, the  $cell_{n-1}$ in the inhibit string is set to P3 state and then the disturbance of the cell<sub>sel</sub> is monitored throughout the ISPP ( $\Delta V$ = 0 V is used during the V<sub>th</sub> setting of the cell<sub>n-1</sub> to exclude the effects of the  $V_{\text{pass}}$  disturbance by  $V_{\text{pass2}}$  on the  $V_{pgm}$  disturbance of the cell<sub>sel</sub>). Fig. 3(c) indicates that the disturbance is nearly unchanged according to the  $V_{pass1}$ reduction and then the disturbance starts to be degraded from  $\Delta V = 3 V$  as the cell<sub>n-1</sub> has P3 state. The degradation of the disturbance over  $\Delta V = 3 V$  can be understood by the GIDL-induced electron-hole pair (EHP) generation between  $WL_{n-1}$  and  $WL_{sel}$  as depicted in Fig. 3(b). The energy band diagram of Fig. 3(d) presents that the EHP is easily generated by the  $cell_{n-1}$  with the high  $V_{th}$  (P3 state) as compared to when the  $cell_{n-1}$  has the low  $V_{th}$  (E state). The electrons



**FIGURE 4.** (a) Measured  $\Delta V$  window as a function of  $\Delta V$ . (b) V<sub>th</sub> change of cell<sub>sel</sub> by series of disturbance consisting of V<sub>pass</sub> and V<sub>pgm</sub> disturbances. (c) Diagram that explains how cell<sub>sel</sub> V<sub>th</sub>s of Fig. 4(b) are extracted.

of the generated EHP are accelerated by the large potential difference between the  $cell_{n-1}$  (P3 state) and the  $cell_{sel}$ and can obtain enough energy to be injected into the storage node of the  $cell_{sel}$  [7]. Thus, it can be expected that the degradation of the disturbance over  $\Delta V = 3$  V results from the GIDL-induced HCI caused by the combination of the strongly turn-off  $cell_{n-1}$  and the highly boosted channel potential.

When considering the correlation between the V<sub>th</sub> and the turn-off condition of the cell<sub>n-1</sub>, it can be simply noticed that both the sensitive disturbance degradation and the insensitive disturbance improvement to the V<sub>pass1</sub> reduction are because the cell<sub>n-1</sub> turns off enough and the GIDL-induced HCI occurs at a relatively high V<sub>pass1</sub>. Hence, the  $\Delta V$  of V<sub>pass1</sub> and V<sub>pass2</sub> is optimized by considering the V<sub>th</sub> of the cell<sub>n-1</sub>. Fig. 4(a) demonstrates that the optimized  $\Delta V$  is determined at the  $\Delta V$  ( $\Delta V = \sim 3$  V) where the disturbance at the cell<sub>n-1</sub> of E state (Channel boosting limitation) and that at the cell<sub>n-1</sub> of P3 state (GIDL-induced HCI limitation) are simultaneously minimized.

Finally, the effects of the  $V_{pass}$  disturbance by the  $V_{pass2}$ on the V<sub>pgm</sub> disturbance of the cell<sub>disturb</sub> are checked by programing the cell<sub>sel</sub> in the program string after setting the  $V_{th}$  of the cell<sub>n-1</sub> in the inhibit string to P3 state with  $\Delta V = 3 V$  and  $\Delta V = 0 V$ , respectively. Fig. 4(b) shows that the V<sub>th</sub> change of the cell<sub>disturb</sub> by the V<sub>pass2</sub> cannot affect the V<sub>th</sub> after finishing the programing although the cell<sub>disturb</sub> experiencing the  $V_{pass2}$  with  $\Delta V = 3$  V has the higher  $V_{th}$ due to the V<sub>pass</sub> disturbance before the programing (the cell<sub>sel</sub> in the program string is programed to P3 state by using the proposed boosting scheme with the optimized  $\Delta V = 3 V$ ). This means that the program disturbance is determined only by the boosting potential otherwise the V<sub>th</sub> of the cell<sub>disturb</sub> is too much increased by the V<sub>pass</sub> disturbance before the programing (namely, in Fig. 4(b), Vth of celldisturb at After  $V_{pass}$  disturb <  $V_{th}$  of cell<sub>disturb</sub> at After  $V_{pgm}$  disturb). Thus, the optimized  $\Delta V = 3 V$  is valid despite of the high  $V_{pass2}$ .

Additionally, it should be noted that the same  $\Delta V$  for V<sub>pass1</sub> and V<sub>pass2</sub> is used to compare the program disturbance of the proposed boosting scheme to that of the conventional self-boosting at the same program speed because asymmetric  $\Delta V$  makes the program speed slow or fast by the coupling between V<sub>PGM</sub> and V<sub>pass1</sub>/V<sub>pass2</sub>. However, the different  $\Delta Vs$  for  $V_{pass1}$  and  $V_{pass2}$  can be used to improve the program disturbance. For example, in the case of  $\Delta V = 3V$ , the  $\Delta V$  of  $V_{pass2}$  can be increased with the fixed  $V_{pass1}$   $\Delta V$ of 3 V in the range that the  $V_{pass}$  disturbance by  $V_{pass2}$  is smaller than the  $V_{pgm}$  disturbance after programing and the GIDL-induced disturbance is smaller than the disturbance determined by channel boosting. Furthermore, the proposed scheme can be also applied to 2-D NAND. However, compared to 3-D NAND with thin poly channel, the boosting potential of 2-D NAND is lower because 2-D NAND has bulk silicon channel. Thus, the proposed boosting scheme is more effective in 3-D NAND as the high channel boosting potential easily turns off the  $cell_{n-1}$ .

### **IV. CONCLUSION**

In this study, we propose a novel boosting scheme with the same bias and timing conditions as conventional selfboosting scheme except for the V<sub>pass</sub> voltages applied to both adjacent WLs of WL<sub>sel</sub>. From TCAD simulations and the measurements of fabricated devices, it is verified that the cell<sub>n-1</sub> can turn off and thus local boosting occurs by applying the V<sub>pass1</sub> with small  $\Delta V$  reduction to WL<sub>n-1</sub>. Furthermore, the reduced program speed of the cell<sub>sel</sub> by the V<sub>pass1</sub> can be completely compensated by applying the V<sub>pass2</sub> with increased  $\Delta V$  to WL<sub>n+1</sub>.

The  $\Delta V$  of  $V_{pass1}$  and  $V_{pass2}$  is optimized by considering the  $V_{th}$  of the cell<sub>n-1</sub> and the  $V_{pass}$  disturbance to maximize the improvement. As a result,  $\Delta V = 3$  V is determined as the optimized  $\Delta V$  that can minimize both the disturbance limited by the boosting potential and that by the GIDL-induced HCI.

### REFERENCES

- K. Takeuchi, S. Satoh, K. Imamiya, and K. Sakui, "A source-line programming scheme for low-voltage operation NAND flash memories," *IEEE J. Solid-State Circuits*, vol. 35, no. 5, pp. 672–681, May 2000.
- [2] T. Cho et al., "A dual-mode NAND flash memory: 1-Gb multilevel and high-performance 512-Mb single-level modes," *IEEE J. Solid-State Circuits*, vol. 36, no. 11, pp. 1700–1706, Nov. 2001.
- [3] J. Lee et al., "A 90-nm CMOS 1.8-V 2-Gb NAND flash memory for mass storage applications," *IEEE J. Solid-State Circuits*, vol. 38, no. 11, pp. 1934–1942, Nov. 2003.
- [4] T.-S. Jung *et al.*, "A 3.3 V 128 Mb multi-level NAND flash memory for mass storage applications," in *IEEE ISSCC Dig. Tech. Papers*, San Francisco, CA, USA, 1996, pp. 32–33.
- [5] J.-K. Kim, H.-B. Pyeon, H. Oh, R. Schuetz, and P. Gillingham, "Low stress program and single wordline erase schemes for NAND flash memory," in *Proc. IEEE Non Volatile Semicond. Memory Workshop (NVSMW)*, Monterey, CA, USA, 2007, pp. 19–20.
- [6] K.-T. Park *et al.*, "Dynamic vpass controlled program scheme and optimized erase Vth control for high program inhibition in MLC NAND flash memories," *IEEE J. Solid-State Circuits*, vol. 45, no. 10, pp. 2165–2172, Oct. 2010.
- [7] J.-D. Lee *et al.*, "A new programming disturbance phenomenon in NAND flash memory by source/drain hot-electrons generated by GIDL current," in *Proc. IEEE Non Volatile Semicond. Memory Workshop*, Monterey, CA, USA, Feb. 2006, pp. 31–33.

- [8] S. J. Joo *et al.*, "Abnormal disturbance mechanism of sub-100 nm NAND flash memory," *Jpn. J. Appl. Phys.*, vol. 45, no. 8A, pp. 6210–6215, Aug. 2006.
- [9] K.-T. Park, S. Lee, J.-S. Sel, J. Choi, and K. Kim, "Scalable wordline shielding scheme using dummy cell beyond 40 nm NAND flash memory for eliminating abnormal disturb of edge memory cell," *Jpn. J. Appl. Phys.*, vol. 46, no. 4B, pp. 2188–2192, Apr. 2007.
- [10] T. Melde *et al.*, "Select device disturb phenomenon in TANOS NAND flash memories," *IEEE Electron Device Lett.*, vol. 30, no. 5, pp. 568–570, May 2009.
- [11] D. Oh et al., "Program disturb phenomenon by DIBL in MLC NAND flash device," in Proc. IEEE Non Volatile Semicond. Memory Workshop, Opio, France, 2008, pp. 5–7.
- [12] R. Katsumata *et al.*, "Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices," in *VLSI Symp. Tech. Dig.*, Honolulu, HI, USA, 2009, pp. 136–137.
- [13] E.-S. Choi and S.-K. Park, "Device considerations for high density and highly reliable 3D NAND flash cell in near future," in *IEDM Tech. Dig.*, San Francisco, CA, USA, 2012, pp. 9.4.1–9.4.4.
- [14] H. Yoo *et al.*, "Modeling and optimization of the chip level program disturbance of 3D NAND flash memory," in *Proc. IEEE Int. Memory Workshop*, Monterey, CA, USA, 2013, pp. 147–150.



**DAE WOONG KWON** received the Ph.D. degrees in electrical engineering from Seoul National University, Seoul, South Korea, in 2017. He joined the University of California at Berkeley, Berkeley, CA, USA, in 2017, as a Post-Doctoral Fellow. He had designed NAND flash memory devices from 2005 to 2014 with Samsung Electronics, Yongin, South Korea. His current research interests include negative capacitance FET, NAND flash memory, tunnel FET, bio-sensor, and metal oxide thin-film transistors.



**JUNIL LEE** (S'13) received the B.S. degree from Seoul National University, Seoul, South Korea, in 2013, where he is currently pursuing unified M.S. and Ph.D. degree in electrical computer engineering. His research interests include tunneling field-effect transistors with thin high-k dielectric. He is a Student Member of the Institute of Electronics Engineers of Korea.



**SIHYUN KIM** received the B.S. degree from Seoul National University, Seoul, South Korea, in 2014, where he is currently pursuing the Ph.D. degree in electrical engineering. His research interests include silicon nanowire biosensors and tunnel field-effect transistor.



**RYOONGBIN LEE** received the B.S. degree from SungKyunKwan University, Suwon, South Korea, in 2014. He is currently pursuing the Ph.D. degree in electrical engineering from Seoul National University, Seoul, South Korea. His research interests include silicon nanowire biosensors and tunnel field-effect transistor.



**JONG-HO LEE** (F'15) received the B.S. degree from Kyungpook National University, Daegu, in 1987, and the M.S. and Ph.D. degrees from Seoul National University, Seoul, South Korea, in 1989 and 1993, respectively, all in electronic engineering. From 1998 to 1999, he was a Post-Doctoral Fellow with the Massachusetts Institute of Technology.



**SANGWAN KIM** (S'07–M'15) was born in Daegu, South Korea, in 1983. He received the B.S., M.S., and Ph.D. degrees in electrical engineering from Seoul National University, Seoul, South Korea, in 2006, 2008, and 2014, respectively. He had worked with the University of California, Berkeley, CA, USA, as a Post-Doctoral Fellow. He has been the Faculty Member with Ajou University, Suwon, South Korea, since 2017, where he is currently an Assistant Professor with the Department of Electrical and Computer Engineering.



**BYUNG-GOOK PARK** (M'90) received the B.S. and M.S. degrees in electronic engineering from Seoul National University (SNU), Seoul, South Korea, in 1982 and 1984, respectively, and the Ph.D. degree in electrical engineering from Stanford University, Stanford, CA, USA, in 1990. He joined the School of Electrical Engineering, SNU in 1994, as an Assistant Professor, where he is currently a Professor. He holds over 100 Korean and U.S. patents.