
RESEARCH ARTICLE

Conditional autoencoder asset pricing models

for the Korean stock market

Eunchong KimID
1☯, Taehee Cho2☯, Bonha Koo3*, Hyoung-Goo KangID

1*

1 Business School, Hanyang University, Seoul, Republic of Korea, 2 Qraft Technologies, Seoul, Republic of

Korea, 3 School of Business, Chungnam National University, Daejeon, Republic of Korea

☯ These authors contributed equally to this work.

* koobonha9@gmail.com (BK); hyoungkang@ehanyang.ac.kr (HGK)

Abstract

This study analyzes the explanatory power of the latent factor conditional asset pricing

model for the Korean stock market using an autoencoder. The autoencoder is a type of neu-

ral network in machine learning that can extract latent factors. Specifically, we apply the con-

ditional autoencoder (CA) model that estimates factor exposure as a flexible nonlinear

function of covariates. Our main findings are as follows. The CA model showed excellent

explanatory power not only in the entire sample but also in several subsamples in the

Korean market. Also, because of this explanatory power, it can better explain market anom-

alies compared to the traditional asset pricing models. As a result of examining investment

strategies using pricing error, the CA model measures the expected return of stocks better

than the traditional asset pricing model. In addition, the CA model indicates that the firm

characteristic variables are important in asset pricing conditional on macro-financial states,

such as the global financial crisis and the coronavirus disease 2019 pandemic. The result

shows that the major variables considered in the explanation of stock returns through the

CA model may vary depending on the time. This is expected to provide a broader perspec-

tive on asset pricing through the CA model in the future.

1. Introduction

Various risk factors have been introduced in the extant literature to explain cross-sectional

stock returns or market anomalies that traditional asset pricing models fail to elucidate [1–3].

These efforts have led to the inclusion of numerous factors, and this phenomenon of factor

overflow is called factor zoo [4]. Indeed, scholars have endeavored to identify factors that pro-

vide information orthogonal to other existing factors, considering the multi-dimensionality of

numerous factors. Thus, distinguishing between significant and unnecessary pricing factors

becomes essential for identifying the true factors.

Alternatively, rather than specifying factors in advance based on the empirically observed

cross-sectional characteristics, researchers have attempted to discover potential factors that

can best explain the stock returns through ex-post and bottom-up approaches. A popular idea

is to estimate latent factors by extracting information from high-dimensional data using

machine learning. Such attempts to use latent factors for asset pricing began with Ross’
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arbitrage pricing theory [5], which is extended in several studies using the principal compo-

nents analysis (PCA) to analyze stock returns [6–8]. Enhancing PCA models by including only

static observable factors, Kelly et al. [9] proposes an instrumented PCA (IPCA) asset pricing

model, which includes unobservable latent factors that change over time. Inspired by the IPCA

model, Gu et al. [10] proposed a conditional autoencoder (CA) asset pricing model to reflect

the influence of external variables. The autoencoder, one of the machine learning methods, is a

dimension reduction technique that can infer nonlinear relationships among data., that is, it is

a generalized PCA with nonlinearity [11]. Gu et al. [10] find that the CA model exhibits a bet-

ter explanatory power for stock returns than the traditional Fama-French factor (FF) models

and IPCA models for the U.S. market. These results indicate that the latent factors estimated

through machine learning techniques can be effectively employed in asset pricing models.

Using machine learning techniques, we examine the explanatory power of the CA model

for the Korean market. To the best of our knowledge, this is the first study to apply the CA

model to the Korean market and compare the explanatory power of the CA model with that of

the traditional asset pricing models under different macro-financial.

The main results can be summarized as. First, the explanatory power of the CA model dom-

inates that of traditional models. The out-of-sample (OOS) R2 for individual stocks and the

test-asset portfolios constructed with each firm characteristic are larger for the CA model than

for the traditional asset pricing model (e.g., FF models). Second, the OOS mispricing is much

smaller in the CA than in the FF models. The number of statistically significant alphas in the

CA model is smaller than that in the FF models. Therefore, the latent factors in the CA model

demonstrate larger dispersion efficiency than the observable factors in the FF models in

explaining heterogeneous stock returns. Third, the expected rate of return, calculated from the

traditional asset pricing model, is compared with that based on the CA model in order to find

out whether the CA model is more suitable in the Korean market or not. It shows that the ben-

efits of the traditional asset pricing model are ambiguous for all strategies which utilize the

price error. The result of overvalued (or undervalued) stocks is also not statistically significant.

Our results indicate that the traditional asset pricing model is not valid in the Korean market.

Finally, we identify the importance rankings of firm characteristics, which are not included in

the existing asset pricing models. Furthermore, we find those firm characteristics that are

important in asset pricing differ depending on specific periods, such as the global financial cri-

sis or the COVID-19 pandemic. This finding is reported for the first time in the literature.

Our empirical analysis follows the study of Gu et al. [10], with several key differences. First,

we use Korean market data to test the CA model. The test result confirms that the CA model,

in general, performs well on stock data from countries other than the United States. Second,

we compare the explanatory power of existing models in various subsamples. In a subsample

in which the explanatory power of the existing asset pricing model is low, the CA model

showed better explanatory power. Third, the investment strategies based on the pricing error

of the model and calculated with the traditional asset pricing model or the CA model, are com-

pared. The result reveals that the CA model’s profit is superior to that of the traditional asset

pricing model. That would indicate that the CA model can be more accurate to identify under-

valued stock (or overvalued stock). Therefore, the CA model can supplement the limitations of

the existing traditional asset pricing models. This study confirms the superiority of the asset

price model by the artificial intelligence model and indicates that it can be used in various

financial fields.

The remainder of this paper is organized as follows. In Section 2, literature reviews. In Sec-

tion 3, we describe the data and methodology. In Section 4, we present the empirical results,

while in Section 5, we conclude the paper.
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2. Literature review

Our paper also contributes to the growing field of machine learning in finance. Recent litera-

ture uses machine learning in finance including equity return forecasting, asset pricing, and

risk management. For example, distinguished by algorithms, researchers tested other

approaches with shrinkage methods [12, 13] the class of Support Vector Machines [13–16], as

well as tree-based methods [17, 18] such as the Gradient Boosting Machine or the Random

Forest. Furthermore, many papers applied various architectures of neural networks to predict

future asset prices [19–21]. Other, less widespread methodologies include natural language

processing [22] Principal component analysis [23], autoencoders [24], and Reinforcement

learning [21, 25]. The use of artificial intelligence continues in the study of asset price models.

Most applications, in line with the traditional asset pricing literature, consider only linear rela-

tionships between financial variables and subsequent stock returns. For example, the Capital

Asset Pricing Model (CAPM) introduced by Sharpe [26], Lintner [27], and Mossin [28] posits

that, in equilibrium, a stock’s expected return is solely driven by its sensitivity to a systematic

risk factor, i.e., the market risk. An assumption is that the underlying pricing kernel is linear in

only a single factor, i.e., the market portfolio.

Various studies, however, report violations of this assumption (e.g., Hou et al. [3], for a

comprehensive list of asset pricing anomalies) and examine the alternative asset pricing mod-

els. Following Dittmar [29], we classify them into two subcategories. The first subcategory uti-

lizes other pricing factors in addition to the market portfolio. Most prominently, Fama and

French [30] propose a multifactor alternative to the CAPM and find that it is better at explain-

ing cross-sectional variation in expected returns than the CAPM. Other examples include

Ross’ asset pricing theory (APT) [5] and Merton’s intertemporal CAPM (ICAPM) [31]. The

second subcategory abandons the restriction that the pricing kernel must be linear in pricing

factors. Bansal et al. [32], Bansal and Viswanathan [33], Chapman [34], Dittmar [29], and

Asgharian and Karlsson [35], among others, explore various nonlinear pricing kernels and

show that such specifications outperform linear counterparts.

While the first subcategory of models motivates the use of multiple pricing factors, the sec-

ond subcategory suggests that using interactions between these factors and incorporating non-

linear relationships between price-related variables and expected stock returns add

incremental explanatory power. For this, many studies use machine learning methods. Mess-

mer [36] and Feng et al. [37] predicted stock returns with neural networks. Bianchi et al. [38]

used a machine learning method to predict bond yields and compared them with the existing

traditional methods. Freyberger et al. [39] estimated the risk premium of stock returns through

a non-linear additive function using the Lasso selection method. Feng et al. [37] impose a no-

arbitrage limit using a predefined set of linear asset pricing factors and measure the loading of

each of the above factors through a deep neural network. Rossi [40] derived a conditional

mean-variance efficient portfolio based on the market portfolio and risk-free assets through

Boosted Regression Trees. More recently, new methods have been developed to extract statisti-

cal asset pricing factors from large panels with various derivatives of principal component

analysis (PCA). The Risk-Premium PCA, suggested by Lettau and Pelger [23], introduced a

pricing error penalty to detect weak factors which explain the cross-sectional variance of

returns. The high-frequency PCA, suggested by Pelger [41], utilized high frequency data to

estimate local time varying latent factors.

Enhancing PCA models by including only static observable factors, Kelly et al. [9] proposes

an instrumented PCA (IPCA) asset pricing model, which includes unobservable latent factors

that change over time. The IPCA model can explain the stock return better than the PCA mod-

els or the FF models for the U.S. stock markets; IPCA renders the pricing errors (alphas) of
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many firm characteristic-managed portfolios insignificant. Inspired by the IPCA model, Gu

et al. [10] proposed a conditional autoencoder (CA) asset pricing model to reflect the influence

of external variables. The autoencoder, one of the machine learning methods, is a dimension

reduction technique that can infer nonlinear relationships among data., that is, it is a general-

ized PCA with nonlinearity [11]. Gu et al. [10] find that the CA model exhibits a better explan-

atory power for stock returns than the FF and IPCA models for the U.S. market. These results

indicate that the latent factors estimated through machine learning techniques can be effec-

tively employed in asset pricing models.

The most recent study, Gu et al. [10], extended the linear conditional factor model of Kelly

et al. [9] to a non-linear factor model using an autoencoder neural network. In this study, the

model of Gu et al. [10] is replicated in the Korean market, and the explanatory power of the

asset price model constructed using the machine learning method is checked whether it can be

generalized.

3. Data and methodology

This chapter describes the scheme and the evaluation of the CA model. The data used for the

CA model, the structure of the CA model, and the evaluation are elaborated. Comparative

models are also described. S1 Fig in S1 Appendix is a schematic diagram of the CA model

learning process. The methodology used in this study consists of four steps.

It is data collection in first step. Market price and fundamental data of KOSPI and KOS-

DAQ stocks are collected in the Korean market. The second step is the data preprocessing step

for analysis. Merge each data and create a firm characteristics variable to use in analysis. It

divides learning, verification, and test data necessary for AI model learning, and separates sam-

ples for subsample test. Step 3 is model training. With the training data generated in step 2, the

CA model described in Section 3.2 is trained. The final model is created through hyperpara-

meter tuning through the validation data. Step 4 is evaluation. In this step, the main findings

of the study are drawn. Analyze model explanatory power, portfolio alpha test, APT strategy

performance comparison, and importance of company-specific variables. In this chapter, the

main parts of this process are explained in detail.

3.1. Data

We analyze the monthly data of common stocks listed on the KOSPI and KOSDAQ markets

from January 1991 to December 2020. The monthly stock return is calculated using the

adjusted stock price, reflecting dividends and par split. To eliminate survival bias, we include

all firms that have been closed. Our sample includes 512,883 firm-months, with 1,425 firms

per month on average. Additionally, following Gu et al. [10], we do not exclude financial firms

or low-priced stocks. For each firm, we have 38 firm characteristic variables. Although Gu

et al. [10] use 94 firm characteristic variables, we can only access quarterly data after 2000 for

the Korean market because of data limitations and accounting differences. In comparison,

Kelly et al. [9] employs 36 firm characteristic variables in their IPCA model.

Table 1 describes the 38 firm characteristic variables used in our empirical analysis. The

first category (1–14) comprises monthly variables: market beta (beta) [40], market beta

squared (betasq) [42], change in 6-month momentum (chmom) [43], the ratio of the current

price to the 52-week high price (high52) [44], idiosyncratic return volatility (idiovol) [45], illi-

quidity (ill) [46], maximum daily return (maxret) [47], 1-month momentum (mom1m) [48],

6-month momentum (mom6m) [48], 12-month momentum (mom12m) [49], 36-month

momentum (mom36m) [48], market equity (mvel1) [50], return volatility (retvol) [51], and

total skewness (ts) [52].
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The second category (15–38) includes annual variables: absolute accruals (absacc) [53],

accruals (acc) [54], asset growth (agr) [55], cash holdings (cash) [56], cash flow to price ratio

(cfp) [57], change in shares outstanding (chcsho) [58], convertible debt indicator (convind)

[59], current ratio (currat) [60], depreciation divided by property, plant, and equipment

(PP&E) (depr) [61], dividend to price ratio (dy) [62], growth in common shareholder equity

(egr) [63], gross profitability (gma) [1], employee growth rate (hire) [64], leverage (lev) [65],

growth in long-term debt (lgr) [63], change in current ratio (pchcurrat) [59], change in depre-

ciation (pchdepr) [61], change in gross margin minus change in sales (pchgm_pchsale) [66],

change in quick ratio (pchquick) [59], quick ratio (quick) [59], research and development

(R&D) expenditure to market capitalization (rd_mve) [67], R&D to sales (rd_sale) [67], sales

growth (sgr) [68], and sales to price ratio (SP) [69].

To avoid a forward-looking bias, following Gu et al. [10], we match realized returns at

month t with the most recent monthly variables at the end of month t−1 and the most recent

annual variables as of t−6. To eliminate the influence of outliers and facilitate model learning,

we normalize all characteristics into the interval (−1, 1) for each month t as in Eq (1).

Table 1. Definition of the firm characteristic variable. This table reports firm characteristics and their definitions. The first (1–14) and second categories (15–38) com-

prise monthly variables and annual variables, respectively. The studies that suggest the corresponding firm characteristic variables covered in this research are included in

parentheses.

No. Acronym Definition of the characteristic No. Acronym Definition of the characteristic

1 beta Estimated market beta from weekly returns and market returns for 3 years

ending month t−1 with at least 52 weeks of returns [40].

20 chcsho Annual percentage change in shares

outstanding [58]

2 betasq Market beta squared [42] 21 currat Current assets/current liabilities [59]

3 chmom Difference between the cumulative returns from months t−6 to t−1 and

months t−12 to t−7 [43]

22 convind An indicator equal to 1 if the company has

convertible debt obligations [58]

4 high52 The ratio of the current adjusted share price to the highest adjusted share

price for the past 52 weeks [44]

23 depr Depreciation divided by property, plant, and

equipment (PP&E) [60]

5 idiovol The standard deviation of residuals of weekly returns on weekly market

returns for three years before the month-end [45]

24 dy Total dividends divided by market

capitalization at the fiscal year-end [61]

6 ill Average of the daily absolute return/dollar volume [46] 25 egr Annual percentage change in the book value of

equity [63]

7 maxret Maximum daily return from returns during calendar month t−1 [47] 26 gma Revenue minus cost of goods sold divided by

lagged total assets [1]

8 mom1m One-month cumulative returns [48] 27 hire Percentage change in the number of employees

[64]

9 mom6m Five-month cumulative returns ending one month before the month-end

[48]

28 lev Total liabilities divided by fiscal year-end

market capitalization [65]

10 mom12m 11-month cumulative returns ending one month before the month-end [49] 29 lgr Annual percentage change in total liabilities

[63]

11 mom36m Cumulative returns from months t−36 to t−13 [48] 30 pchcurrat Percentage change in the current ratio [59]

12 mvel1 Natural log of market capitalization at the end of month t−1 [50] 31 pchdepr Percentage change in depreciation [61]

13 retvol The standard deviation of the daily returns from month t−1 [51] 32 pchgm_pchsale Percentage change in gross margin minus

percentage change in sales [66]

14 ts Total skewness of the returns during month t−1 [52] 33 quick (Current assets−inventory)/current liabilities

[59]

15 absacc The absolute value of accruals [53] 34 pchquick Percentage change in the quick ratio [59]

16 acc Annual income before extraordinary items minus operating cash flows

divided by average total assets [54]

35 rd_mve R&D expense divided by fiscal year-end

market capitalization [67]

17 agr Annual percent change in total assets [55] 36 rd_sale R&D expense divided by sales [67]

18 cash Cash and cash equivalents divided by average total assets [56] 37 sgr Annual percentage change in sales [68]

19 cfp Operating cash flows divided by fiscal year-end market capitalization [57] 38 sp Annual revenue (sale) divided by fiscal year-

end market capitalization [69]

https://doi.org/10.1371/journal.pone.0281783.t001
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Specifically, we calculate the monthly rank based on the cross-section of each firm characteris-

tic variable. Subsequently, we divide this rank by the total number of shares, multiply by two,

and subtract one. In this case, we standardize each variable with the maximum value of 1 and

the minimum value of −1 (see the normalizing equation below).

Zi;t ¼ 2 ∗
Rank Firm characteristics variablei;t

� �

N

� �

� 1: ð1Þ

Specifically, we calculate the monthly rank based on the cross-section of each firm char-

acteristic variable. Subsequently, we divide this rank by the total number of shares, multiply

by two, and subtract one. In this case, we standardize each variable with the maximum

value of 1 and the minimum value of −1 (see the normalizing equation below). The reason

for this standardization is that outliers can excessively influence the machine learning

model [70].

3.2. Conditional autoencoder

The CA structure is based on the arbitrage pricing theory. The static linear factor model used

in many studies can be described as in Eq (2) [7, 71].

rt ¼ b ∗ ft þ et; ð2Þ

where rt represents the return vector that exceeds the risk-free interest rate, ft is the vector

representing the factor returns of K × 1, and et is a vector indicating idiosyncratic errors of

N × 1. Further, β is a vector indicating a factor loading of N × K, where N is the number of

items and K is the number of factors. This is the same form as the general (standard) factor

model used in empirical finance. For example, the Fama and French [30, 72] three-factor

(FF3) model uses observable factors in the financial market, such as market return, SMB,

and HML. By contrast, Bai and Ng [73] and Stock and Watson [74] examine the latent factor

through dimensionality reduction in the return covariance matrix using methods such as

PCA.

The PCA model can be used to infer latent factors from returns and obtain dynamically

changing coefficients of latent factors. However, the PCA method is an unsupervised learning

technique and does not reflect external information, leading to constant betas over time and

states. To solve this problem, Kelly et al. [9] extend PCA and propose an IPCA model that

infers latent factors and dynamically changing betas through external variables, as in Eq (3).

Applying this model, the beta varies dynamically by firm characteristics and market environ-

ment.

ri; t ¼ bi;t ∗ ft þ et; where bi;t ¼ zi;t� 1 ∗Γ : ð3Þ

We use the autoencoder, a generalized version of PCA, to guide dimension reduction.

Autoencoder used in this study is one of the deep neural network models and has been intro-

duced in many studies related to dimensionality reduction [75–77]. The main principle of the

autoencoder is taken from its name. "Automatic" means that the method is unsupervised

learning, and "encoder" means learning different representations of the data. In particular, the

autoencoder learns the encoded representation by minimizing the loss between the original

data and the decoded data. Therefore, an autoencoder is a neural network that encodes input

data into a low-dimensional representation and then decodes it again to train it to map the

output data itself. The lower- dimensional representation allows the autoencoder to capture

the greatest features of the data. Due to these characteristics, autoencoders can be considered

nonlinear generalizations of PCA [78].
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Particularly, we apply the CA to infer the factors (ft) and factor loadings (βi,t). As illustrated

in Eq (3), the CA model allows dynamic factor loading, βi,t, in the latent factor through the

autoencoder, ft. Further, the model has a nonlinear beta that changes with the firm characteris-

tic variable. zi,t−1 represents a company characteristic variable, and matrix Γ defines the map-

ping between many characteristics and a small number of latent factors. The mapping is

described in detail in the figure. Fig 1 describes the CA architecture. The left-hand side depicts

how the β is deduced. In model learning, we use stock returns and firm characteristic variables

for N stocks over time T. As the firm characteristic variables for each stock pass through the

hidden layers, they become compressed to K dimensions. Note that Fig 1 only illustrates the

learning structure at a specific time t.
The right-hand side demonstrates the process by which the latent factors are channeled

through individual stock returns. The return data of N stocks are then compressed into K

dimensions on the latent factors. To accomplish this, following the method of Gu et al. [10], N
number of individual stocks constitute P number of long-short portfolios based on the values

of each P firm characteristic variable. This indicates that the data dimension is reduced from N
to P by constructing long-short portfolios (P) using firm characteristic variables. As the num-

ber of network nodes in the autoencoder model reduces significantly (because of using P
rather than N variables), model learning is facilitated. Additionally, when learning from port-

folio returns, the autoencoder mitigates noises generated by individual stock returns. The

result, calculated on the left-hand and right-hand sides, is finally dot-produced as (N × K) ×
(K × 1) to create N × 1 returns.

The CA model has certain advantages compared to the standard autoencoder model illus-

trated in S1 Fig in S1 Appendix. As the standard autoencoder model has output and input lay-

ers identical to the number of stocks, it cannot reflect external market information in beta that

can change over time. However, our model depicted in Fig 1 can reflect the external informa-

tion on the left-hand side of the beta part, and consequently, we can estimate the dynamic

betas.

Fig 1. Conditional autoencoder model architecture. This figure describes the conditional autoencoder, which

dynamically captures factor loadings and factors. The neural network on the left-hand side generates factor loadings by

propagating firm characteristics. The input layer (N × P) comprises assets and firm characteristics in which N is the

number of firms and P is the number of firm characteristics. The neural network on the right-hand side generates

factors, and its input layer can either be characteristic-managed portfolios or individual asset returns.

https://doi.org/10.1371/journal.pone.0281783.g001
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3.3. Model learning

We divide the sample data into three disjoint periods, “train,” “validation,” and “test.” Consid-

ering the characteristics of time series data, instead of shuffling, we separate the data while

maintaining the time order. Specifically, the “train” subsample comprises data for estimating

the model according to a specific set of tuning hyperparameter values. The “validation” sub-

sample is used to tune the hyperparameters of the model. Finally, we apply the “test” subsam-

ple, which has never been used for “train” or “validation,” to evaluate the method’s OOS

performance.

Considering 30 years of the sample period, from January 1991 to December 2020, we set

the first 13 years of data as the “train” subsample (1991–2003), the next 2 years as the “valida-

tion” subsample (2004–2005), and the remaining 15 years as the “test” subsample (2006–

2020). Next, in the machine learning process, we increase the train data by one year over time,

and continuously increase and retrain the first train data. Each time we refit the model once a

year, we increase the “train” subsample by one year. We maintain the sample size of the “vali-

dation” subsample by rolling it forward to include the most recent data.

Fig 2 presents the rolling window of machine learning. In this process, the amount of data

used for learning increases over time, which can reflect the changing market conditions in the

learning model. For example, our first window with the “test” subsample of 2006 is constructed

using the “train” subsample from 1991 to 2003 and the “validation” subsample from 2004 to

2005. Further, the next “test” subsample of 2007 is constructed using the “train” subsample

from 1991 to 2004 and the “validation” subsample from 2005 to 2006. Thus, while learning 15

times, 15 years of OOS data are created.

Table 2 displays the hyperparameters used in our CA model learning process. To prevent

overfitting, we apply various regularizations during the network training. First, we apply the

L1 regularization to the objective function of the neural network model, as in Eq (4).

Minimize
1

NT

XT

t¼1

XN

i¼1

ri;t � bi;t� 1ft
� �2

þ � yð Þ; ð4Þ

where ϕ(θ) refers to the L1 (norm) penalty term, which sets the Laplace distribution to a prior

distribution and makes the weights sparse. ri refers to the actual return of stock i, and

Fig 2. Sliding window model. This figure describes how the model is trained, validated, and tested. First, the model is

trained with 13 years of data followed by 2 years of validation data and 1 year of test data. Second, the model is

reinitialized and trained with 14 years of data followed by 2 years of validation data and 1 year of test data. This process

is iterated up to 15 years of test data.

https://doi.org/10.1371/journal.pone.0281783.g002
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beta*factor (βi,t-1ft) indicates the return estimated by the CA model using N stocks over time T.

The CA model uses Adam optima [79] through the above objective function. Adam optima

utilizes low-dimensional moments as one of the stochastic optimization methods and is

known to work adequately under non-stationary, noisy, and sparse gradients.

Second, we apply a batch norm that can reduce the effect of layer initialization and solve the

covariate shift problem, enabling smoother learning [80, 81]. It reduces the training time and

improves the generalization of the model by preventing overfitting.

Third, we apply early stopping—an algorithm that terminates learning when the error of

validation data increases after a certain period while training a model with the “train” subsam-

ple—using validation data to prevent excessive overfitting.

Finally, we employ the ensemble method, which creates and trains five same-structure

models with different random seeds. Given the nature of the neural network, the performance

varies depending on the random seed. The ensemble method mitigates the problem and

makes the results robust. We obtain the final output of the model by averaging the outputs of

the five models.

3.4. Model comparison

We compare the performance of the latent factor models as follows. First, we vary the CA

model according to the specifications of hidden layers. The CA0 model has no hidden layer.

The CA1 model adds a hidden layer of 32 neurons, while the CA2 model adds a hidden layer

of 16 neurons to CA1. Further, the CA3 model adds a hidden layer of eight neurons to CA2.

We analyze the FF asset pricing models that are based on the observable factors to enable

comparison with the above-mentioned CA models. The explanatory power of the traditional

asset and that of the AI-based CA model are compared. The reason to compare these explana-

tory powers is that the number of factors in the CA model or in the traditional asset pricing

model can be naturally controlled.

Table 3 represents the composition of the observable factors in the FF models according to

the number K, which we set from one to six to match the number of latent factors created by

Table 2. Model hyperparameters. This table reports the hyperparameters. The hyperparameters are shared between

the conditional autoencoder (CA) models except for the number of latent factors (K) and hidden layers. The CA model

is specified by setting K and hidden layers.

Hyperparameters Set values

Layer Initialization Method Glorot Uniform [81]

L1 Penalty 1e-4

Mini Batch Size 32

Learning Rate 1e-3

Optimizer Adam

Adam—beta1 0.9

Adam—beta2 0.999

Adam—epsilon 1e-7

Batch Norm—momentum 0.99

Batch Norm—epsilon 1e-3

Early Stopping–patience (Number of epochs with no improvement after which training

will be stopped)

500

K 1, 2, 3, 4, 5, 6

Hidden layer [], [32], [32, 16], [32,

16, 8]

Number of models for ensemble 5

https://doi.org/10.1371/journal.pone.0281783.t002
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compressing the dimensions in the CA model. The table illustrates that K = 3 compares to the

Mkt-Rf (excess return on the market), SMB (small minus big), and HML (high minus low) fac-

tors as the FF3 model. The K = 4 model compares to the Carhart (FF4) model [82] that adds

UMD (up minus down) factor to the FF3 model. K = 5 compares to the FF five-factor (FF5)

model that adds RMW (robust minus weak) and CMA (conservative minus aggressive) factors

to the FF3 factors [2]. Additionally, we add UMD factors to the FF5 factors in six-factor

model, which helps compare CA models to the asset pricing models using latent factors or

observable factors in correspondence.

4. Empirical analysis

4.1. Asset pricing performance

In this section, we compare the performances of the CA and traditional asset pricing models.

We evaluate the OOS performance using the data from January 2006 to December 2020. To

verify the explanatory power of the model, we examine both individual stock returns and test

portfolios created through firm characteristic variables. For the test portfolio, we construct a

portfolio return through a “bottom-up” approach, following Gu et al. [24] and Feng et al. [83],

as in Eq (5).

Rp ¼
XN

i¼1

wi ∗ ri;t: ð5Þ

The portfolio return (Rp) is measured by the weighted sum of ri,t of N individual stocks. We

construct a set of 5 × 5 portfolios by crossing two firm characteristics. Each firm characteristic

produces five groups of firms. In the bivariate comparisons, we always include firm size. As

our analysis covers 38 firm characteristic variables, we generate a total of 950 portfolios as test

assets. We use the total R2 to evaluate the performance, as in Eq (6).

R2

total ¼ 1 �

X

i;tð Þ2OOS
ri;t � b̂ 0i;t� 1

f̂ t
� �2

X

i;tð Þ2OOS
r2
i;t

: ð6Þ

The total R2 (R2
total) indicates the extent to which the latent factors derived by the model

explain the stock return, ri refers to the actual return, and beta*factor (b̂ 0i;t� 1
f̂ t) denotes the

return estimated by the CA model. In the portfolios, ri reflects the portfolio return; we can cal-

culate b̂ 0i;t� 1
f̂ t similarly.

Table 3. Observable factors according to the number of latent factors.

Number of latent factor (K) Observable factor

1 Mkt-Rf

2 Mkt-Rf, SMB

3 Mkt-Rf, SMB, HML

4 Mkt-Rf, SMB, HML, UMD

5 Mkt-Rf, SMB, HML, CMA, RMW

6 Mkt-Rf, SMB, HML, CMA, RMW, UMD

This table describes the observable Fama–French (FF) factors according to the number of latent factors (K). Mkt-Rf:

the excess return on the market; SMB: small minus big; HML: high minus low; UMD: up minus down; CMA:

conservative minus aggressive; RMW: robust minus weak

https://doi.org/10.1371/journal.pone.0281783.t003

PLOS ONE Conditional autoencoder asset pricing models for the Korean stock market

PLOS ONE | https://doi.org/10.1371/journal.pone.0281783 July 31, 2023 10 / 30

https://doi.org/10.1371/journal.pone.0281783.t003
https://doi.org/10.1371/journal.pone.0281783


Table 4 presents the OOS total R2 (%) for individual stocks using the observable factor

models (FF) and the CA models (CA0 to CA3). In all cases, the number of factors varies from

K = 1 to K = 6. Additionally, the total R2 from our CA model generally dominates that from

the FF models, which implies that the CA model has more explanatory power. Further, it illus-

trates that the explanatory power of the CA models increases as the number of factors, K,

increases. Interestingly, the total R2 of the CA model becomes larger as the number of factors

increases, while that of the FF models is not significantly affected by the number of factors.

The results imply that, in the case of the FF models, added factors are mitigated by other exist-

ing factors. Conversely, in the case of the CA model, the model performance improves linearly

with the inclusion of additional factors, suggesting that the model effectively extracts the latent

factor information.

We examine the consistency of these results not only in individual stocks but also at the

portfolio level in Table 5. The 5 × 5 portfolio on firm characteristic variables comprises two

portfolio types—value-weight (VW) and equal-weight (EW) portfolios. The total R2 trend in

Table 5 is similar to that of individual stocks in Table 4.

First, in the case of EW, the table demonstrates that the explanatory power of the CA model

is superior to that of the FF models. Second, the explanatory power of the CA model tends to

increase as K increases, regardless of EW and VW portfolio types. In the case of the FF models,

VW portfolios display mostly high explanatory power when K exceeds three. Further, the

Table 4. Out-of-sample total R2 for individual stocks. This table reports the out-of-sample total R2 (%) for individual stocks using observable Fama–French (FF) factor

models and conditional autoencoder (CA) models (CA0 through CA3). It presents the results of applying latent factors from 1 to 6 to each model.

Model 1 2 3 4 5 6

FF 6.840 9.504 8.035 6.281 4.579 2.727

CA0 12.104 12.883 13.565 14.197 14.507 14.666

CA1 11.497 12.559 13.248 14.128 14.604 14.818

CA2 11.819 12.880 13.460 14.172 14.578 14.819

CA3 11.808 12.843 13.462 13.998 14.289 14.518

https://doi.org/10.1371/journal.pone.0281783.t004

Table 5. Out-of-sample total R2 for test-asset portfolio. This table reports the OOS total R2 (%) for test-asset portfolios using observable Fama–French (FF) factor mod-

els and conditional autoencoder (CA) models (CA0 through CA3). It presents the result of applying latent factors (K) from 1 to 6 to each model. Panels A and B illustrate

the results from equal-weight and value-weight portfolios, respectively.

Panel A: Equal-weight

Model 1 2 3 4 5 6

FF 49.927 73.821 74.692 75.094 74.941 75.308

CA0 75.102 78.013 81.412 82.884 83.309 83.232

CA1 73.214 76.680 79.529 82.219 82.979 83.190

CA2 74.302 77.565 80.154 81.701 82.823 83.178

CA3 73.793 77.542 79.804 81.638 82.451 82.828

Panel B: Value-weight

Model 1 2 3 4 5 6

FF 48.019 69.169 69.351 70.180 68.934 69.694

CA0 67.282 68.962 71.573 72.656 73.316 73.316

CA1 64.885 67.427 69.137 71.858 73.130 72.859

CA2 64.691 67.830 69.795 71.501 73.147 73.293

CA3 63.461 66.875 69.413 71.600 73.340 73.765

https://doi.org/10.1371/journal.pone.0281783.t005
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explanatory power increases significantly if K increases from one to two when the FF model

adds the SMB factor representing the size effect. This is natural because the VW portfolio rep-

resents market-cap-weighted portfolios. Nevertheless, when K increases further, the increase

in the explanatory power is relatively low.

Furthermore, we examine how the model explanatory power changes at each time point.

Fig 3 compares the explanatory power of the CA models with that of the FF3 and FF5 models.

For comparison, we consider the CA model with K = 3 and K = 5. In this analysis, R2 is the

12-month moving average value using monthly data. In Fig 3, the explanatory power of each

model moves differently depending on the time point; however, the CA model is always supe-

rior to the FF models. These results confirm that the explanatory power of the CA models is

superior regardless of timing or macro situations.

4.2. Subsample analysis

Here, we examine the explanatory power of various sub-samples. In this study, we test whether

the CA model can provide generalized explanatory power regardless of subsample composi-

tion. To this end, in this study, five subsamples of industry classification, market classification,

firm size, penny stock, and market inefficient stock classification are examined. To simplify,

we set K = 5, which implies that the CA and FF5 models have the same number of factors for

comparison.

We tested the explanatory power of the models on subsamples in 4 perspectives. First, we

compared the difference of the explanatory powers according to the KOSPI market and the

KOSDAQ market because the Korean stock market is largely divided into The KOSPI market

and the KOSDAQ market. Second, we examined the difference of the explanatory powers

regarding the presence of the penny stocks. Third, we studied whether the investors irrational-

ity affects the explanatory power or not. Finally, we divided the samples randomly, and tested

whether the explanatory power of the CA model is robust. The market anomaly can be more

pronounced for KOSDAQ-listed stocks. The traditional asset pricing model is known to have

low explanatory power for KOSDAQ-listed stocks [84], which is akin to the findings for other

international stock markets. This means that the existing asset price model lacks explanatory

power in the KOSDAQ market. On the other hand, we test whether the CA model exhibits

superior explanatory power in both the KOSPI and KOSDAQ markets.

Fig 3. 12 months rolling total R2. This figure represents the 12-month rolling R2 for the FF3F, FF5F, CA1_K3, and

CA1_K5 models. Both CA1_K3 and CA1_K5 have higher total R2 than FF3F or FF5F over the entire test period. FF:

Fama–French; CA: conditional autoencoder.

https://doi.org/10.1371/journal.pone.0281783.g003
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We examine the difference in the explanatory power between the KOSPI and KOSDAQ

markets. Table 6 reports the total R2 for individual stocks using the OOS model. The results

from Table 6 confirm that the explanatory power for KOSDAQ-listed stocks is relatively low

compared to KOSPI-listed stocks in both the FF and CA models.

In the case of the FF models, the total R2 of KOSDAQ-listed stocks (2.885) are 63% lower

compared to those of KOSPI-listed stocks (7.869). However, in the case of the CA models,

the difference is less dramatic—only a 20% decrease from KOSPI-listed stocks (17%) to

KOSDAQ-listed stocks (14%). Overall, while the explanatory power of the CA models

decreases in the KOSDAQ market, the CA model still dominates the FF models and exhibits

stable performances. The results of this study are consistent with the existing Han et al.
(2020) studies, as traditional asset price models show low explanatory power in the KOS-

DAQ market. When analyzing the KOSDAQ market through the existing asset price model,

the explanatory power itself is low, so it can be a factor that has many limitations in using

the model. However, the CA model has superior explanatory power compared to the existing

asset price model, and it implies that the difference in explanatory power between the

KOSPI market and the KOSDAQ market is not large. This means that the CA model can

provide excellent explanatory power in both markets with different market characteristics.

Also, similar results were found in subsamples according to the industry or the company

market value. The CA model has excellent explanatory power in detail industries subsam-

ples. In addition, the explanatory power was examined by subsamples according to the com-

pany market value and this result is also good regardless of the market value. The result

tables describe in detail the explanatory power according to the subsamples, located S1-S3

Tables in S1 Appendix.

Penny stocks tend to have high returns, systematic risk, and unsystematic risk. Therefore,

the traditional asset pricing models have low explanatory power over penny stocks. We define

penny stocks as those with a closing price of 5,000 won or less in the Korean market, following

Kim and Kang [85].

Table 7 illustrates the results with the entire sample, the sample excluding penny stocks,

and penny stocks. The FF models indicate that the explanatory power increases when penny

stocks are excluded from the sample. However, the CA models suggest no statistically signifi-

cant differences in terms of penny stocks.

As in the results of this study, it can be seen that the explanatory power of penny stock is

very insufficient in the traditional asset price model. However, the CA models suggest no

Table 6. Out-of-sample total R2 for individual stocks by market.

Model KOSPI KOSDAQ t-value

FF 7.869 2.885 3.510 (0.001)***
CA0 17.231 13.486 3.025 (0.002)***
CA1 17.086 13.688 2.365 (0.019)**
CA2 17.086 13.654 2.732 (0.006)***
CA3 16.792 13.373 2.394 (0.017)**

This table reports the out-of-sample total R2 (%) by market segmentation for individual stocks using observable

Fama–French (FF) factor models and conditional autoencoder (CA) models (CA0 through CA3). The t-value

represents the test value of the monthly total R2 difference between the Korea Composite Stock Price Index (KOSPI)

and Korea Securities Dealers Automated Quotations (KOSDAQ).

*, **, and *** denote the rejection of the null hypothesis of the absence of causality at the 10%, 5%, and 1% levels,

respectively.

https://doi.org/10.1371/journal.pone.0281783.t006
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statistically significant differences in terms of penny stocks. This means that in the CA

model, there is no difference between the explanatory power of penny stock and the explan-

atory power of other samples. This indicates that, unlike the FF models, the CA model

shows excellent explanatory power even in penny stocks. That is, we found that the CA

model can provide adequate explanatory power for stock returns with or without penny

stocks.

The transaction cost and the irrationality of investors significantly reduce the explanatory

power of the asset pricing models for the Korean markets [86]. Therefore, we examine the

impact of transaction cost and investors’ irrationality on total R2. As a proxy for transaction

cost, we use Roll’s spread [87] as in Eq (7), where cov represents the auto-covariance of stock

returns, using the daily return from t−12 to t−1 months. We convert all positive auto-covari-

ances to negative numbers when calculating roll spread, following Roll [87] and Lesmond

[88].

roll spreadi ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
� covi
p

: ð7Þ

Another estimate of transaction cost is based on the limited dependent variable model,

following Lesmond et al. [88]. It includes spread effects, price impact effects, and market

depth effects and can be expressed as Eq (8).

R i; tð Þ ¼ R∗ i; tð Þ � a1 ið Þ; if R∗ i; tð Þ < a1 ið Þ

R i; tð Þ ¼ 0; if a1 ið Þ � R∗ i; tð Þ � a2 ið Þ

R i; tð Þ ¼ R∗ i; tð Þ � a2 ið Þ; if R∗ i; tð Þ > a2 ið Þ;

ð8Þ

where α1(i) < 0 is the sell-side transaction cost of stock i, α2(i) > 0 is the buy-side transac-

tion cost, and R(i, t) is the observed actual rate of return. Further, R*(i, t) is the rate of return

in the market without unobserved friction according to the market model regression. Specif-

ically, the observed return is generated by the behaviors of investors considering transaction

costs. Additionally, the model assumes that the investor will act (buy, sell) when the expected

profit (loss) exceeds the transaction cost. Assuming R*(i, t) follows a normal distribution,

Table 7. Out-of-sample total R2 for individual stocks with or without penny stocks.

Model Entire sample Excluding penny stocks t-value Penny stocks t-value

FF 4.579 6.471 −3.110 (0.002)** 2.876 4.365 (0.000)***
CA0 14.507 13.579 0.278 (0.781) 15.494 −0.021 (0.982)

CA1 14.604 13.541 0.693 (0.489) 15.735 −0.578 (0.563)

CA2 14.578 13.458 0.758 (0.449) 15.770 −0.674 (0.501)

CA3 14.289 13.167 0.592 (0.554) 15.483 −0.592 (0.554)

This table reports the out-of-sample total R2 (%) for individual stocks using observable Fama–French (FF) factor models and conditional autoencoder (CA) models

(CA0 through CA3). Along with the entire sample, we illustrate the results with and without penny stocks. The t-value represents the test value of the monthly total R2

difference from that of the entire sample.

*, **, and *** denote the rejection of the null hypothesis of the absence of causality at the 10%, 5%, and 1% levels, respectively.

https://doi.org/10.1371/journal.pone.0281783.t007

PLOS ONE Conditional autoencoder asset pricing models for the Korean stock market

PLOS ONE | https://doi.org/10.1371/journal.pone.0281783 July 31, 2023 14 / 30

https://doi.org/10.1371/journal.pone.0281783.t007
https://doi.org/10.1371/journal.pone.0281783


the log-likelihood of the above expression is given by Eq (9).

ln L ¼
X

R1

ln
1

2ps ið Þ2
� �

1

2

�
X

1

1

2s ið Þ2
R i; tð Þ þ a1 ið Þ � b ið ÞRM tð Þð Þ

2

þ
X

R2

ln
1

2ps ið Þ2
� �

1

2

�
X

R1

1

2s ið Þ2
R i; tð Þ þ a2 ið Þ � b ið ÞRM tð Þð Þ

2

þ
X

R0

ln ln Φ2 ið Þ � Φ1 ið Þð Þ

ð9Þ

where R0, R1, and R2 correspond to the case where the observed rates of return are zero, neg-

ative, and positive, respectively. σ2 is the variance estimated using the observed actual

returns, and F denotes the cumulative distribution function of the standard normal distri-

bution. Estimates of α1 and α2 can be obtained by maximizing the above log-likelihood func-

tion. α2(i) − α1(i) are estimates of the round-trip transaction cost of competitive and

marginal investors. Following Lesmond et al. [89], we use α2(i) − α1(i) as the transaction

cost.

Finally, we calculate retail composition as a proxy for investors’ irrationality [90, 91]. Indi-

vidual investors tend to exhibit more behavioral bias in their trading than other investors

largely because of overconfidence and disposition effects [90–93]. We calculate retail composi-

tion as the trading volume of individual investors relative to the total trading volume, as

expressed in Eq (10).

Retail Compositioni;t ¼
Individual Trading Volumei;t
Total Trading Volumei;t

: ð10Þ

Subsequently, we divide our entire sample into two groups using each proxy—high and low

—based on the upper and lower 30% in the cross-section. Through the method proposed by

Racicot [94], it was shown that the traditional FF lacks the explanatory power of the flow fac-

tor, and the explanatory power of the illiquidity can be significant through GMM estimation

[95, 96]. For the robustness of the analysis, a liquidity factor [97] is added to the traditional

asset price model. We compare the model in which the liquidity factor (LIQ) is added to the

asset price model in Table 3 where K is 4 and the model where K is 5. The liquidity factor is a

constructed variable. LIQ factor is the average of the stocks γi,t from regression Eq (11).

ri;dþ1;t � rm;dþ1;t ¼ θi;t þ φi;tri;d;t þ γi;tsign ri;d;t � rm;d;t
� �

ni;d;t þ εi;d;t: ð11Þ

where ri,d,t is the return of stock i on day d in month t and vi,d,t is the dollar trading volume of

stock i on day d in month t. εi,d,t is the residual of stock i on day d in month t.
Table 8 demonstrates that the explanatory power of stocks with large investor irrationality

and trading restrictions is statistically significantly lower than that of the others. Regarding the

magnitude of the reduced explanatory power, FF5 displays negative explanatory power in the

subsamples with large transaction costs and investor irrationality. This implies that most of the

explanatory power of FF5 disappears. Adding the liquidity factor increases the explanatory
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power of highly liquid stocks, but still lowers the explanatory power of illiquid stocks. As

argued by Racicot and Rentz [95], the LIQ factor in the FF model supports that the explanatory

power is not large. On the other hand, the CA model exhibits an explanatory power of 8–10%.

This indicates that the explanatory power of the traditional asset price model is still inferior to

that of CA even when the LIQ factor is considered. In S4 Table in S1 Appendix, various cases

are examined, such as adding the LIQ factor to FF5F according to the method of Racicot and

Rentz [95]. In all cases, the main results are consistent.

In conclusion, despite the factors that lower the explanatory power of the asset pricing mod-

els for the Korean market, the explanatory power of the CA models remains considerably

robust compared to that of the FF models. This means that the time-varying model is an effec-

tive systematic risk measure [96], and the CA model fits this purpose well and shows excellent

explanatory power even for stocks with low illiquidity.

This result confirms that the performance of the asset price model deteriorates as the inves-

tor irrationality and transaction limiting factors increase in the Korean market, which is con-

sistent with Chae and Yang’s [86] findings. On the other hand, the CA model shows excellent

explanatory power in all samples. This shows that the CA model overcomes the limitations

that the existing asset price model failed in the Korean market. This shows that the CA model

can be a model for explaining the stock returns in the Korean market.

Table 8. Out-of-sample total R2 for individual stocks by transaction cost and investors’ irrationality.

Model High Low t-value

Panel A: Roll’s spread

FF5F(K = 5) <0 1.500 -3.048 (0.002)***
FF4F(K = 4)+LIQ <0 1.9143 -3.289 (0.001)***

CA0 9.767 12.843 -4.8545 (0.000)***
CA1 10.046 13.035 -4.581 (0.000)***
CA2 10.055 13.128 -4.783 (0.000)***
CA3 9.778 12.701 -4.508 (0.000)***

Panel B: Lesmond transaction cost

FF5F(K = 5) <0 0.093 -1.2145 (0.226)

FF4F(K = 4)+LIQ <0 1.6271 -1.5865 (0.114)

CA0 9.266 13.012 -5.771 (0.000)***
CA1 9.582 13.114 -5.725 (0.000)***
CA2 9.541 13.183 -6.019 (0.000)***
CA3 9.485 13.059 -5.716 (0.000)***

Panel C: Retail composition

FF5F(K = 5) <0 3.792 -2.9288 (0.003)***
FF4F(K = 4)+LIQ 0.008 4.547 -3.248 (0.001)***

CA0 8.609 12.335 -3.159 (0.002)***
CA1 8.927 12.091 -2.961 (0.007)***
CA2 8.889 12.122 -2.770 (0.008)***
CA3 8.619 11.613 -2.521 (0.012)**

This table reports the out-of-sample (OOS) total R2 (%) for individual stocks using observable Fama–French (FF)

factor models and conditional autoencoder (CA) models (CA0 through CA3). Panels A, B, and C represent the OOS

total R2 of the samples classified according to Roll’s spread, Lesmond transaction cost, and retail composition size,

respectively. The t-value represents the test value of the monthly total R2 difference.

*, **, and *** denote the rejection of the null hypothesis of the absence of causality at the 10%, 5%, and 1% levels,

respectively.

https://doi.org/10.1371/journal.pone.0281783.t008
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To check the robustness, following Gu et al. [10], we retrain and refit the CA model using

subsamples of stocks composed of odd and even tickers, respectively. Each odd and even ticker

is composed of 1,612 subsamples, and these tickers do not mutually overlap in any sample. To

check the robustness, we test the odd and even samples in the OOS after training the model

using only the odd sample. Conversely, we test the odd and even samples in the OOS after

training the model using only even samples. This verification method is advantageous in that

it enables checking the robustness of the model despite omission or arbitrary deformation of

the sample. Table 9 illustrates the results.

The model trained with even samples exhibits 11.24% of the total R2 for even samples and

11.62% for odd samples in the OOS. Further, the model trained with odd samples displays

11.94% of the total R2 for even samples, and 10.87% for odd samples in OOS. Overall, the total

R2 is similar in both methods. This indicates that the explanatory power of the CA model is

stable even when some samples are omitted in the model training process.

4.3. Portfolio alpha test

Now, we directly examine whether the CA model can explain the market anomalies using

portfolio alpha tests. Specifically, following Gu et al. [10], we test whether the average of the

residuals for each long-short portfolio created based on 38 firm characteristics is statistically

different from zero.

To construct an estimate of the pricing error from the OOS data, we compute the mean dif-

ference between the actual return and the model estimation. The difference between the two

values can be interpreted as the alpha (pricing error, α) of each portfolio, as in Eq (12).

a ¼ E ri;t
� �

� E bi;t� 1ft
� �

: ð12Þ

We analyze the existence of alpha using the CA, FF3, and FF5 models. For comparison, we

employ an identical number of factors used in each comparative model. For example, we com-

pare the FF3 model with the CA model with K = 3, and the FF5 model with the CA model with

K = 5.

After composing the deciles portfolio according to the magnitude of the firm characteristic

variables, we measure the alpha of the 10–1 long-short portfolio. We construct both VW and

EW portfolios and judge the significance of alpha based on the t-values of 1.96 and 2.58

according to the 95% and 99% significance levels, respectively.

Fig 4 plots the alpha and average return of the VW portfolio. The plots on the left show the

number of alphas with a t-statistic exceeding 1.96, and those on the right represent the number

of alphas with a t-statistic exceeding 2.58. For the FF5 model, 16 out of 38 portfolios have

alphas above 1.96 and 8 out of 38 portfolios have alphas above 2.58. However, the CA model

with K = 5 reduces the number of alphas to 10 or 3 depending on the cutoff standard of 1.96

and 2.58.

Table 9. Robustness test. This table reports the out-of-sample (OOS) total R2 (%) for the subsamples of stocks that

have odd and even permanent numbers, based on parameters estimated separately. The rows present the subsample

{Even, Odd} for which we estimate the parameters, whereas the columns represent the subsample {Even, Odd} for

which we evaluate the OOS performance. All estimates are based on the five-factor CA1 model. CA: conditional

autoencoder.

Total R2 (%) Test

Even Odd

Training Even 11.24 11.62

Odd 11.94 10.87

https://doi.org/10.1371/journal.pone.0281783.t009
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Table 10 represents the full results. Compared to the traditional asset pricing model, when

measuring alpha through the CA model, it can be seen that the number is reduced. Also, in the

case where the cutoff is 2.58, where the alpha measurement is strict, the number of CAs tends

to decrease as K increases. This is a trend that appears in both EW and VW. Comprehensively,

the CA models have superior power in explaining portfolio alphas or market anomalies com-

pared to the traditional asset pricing models.

Intuitively, the presence of alphas explained by the CA models implies that omitted (unob-

served) risk factors beyond the FF factors possibly generate excess returns. This indicates that

the CA model effectively reflects factors that explain stock returns in addition to the factors

dealt with in the traditional asset price model. Therefore, it can be said that the conditional

autoencoder structure used in this study has a great advantage in deriving the latent factor

from market data. These pricing errors can be interpreted as the average gain of a long-short

portfolio that has zero exposure for any systematic factors. That means, the anomaly rate of

return due to company characteristic variables can be explained by risk factors as claimed by

Gu et al. [10], and it demonstrates that the CA model can explain these returns well.

4.4. APT strategy

To examine whether the CA model is a better fit for the Korean stock market compared to the

traditional asset pricing model, we compare the long-short profits based on the expected

return calculated by the traditional asset price model and our latent factor model, the CA

model, respectively.

Fig 5 shows undervalued or overvalued stocks for the CAPM model. The expected return of

stocks lying on the SML line satisfies the CAPM model, which has the intrinsic value. The

undervalued (overvalued) stock is plotted above (below) the SML line, whose actual Ri is larger

Fig 4. Out-of-sample alpha. The figure reports the out-of-sample pricing errors (alphas) for 38 characteristic-

managed portfolios, relative to the Fama–French (FF) factor model and conditional autoencoder (CA) model (CA1).

Alphas with t-statistics more than 1.96 and 2.58 are depicted as orange dots, while insignificant alphas are represented

by blue dots.

https://doi.org/10.1371/journal.pone.0281783.g004
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Fig 5. CAPM model.

https://doi.org/10.1371/journal.pone.0281783.g005

Table 10. Number of alphas. This table reports the number of alphas using test portfolios and the observable Fama–French (FF) factor model in Panel A and the condi-

tional autoencoder (CA) model in Panel B. Alpha is the mean difference between the actual return and the model estimation. The significance of alpha is judged based on

the t-values of 1.96 and 2.58 according to the 95% and 99% significance levels, respectively.

Model Equal-weight Value-weight

cutoff = 1.96 cutoff = 2.58 cutoff = 1.96 cutoff = 2.58

Panel A: Traditional (Observable) asset pricing model

K = 1 24 17 12 4

K = 2 25 17 13 5

K = 3 25 20 16 6

K = 4 24 20 13 8

K = 5 25 22 16 8

K = 6 24 20 14 6

Mean 24.5 19.3 14 6.2

Median 24.5 20 13.5 6

Panel B: Conditional Autoencoder model

K = 1 26 20 13 9

K = 2 20 12 10 6

K = 3 17 11 8 5

K = 4 17 13 7 4

K = 5 15 12 10 3

K = 6 10 8 10 3

Mean 17.5 12.6 9.6 5

Median 17 12 10 4.5

https://doi.org/10.1371/journal.pone.0281783.t010
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than E[R].

Undervalued stock : E ri;t
� �

� ri;t > 0

overvalued stock : E ri;t
� �

� ri;t < 0
ð13Þ

Similarly, the multi-factor asset pricing model is expressed as Eq (13). In this chapter, we

compare the expected return calculated by the traditional asset price model and our latent fac-

tor model, the CA model, respectively.

E ri;t
� �

¼ rf þ b1 ∗ factor1 þ b2 ∗ factor2 þ � � � þ ut ð14Þ

Undervalued stock : E ri;t
� �

� ri;t > cut off value

overvalued stock : E ri;t
� �

� ri;t < cut off value
ð15Þ

The pricing error is calculated as the difference between the expected rate of return and the

actual rate of return. To eliminate the trivial error value, we set the reference level of the aver-

age pricing error at 1% using the past 1-month window. For example, the undervalued (over-

valued) stock is classified when the average value of the difference between the expected return

and the actual return for the last month is larger than 1% (-1%).

Then, we construct a long-short portfolio with undervalued stocks and overvalued stocks.

Traditional asset pricing models to calculate the expected return includes CAPM, FF3F, FF4F

and FF5F (in Table 11), and the CA models includes CA1, CA3, CA4 and CA5 (in Table 12).

The results from Table 11 shows the results from the strategy performance in the traditional

asset pricing model. The Overvalued, Neutral, Undervalued, and LS denotes the rate of return

for overvalued stocks, undervalued stocks, stocks lying on SML, and Long-short portfolio,

respectively. The results show that the Long-Short strategy profit is not significant for all strate-

gies using the pricing error of each model, including CAPM and FF5F. Even the rate of return

from undervalued stocks is not statistically significant. Considering that the definition of High

is the stocks whose price would decrease and its expected return would increase until it is plot-

ted exactly on the line, our results indicate that the traditional asset price model is not valid for

investment in the Korean market. These results are consistent with Kim and Kim [98] and

Kang and Jang [99].

The results from Table 12 show the long-short profit based on undervalued and overvalued

stocks in the CA model. The results show that the rate of return from undervalued stocks is sta-

tistically significant, unlike the results using the traditional asset pricing model. Also, the

results from the Long-Short strategy are statistically significant except for the CA1 model,

which has a latent factor of 1. In addition, our results confirm that the latent factor increases,

the performance of the LS strategy and the significance level increase. These imply that the

overall explanatory power of the model increases as the number of latent factors in the CA

model increases.

Since the performance of the strategy reviewed in this study can vary depending on the cut-

off value and lookback for pricing error, we examine this. First, the cutoff value for pricing

error is set to 3%, 5%, and 10% instead of the existing 1% to examine the trend of changing

performance.

Table 13 shows portfolio trends examined by diversifying the cut off value for pricing error.

Similar to Table 13, it can be seen that the LS yield increases from CA1 to CA5, and the signifi-

cance level increases. In particular, it shows that the higher the cut off value, the higher the rate
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of return of the LS strategy. This means that when a strategy is taken based on stocks with

large pricing errors, the effect increases.

4.5. Importance rankings of firm characteristics

Here, we identify the top 10 most important firm characteristics ex-post. To simplify, we set

K = 5 in the CA model. We rank the importance of the characteristics by estimating the reduc-

tion in the total R2 resulting from setting the values of a given characteristic to zero while hold-

ing the remaining estimates fixed. We can estimate the relative importance by standardizing

the value of the reduction in the total R2 of each variable to [0, 1]. Subsequently, we rank the

standardized value to check the importance order of the variables in the CA model. This case

has a problem in that the importance of another variable may converge to zero when the extent

of change in the R2 of a specific variable is large. Fig 5 displays the top 10 most important vari-

ables in each CA model (K = 5) based on the average of the entire sample. Overall, market

equity (mvel1), total return volatility (retvol), sales to price ratio (SP), and market beta (beta)

are commonly selected as important variables for the model.

Additionally, Fig 6 depicts the importance rankings for all characteristics in each CA model

with K = 5. The darker the color, the higher the variable importance. In contrast to Fig 5, the

rank values are displayed in the order of importance. In our case, the importance of the top

three variables is high. We plot Fig 6 considering that the values of the lower-importance

Table 11. APT strategy in the traditional asset pricing model. This table presents the performance of each portfolio, from January 2006 to December 2020. The High,

M, Low, and LS denotes the rate of return for undervalued stocks, overvalued stocks, stocks lying on SML, and Long-short portfolio, respectively. The monthly values are

displayed and parentheses are t-statistics. Classify undervalued stocks as high, overvalued stocks as low, and other stocks as M.

CAGR STD Sharpe MDD WIn

Panel A: CAPM

High 0.0074 (1.5519) 0.0638 0.1157 -0.603947 0.5611

M 0.0064 (1.6197) 0.053 0.1207 -0.5402 0.5611

Low 0.0049 (1.0636) 0.0623 0.0793 -0.687797 0.5444

LS 0.0024 (1.1983) 0.0273 0.0893 -0.186536 0.5444

Panel B: FF3F

High 0.0075 (1.5902) 0.0634 0.1185 -0.598929 0.5611

M 0.006 (1.5326) 0.0528 0.1142 -0.563535 0.5889

Low 0.0048 (1.0228) 0.0626 0.0762 -0.697518 0.5556

LS 0.0027 (1.3466) 0.0273 0.1004 -0.195603 0.5667

Cahart 4F

High 0.0075 (1.5992) 0.0631 0.1192 -0.598685 0.5667

M 0.0067 (1.663)* 0.054 0.124 -0.552845 0.5889

Low 0.0047 (0.9982) 0.0627 0.0744 -0.700096 0.5389

LS 0.0029 (1.4065) 0.0272 0.1048 -0.206984 0.5556

FF5F

High 0.0073 (1.5525) 0.0633 0.1157 -0.600758 0.5722

M 0.0074 (1.8219)* 0.0542 0.1358 -0.523686 0.5722

Low 0.0046 (0.9747) 0.0626 0.0726 -0.698915 0.5556

LS 0.0028 (1.3806) 0.027 0.1029 -0.187524 0.5611

*** p-value < 0.001,

** p-value < 0.01,

* p-value < 0.05

https://doi.org/10.1371/journal.pone.0281783.t011
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variables are all close to zero when the importance of the variable is expressed as a relative

value because the importance of the top three variables is high.

The importance of firm characteristic variables in each model is similar. Particularly, the

top five high-importance variables and the bottom five low-importance variables are similar in

each model.

When the characteristic importance is calculated through the CA models, different results

may be obtained depending on the process of model fitting. We fit several parameters because

the autoencoder is a type of neural network, and the model may overfit or underfit depending

on hyperparameters. Nevertheless, the characteristic importance in the autoencoder model is

useful in assessing the latent factors. For instance, the CA model has important implications

for identifying significant firm characteristic variables in asset pricing. By employing these, we

can identify the factors that affect asset prices when the market changes rapidly, such as in a

financial crisis. Therefore, we now examine the change in the importance of firm characteris-

tics in the subsample through the CA models.

We set the global financial crisis as the period from July 2007 to June 2009 and the COVID-

19 pandemic from January 2020 to December 2020. Fig 7 depicts the importance of the top 10

most influential variables during the financial crisis and the COVID-19 pandemic periods and

demonstrates that market equity (mvel1) always has the highest importance. Furthermore,

growth in long-term debt (lev) and gross profitability (gma) exhibit high importance during

the financial crisis. This finding is in line with the existence of a large proportion of stocks with

Table 12. APT strategy in CA model. This table presents the performance of each portfolio, from January 2006 to December 2020. The Overvalued, Neutral, Underval-

ued, and LS denotes the rate of return for overvalued stocks, undervalued stocks, stocks lying on SML, and Long-short portfolio, respectively. The monthly values are dis-

played and parentheses are t-statistics. Classify undervalued stocks as high, overvalued stocks as low, and other stocks as M.

CAGR STD Sharpe MDD WIn

CA1

Undervalued 0.0109 (2.2151)* 0.0655 0.1656 -0.585393 0.5698

Neutal 0.0111 (2.5854)* 0.0574 0.1932 -0.547282 0.6145

Overvalued 0.008 (1.7718) 0.0607 0.1324 -0.610669 0.5698

LS 0.0028 (1.5781) 0.0239 0.118 -0.210341 0.5531

CA3

Undervalued 0.0119 (2.4261)* 0.0658 0.1813 -0.579546 0.5754

Neutal 0.0119 (2.7746)** 0.0574 0.2074 -0.519233 0.5922

Overvalued 0.0067 (1.4826) 0.0606 0.1108 -0.62031 0.5698

LS 0.0052 (2.9096)** 0.024 0.2175 -0.167702 0.5922

CA4

Undervalued 0.0124 (2.5236)* 0.0657 0.1886 -0.575966 0.5754

Neutal 0.0114 (2.5975)* 0.0585 0.1941 -0.557836 0.5922

Overvalued 0.0063 (1.3916) 0.0606 0.104 -0.620188 0.5587

LS 0.0061 (3.3581)*** 0.0242 0.251 -0.143759 0.6034

CA5

Undervalued 0.0128 (2.6159)** 0.0657 0.1955 -0.569527 0.5866

Neutal 0.0117 (2.691)** 0.058 0.2011 -0.523682 0.5866

Overvalued 0.0058 (1.2713) 0.0606 0.095 -0.635276 0.5587

LS 0.0071 (3.9757)*** 0.0238 0.2972 -0.11571 0.6369

*** p-value < 0.001,

** p-value < 0.01,

* p-value < 0.05

https://doi.org/10.1371/journal.pone.0281783.t012
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negative gross profit during the financial crisis (27.9%). However, in the case of the COVID-19

period, illiquidity (ill), the ratio of the current price to the 52-week high price (high52), idio-

syncratic return volatility (idiovol), and R&D expense to market capitalization (rd_mve) dis-

play high importance. This reflects the growing importance of market friction factors and tech

stocks during 2020.

The results in Fig 8 show that different variables are considered influential in the CA model

for different times. That is, compared to the factors defined in advance in the traditional asset

price model, the latent factor by the CA model indicates that the variable market environment

can be reflected. This can be said to be the biggest characteristic of the CA model, and it can be

inferred that the CA model has superior explanatory power compared to the FF model in this

study. It is expected that more diverse analyzes and applications will be possible in the future

by deriving important variables of the CA model.

5. Conclusion

We applied machine learning-based CA asset pricing models to the Korean stock market. The

autoencoder—one of the popular machine learning methods—was employed to extract latent

factors, following Gu et al. [10]. The autoencoder generalizes PCA by including nonlinearity

and is known to effectively extract latent factors and obtain dynamically changing coefficients

of latent factors. Thus, the CA model can reflect external market information in financial

applications.

We examined the explanatory power of the CA model for the Korean market. Subsequently,

we compared the CA model with the traditional asset pricing model. Our results demonstrated

that the CA model dominates the traditional models (e.g., the FF models) in terms of OOS R2

and stability under various settings including KOSDAQ, small stocks, penny stocks, illiquid

Table 13. Robust test for cutoff value. This table presents the performance of each portfolio, from January 2006 to December 2020. The Overvalued, Neutral, Underval-

ued, and LS denotes the rate of return for overvalued stocks, undervalued stocks, stocks lying on SML, and Long-short portfolio, respectively. The monthly values are dis-

played and parentheses are t-statistics.

Undervalued M Neutral Overvalued LS

Panel A: cutoff = 0.03

CA1 0.0109(2.1639)* 0.0116(2.6965)** 0.007(1.5248) 0.0038(1.8577)

CA3 0.0117(2.3285)* 0.0121(2.7696)** 0.0061(1.3047) 0.0056(2.6817)**
CA4 0.0124(2.4604)* 0.0118(2.7346)** 0.0053(1.1409) 0.0071(3.3893)***
CA5 0.013(2.6044)** 0.0115(2.6468)** 0.0047(1.0025) 0.0084(4.1095)***
Panel B: cutoff = 0.05

CA1 0.0108(2.1122)* 0.0119(2.718)** 0.0058(1.2287) 0.005(2.1936)*
CA3 0.012(2.3549)* 0.0114(2.5973)* 0.0052(1.0881) 0.0069(2.9419)**
CA4 0.0126(2.4521)* 0.0114(2.6043)** 0.0044(0.9262) 0.0082(3.4709)***
CA5 0.0133(2.6087)** 0.0113(2.5524)* 0.0038(0.7953) 0.0096(4.1117)***
Panel C: cutoff = 0.10

CA1 0.0104(1.9258) 0.0112(2.4982)* 0.0041(0.8206) 0.0063(2.1749)*
CA3 0.0128(2.3661)* 0.0109(2.4238)* 0.0026(0.5109) 0.0103(3.4491)***
CA4 0.0138(2.5267)* 0.0108(2.4064)* 0.002(0.4006) 0.0117(3.8802)***
CA5 0.0143(2.6221)** 0.0108(2.3964)* 0.0015(0.3044) 0.0128(4.2925)***

*** p-value < 0.001,

** p-value < 0.01,

* p-value < 0.05

https://doi.org/10.1371/journal.pone.0281783.t013
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stocks and irrational investors’ stocks. This result shows that the CA model can provide gener-

alized explanatory power in markets other than the US market, which is widely used in asset

price model studies. Also, as a result of subsample analysis, the existing asset price model has a

difference in explanatory power depending on the sample, whereas the CA model shows excel-

lent explanatory power for several subsamples. This indicates that the CA model sufficiently

supplements the limitations of the existing asset price model, which lacks explanatory power

in a specific subsample. This indirectly shows the structural advantage of deep learning in

which the importance of input data dynamically changes through a hidden layer when estimat-

ing the latent factor of the CA model.

The CA model can explain several market anomalies that the FF models are unable to clar-

ify. In other words, it shows that the latent factor has a common market risk factor that has not

been considered in the existing asset price model. In addition, by using the pricing error of the

asset pricing model, strategies based on overvalued stocks or undervalued stocks were com-

pared. The comparison reveals that the performance of the CA model was excellent. This

means that the CA model can accurately determine whether a stock is overvalued or underval-

ued compared to traditional asset pricing models. Thus, the CA model explains the expected

returns of stocks well. Lastly, the CA model also revealed the firm characteristics that are

important in asset pricing and how their importance varies with macro-financial states. This is

the advantage of being able to identify variables that had a significant impact in the entire sam-

ple period or a specific period through the CA model. In addition, it shows that the importance

Fig 6. Top 10 characteristic importance. This figure compares variable importance for the top 10 most influential

firm characteristics in each model. Each importance within each model is normalized to sum to one. We set the

number of latent factors (K) to five for comparison. CA: conditional autoencoder; acc: accruals; rd_sale: R&D to sales;

dy: dividend to price ratio; mom1m: 1-month momentum; lev: growth in long-term debt; maxret: maximum daily

return; SP: sales to price ratio; beta: market beta; mvel1: market equity; retvol: return volatility; depr: depreciation

divided by PP&E; quick: quick ratio; cfp: cash flow to price ratio; convind: convertible debt indicator; currat: current

ratio; ill: illiquidity; mom6m: 6-month momentum; egr: growth in common shareholder equity; high52: the ratio of the

current price to the 52-week high price; betasq: market beta squared.

https://doi.org/10.1371/journal.pone.0281783.g006
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of each variable is changed over time, which is a major feature of the CA model. This is a big

difference from the model in which the factor is fixed and defined in advance like the FF

model. Due to these characteristics, it can be inferred that the CA model shows superior

explanatory power compared to the existing asset pricing model.

This study provides several research possibilities. First, trading strategies can be devised

using the CA model. Second, more international studies beyond the Korean and U.S. markets

are needed. Third, another machine learning-based dimension reduction technique can be

Fig 7. Characteristic importance rank. This figure ranks 38 stock-level characteristics in terms of overall model

contributions. The columns correspond to individual models according to the number of hidden layers. The firm

characteristic variables are sorted based on the rank sum for the conditional autoencoder model with K = 5. The most

important characteristics are at the top and the least influential at the bottom. Additionally, the darker the color, the

greater the influence of that variable. mvel1: market equity; retvol: return volatility; SP: sales to price ratio; beta: market

beta; mom12m: 12-month momentum; lev: growth in long-term debt; maxret: maximum daily return; idiovol:

idiosyncratic return volatility; high52: the ratio of the current price to the 52-week high price; betasq: market beta

squared; dy: dividend to price ratio; cash: cash holdings; ill: illiquidity; gma: gross profitability; mom1m: 1-month

momentum; rd_sale: R&D to sales; absacc: absolute accruals; egr: growth in common shareholder equity; depr:

depreciation divided by PP&E; chmom: change in 6-month momentum; sgr: sales growth; cfp: cash flow to price ratio;

mom36m: 36-month momentum; mom6m: 6-month momentum; acc: accruals; currat: current ratio; convind:

convertible debt indicator; pchgm_pchsale: change in gross margin minus change in sales; chcsho: change in shares

outstanding; rd_mve: expense to market capitalization; ts: total skewness; agr: asset growth; hire: employee growth rate;

lgr: growth in long-term debt; quick: quick ratio; pchcurrat: change in current ratio; pchdepr: change in depreciation;

pchquick: change in quick ratio; CA: conditional autoencoder.

https://doi.org/10.1371/journal.pone.0281783.g007

PLOS ONE Conditional autoencoder asset pricing models for the Korean stock market

PLOS ONE | https://doi.org/10.1371/journal.pone.0281783 July 31, 2023 25 / 30

https://doi.org/10.1371/journal.pone.0281783.g007
https://doi.org/10.1371/journal.pone.0281783


compared with the CA model. Fourth, while we focus on an equity market, fixed income and

other asset classes can also be analyzed.

Supporting information

S1 Appendix.

(DOCX)

Fig 8. Top 10 most influential firm characteristics. This figure compares variable importance for the top 10 most

influential variables in each model. The variable importance within each model is normalized to sum to one. We set

the number of the latent factors (K) to five for comparison. mom1m: 1-month momentum; pchgm_pchsale: change in

gross margin minus change in sales; high52: the ratio of the current price to the 52-week high price; dy: dividend to

price ratio; absacc: absolute accruals; chmom: change in 6-month momentum; betasq: market beta squared; gma: gross

profitability; lev: growth in long-term debt; mvel1: market equity; cash: cash holdings; ts: total skewness; chcsho:

change in shares outstanding; mom12m: 12-month momentum; rd_mve: expense to market capitalization; idiovol:

idiosyncratic return volatility; ill: illiquidity.

https://doi.org/10.1371/journal.pone.0281783.g008
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