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Abstract

We prove that there exists a function f : N → R such that every directed graph G contains either k
directed odd cycles where every vertex of G is contained in at most two of them, or a set of at most f(k)
vertices meeting all directed odd cycles. We also give a polynomial-time algorithm for fixed k which outputs
one of the two outcomes. Using this algorithmic result, we give a polynomial-time algorithm for fixed k to
decide whether such k directed odd cycles exist, or there are no k vertex-disjoint directed odd cycles.

This extends the half-integral Erdős-Pósa theorem for undirected odd cycles by Reed [Combinatorica 1999]
to directed graphs.

1 Introduction

Erdős and Pósa [5] proved that for every undirected graph G and every positive integer k, G either contains
k pairwise vertex-disjoint cycles, or a set of O(k log k) vertices that meets all cycles of G. This result has
been extended to cycles satisfying various constraints: long cycles [25, 2, 7, 20, 3], cycles with modularity
constraints [26, 11, 27], cycles intersecting a prescribed vertex set [13, 21, 3, 11], and holes [17]. We refer to
a survey of Raymond and Thilikos [22] for more examples. On the other hand, such a duality does not exist for
odd cycles: Lovász and Schrijver (see [26]) found a class of graphs, called Escher walls, where they have no two
vertex-disjoint odd cycles but there is no constant c such that every Escher wall admits a set of c vertices meeting
all odd cycles. Escher walls are illlustrated in Figure 1.

In 1999, Reed [23] obtained a half-integral analogue of the Erdős-Pósa theorem for odd cycles, by relaxing
the vertex-disjoint packing to a half-integral packing. A family of subgraphs in an undirected graph or a directed
graph G is a half-integral packing if every vertex of G is contained in at most two of the subgraphs. This theorem
of Reed has been recently generalized to group-labelled graphs by Huynh, Joos, and Wollan [11], Gollin et al. [9],
and Gollin et al. [10].

Theorem 1.1. (Reed [23]) There is a function g : N → R such that for every undirected graph G and every
positive integer k, G contains a half-integral packing of k odd cycles, or a set of at most g(k) vertices meeting all
odd cycles.

For directed graphs, the situations become much more complicated, and not many results are known. Reed,
Robertson, Seymour, and Thomas [24] showed that an analogue of the Erdős-Pósa theorem holds for directed
cycles, which confirms a long standing conjecture of Younger [28]. As an application of the directed grid theorem,
Kawarabayashi and Kreutzer [16] proved that an analogue of the Erdős-Pósa theorem holds for directed cycles of
length at least ` for some fixed `. Amiri et al. [1] further extended so that if H is a strongly connected directed
graph such that any H-subdivision can be obtained as a subgraph of some cylindrical wall (see Figure 3), then
an analogue of the Erdős-Pósa theorem holds for H-subdivisions. Kakimura and Kawarabayashi [12] showed that
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Figure 1: An Escher wall, where the middle wall W is bipartite and each thick path P links from one vertex of
the top row to the opposite vertex of the bottom row in the middle wall so that the union of W and P has an
odd cycle.

Figure 2: A bipartite cylindrical grid with some parity-changing paths on the top. It is not difficult to see that
there are no two vertex-disjoint directed odd cycles, but one can increase the minimum size of a hitting set by
taking a larger construction.

an analogue of the Erdős-Pósa theorem does not hold for directed cycles meeting a prescribed set S (so called
directed S-cycles), but a 1/5-integral analogue of the Erdős-Pósa theorem holds (this result is further improved
to a half-integral analogue in [14]). On the other hand, so far, directed cycles with modularity constraint have
not been considered in this context.

The main contribution of this paper is to show that a half-integral analogue of the Erdős-Pósa theorem
holds for directed odd cycles. We construct an example, illustrated in Figure 2, showing that an analogue of
the Erdős-Pósa theorem does not hold for directed odd cycles even on planar directed graphs. This contrasts
with the undirected case; it is known that an analogue of the Erdős-Pósa theorem holds for odd cycles on planar
graphs [23, 6, 18].

Theorem 1.2. There is a function f : N→ R such that for every directed graph G and every positive integer k,
G contains a half-integral packing of k directed odd cycles, or a set of at most f(k) vertices meeting all directed
odd cycles. For every fixed positive integer k, there is a polynomial-time algorithm that given a graph G, outputs
one of the two outcomes.

Sketch of proof We sketch the proof of Theorem 1.2.
To obtain Erdős-Pósa type results for various graph families in the undirected setting, the grid minor

theorem [25] has been importantly used, see [25, 26, 23, 11, 9] for examples. For directed graphs, Kawarabayashi
and Kreutzer [16] obtained the directed grid theorem, which shows that every directed graph of sufficiently large
directed tree-width contains a cylindrical grid of large order as a butterfly minor. They observed that if a directed
graph contains a cylindrical grid of large order as a butterfly minor, then it contains a cylindrical wall of large
order as a subgraph. Therefore, we will mostly use a cylindrical wall of large order, which is depicted in Figure 3.

A set S of vertices in a directed graph G is a hitting set for directed odd cycles, if S meets all directed odd
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cycles of G. For a directed graph G, we denote by ν2(G) the maximum size of a half-integral packing of directed
odd cycles in G, and denote by τ(G) the minimum size of a hitting set for directed odd cycles in G. For each
positive integer k, we define αk as the minimum integer such that for every directed graph G with ν2(G) < k,
we have τ(G) ≤ αk, if such an integer exists, and otherwise αk is defined to be ∞. It is sufficient to show that
αk 6=∞ for every positive integer k. Clearly, α1 = 0. We will prove it by induction on k.

A set T of vertices in a directed graph G is an r-externally-well-linked set if for all disjoint sets A and B of
vertices in T with |A| = |B| ≥ r, there is a set of |A| vertex-disjoint paths from A to B in G − (T \ (A ∪ B))
(and also from B to A). We show in Lemma 5.1 that if αk−1 6= ∞ and a directed graph G with ν2(G) < k has
a hitting set T of directed odd cycles with |T | = τ(G), then T is 2αk−1-externally-well-linked. So, we can argue
that if τ(G) is sufficiently large, then G has large directed tree-width, and it contains a cylindrical wall of large
order by the directed grid theorem. However, for our purpose, we need a special cylindrical wall of large order
that cannot be separated from T by removing a small set of vertices.

Such a result was obtained in [15] (which is the journal version of [16]) for ordinary well-linked sets. A set X
of vertices in a directed graph G is a well-linked set if for all sets A and B of vertices in X with |A| = |B|, there
is a set of |A| vertex-disjoint paths from A to B in G (and also from B to A). Kawarabayashi and Kreutzer [15,
Theorem 7.1] showed that if G contains a sufficiently large well-linked set X, then it contains a large cylindrical
wall of order w, such that for every set F of w vertices that are out-degree 2 or in-degree 2 in the wall, there are
w vertex-disjoint paths from F to X in G and from X to F in G.

To relate the 2αk−1-externally-well-linked set T to some cylindrical wall, we prove in Lemma 4.2 that there
is a well-linked set X such that T and X cannot be separated by removing a small set of vertices. Combining
with the directed grid theorem, we obtain a required cylindrical wall W of large order that is not separated from
T by removing a small set of vertices.

We take k vertex-disjoint subwalls of W in a natural way, and we may assume that one of them, say W ′, has
no directed odd cycles. As any wall is strongly connected, we can argue that the underlying undirected graph of
W ′ is bipartite. Let N be a large set of vertices of W ′ such that they have out-degree 2 or in-degree 2 in the wall,
and they are in the same part of the bipartition of W ′.

We prove in Section 3 that given a directed graph F and a set X of vertices in F , F contains either a half-
integral packing of k directed odd cycles, or a half-integral packing of k directed odd X-paths whose endvertices
are pairwise distinct, or a set of at most 4k − 1 vertices hitting all odd X-walks. We apply this lemma to the set
X = N of W ′ with F = G.

In case when there is a small set Y of vertices meeting all odd N -walks, there is a strong component H of
G−Y containing most part of the set T . We can argue that more than half of the columns of W are also contained
in H. On the other hand, if H has a directed odd cycle, then one can find a directed odd N -walk, which is a
contradiction. So, Y together with T \ V (H) gives a hitting set for directed odd cycles, which is small. In the
case when there are many directed odd N -paths, we show in Section 5, that we can use the bipartite cylindrical
wall to find a half-integral packing of k odd cycles, which contradicts the assumption that ν2(G) < k. This will
complete the proof.

Algorithmic applications Reed et al. [24] used their Erdős-Pósa result to show the following: for every
fixed positive integer k, there is a polynomial-time algorithm to test whether or not G contains k vertex-disjoint
directed cycles. As in [24], a bounded (by function of k) size set that hits all directed cycles is a key to obtain
this algorithm. Therefore, we could expect that Theorem 1.2 could give such a result.

To this end, we first discuss how this combinatorial result in Theorem 1.2 and its proof can be turned into
a polynomial-time algorithm for fixed k, which outputs one of the outcomes in Section 6. Using this algorithmic
result, we give the following:

Theorem 1.3. For every fixed positive integer k, there is a polynomial-time algorithm that given a graph G,
either

1. outputs a half-integral packing of k directed odd cycles, or

2. correctly decides that there are no k vertex-disjoint directed odd cycles in G.

Ideally, we want to replace the second conclusion by “it concludes that there is no half-integral packing of k
directed odd cycles.”, and indeed we conjecture that this should be the case. However, there is some technical
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P1

P2

P3

P4

P5

P6

P7

P8

C1C2C3C4

Figure 3: The cylindrical wall of order 4. The cycle C4 is depicted using thick edges.

difficulty, and we will mention this in Section 6. Let us remark that it is NP-complete to decide whether or not
a directed graph contains two vertex-disjoint odd cycles (there is a straightforward reduction to the directed two
disjoint paths problem). Thus we cannot replace the first by “k vertex-disjoint directed odd cycles”.

2 Preliminaries

Let N be the set of all positive integers, and R be the set of all reals. For an integer m, we write [m] for the set of
positive integers at most m. In this paper, all directed graphs have no multiple edges and loops. Directed walks,
directed paths, and directed cycles are simply called walks, paths, and cycles respectively.

Let G be a directed graph. We denote by V (G) and E(G) the vertex set and the edge set of G, respectively.
If (v, w) is an edge, then v is its tail and w is its head. For a set A of vertices in G, we denote by G−A the graph
obtained from G by removing all the vertices in A, and denote by G[A] the subgraph of G induced by A. For two
directed graphs G and H, let G∪H := (V (G)∪V (H), E(G)∪E(H)) and G∩H := (V (G)∩V (H), E(G)∩E(H)).
For a set G of directed graphs, we denote by

⋃
G the union of the directed graphs in G.

We say that a directed graph G is strongly connected if for any two vertices v and w in G, there is a path
from v to w in G and there is a path from w to v in G. A strong component of G is a maximal subgraph of G
that is strongly connected. It is well known that the set of strong components of G can be labelled G1, G2, . . . , Gt
such that there is no edge from Gj to Gi if j ≥ i. Such an ordering is called an acyclic ordering of the strong
components of G.

For sets A and B of vertices in a directed graph G, a path is an (A,B)-path if it starts at A and ends at B,
and all its internal vertices are not in A ∪B. For a set A of vertices in G, an A-walk P is a walk having at least
one edge such that both endvertices of P are in A and all its internal vertices are not in A. Note that the two
endvertices of an A-walk may be the same vertex. An A-walk is closed if its endvertices are the same. An A-walk
is called an A-path if it is a path.

Let t be a positive integer. A family (Gi : i ∈ [m]) of subgraphs in a directed graph G is a (1/t)-integral
packing if every vertex of G is contained in at most t of G1, G2, . . . , Gm. When t = 2, we say that it is a
half-integral packing.

2.1 Cylindrical walls For an integer k ≥ 2, a cylindrical wall of order k is a directed graph consisting
of k pairwise vertex-disjoint cycles C1, . . . , Ck, called columns, and a set of 2k pairwise vertex-disjoint paths
P1, . . . , P2k, called rows, such that

• for each i ∈ [k] and j ∈ [2k], Ci ∩ Pj is a path with at least one edge,
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• both endvertices of Pi are in V (C1) ∪ V (Ck),

• the paths P1 ∩ Ci, . . . , P2k ∩ Ci appear in this order on each Ci and

• for odd i, the cycles C1 ∩ Pi, . . . , Ck ∩ Pi appear in this order on Pi, and for even i, Ck ∩ Pi, . . . , C1 ∩ Pi
appear in this order on Pi.

See Figure 3 for an illustration of a cylindrical wall of order 4. An endvertex of Ci ∩ Pj for some i ∈ [k] and
j ∈ [2k] is called a nail, and we denote by NW the set of all nails of W . Note that an NW -path in W is a path
such that its endvertices are nails, but all the internal vertices are not nails.

We will use cylindrical walls that do not contain odd cycles. Because of the following fact, the underlying
undirected graph of such a wall is bipartite.

Proposition 2.1. (Folklore) Let D be a strongly connected directed graph having no odd cycle. Then, the
underlying undirected graph of D is bipartite.

We say that a cylindrical wall is bipartite if its underlying undirected graph is bipartite.

2.2 Linkages and separations For a positive integer t and sets A and B of vertices in G, a family (Pi : i ∈ [m])
of (A,B)-paths in G is a (1/t)-integral linkage of order m from A to B if it is a (1/t)-integral packing. When
t = 1, we simply call it a linkage. A separation of a directed graph G is an ordered pair (A,B) of sets of vertices
in G such that A∪B = V (G) and there are no edges from A \B to B \A. The order of the separation (A,B) is
|A ∩B|.

Theorem 2.1. (Menger’s theorem [19]) Let A and B be sets of vertices in a directed graph G, and let k be
a positive integer. Then G contains either a linkage of order k from A to B, or a separation (X,Y ) of order less
than k such that A ⊆ X and B ⊆ Y .

We will use the following observation.

Lemma 2.1. Let t and m be positive integers, and let A and B be sets of vertices in a directed graph G. If there
is a (1/t)-integral linkage P1 of order m from A to B, then there is a linkage P2 of order at least m/t from A to
B such that

⋃
P2 is a subgraph of

⋃
P1.

Proof. We may assume that G =
⋃
P1. Suppose that there is no linkage of order at least m/t from A to B in G.

Then by Menger’s theorem, there is a separation (C,D) of order less than m/t in G such that A ⊆ C and B ⊆ D.
Now, since P1 is (1/t)-integral, each vertex of C ∩D is contained in at most t paths of P1. Since every path in
P1 contains a vertex of C ∩D, the order of P1 is at most (dm/te− 1)t, which is less than m. This contradicts the
assumption that P1 has order m.

2.3 Well-linked sets We will discuss two versions of well-linked sets. A set T of vertices in a directed graph
G is a well-linked set if for all sets A and B of vertices in T with |A| = |B|, there is a linkage of order |A| from
A to B in G and there is a linkage of order |A| from B to A in G. It is known that a directed graph has a large
well-linked set if and only if it has large directed tree-width.

A set T of vertices in a directed graph G is an r-externally-well-linked set if for all disjoint sets A and B of
vertices in T with |A| = |B| ≥ r, there is a linkage of order |A| from A to B in G− (T \ (A ∪ B)) and there is a
linkage of order |A| from B to A in G − (T \ (A ∪ B)). This concept naturally appears in the Erdős-Pósa type
results, see [24] for instance.

For a positive integer q, a set S of vertices in a directed graph G is q-linked if for every set X ⊆ V (G) with
|X| < q, there is a unique strong component of G−X that contains more than half of the vertices in S.

We use the following relation between r-externally-well-linked sets and q-linked sets.

Lemma 2.2. Let q and r be positive integers with q ≥ r. Every r-externally-well-linked set of order at least 6q−4
is q-linked.

Proof. Let T be an r-externally-well-linked set of size at least 6q− 4. To show that T is q-linked, we choose a set
X of less than q vertices. Let H1, H2, . . . ,Hm be the set of all strong components of G−X, and assume that it is
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ordered in an acyclic ordering. Suppose for contradiction that there is no strong component of G−X containing
more than half of the vertices in T .

We choose a minimum integer j such that
⋃
i∈[j] V (Hi) contains at least q vertices of T . As every strong

component of G−X has at most |T |/2 vertices of T ,
⋃
i∈[j] V (Hi) contains at most (q− 1) + |T |/2 vertices of T .

Thus,
⋃
i∈[m]\[j] V (Hi) contains at least

|T | − (q − 1)−
(
q − 1 +

|T |
2

)
=
|T |
2
− 2(q − 1) ≥ q

vertices of T . It implies that there is a linkage of order q from T ∩ (
⋃
i∈[m]\[j] V (Hi)) to T ∩ (

⋃
i∈[j] V (Hi)). But

all these q paths have to contain a vertex of X, which is not possible.
We conclude that T is q-linked.

2.4 Directed tree-width We will not explicitly use directed tree-decompositions, but to state the directed
grid theorem, we introduce directed tree-decompositions and directed tree-width.

An arborescence T is a directed graph obtained from an undirected rooted tree by orienting every edge away
from the root. For s, t ∈ V (T ), we write s <T t if s 6= t and there exists a path in T from s to t, and we write
s ≤T t if s <T t or s = t. If e ∈ E(T ) is an edge with head s, we write e <T t if either s = t or s <T t.

A directed tree-decomposition of a directed graph G is a triple (T, β, γ), where T is an arborescence,
β : V (T )→ 2V (G) and γ : E(T )→ 2V (G) are functions such that

1. {β(t) : t ∈ V (T )} is a partition of V (G) into non-empty sets,

2. if e ∈ E(T ) and B :=
⋃
{β(t) : t ∈ V (T ), e <T t}, then there is no closed walk P in G− γ(e) where the first

and last vertices of P are in B and P uses a vertex of G− (B ∪ γ(e)).

For any t ∈ V (T ) we define Γ(t) := β(t) ∪
⋃
{γ(e) : e ∼ t}, where e ∼ t if e is incident with t.

The width of (T, β, γ) is the minimum integer w such that |Γ(t)| ≤ w + 1 for all t ∈ V (T ). The directed
tree-width of G, denoted by dtw(G), is the minimum integer w such that G has a directed tree-decomposition of
width w.

We will use the following version of the directed grid theorem.

Theorem 2.2. (Kawarabayashi and Kreutzer, Theorem 7.1 of [15]) There is a function fwall : N → R
such that for every positive integer w and every directed graph G, if G contains a well-linked set A of order
fwall(w), then it contains a cylindrical wall W of order w, such that for every set F of w nails, there are w
vertex-disjoint paths from F to A in G and from A to F in G.

3 Lemmas on odd X-walks

In this section, we prove the following lemma, which will be used in the proof of Theorem 1.2.

Lemma 3.1. Let k be a positive integer, let G be a directed graph, and let X ⊆ V (G). Then G contains either

1. a half-integral packing of k odd cycles,

2. a half-integral packing of k odd X-paths whose endvertices are pairwise disjoint, or

3. a set Y of at most 4k − 1 vertices such that G− Y has no odd X-walk.

As a first step, we prove the following.

Lemma 3.2. Let ` be a positive integer, let G be a directed graph, and let X ⊆ V (G). Then G contains either

1. a set of ` odd X-walks such that every vertex of G is used in at most two of them including the number of
repetitions in each walk, or

2. a set Y of at most `− 1 vertices such that G− Y has no odd X-walk.
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Proof. We obtain a new directed graph from G by splitting each vertex v into two vertices v1 and v2, and adding
edges (v1, w2), (v2, w1) if (v, w) is an edge of G. Formally, let D be the bipartite directed graph with bipartition
(A,B) such that

• A = {v1 : v ∈ V (G)} and B = {v2 : v ∈ V (G)}, and

• E(D) = {(v1, w2), (v2, w1) : (v, w) ∈ E(G)}.
Let XA := {v1 : v ∈ X} and XB := {v2 : v ∈ X}. For a vertex vi ∈ V (D), we say that v is the original vertex of
vi.

Observe that XA and XB lie in distinct parts of D, and therefore, any path from XA to XB in D has odd
length.

Assume that there is a family Q of ` vertex-disjoint paths from XA to XB in D. We obtain from each path
Q ∈ Q, a walk Q∗ in G by taking the sequence of corresponding original vertices. Then (Q∗ : Q ∈ Q) is a
family of ` odd X-walks in G such that every vertex of G is used in at most two of them including the number
of repetitions in each walk. In this case, we get the first conclusion. Otherwise, by Menger’s theorem, there is a
separation (S, T ) in D of order at most `− 1 such that XA ⊆ S and XB ⊆ T . Let Y be the set of all vertices v
in G for which v1 or v2 is in S ∩ T . Then |Y | ≤ `− 1. Let Y ′ := {v1, v2 : v ∈ Y }. Clearly, S ∩ T ⊆ Y ′.

We claim that G − Y has no odd X-walk. Assume there is an odd X-walk (q1, q2, . . . , qm) in G − Y . Then
((q1)1, (q2)2, (q3)1, . . . , (qm)2) is a walk in D−Y ′ from XA to XB . Thus, there is an (XA, XB)-path in D−Y ′. It
is a contradiction, as D − Y ′ is a subgraph of D − (S ∩ T ). We conclude that G− Y has no odd X-walk.

Now, we prove Lemma 3.1.

Proof. [Proof of Lemma 3.1] We apply Lemma 3.2 to G and X with ` = 4k. If G contains a set of at most 4k− 1
vertices hitting all odd X-walks, then we are done. Thus, we may assume that there are 4k odd X-walks such
that every vertex of G is used at most twice, including the number of repetitions in each walk. If there are k odd
X-walks such that each of them contains an odd cycle, then we get a half-integral packing of k odd cycles. So we
may assume that there is a set Q of at least 3k odd X-walks containing no odd cycles.

We verify that every closed odd walk contains an odd cycle. Let Q be a closed odd walk, and let
Q′ = (q1, q2, . . . , qm) be a shortest closed odd walk in Q with q1 = qm. If there are no repeated vertices except
endvertices, then Q′ is an odd cycle. Assume that there is a pair of repeated vertices. We choose such a pair
(qi, qj) with |j − i| being minimum. If the length from qi to qj is odd, then Q′ contains an odd cycle. Otherwise,
it has even length, and by removing this part, we can find a shorter closed odd walk, a contradiction. It implies
that each walk in Q is not closed.

Let W ∈ Q, and let W ′ = (w1, w2, . . . , wt) be a shortest odd walk in W where W and W ′ have the same
endvertices. We claim that W ′ is an odd X-path. If W ′ has no repeated vertices, then W ′ is an odd X-path.
Assume that there is a pair of repeated vertices. We choose such a pair (wi, wj) with |j− i| being minimum. If the
length from wi to wj is odd, then W ′ contains an odd cycle, a contradiction. Otherwise, it has even length, and
by removing this part, we can find a shorter odd walk with the same endvertices. It contradicts the minimality
of W ′. As the endvertices of W ′ are distinct, we deduce that W ′ is an odd X-path.

So, G contains 3k odd X-paths such that each vertex of G is used in at most two of them. By greedily
choosing one X-path and removing two possible X-paths sharing an endvertex with it, we can find k of them
that have pairwise disjoint endvertices.

4 Well-linked sets and r-externally-well-linked sets

In this section, we construct a useful structure from a large r-externally-well-linked set. A bramble in a directed
graph G is a set B of strongly connected subgraphs of G such that for all B1, B2 ∈ B, V (B1) ∩ V (B2) 6= ∅. A
cover of B is a set X of vertices in G such that V (B)∩X 6= ∅ for all B ∈ B. The order of B is the minimum size
of a cover of B.

Lemma 4.1. (Lemma 4.3 of [16]) Let G be a directed graph and B be a bramble of G. Then there is a path P
intersecting every set in B.

Lemma 4.2. Let r and p be positive integers with 2p(p+ 1) ≥ r. If a directed graph G contains an r-externally-
well-linked set T of size at least 12p(p+ 1) + 1, then there exist a path P in G and A ⊆ V (P ) with |A| = p such
that
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• A is well-linked, and

• for every subset Z of T of size at least |T |/2, there is a linkage of order p from A to Z, and there is a
linkage of order p from Z to A.

Proof. Let T be an r-externally-well-linked set of size m ≥ 12p(p+1)+1 in a directed graph G. As 2p(p+1) ≥ r,
by Lemma 2.2, T is 2p(p+1)-linked. We construct a bramble B of order at least 2p(p+1) as follows. By definition
of a k-linked set, for every set X of less than 2p(p+ 1) vertices in G, G−X has a unique strong component, say
CX , containing more than half of the vertices of T . We define

B := {CX : X ⊆ V (G), |X| < 2p(p+ 1)}.

Since any two distinct sets in B intersect on T , B is a bramble. The order of B is at least 2p(p+ 1), because for
every set Y of less than 2p(p+ 1) vertices, Y does not hit CY in B.

By Lemma 4.1, there is a path P intersecting every element of B. We now find the required set A in P . We
construct sequences of subpaths P1, . . . , P2p of P and brambles B1, . . . ,B2p ⊆ B.

For a subpath Q of P , we consider some subfamily BQ of B such that BQ ⊆ {B ∈ B : V (B) ∩ V (Q) 6= ∅}.
Clearly, BQ is a bramble. We will use the fact that if

• Q∗ is another subpath of P with V (Q∗) \ V (Q) = {z}, and

• BQ ⊆ BQ∗ ⊆ {B ∈ B : V (B) ∩ V (Q∗) 6= ∅},

then the order of BQ∗ is at most the order of BQ plus one, because all sets in BQ∗ \ BQ can be hit by z.
Let P1 be the minimal initial subpath of P such that B1 = {B ∈ B : V (B)∩V (P1) 6= ∅} is a bramble of order

p+ 1.
Now, suppose that for some i < 2p, sequences P1, . . . , Pi and B1, . . . ,Bi have been constructed. Let v be the

last vertex of Pi and s be the successor of v in P . Let Pi+1 be the minimal subpath of P starting at s such that

Bi+1 =

B ∈ B : V (B) ∩

⋃
j∈[i]

V (Pj)

 = ∅ and V (B) ∩ V (Pi+1) 6= ∅


has order p+ 1. As B has order 2p(p+ 1), such sequences P1, . . . , P2p and B1, . . . ,B2p ⊆ B exist. For each i ∈ [p],
let ai be the first vertex of P2i, and let A = {ai : i ∈ [p]}.

We verify that A is well-linked. Let X and Y be subsets of A with |X| = |Y | = q. Let X = {ait : t ∈ [q]}
and Y = {ajt : t ∈ [q]}. Note that q ≤ p. We claim that there is a linkage from X to Y of order q.

Suppose for contradiction that there is no linkage of order q from X to Y . Then by Menger’s theorem, there
is a separation (C,D) of order less than q in G such that X ⊆ C and Y ⊆ D. As |C ∩ D| < q ≤ p, for each
j ∈ [2p], C ∩D is not a hitting set of Bj . Also, C ∩D does not meet one of the paths in {P2it : t ∈ [q]}. So, there
exist ` ∈ [q] and B1 ∈ B2i` such that

(C ∩D) ∩ (V (P2i`) ∪ V (B1)) = ∅.

Similarly, since C ∩ D does not meet one of the sets in {V (P2it−1) ∪ {ait} : t ∈ [q]}, there exist `′ ∈ [q] and
B2 ∈ B2j`′−1 such that

(C ∩D) ∩ (V (P2j`′−1) ∪ {aj`′} ∪ V (B2)) = ∅.

On the other hand, by the construction of B, B1 and B2 intersect. Since each of B1 and B2 is strongly connected,
B1 ∪B2 is also strongly connected. This implies that there is a path from ai` to aj`′ in

B1 ∪B2 ∪ P2i` ∪G[V (P2j`′−1) ∪ {aj`′}],

which avoids C ∩D, a contradiction. We conclude that A is well-linked.
Lastly, we verify the second bullet. Let Z ⊆ T with |Z| ≥ |T |/2. Suppose that there is no linkage of order p

from A to Z in G. Then, by Menger’s theorem, there is a separation (C,D) of order less than p with A ⊆ C and
Z ⊆ D.
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As |C ∩D| < p, there exist ` ∈ [p] and B ∈ B2i` such that (C ∩D)∩ (V (P2i`)∪V (B)) = ∅. Since ai` ∈ C \D,
we have V (B) ⊆ C \D and B does not intersect Z ⊆ D. It contradicts the fact that every set of B contains more
than half of the vertices in T .

We conclude that there is a linkage of order p from A to Z, and in the same way, we can show that there is
a linkage of order p from Z to A.

5 A Half-integral Erdős-Pósa theorem for odd cycles

In this section, we prove Theorem 1.2.
We verify that if αk−1 6=∞ and a directed graph G with ν2(G) < k has a hitting set T of directed odd cycles

with |T | = τ(G), then T is 2αk−1-externally-well-linked.

Lemma 5.1. Let k ≥ 2 be an integer such that αk−1 exists. Let G be a directed graph with ν2(G) < k and let
T ⊆ V (G) with |T | = τ(G) meeting all odd cycles in G. Then T is (2αk−1)-externally-well-linked.

Proof. Let A,B ⊆ T be disjoint sets with |A| = |B| = r ≥ 2αk−1. We claim that there is a linkage in G from A
to B of order r containing no vertex in T \ (A ∪B). Suppose that there is no such a linkage.

Let Z = T \ (A∪B). By Menger’s theorem applied to G−Z, there is a separation (X,Y ) of G with A ⊆ X,
B ⊆ Y such that Z ⊆ X ∩ Y and |(X ∩ Y ) \ Z| < r. Let W := (X ∩ Y ) \ Z.

Let TA := (T \ A) ∪W and TB := (T \ B) ∪W . Note that TA is a set obtained from T by removing A \ B
and adding W \ T , because A ∩B ⊆W . On the other hand, we have

|W \ T | < r − |A ∩B| = |A| − |A ∩B| = |A \B|.

Therefore, |TA| < |T | = τ(G) and by a similar reason, |TB | < |T | = τ(G). Thus, none of TA and TB is a hitting
set for odd cycles.

It means that there are an odd cycle CA in G− TA, and an odd cycle CB in G− TB . Since T is a hitting set
for odd cycles, CA must contain a vertex of A and CB must contain a vertex of B. So, G − Y contains CA and
G−X contains CB while V (G− Y ) ∩ V (G−X) = ∅.

By the definition of αk−1, G− Y has a hitting set MY of size at most αk−1, and G−X has a hitting set MX

of size at most αk−1. Since A and B are disjoint, |T | − |Z| = 2r. It implies that MX ∪MY ∪ (X ∩ Y ) is a hitting
set for odd cycles in G of size at most

2αk−1 + ((r − 1) + |Z|) = 2αk−1 + (|T | − r)− 1.

So, τ(G) ≤ 2αk−1 + τ(G)− r − 1 and r < 2αk−1, which contradicts the choice of r.

As we discussed in the introduction, we will consider a set N of nails in a bipartite cylindrical wall W ′,
and apply Lemma 3.1 for odd N -walks. When Lemma 3.1 outputs a hitting set for odd N -walks, the following
proposition will imply that there is a small hitting set for odd cycles.

Proposition 5.1. Let r, t, and w be positive integers with w ≥ 2t and t ≥ r. Let G be a directed graph, and let T
be a set of at least 6t− 4 vertices in G such that T is a hitting set of odd cycles, and it is r-externally-well-linked.
Let W be a cylindrical wall of order w in G satisfying that for every subset Z of T of size at least |T |/2 and every
set F of w nails in W , there is a linkage of order at least w/2 from Z to F , and there is a linkage of order at
least w/2 from F to Z. Let N be a set of nails of W with |N | ≥ w2.

If X is a set of less than t vertices in G hitting all odd N -walks, then G has a set of at most 3(t− 1) vertices
hitting all odd cycles.

Proof. Let {H1, H2, . . . ,Hm} be the set of all strong components of G−X, and assume that it is ordered in an
acyclic ordering, that is, for distinct i, j ∈ [m], there can be an edge from Hi to Hj only if i < j.

As t ≥ r and T is an r-externally-well-linked set of size at least 6t− 4, by Lemma 2.2, T is t-linked. Since T
is t-linked and X has size less than t, G −X has a unique strong component, say Hx, having more than half of
the vertices in T . Note that Hx contains at least t vertices of T , as 3t− 2 ≥ t. If

⋃
i∈[x−1] V (Hi) contains at least

t vertices of T , then since T is r-externally-well-linked and t ≥ r, there is a linkage of order t from T ∩ V (Hx) to
T ∩(

⋃
i∈[x−1] V (Hi)). But every path in the linkage must contain a vertex of X, and it contradicts the assumption
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that |X| < t. Therefore,
⋃
i∈[x−1] V (Hi) contains less than t vertices of T , and similarly,

⋃
i∈[m]\[x] V (Hi) contains

less than t vertices of T .
As w ≥ 2t, there is a set C of at least w − (t − 1) ≥ w/2 + 1 columns of W containing no vertex of X. We

claim that for each C ∈ C, C is contained in Hx. Let F be a set of w nails of W that are contained in C. Note
that V (Hx) ∩ T is a subset of T of size at least |T |/2. So, by the assumption, there is a linkage of order at
least w/2 ≥ t from V (Hx) ∩ T to F . Since C does not contain a vertex of X and C is strongly connected, C is
contained in one of the strong components in {Hi : i ∈ [m]}. But if C is contained in a strong component other
than Hx, then either there is no linkage of order t from V (Hx) ∩ T to F , or there is no linkage of order t from F
to V (Hx) ∩ T . This is a contradiction. Therefore, the claim holds.

In particular, it implies that Hx contains w/2 + 1 columns of W . Since N contains at least half of the nails
of W , Hx contains at least two nails of W in N , say v and z.

We claim that Hx contains no odd cycle. Suppose for contradiction that Hx contains an odd cycle H. Since
Hx is strongly connected, there is a path Pv from v to H in Hx, and there is a path Pz from H to z in Hx. In
H ∪ Pv ∪ Pz, there are two walks from v to z, namely, one is obtained by using the shortest path in H from the
endvertex of Pv in H to the endvertex of Pz in H, and the other one is obtained by traversing H one more time.
As H is an odd cycle, the two walks have different parities. So G contains an odd walk between two nails of W
that is contained in Hx, which contradicts the assumption that X hits all odd N -walks. Thus, Hx has no odd
cycle.

For other strong components Hy 6= Hx, if T ∩ V (Hy) intersects all odd cycles in Hy. Therefore,
(T ∩ (V (G) \ V (Hx))) ∪ X hits all odd cycles. We remind that

⋃
i∈[x−1] V (Hi) contains less than t vertices

of T , and similarly,
⋃
i∈[m]\[x] V (Hi) contains less than t vertices of T . Thus, (T ∩ (V (G) \ V (Hx))) ∪X has size

at most 3(t− 1).

By Proposition 5.1, we may assume that Lemma 3.1 outputs a large half-integral packing of odd paths whose
endvertices are distinct nails of W ′. We will give a formal proof of this in the proof of Theorem 1.2. The rest of
this section devotes to find a half-integral packing of k odd cycles from it.

Proposition 5.2. There is a function gpath : N → R satisfying the following. Let k be a positive integer, and
let W be a bipartite cylindrical wall of order at least (2k + 3)(6gpath(k) + 1) in a directed graph G. Let N be a
set of nails of W that are contained in the same part of the bipartition of W . Let U be a half-integral packing of
12(gpath(k) − 1) + 1 odd N -paths in G such that the endvertices of paths in U are disjoint. Then G contains a
half-integral packing of k odd cycles.

We prove two auxiliary lemmas, and then prove Proposition 5.2. Let W be a bipartite cylindrical wall in a
directed graph G. For v, w ∈ V (W ), a walk P in G from v to w is parity-breaking if the parity of the length of
P is different from the parity of a path from v to w in W . If the parities are the same, then we say that P is
parity-preserving.

Lemma 5.2. Let G be a directed graph, and let W be a bipartite cylindrical wall in G. If P is a parity-breaking
walk for W from a to b, then either G[V (P )] contains an odd cycle, or it contains a parity-breaking path from a
to b.

Proof. Let Q = (q1, q2, . . . , qm) be a shortest parity-breaking walk from a to b contained in G[V (P )]. If Q has no
repeated vertices, then Q is a parity-breaking path. Assume that there is a pair of repeated vertices. We choose
such a pair (qi, qj) with |j − i| is minimum. If the length from qi to qj is odd, then G[V (P )] contains an odd
cycle. Otherwise, it has even length, and by removing this part, we can find a shorter parity-breaking walk with
same endvertices. It contradicts the minimality of Q.

Lemma 5.3. Let k and m be positive integers. Let G be a directed graph, W be a bipartite cylindrical wall in G,
and let A,B,C,D be disjoint subsets of V (W ) of size m. Let Q be a linkage of order m from A to B in W , and
let R be a linkage of order m from C to D in W . Let U be a half-integral packing of m parity-breaking paths from
B to C in G. If m ≥ 8k, then there is either

• a half-integral packing of k odd cycles, or
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• a half-integral packing of k parity-breaking paths from A to D in (
⋃
Q) ∪ (

⋃
R) ∪ (

⋃
U) such that the first

vertices of the paths are all distinct and the last vertices of the paths are all distinct.

Proof. We construct a graph F1 starting from the vertex set V (W ) and the empty edge set as follows.

• For every edge (u, v) in E(W ), we add a new vertex xuv and two edges (u, xuv) and (xuv, v).

• For every W -path P from a vertex u to a vertex v that is a subpath of some path in U , if P is parity-breaking,
then we add an edge (u, v), and otherwise, we add a vertex zuv and two edges (u, zuv) and (zuv, v).

• For every q ∈ A, we add two new vertices q1 and q2 and add edges (q1, q2) and (q2, q).

• For every r ∈ D, we add two new vertices r1 and r2 and add edges (r, r2) and (r2, r1).

We assign A1 := {q1 : q ∈ A} and D1 := {r1 : r ∈ D}. Observe that a walk between two vertices of W in
(
⋃
Q)∪ (

⋃
R)∪ (

⋃
U) is parity-breaking if and only if the corresponding walk in F1 is odd. Note that two paths

in U may share a vertex on a path in Q∪R. Thus, there is a set of m odd walks from A1 to D1 in F1 such that

• every vertex of G is used at most 4 times, and

• for each vertex w ∈ A1 ∪D1, there is exactly one walk containing w in the m odd walks.

Now, we obtain a bipartite directed graph F2 with bipartition (X,Y ) from F1 such that

• X = {v1 : v ∈ V (F1)} and Y = {v2 : v ∈ V (F1)},

• E(F2) = {(v1, w2), (v2, w1) : (v, w) ∈ E(F1)}.

Let A2 := {q11 : q ∈ A} and D2 := {r12 : r ∈ D}.
In F2, there is a set of m walks from A2 to D2 in F2 such that every vertex is used at most 4 times, because

each walk from A2 to D2 in F2 corresponds to an odd walk from A1 to D1 in F1. So, there is a 1/4-integral
packing of m paths from A2 to D2 in F2. Since m ≥ 8k, by Lemma 2.1, there is a linkage of order 2k from A2 to
D2 in F2.

It implies that there is a set L1 of 2k odd walks from A1 to D1 in F1 such that

• every vertex of F1 is used at most twice,

• the first vertices of paths in L1 are all distinct, and

• the last vertices of paths in L1 are all distinct.

Furthermore, there is a set L2 of 2k parity-breaking walks from A to D such that

• every vertex of G is used at most twice,

• the first vertices of paths in L2 are all distinct, and

• the last vertices of paths in L2 are all distinct.

Now, by Lemma 5.2, either there is a half-integral packing of k odd cycles, or there is a half-integral packing of
k parity-breaking paths from A to D in (

⋃
Q) ∪ (

⋃
R) ∪ (

⋃
U), where the first vertices are all distinct, and the

last vertices are all distinct.

Proof. [Proof of Proposition 5.2] Let w be the order of W . We set

• g3(k) = 8k

• g2(k) = 4g3(k),

• g1(k) = (2g2(k)− 1)2 + 1,

• gpath(k) = g(k) = (2g1(k)− 1)2 + 1.
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Since every path in U is an odd path between two nails in the same part of the bipartition of W , every path
in U is parity-breaking. We start with finding subpaths of some paths in U so that they are still parity-breaking
and do not intersect many NW -paths in W .

Claim 1. For every t ∈ [g(k)], there is a half-integral packing of parity-breaking paths U1, U2, . . . , Ut for W such
that for each i ∈ [t],

(i)
⋃
j∈[i] Uj intersects at most 6i NW -paths in W , and

(ii)
⋃
j∈[i−1] Uj does not intersect any NW -path containing an endvertex of Ui.

Proof of the Claim: We prove the statement by induction on 1 ≤ t ≤ g(k). Assume that such a set
of paths U1, . . . , Ut−1 has been constructed for some t ≤ g(k). By Property (i),

⋃
j∈[t−1] Uj intersects at most

6(t−1) ≤ 6(g(k)−1) NW -paths in W . Let A be the set of all NW -paths in W that contain a vertex of
⋃
j∈[t−1] Uj ,

and let B :=
⋃
Q∈A V (Q). Note that B contains at most 12(g(k)− 1) nails. Since |U| = 12(g(k)− 1) + 1 and the

endvertices of paths in U are disjoint, there is a path U ∈ U such that the endvertices of U are not contained in
B.

Let U = u1u2 · · ·um. Let Q be the set of all subpaths U∗ of U where its endvertices are in V (W ) \B and all
internal vertices are not in V (W ) \B.

Note that the paths in Q are pairwise edge-disjoint, and
⋃
Q∈QE(Q) = E(U). Since U is parity-breaking,

Q contains at least one parity-breaking path. Let U ′ be a parity-breaking path in Q. Note that every vertex of
W is contained in at most three NW -paths. Since all the internal vertices of U ′ are not contained in V (W ) \B,
U1 ∪U2 ∪ · · · ∪Ut−1 ∪U ′ intersects at most 6(t− 1) + 6 ≤ 6t NW -paths in W , and the NW -paths containing the
endvertices of U ′ are not used by paths in U1, . . . , Ut−1. Thus, the claim holds. ♦

By the claim, there is a half-integral packing of parity-breaking paths U1, U2, . . . , Ug(k) that intersect at most
6g(k) NW -paths.

Recall that the order of W is at least (2k + 3)(6g(k) + 1), and each NW -path may intersect at most two
columns and at most two rows. As

(2k + 3)(6g(k) + 1)− 12g(k) ≥ (2k + 1)(6g(k) + 1) + 1,

there is a set of 2k+ 2 consecutive columns, say Cz+1, Cz+2, . . . , Cz+2k+2, containing no vertices of B. Also, since

(4k + 6)(6g(k + 1) + 1)− 12g(k) ≥ (4k + 4)(6g(k + 1) + 1) + 1,

there is a set of 4k + 5 consecutive rows containing no vertices of B. Among these 4k + 5 rows, we choose 4k + 4
consecutive rows Py+1, Py+2, . . . , Py+4k+4 such that Py+1 is a row traversing from C1 to Cw. We define

W ∗ = Py+1 ∪ Py+2 ∪ · · · ∪ Py+4k+4 ∪ Cz+1 ∪ Cz+2 ∪ · · · ∪ Cz+2k+2.

See Figure 4 for an illustration of W ∗. Observe that V (W ∗) ∩B = ∅.
Let L be the bijection from the set of all nails of W to [w]× [2w]× [2] satisfying the following.

• Let i ∈ [w] and j ∈ [2w]. When we traverse Ci from P1 to P2w, Ci contains two nails of each Pj , and for
the first vertex v, L(v) = (i, j, 1) and for the second vertex v, L(v) = (i, j, 2).

For each i ∈ [g(k)], we define the following.

• Let pi and qi be the endvertices of Ui such that Ui is a path from pi to qi.

• If pi is a nail, then let p∗i := pi, Ai := G[{pi}], and (ai, bi, ci) := L(p∗i ). Otherwise, let p∗i be the first
vertex of the NW -path in W containing pi, and let Ai be the subpath from p∗i to pi in the NW -path, and
(ai, bi, ci) := L(p∗i ).

• If qi is a nail, then let q∗i := qi, Di := G[{qi}], and (di, ei, fi) := L(q∗i ). Otherwise, let q∗i be the last
vertex of the NW -path in W containing qi, and let Di be the subpath from qi to q∗i in the NW -path, and
(di, ei, fi) := L(q∗i ).
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Figure 4: Selected consecutive columns and rows in the proof of Proposition 5.2.

Since g(k) = (2g1(k)− 1)2 + 1, there is a subset I1 ⊆ [g(k)] of size 2g1(k) such that either

• all integers in (ai : i ∈ I1) are distinct, or

• all integers in (ai : i ∈ I1) are the same.

There is a subset I2 ⊆ I1 with |I2| ≥ g1(k) such that all integers in (ci : i ∈ I2) are the same. Since all integers
in (ci : i ∈ I2) are the same, all integers in (bi : i ∈ I2) are distinct. Furthermore, as g1(k) = (2g2(k) − 1)2 + 1,
there is a subset I3 ⊆ I2 of size 2g2(k) such that either

• all integers in (di : i ∈ I3) are distinct, or

• all integers in (di : i ∈ I3) are the same.

There is a subset I4 ⊆ I3 of size g2(k) such that all integers in (fi : i ∈ I4) are the same. Since all integers in
(fi : i ∈ I4) are the same, all integers in (ei : i ∈ I3) are distinct.

Lastly, we take a subset I5 ⊆ I4 of size g2(k)/4 = g3(k) such that

• if all integers in (ai : i ∈ I4) are the same, then y + 4k + 5 /∈ (bi : i ∈ I5) (as modulo 2w) and |bi1 − bi2 | ≥ 2
(mod 2w) for all distinct i1, i2 ∈ I5, and

• if all integers in (di : i ∈ I3) are the same, then y /∈ (ei : i ∈ I5) (as modulo 2w) and |ei1−ei2 | ≥ 2 (mod 2w)
for all distinct i1, i2 ∈ I5.

We can greedily choose elements of I5 from I4.
Now, we construct a linkage {Xi : i ∈ I5} from V (W ∗) to {pi : i ∈ I5} in W , and a linkage {Yi : i ∈ I5} from

{qi : i ∈ I5} to V (W ∗) in W . We will apply Lemma 5.3, together with the half-integral linkage {U1, . . . , Ug(k)}.

• Assume that all integers in (ai : i ∈ I5) are distinct. Let Xi be the path starting at L−1(ai, y + 4k + 4, 2),
traversing to p∗i in Cai , and traversing to pi in Ai.

• Otherwise, all integers in (ai : i ∈ I5) are the same and all integers in (bi : i ∈ I5) are distinct. We divide
into four cases. See Figure 5 for illustrations.

– (bi is odd and ai > z + 2k + 2.) Let Xi be the path starting at L−1(z + 2k + 2, bi, 2), traversing to p∗i
in Pbi , and traversing to pi in Ai.

– (bi is odd and ai < z + 1.) Let Xi be the path starting at L−1(z + 1, bi − 1, 2), traversing to
L−1(ai, bi − 1, 2) in Pbi−1, traversing to p∗i in Cai , and traversing to pi in Ai.
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(a) bi is odd and ai > z + 2k + 2 (b) bi is odd and ai < z + 1

(c) bi is even and ai > z + 2k + 2 (d) bi is even and ai < z + 1

Figure 5: The construction of Xi when all integers in (ai : i ∈ I5) are the same.

– (bi is even and ai > z + 2k + 2.) Let Xi be the path starting at L−1(z + 2k + 2, bi − 1, 2), traversing
to L−1(ai, bi − 1, 2) in Pbi−1, traversing to p∗i in Cai , and traversing to pi in Ai.

– (bi is even and ai < z + 1.) Let Xi be the path starting at L−1(z + 1, bi, 2), traversing to p∗i in Pbi ,
and traversing to pi in Ai.

We observe that all paths in {Xi : i ∈ I5} are pairwise vertex-disjoint. When all integers in (ai : i ∈ I5) are
distinct, each path Ai is starting from a vertex of Cai , but does not meet other column of W . So, all paths in
{Ai : i ∈ I5} are pairwise vertex-disjoint and all paths in {Xi : i ∈ I5} are pairwise vertex-disjoint. The case
when all integers in (ai : i ∈ I5) are the same is similar, and for the second and third subcases of the second case,
we additionally use the fact that y + 4k + 5 /∈ (bi : i ∈ I5) (as modulo 2w) and |bi1 − bi2 | ≥ 2 (mod 2w) for all
distinct i1, i2 ∈ I5.

We define paths Ti in a symmetric way.

• Assume that all integers in (di : i ∈ I5) are distinct. Let Yi be the path starting at qi, traversing to q∗i in
Di, and traversing to L−1(di, y + 1, 1) in Cdi .

• Otherwise, all integers in (di : i ∈ I5) are the same and all integers in (ei : i ∈ I5) are distinct. We divide
into four cases.

– (ei is odd and di > z + 2k + 2.) Let Yi be the path starting at qi, traversing to q∗i in Di, traversing to
L−1(di, ei + 1, 1) in Cdi , and traversing to L−1(z + 2k + 2, ei + 1, 1) in Pei+1.

– (ei is odd and di < z + 1.) Let Yi be the path starting at qi, traversing to q∗i in Di, and traversing to
L−1(z + 1, ei, 1) in Pei .

– (ei is even and di > z+2k+2.) Let Yi be the path starting at qi, traversing to q∗i in Di, and traversing
to L−1(z + 2k + 2, ei, 1) in Pei .

– (ei is even and di < z + 1.) Let Yi be the path starting at qi, traversing to q∗i in Di, traversing to
L−1(di, ei + 1, 1) in Cdi , and traversing to L−1(z + 1, ei + 1, 1) in Pei+1.

We observe that all paths in {Yi : i ∈ I5} are pairwise vertex-disjoint. When all integers in (di : i ∈ I5) are
distinct, each path Di is ending at a vertex of Cdi , but does not meet other column of W . So, all paths in
{Di : i ∈ I5} are pairwise vertex-disjoint and all paths in {Yi : i ∈ I5} are pairwise vertex-disjoint. The case
when all integers in (di : i ∈ I5) are the same is similar, and for the first and fourth subcases of the second case,
we additionally use the fact that y /∈ (ei : i ∈ I5) (as modulo 2w) and |ei1 − ei2 | ≥ 2 (mod 2w) for all distinct
i1, i2 ∈ I5.
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(a) αi > z + 2k + 2 (b) αi < z + 1

Figure 6: The construction of M∗1 when r1 ∈ V (Py+1).

Now, we apply Lemma 5.3 for linkages {Xi : i ∈ I5}, {Yi : i ∈ I5}, and a half-integral packing of parity-
breaking paths {Ui : i ∈ I5}. Since |I5| = g3(k) = 8k, by Lemma 5.3, there is either a half-integral packing of k
odd cycles, or a half-integral packing of parity-breaking paths Z = {Zi : i ∈ [k]} such that the first vertices of
paths in Z are all distinct, and the last vertices of paths in Z are all distinct. For each i ∈ [k], let si and ri be
the first and last vertices of Zi, respectively. Because paths in {Xi, Yi, Ui : i ∈ I5} do not use any edge of W ∗,
{si : i ∈ [k]} and {ri : i ∈ [k]} cannot share a vertex.

Let clos(W ∗) be the subwall of W that is the union of all NW -paths whose both endvertices are in W ∗. Now,
we construct a path Z∗i for each i ∈ [k] in clos(W ∗) so that Zi ∪ Z∗i is an odd cycle. and Z∗i does not intersect⋃
j∈[k] Zj except the vertices in {ri, si}.

• Observe that ri is contained in Py+1 ∪Cz+1 ∪Cz+2k+2. Let Cαi and Pβi be the column and row containing
ri of W , respectively.

– (Type 1. ri ∈ V (Py+1).) See Figure 6 for illustrations. If αi > z + 2k + 2, then let M∗i be the path
starting at ri, traversing to L−1(αi, y+2i+2, 1) in Cαi

, and traversing to L−1(z+2k+2−i, y+2i+2, 1)
in Py+2i+2. If αi < z + 1, then let M∗i be the path starting at ri, traversing to L−1(αi, y + 2i + 2, 1)
in Cαi

, and traversing to L−1(z + 1 + i, y + 2i+ 2, 1) in Py+2i+2.

– (Type 2. ri ∈ V (Cz+1).) Let M∗i be the path starting at ri and traversing to L−1(z + 1 + i, βi, 1) in
Pβi .

– (Type 3. ri ∈ V (Cz+2k+2).) Let M∗i be the path starting at ri and traversing to L−1(z+2k+2−i, βi, 1)
in Pβi .

• The vertex si is contained in Py+4k+4∪Cz+1∪Cz+2k+2. Let Cηi and Pθi be the column and row containing
ri of W , respectively.

– (Type 1. si ∈ V (Py+4k+4).) If ηi > z + 2k + 2, then let M∗∗i be the path starting at
L−1(z + 2k + 2 − i, y + 4k + 3 − 2i, 2), traversing to L−1(ηi, y + 4k + 3 − 2i, 2) in Py+4k+3−2i, and
traversing to L−1(ηi, y + 4k + 4, 2) in Cηi . If ηi < z + 1, then let M∗∗i be the path starting at
L−1(z+ 1 + i, y+ 4k+ 4− 2i, 2), traversing to L−1(ηi, y+ 4k+ 4− 2i, 2) in Py+4k+4−2i, and traversing
to L−1(ηi, y + 4k + 4, 2) in Cηi .

– (Type 2. si ∈ V (Cz+1).) Let M∗∗i be the path starting at L−1(z + 1 + i, θi, 2) and traversing to
L−1(z + 1, θi, 2) in Pθi .

– (Type 3. si ∈ V (Cz+2k+2).) Let M∗∗i be the path starting at L−1(z + 2k + 2− i, θi, 2) and traversing
to L−1(z + 2k + 2, θi, 2) in Pθi .

• Observe that the last vertex of M∗i and the first vertex of M∗∗i are contained in Cz+1+i ∪Cz+2k+2−i. Also,
the subgraph Hi obtained from Cz+1+i ∪ Cz+2k+2−i by adding the subpath of Py+1+2i from Cz+1+i to
Cz+2k+2−i and the subpath of Py+2+2i from Cz+2k+2−i to Cz+1+i is strongly connected. Let M∗∗∗i be a
shortest path from the last vertex of M∗ to the first vertex of M∗∗ in Hi, and let Z∗i := M∗i ∪M∗∗i ∪M∗∗∗i .
Clearly, Z∗i is a path from ri to si in clos(W ∗).
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We claim that {Z∗i : i ∈ [k]} is a half-integral packing. First observe that the set {M∗i : i ∈ [k]} is a
half-integral packing. In fact, if M∗i intersects M∗j for some distinct i, j ∈ [k], then they are both paths of type
1, and either αi, αj > z + 2k + 2 or αi, αj < z + 1. But since they traverse with pairwise distinct rows, no
vertex can be shared by three paths in {M∗i : i ∈ [k]}, and furthermore, the possible intersection is not contained
in the columns Cz+1, . . . , Cz+2k+2. Similarly, the set {M∗∗i : i ∈ [k]} is a half-integral packing. Moreover,⋃
i∈[k]M

∗
i and

⋃
i∈[k]M

∗∗
i are vertex-disjoint, because we use rows Py+3, . . . , Py+2k+2 for M∗i of type 1, and rows

Py+2k+3, . . . , Py+4k+2 for M∗∗i of type 1, and all paths of type 2 or 3 are pairwise vertex-disjoint (ri cannot be
same as sj because of the directions).

Now, we observe that {Z∗i : i ∈ [k]} is a half-integral packing. It is sufficient to consider nails contained
in Cz+1, . . . , Cz+2k+2, as paths in {M∗∗∗i : i ∈ [k]} do not use nails not contained in Cz+1, . . . , Cz+2k+2.
Suppose for contradiction that there is a nail v in Cz+1, . . . , Cz+2k+2 that is contained in some three paths
in {M∗i : i ∈ [k]} ∪ {M∗∗i : i ∈ [k]} ∪ {M∗∗∗i : i ∈ [k]}. Since paths in {M∗i : i ∈ [k]} ∪ {M∗∗i : i ∈ [k]} do not
intersect on a nail in Cz+1, . . . , Cz+2k+2, v is contained in two paths in {M∗∗∗i : i ∈ [k]}, say M∗∗∗i1

and M∗∗∗i2
.

Since {Hi : i ∈ [k]} is a half-integral packing, the other path should be a path in {M∗i : i ∈ [k]} ∪ {M∗∗i : i ∈ [k]}.
By the construction of {Hi : i ∈ [k]}, v is contained in one of the rows used by M∗∗∗i1

and M∗∗∗i2
. But by the

construction of {M∗i : i ∈ [k]} ∪ {M∗∗i : i ∈ [k]}, the other path should use the same row, and therefore, it has to
have the same index as one of i1 and i2. Then the intersection vertex is contained in one path of {Z∗i : i ∈ [k]},
contradicting the assumption that it is contained in three paths of {Z∗i : i ∈ [k]}. We conclude that {Z∗i : i ∈ [k]}
is a half-integral packing.

We now prove Theorem 1.2. We recall that αk is the minimum integer such that for every directed graph G
with ν2(G) < k, we have τ(G) ≤ αk, if such an integer exists, and otherwise αk is defined to be ∞.

Proof. [Proof of Theorem 1.2] We prove by induction on k that αk 6= ∞. We know α1 = 0. So, we may assume
that k > 1 and αk−1 6=∞.

Let fwall be the function defined in Theorem 2.2, and let gpath be the function defined in Proposition 5.2.
Let r = 2αk−1. We set

• f3(k) = max(k, r/4, 12(gpath(k)− 1) + 1),

• f2(k) = max((2k + 3)(6gpath(k) + 1), 8f3(k)),

• f1(k) = max(r, fwall(kf2(k))),

• f(k) = max(12f1(k)(f1(k) + 1) + 1, 24f3(k)− 4).

For convenience, let w := f2(k). We show that for every directed graph G, if ν2(G) < k, then τ(G) ≤ f(k).
Suppose for contradiction that ν2(G) < k and τ(G) > f(k) for some directed graph G. Let T be a minimum-

size hitting set of odd cycles in G. By the assumption, |T | = τ(G) > f(k). Also, by Lemma 5.1, T is r-externally-
well-linked.

Note that 2f1(k)(f1(k) + 1) ≥ r as f1(k) ≥ r. Since |T | > f(k) ≥ 12f1(k)(f1(k) + 1) + 1, by Lemma 4.2, G
contains a well-linked set A of size f1(k) such that

(∗) for every subset Z of T of size at least |T |/2, there is a linkage of order f1(k) from A to Z, and there is a
linkage of order f1(k) from Z to A.

Since A is a well-linked set of size f1(k) ≥ fwall(kf2(k)), by Theorem 2.2, G contains a cylindrical wall W
of order kf2(k) = kw such that for every set F of kw nails of W , there is a linkage of order kw from F to A,
and there is a linkage of order kw from A to F . Let C1, . . . , Ckw be the columns of W and P1, . . . , P2kw be the
rows of W . We consider the following k vertex-disjoint subwalls of W . For each j ∈ [k], let Wj be the subwall
of W consisting of columns Cw(j−1)+1, . . . , Cwj and the minimal subpaths of rows Pi with i ∈ [2w] containing
Cw(j−1)+1 ∩ Pi and Cwj ∩ Pi.

We claim that for each j ∈ [k],

(∗∗) for every set F of w nails of Wj , there is a linkage of order w from F to A, and there is a linkage of order
w from A to F .
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Let F be a set of w nails of Wj . We choose a set F ′ of (k − 1)w nails of W that are not contained in Wj . We
can choose such nails because there are (k − 1)w columns of W that are not contained in Wj . By the property
of W , there is a linkage of order kw from F ∪ F ′ to A, and there is a linkage of order kw from A to F ∪ F ′. If
we restrict paths whose endvertices are in F , then we obtain a linkage of order w from F to A, and a linkage of
order w from A to F . Thus, the claim holds.

If each of W1, . . . ,Wk contains an odd cycle, then we have k vertex-disjoint odd cycles, contradicting the
assumption that ν2(G) < k. Thus, one of W1, . . . ,Wk, say W ′, does not contain an odd cycle.

Now, by (∗) and (∗∗) and Lemma 2.1, we have that

(∗ ∗ ∗) for every subset Z of T of size at least |T |/2 and every set F of w nails of W , there is a linkage of order at
least w/2 from F to Z, and there is a linkage of order at least w/2 from Z to F .

Indeed, combining the linkage from A to Z and the linkage of order w from F to A, we obtain a half-integral
linkage of order w from F to Z. Lemma 2.1 implies that there is a linkage of order at least w/2 from F to Z.
The other direction is similar.

Since W ′ has order w, W ′ has 2w2 nails. Let N be a set of w2 nails of W ′ such that they are contained in the
same part of the bipartition of W ′. Now, we apply Lemma 3.1 for a tuple (G,N, f3(k)). As G has no half-integral
packing of k odd cycles and f3(k) ≥ k, G contains either

• a half-integral packing U of f3(k) odd N -paths whose endvertices are pairwise disjoint, or

• a set Y of at most 4f3(k)− 1 vertices such that G− Y has no odd N -walks.

Assume that the latter case happens. Observe that f2(k) ≥ 8f3(k), 4f3(k) ≥ r, and f(k) ≥ 6f3(k) − 4. We
apply Proposition 5.1 with (r, t, w) = (r, 4f3(k), f2(k)). We can apply the proposition because of the property
(∗ ∗ ∗). By Proposition 5.1, G has a set of at most 3(4f3(k)− 1) vertices hitting all odd cycles. It contradicts the
fact that τ(G) > 24f3(k)− 4 ≥ 12f3(k)− 3.

Thus, we may assume that the former case happens. Observe that W ′ is a bipartite cylindrical wall of order

w = f2(k) ≥ (2k + 3)(6gpath(k) + 1)

and U is a half-integral packing of
f3(k) ≥ 12(gpath(k)− 1) + 1

odd N -paths such that the endvertices of paths in U are disjoint. So, by Proposition 5.2, ν2(G) ≥ k, a
contradiction.

We conclude that τ(G) ≤ f(k).
The algorithmic result will be presented in the next section.

6 Algorithmic applications

We now discuss how to turn this combinatorial result into a polynomial-time algorithm to find a half-integral
packing of k odd cycles or a hitting set of size at most f(k), for fixed integer k.

First by considering all sets S of at most f(k) vertices in G and testing whether G−S has no odd cycles, we
can detect a hitting set of size at most f(k) if one exists. Note that we can test in polynomial time whether a
given directed graph has an odd cycle, as it is sufficient to test whether the underlying undirected graph of each
strong component is bipartite. Therefore, we may assume that G has no hitting set of odd cycles of size at most
f(k), that is, τ(G) > f(k). So, we want to find a half-integral packing of k odd cycles.

Note that we cannot guess the set T , as τ(G) may be much larger than k (and must contain a half-integral
packing of k odd cycles). On the other hand, as τ(G) > f(k), there should be a well-linked set of size f1(k) as in
the proof. We consider all sets A of size f1(k) and test whether it is well-linked. As k is a fixed integer, we can
test in polynomial time whether A is well-linked, by repeatedly applying Menger’s theorem. We construct the set

U := {A : |A| = f1(k), A is well-linked}.

As f1(k) ≥ fwall(kf2(k)), for each A ∈ U , by applying Theorem 2.2, we obtain a cylindrical wall WA of order
kf2(k) = kw such that
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• for every set F of kw nails of WA, there is a linkage of order kw from F to A, and there is a linkage of order
kw from A to F .

Note that it runs in polynomial time for fixed k, and Campos et al. [4] recently discussed how to modify this into
an FPT algorithm. By dividing WA into k subwalls as in the proof, we find either a half-integral packing of k
odd cycles or a bipartite cylindrical subwall W ′A of order w such that

• for every set F of w nails of W ′A, there is a linkage of order w from F to A, and there is a linkage of order
w from A to F .

We choose a set NA of w2 nails in W ′A contained in the same part of the bipartition of W ′A. We apply
Lemma 3.1 for the tuple (G,NA, f3(k)). Clearly, Lemma 3.1 can be simulated in polynomial time, as we only use
Menger’s theorem. If it outputs a half-integer packing of k odd cycles, then we are done. So, we may assume that
it outputs either

• a half-integral packing UA of f3(k) odd NA-paths whose endvertices are pairwise disjoint, or

• a set YA of at most 4f3(k)− 1 vertices such that G− YA has no odd NA-walks.

If this output YA and the current A and the set T satisfy the property (∗), then there is a hitting set of size at
most 12f3(k)− 3 ≤ f(k), which contradicts the assumption that τ(G) > f(k). So, if the second outcome occurs,
then it means that the current A and T do not satisfy (∗), and we skip this A. If it outputs UA, then following
the proof of Proposition 5.2 we can obtain a half-integral packing of k odd cycles in polynomial time.

But since there should exist a set A ∈ U satisfying (∗), by considering all sets A in U , we will either output
a hitting set of size at most f(k) or a half-integral packing of k odd cycles. This concludes the algorithm.

We now turn to the proof of Theorem 1.3. Following the notion in [8], the k-Half-Or-No-
Integral Disjoint Paths problem asks for given a directed graph G and pairs of source/sink vertices
(s1, t1), (s2, t2), . . . , (sk, tk), to either find a half-integral linkage {Pi : i ∈ [k]} where each Pi connects si and
ti, or conclude that it has no linkage {Pi : i ∈ [k]} where each Pi connects si and ti. In [8], the following
polynomial time algorithm is obtained.

Theorem 6.1. For every fixed positive integer k, k-Half-Or-No-Integral Disjoint Paths can be solved in
polynomial time.

To prove Theorem 1.3, we need the following variation.

Theorem 6.2. For every fixed positive integer k, there is a polynomial-time algorithm that given a directed graph
G having no odd cycles, and given pairs of source/sink vertices (s1, t1), (s2, t2), . . . , (sk, tk) and a1, . . . , ak ∈ {0, 1},
either

• finds a half-integral linkage {Pi : i ∈ [k]} where each Pi connects si and ti and the length of Pi is ai (mod 2),
or

• concludes that it has no linkage {Pi : i ∈ [k]} where each Pi connects si and ti and the length of Pi is ai
(mod 2).

Proof. Let {H1, H2, . . . ,Hm} be the set of strong components of G, and assume that it is ordered in an acyclic
ordering. Let F be the set of all edges that are incident with two strong components of G.

For each i ∈ [k], we choose a set Ui of edges in F so that

• U1, . . . , Uk are pairwise disjoint, and

• for every 1 ≤ x < y ≤ m, each Ui contains at most one edge incident with both Hx and Hy.

We will ask to find Pi for which E(Pi) ∩ F = Ui. Note that if a path in G traverses from Hx to Hy with y > x,
then it cannot come back to Hx. This means that it is sufficient for Ui to contain at most 1 edge between Hx

and Hy for every pair of strong components (Hx, Hy). So, the number of possible tuples (Ui : i ∈ [k]) is at most
n2 · n2k, where n is the number of vertices in G.
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Now, we fix a tuple (Ui : i ∈ [k]). To test whether there is a set {Pi : i ∈ [k]} of paths where E(Pi)∩F = Ui,
it is sufficient to test for each strong component. If some strong component does not contain exactly two vertices
among terminals {si, ti} or endvertices of Ui, then this tuple is not realizable, and so we skip it. Otherwise,
the problem is reduced to k-Half-Or-No-Integral Disjoint Paths for each strong component. We may
assume that in each strong component, we get a half-integral linkage between terminals restricted to the strong
component.

An important point is that sinceG has no odd cycle, the underlying undirected graph of each strong component
is bipartite. Therefore, paths inside a strong component between two specific vertices have the same parity. So,
the parity of the resulting path only depends on the set Ui. If this parity is the same as what we require for Pi,
then we accept the output. Otherwise, we skip the tuple.

This concludes the algorithm.

Now, we prove Theorem 1.3.
By the polynomial-time algorithm in Theorem 1.2, we may assume that we obtain a set X of at most f(k)

vertices such that G−X has no odd cycles.
If there are k vertex-disjoint odd cycles in G, then each odd cycle must go through at least one vertex in

X. As |X| ≤ f(k), we can enumerate all the ways for k vertex-disjoint odd cycles to go through vertices of X,
and they are bounded by nf

′(k) for some function f ′ of k. So, we can guess all possible intersections on X in
polynomial time. For each guess, we get a problem with k′ ≤ 2f(k) pairs of terminals in G −X where for each
pair (s, t), we want to find a path from s to t with specific parity (as at the end, we need to test whether the cycle
is odd). To test it, we apply Theorem 6.2. If we obtain a half-integral packing of k′ paths with required parities
at some moment, we obtain a half-integral packing of k odd cycles. Otherwise (i.e., for all of them, we conclude
that there are no desired k′ vertex-disjoint paths in Theorem 6.1), we conclude that there are no k vertex-disjoint
odd cycles, as required.

In order to replace the second conclusion of Theorem 1.3 by “it concludes that there is no half-integral packing
of k directed odd cycles.”, we need to improve Theorem 6.1 to decide the k-half integral disjoint paths problem.
This is indeed conjectured in [8].
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[2] E. Birmelé, J. A. Bondy, and B. A. Reed. The Erdős-Pósa property for long circuits. Combinatorica, 27(2):135–145,
2007.

[3] H. Bruhn, F. Joos, and O. Schaudt. Long cycles through prescribed vertices have the Erdős-Pósa property. J. Graph
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