
INTRODUCTION

Artificial tactile sensing technology aims to replicate the human 
tactile sensing ability, providing humans or robots with a sense 
of touch [1]. Due to rapid advances in e-skin technology, the im-
portance and viability of artificial tactile sensing technology have 
recently attracted much attention [2-16]. In addition, artificial 
tactile sensing technology has seen growing opportunities for ap-
plications in robotics and prosthetics [6, 7, 16-19].

Artificial tactile sensing technology primarily consists of e-skin, 
signal transmission, and tactile recognition [20, 21]. As much 
of this technology resembles biological tactile sensory systems, 
including the primary cutaneous mechanoreceptors, sensory af-
ferent nerves, and central nervous system [22], numerous studies 
have taken biomimetic approaches to develop artificial tactile 
sensing technology [8, 23]. Inspired by neural information trans-
mission mechanisms, biomimetic artificial tactile sensing technol-
ogy capitalizes on the advantage of enabling efficient information 
processing with relatively low power consumption [24]. In ad-
dition to technological advances, biomimetic systems also offer 
opportunities to comprehend the mechanisms of biological tactile 
nervous systems [25].

In the biological somatosensory system, mechanical stimuli on 
cutaneous mechanoreceptors are transformed into action poten-
tials and transferred to the central nervous system via tactile sen-
sory afferents, subserving tactile perception [26]. Cutaneous tactile 
afferents delivering mechanical sensations are classified as slowly 
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adapting (SA) and rapidly adapting (RA) types. Among them, the 
slowly adapting type 1 (SA-I) afferent neurons transmit and en-
code continuous pressure and are responsible for the perception of 
skin shape and texture [6, 27, 28]. Hence, understanding the prop-
erties of the SA-I afferent neurons is fundamental to developing 
artificial tactile sensing technology. Furthermore, by mimicking 
the biological somatosensory system, studies that replicate the fir-
ing patterns of the SA-1 afferent have demonstrated the efficiency 
and performance of tactile information processing [29]. 

One of the ways to create the SA-I afferent neuron in artificial 
tactile sensing technology is to employ the biological neuron mod-
el (BNM), first established by Hodgkin and Huxley in 1952 [30], as 
a biomimetic approach for simulating the firing activity of a neu-
ron by mathematically computing its membrane potential. BNM, 
such as the Hodgkin-Huxley model and the leaky-integrate-and-
fire (LIF) model, have been used to reproduce the firing pattern 
of the SA-I afferent neurons [31]. Izhikevich further developed a 
more advanced BNM to reproduce various firing patterns [32], in-
corporating the advantages of both the LIF model’s computational 
simplicity and the Hodgkin model’s ability to describe various 
neuro-computational properties [33]. The Izhikevich spike neu-
ron model has been widely utilized to represent the dynamics of 
diverse neuron types [34]. The firing patterns of the SA-I afferent 
neurons have also been modeled based on the Izhikevich model 
[35].

When modeling firings of the SA-I afferent neurons, spike 
frequency adaptation (SFA) with a wide range of time-constant 
should be considered [36]. Current BNMs implement spike fre-
quency adaptation by determining the decay rate of spike frequen-
cy with various modeling approaches, including the power law 
[37] or exponential functions [38]. These models have successfully 
reproduced short-term adaptations of the firing rates of the SA-I 
afferent neurons within a few tens to hundreds of milliseconds [39].

However, it is also necessary to simulate the long-term spike 
frequency adaptation of the SA-I afferents that sustains much 
more prolonged than 1-second, which the current BNMs have not 
proven to achieve yet [40]. By taking a biomimetic approach and 
leveraging the long-term spike data in the SA-I afferent neurons, 
we aim to develop a novel BNM to describe the long-term spike 
frequency adaptation. 

In this study, we propose a BNM that modifies the Izhikevich 
model to enable the featuring of the long-term spike frequency 
adaptation of the SA-I afferent in response to pressure stimula-
tion lasting tens of seconds. To develop a new BNM, we analyze 
the spike train data of the SA-I afferent neurons collected from 
the cutaneous nerves of the mouse through ex-vivo experiments. 
We implement long-term spike frequency adaptation by control-

ling parameters that inhibit membrane recovery in the Izhikevich 
model depending upon the continuous firing of the SA-1 afferent, 
which leads to a gradual increase in interspike intervals. This new 
BNM generates firing patterns much closer to biological SA-1 af-
ferent neurons than conventional models do.

MATERIALS AND METHODS

Overview of animal experiments

All experiments were conducted according to the guidelines of 
the Animal and Plant Quarantine Agency of Korea for the care 
and use of laboratory animals, and the present study was approved 
by the Institutional Animal Care and Use Committee of Hanyang 
University (HY-IACUC-13-037A). Male C57BL/6 mice (8-week-
old) were used throughout the study. Ex-vivo recordings of A-
fibers from a group of mice were made to examine the response of 
single tactile A-fibers to mechanical stimuli. The average conduc-
tion velocity of the fibers in the experiment was (32±5.2) m/s. 

Animals and surgical procedure

The number of animals used throughout the study was n=6 for 
mechanical pressure, where one or more A-fibers were recorded 
from each mouse. Before surgery, mice were sacrificed by CO2 
inhalation, followed by cervical dislocation. The hair on the pos-
terior leg was shaved, and the foot was fixed on a linen pad. The 
hairy epidermis of the hind paw innervated by the saphenous or 
sural nerve was dissected after the hair on the leg was clipped. At-
tached connective tissue, muscle, and tendon were removed. 

Setup for spike data acquisition

We placed an organ bath on an anti-vibration table containing a 
binocular microscope (Olympus Co., Tokyo, Japan). Light guides 
from the fiber-optic light source (Dolan-Jenner, Dayton, USA) 
were adjusted to brighten the preparation and the nerve. The 
spikes evoked from the tactile A-fiber were recorded with a dif-
ferential amplifier (DP 311, Warner Instruments, Hamden, USA; 
bandpass filter: 0.1 kHz~3 kHz, gain: 10,000). Pure gold wire elec-
trodes were plugged into the cathode and anode of the head stage 
of the amplifier. 

The organ bath, consisting of two chambers separated by an 
acrylic-based wall, was perfused with warm synthetic interstitial 
fluid (SIF; NaCl 107.8 mM, KCl 3.5 mM, MgSO4·7H2O 0.69 mM, 
NaHCO3 26.2 mM, NaH2PO4·2H2O 1.67 mM, gluconic acid so-
dium salt 9.64 mM, glucose 5.55 mM, sucrose 7.6 mM, and CaCl2 
1.53 mM saturated with a mixture of 95% O2 and 5% CO2). The 
heated SIF was continuously supplied to the chamber at a speed 
that maintained a temperature of 30~32℃. 
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Ex-vivo single fiber recordings

We mounted the skin-nerve preparation with the dermis side up 
and pinned it in the main chamber on a surface coated with poly 
dimethyl siloxane. The nerves attached to the skin were drawn 
through a tiny hole to the smaller second chamber, which was 
filled with paraffin oil. The nerve was placed on a fixed mirror, the 
sheath was removed, and nerve filaments were repeatedly teased 
apart to allow single-fiber recordings to be made using gold elec-
trodes.

Signals from single tactile A-fibers were recorded extracellu-
larly with the aforementioned amplifier. Amplified signals were 
sent to an oscilloscope and an audio monitor, sampled at 33 kHz, 
and then transferred to a computer via a data acquisition system 
(DAP5200a; Microstar Laboratories, Inc., Bellevue, WA, USA). Us-
ing the window discrimination feature of the software (Dapsys 8; 
Bethel University, http://dapsys.net/ St. Paul, MN, USA), we selec-
tively analyzed the action potentials with the same waveform from 
every single fiber. Copper blocks served as a current reservoir and 
were connected to a common ground to prevent noise.

The conduction velocity of the axon was determined by mono-
polar electrical stimulation through a low-impedance electrode 
(CBJPL75; FHC Inc.). The supramaximal square-wave pulses (0.2 
ms to 2 ms duration, 0.5 Hz) were delivered at the mechanosensi-
tive site of a receptive field using an electrical stimulator (SD9; 
Grass Technologies). The distance between the receptive field and 
the recording electrode (conduction distance) was divided by the 
latency of the action potential. A single A-fiber was selected based 
on the conduction velocity (faster than 20 m/s); slow-conducting 
C-fibers were excluded. The primary search strategy was mechani-
cal stimulation by a fire-polished glass rod targeting mechanosen-
sitive fibers.

Identification of single A-fibers

The epineurium and perineurium of the nerve were rolled up, 
and the nerve bundle was teased into thin strands. We attached 
each strand to the cathode and pressed the skin lightly with a 
blunt-tipped rod to find the location of a connected receptor 
that generates spikes. By pressing the skin with a glass rod with a 
blunt tip, we found a receptive field that fired spikes through the 
attached A-fiber. The spikes were visually inspected to determine 
whether their waveforms were consistent. After the recording, we 
loaded all waveforms and manually sorted spikes to remove noise 
that exhibited waveforms different from the target action poten-
tials. We used isolated single-unit responses during the stimulation 
period for the analysis.

Mechanical stimulator

Axial indentation by the mechanical stimulator was driven by 
an actuator (Friedrich-Alexander Univ., Erlangen, Germany) 
controlled with a sinusoidal half-wave electric command signal. 
A load cell was attached to the mechanical stimulator’s distal side 
of the metal shaft to measure the stimulus pressure. A magnet 
connected a cylindrical tip (diameter: 1 mm) to the bottom of 
the load cell. During the experiment, the tip was adjusted with a 
three-dimensional manipulator (U-3C, Narishige Co. ltd., Tokyo, 
Japan) and placed on the receptive field. The output voltage from 
the load cell was amplified (GSV-11 L, ME-Meßsysteme GmbH., 
Henningsdorf, Germany), digitized at 10 kHz, and stored in a 
computer. This data was used for proportional integral-derivative 
control to maintain accurate pressure. Manual calibration of the 
stimulator was performed by pressing the tip of the stimulator on 
a fine balance (AR 2140, Ohaus Corp., Parsippany, NJ, USA) and 
recording the actuator voltages at weights from 1 g to 50 g.

Modeling SA-I firings using interspike intervals 

In a previous study, we developed a computational model to 
describe the spiking activity of SA-1 afferents in response to tactile 
pressure stimulations [8]. This model characterized the temporal 
structure of the interspike intervals (ISIs) of SA-1 afferents un-
der different pressure stimulus intensities using a monotonically 
increasing polynomial function. The regression line was used to 
estimate the mean of a gamma distribution with a fixed variance, 
which was then used to extract a simulated ISI sequence that sto-
chastically generated a train of spikes over time. More details about 
this model can be found in the study by Chun et al. [8].

Izhikevich biological neuron model

The Izhikevich model is a simple and widely used model for 
simulating the firings of biological neurons. It consists of a set of 
differential equations that describe the dynamics of the membrane 
potential (v(t)) and the adaptation variable (u(t)) in response to an 
input current (I(t)) (eq. (1)). The dynamics of the adaptation vari-
able (u(t)) governed by its parameters (a  and b) can illustrate the 
adaptation property of an artificial neuron (eq. (2)). The param-
eter a  determines the time scale of u. In contrast, the parameter b 
determines the sensitivity of u  to the membrane potential v . For 
example, if a  is set to a small value, u will change slowly over time, 
resulting in a slower adaptation. On the other hand, if a  is set to a 
larger value, u will change more quickly, resulting in a faster adap-
tation.

dv(t) =Av(t)2+Bv(t)+C-u(t)+I input(t)
dt (1)
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du(t) =a(bv(t)-u(t))
dt (2)

if, v(t)≥30 mV, then {v(t)←c
u(t)←u(t)+d (3)

In this study, we employ Euler’s method in the simulation of the 
Izhikevich model with the initial values for v and u set to -70 mV 
and -14, respectively, as suggested by previous literature [33]. Euler’s 
method is a first-order numerical method for solving ordinary dif-
ferential equations (ODEs) [41]. Euler’s method is relatively simple 
to implement and can solve linear and nonlinear ODEs, but its ac-
curacy is limited for certain types of problems. To accurately simu-
late the dynamics of the Izhikevich model, it is essential to con-
sider the integration period over which it is updated and stepped 
through. To match the data sampling rate of the animal studies, we 
set the integration period to 984 ms in this study. By fine-tuning 
the values of the parameters, we can modulate the model’s overall 
dynamics. In particular, we set the parameters of the Izhikevich 
model to implement spike frequency adaptation (see Table 1) [42].

The parameter a  in the Izhikevich model controls a time scale 
of the recovery variable u , which determines the rate at which u 
changes after a spike. A smaller value of a  corresponds to a slower 
change in u, while a larger value of a corresponds to a faster change 
in u. The value of parameter a  can significantly influence the dy-
namics of the Izhikevich model, such as the spike frequency, the du-
ration of the spike, and the spike shape. In general, a smaller value of 
a results in a more tonic firing pattern, while a larger value of it leads 
to a more phasic firing pattern. The value of parameter a can be ad-
justed to replicate the firing patterns of different types of neurons.

Simulation results in Fig. 1 demonstrate that the interspike interval 
(ISI) decreases as the value of a increases, indicating that the model is 
firing at a higher rate (Fig. 1A, B). The mean firing rate is also shown 
to increase with increasing a (Fig. 1C). In addition, the effects of vary-
ing a on the membrane potential, recovery variable, and v-u phase 
plane are shown over time (Fig. 1D). The curve on the v-u phase plane 
becomes more tightly bound as the value of a increases. These simula-
tion results suggest that parameter a plays a vital part in the dynamics 
of the Izhikevich model and can be used to fine-tune its behavior.

Long-term adapting Izhikevich model

The conventional Izhikevich model exhibits spike frequency 
adaptation for a limited time, typically less than 1,000 ms. How-
ever, when the tactile nervous system receives sustained pressure 
stimulation for nearly 20 s, the SA-I afferent responses adapt over 
a more extended period, exceeding 1-second. To capture this long-
term adaptation, we modify the Izhikevich model by progressively 
declining the parameter a, which represents the time scale of ad-
aptation, whenever a spike occurs (eq. (6)). Our modified model, 
referred to as the long-term adapting Izhikevich model, can mimic 
the long-term adaptation of biological SA-I afferents in response 
to sustained stimuli, using the initial values for v  and u as previous-
ly mentioned [33]. The following equations describe the dynamics 
of the long-term adapting Izhikevich model:

dv(t) =Av(t)2+Bv(t)+C-u(t)+ S pI input(t)
dt (4)

du(t) =a(t)(bv(t)-u(t))
dt (5)

if, v(t)≥30 mV, then {v(t)←c
u(t)←u(t)+d
a(t)←a(t)/D p

(6)

The proposed model introduces two new parameters: 1) a 
parameter S p adjusts the magnitude of the injected current into 
the artificial neuron to match the peak firing rate of the artificial 
neuron with that of the biological SA-1 afferent neuron; and 2) the 
parameter D p enables the progressive decrease of the parameter a, 
which modulates the recovery of membrane potentials. To find the 
optimal values of S p and D p that best match the spike patterns of 
biological SA-I afferents, we use a grid search scheme as follows:

1) For each of 30 SA-I afferent spike trains (6 stimulus intensities 
in 5 neurons), we estimate the firing rates over a 20 s stimulation 
period using bin counts with a time step of 10 ms and a bin width 
of 100 ms. Then, we fit an exponential function to the estimated 
time-varying firing rate to capture a slow decrease in the firing rate 
during stimulation. The exponential function is given by:

y(t)=α*exp(-β*t) (7)

Where y(t) denotes a firing rate, t  denotes time, and α and β are 
the parameters of the exponential function. As a result, we obtain 
30 parameter sets, {α c,p β c,p}, c=1,…,5, p=1,…,6, for the c-th neuron 
and the p-the stimulation intensity. 

2) By sweeping all possible combinations of the values of {S c,p D c,p}, 
where S c,p spans from 0 to 200 with an increment of 1 and D c,p spans 
from 1 to 1.2 with an increment of 0.0001, we generate spike trains 

Table 1. Parameters of the spike frequency adaptation Izhikevich model 
used in this study

A B C

0.04 1
mV∙ms 5 1

ms 140 mV
ms

a b c d

0.01 0.2 -65 mV 8
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using the long-term adaptation Izhikevich model. The generated 
spike train is converted to a firing rate in the same way as above. An 
exponential function is fitted to this firing rate to yield the estimates 
of parameters: {α^c,p β

^

c,p}. For each c and p, we find {α^c,p β
^

c,p} from all 
possible combinations of the values of {S c,p Dc,p} that is closest to 
{α c,p β c,p} found in 1). 

3) From 2), we estimate optimal sets of {S c,p Dc,p} for c =1,…,5, 
p=1,…,6, and average over the neurons to obtain the parameters. 

4) We use the sets of {S p Dp} for p=1,…,6 to generate spike trains 
with the long-term adaptation Izhikevich model.

Evaluating the similarity between model and biological 

spike trains

We use a spike distance metric to evaluate how close the models 
generate a spike train to that of biological SA-I afferents. The spike 
distance is calculated using Earth Mover’s Distance (EMD), a mea-
sure of the shortest distance between two spike trains obtained 
by shifting a fraction of spikes from one train to the other [43]. A 
smaller spike distance indicates that the spike train generated by 
the model is closer to its biological counterpart.

Fig. 1. The effects of the parameter a on the dynamics of the Izhikevich model under an input current of 30 pA. (A) Membrane potential over time with 
different values of a  in the Izhikevich model. (B) The effects of parameter a on adapted interspike interval during continuous stimulation. (C) The effects 
of parameter a on mean firing rate during continuous stimulation. (D) The effects of parameter a on membrane potential (v), recovery variable (u), and v–
u phase plane over time in the Izhikevich model.
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RESULTS 

Firing patterns of SA-I afferent

Using animal subjects, we analyzed the firing patterns of five SA-I 
afferent neurons in response to six different pressure intensities (0.1 
mN~300 mN; Fig. 2A). Most firing rates followed an exponential 
curve that gradually decreased over the stimulation period (Fig. 
2B, C). When relating the overall spike count during a 20 s stimula-
tion period to the applied pressure, we observed that the average 
firing rate of each neuron increased progressively as the pressure 
increased from 0.1 mN to 50 mN and decreased back after 50 
mN with only a few spikes observed at a pressure of 300 mN (Fig. 
2D). We also investigated firing rates for each pressure intensity 
by normalizing the firing rates of each neuron for a given pressure 
and averaging them over neurons. Normalization was performed 
by fr norm=(fr-fr min)/(fr max-fr min), where fr  is a raw firing rate and fr max 
and fr min are the maximum and minimum firing rates, respectively. 
We observed that spike frequency adaptation occurred over sev-
eral seconds in response to all pressure intensities (Fig. 2E). The 
time constant τ  of exponential curves fitted to spike frequency 
adaptation was (4.70±1.54) s on average across pressure intensities. 
To analyze the decrease in firing rates over the long-term period, 
we identified the peak firing rate as the maximum firing rate over 
a 20 s sustained stimulation period. We then determined the time 
point at which the absolute gradient value of the exponential decay 
dropped below 1, which marked the beginning of the steady-state 
period. The steady-state firing rate was defined as the mean firing 
rate during this steady-state period. This allowed us to identify the 
point at which the firing rate had stabilized following a long adap-
tation period. By comparing the peak and steady-state firing rates, 
we could quantify changes in firing patterns that occurred over the 
sustained stimulation period. Our results showed a clear difference 
between the peak and steady-state firing rates for every pressure 
intensity (Fig. 2F).

Simulation of the vanilla Izhikevich model

We tested the conventional vanilla Izhikevich model with pa-
rameter sets used to implement spike frequency adaptation. Two 
sets of parameters were tested, one with original spike frequency 
adaptation and the other with a modified version of spike fre-
quency adaptation by decreasing the parameter a further (Table 2). 
The Izhikevich model generated the spike train in response to a 
100 pA input current. From the generated spike train, a firing rate 
was estimated with a time step of 10 ms and a bin width of 100 
ms. Modified spike frequency adaptation by decreasing a further 
lowered the total spike count and increased the difference between 
the peak and the steady-state firing rates compared to the original 

spike frequency adaptation (Fig. 3). However, spike frequency 
adaptation by decreasing a  only affected the firing rate right after 
adaptation but did not reveal long-term adaptation for longer pe-
riod of time. Thus, simply changing the parameters of the vanilla 
Izhikevich model was not suitable for obtaining long-term spike 
frequency adaptation for SA-I afferents.

Simulating the dynamics of long-term spike frequency  

adaptation in SA-I neurons

Our simulation result indicated that the inhibition of sustained 
membrane recovery through the control of parameter a  in the 
Izhikevich model did not lead to spike patterns that resembled 
those observed in biological SA-I afferent neurons (see Fig. 3). 
Additionally, inhibiting sustained membrane recovery did not sig-
nificantly influence the duration of adaptation. However, our ex-
perimental data indicate that the SA-I afferent neurons exhibited 
stabilization following a long adaptation to sustained pressure. To 
model the dynamics of long-term spike frequency adaptation in 
SA-I afferent neurons, we modified the Izhikevich model with the 
decay parameters D p and input scaler S p and conducted a simula-
tion to evaluate their impact on long-term adaptation. 

The proposed long-term spike frequency adapting the Izhikevich 
model gradually decreased the parameter a , which inhibits mem-
brane recovery, whenever a spike occurred. As a result, ISI also 
increased gradually. This allows for the implementation of spike 
frequency adaptation with a much slower time constant, enabling 
the creation of spike patterns with adaptation durations of several 
seconds, as demonstrated in Fig. 4. Through the simulation, we 
were able to determine the effect of altering the decay parameter 
D p, specifically by incrementing it from 1 to 1.2 while maintain-
ing a fixed input scaler S p (Fig. 4A). Under the vanilla Izhikevich 
model, we observed that when parameter a  did not decay (D p=1), 
the spike frequency stabilized after a short period of adaptation 
lasting approximately 100 ms (Fig. 4B). An increase in the decay 
parameter from 1 to 1.2 resulted in a decrease in both the peak 
firing rates and the mean firing rate (Fig. 4C). The peak firing rate 
represents the highest frequency of firing during a specific time 
interval, while the mean firing rate is the average frequency of fir-
ing over that same interval. It is important to examine both the 
peak firing rates and mean firing rates due to the inherent nature 
of long-term adaptation, which leads to a distinction between 
these two metrics. Our goal is to demonstrate the differences be-
tween the peak and mean firing rates as they relate to the decay 
parameter or the Izhikevich input scaler. This analysis is crucial for 
providing a comprehensive understanding of the model’s behavior 
in the context of our study. As the decay parameter was incremen-
tally increased within a specific range, there was a corresponding 
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Fig. 2. Firing patterns of SA-I afferent neurons from ex vivo recordings. (A) The pressure stimulation (red line) and the spike response of five different 
SA-I afferent neurons (C1 to C5) were obtained from the ex-vivo experiment. The pressure intensity varies from 0.1 mN to 300 mN. Throughout the 
experiment, the stimulation periods are marked by a shaded background, each of which spans 20 s. Blue bars indicate the firing rate estimated by spike 
counts in 5 s bin. Black lines indicate the occurrence of spikes. The onset time of stimulations is marked. (B) The spike train of a representative neuron 
(C3) in response to 100 mN pressure. (C) The firing rate from the spike train in (B). The time constant (τ=1.70 s) is estimated from an exponential curve 
fitted to the firing rate. (D) The mean firing rate of each neuron averaged over the entire stimulation period for each pressure intensity. The red lines 
indicate the average firing rate over neurons. (E) Normalized firing rates of each neuron are averaged for each pressure intensity (grey lines) to which an 
exponential curve is fitted (red lines). The time constant of exponential curves is noted. (F) Comparison of the peak and steady-state firing rates.
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decrease in the time constant, resulting in a shorter duration of ad-
aptation in the neuron’s firing rate (Fig. 4D). This suggests that the 
decay parameter has a significant influence on the shaping of spike 
patterns and the adaptation dynamics of the neuron. 

As for the input scaler, the spike pattern of the SA-I afferent neuron 
differed as the input scaler was changed from 0 to 200 while main-
taining a fixed decay parameter to 1.01 (Fig. 4E). Specifically, peak fir-
ing rates increased as the input scaler increased (Fig. 4F). Mean firing 
rates also increased as the input scaler was incrementally increased 
(Fig. 4G). The input scaler also affected the time constant of adapta-
tion, even when the decay parameter remained constant (Fig. 4H). 
As the input scaler incrementally increased from 20, 50, and 100, the 
time constant decreased to 10.88, 6.52, and 4.38, respectively. These 

results could provide insights into the roles of the decay parameter 
and the input scaler in shaping the dynamics of the SA-I neuron.

Optimization of parameters for long-term spike frequency 

adaptation Izhikevich neuron model 

To optimize the parameters of the proposed long-term Spike Fre-
quency Adaptation (SFA) Izhikevich neuron model based on the 
biological neural signals of rodent SA-I afferents, we utilized a total 
size of (200×2,000) simulated long-term SFA Izhikevich models as 
well as the experimental data of rodent SA-I afferents. We first cal-
culated the Euclidean distance between the parameters fitted to the 
experimental data, {α p β p} and the simulated data points, {α^p β

^

p}, in 
a three-dimensional space consisting of the axes of the decay pa-
rameter and the injected current S. The experimental parameters 
{α p β p} were obtained by inverting the exponential curve fitted to 
the firing rate of the rodent SA-I afferents, while the model param-
eters {α^p β

^

p} were obtained by inverting the exponential curve fitted 
to the firing rate of the long-term SFA Izhikevich model. We found 
the parameters, {α^p β

^

p}, which minimized the distance to {α p β p} for 
each pressure and each of five biological SA-I afferent neurons.

Table 2. Parameter for the vanilla Izhikevich model

Neuron type of  
Izhikevich model

a b c d

Spike frequency adaptation (SFA) 0.01 0.2 -65 mV 8
Modified SFA 0.001 0.2 -65 mV 8
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Then, we averaged these parameters across five SA-I afferent 
neurons. The simulation model parameters {S p Dp} with exponen-
tial parameters {α p β p} were chosen as the long-term SFA Izhikev-
ich model corresponding to the appropriate pressure. The selected 
parameters of the long-term SFA Izhikevich model for each cor-
responding pressure are listed in Table 3.

Performance of the long-term spike frequency adaptation 

Izhikevich 

Spike trains generated by the long-term SFA Izhikevich model 
demonstrated spike frequency adaptation over several seconds 
similar to biological SA-I neurons for different input pressure in-
tensities, while the vanilla SFA Izhikevich model and the ISI based 

spiking model did not reveal such long-term SFA (see represen-
tative examples in Fig. 5). We evaluated the degree of similarity 
between the spike trains generated by the model and those of bio-
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Table 3. The optimal parameters of long-term spike frequency adapta-
tion model for different sustained pressure

Pressure (mN)
Parameter

S p D p

0.1 20.4 1.1094
1 21.4 1.0629

10 42 1.0153
50 85.6 1.0094

100 108 1.0154
300 105.6 1.0759
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logical SA-I afferents using spike train distance measured by Earth 
Mover’s Distance (EMD, [43]). A smaller spike distance indicates 
a closer match between the model’s spike train and its biological 
counterpart. Our results showed that the long-term SFA Izhikev-
ich model exhibited significantly smaller spike distance than other 
models (p<0.01, t-test) (Fig. 6A). Also, the difference between the 
peak and steady-state firing rates in the long-term SFA Izhikevich 
model was more similar to the biological data than other models 
(Fig. 6B).

DISCUSSION

We proposed a novel biological neuron model (BNM) for slowly 
adapting type 1 (SA-I) afferent neurons to develop a biomimetic 
artificial tactile sensing system that can detect sustained me-
chanical touch. We tested if the BNM, designed by modifying the 
Izhikevich model to incorporate long-term spike frequency adap-
tation, could accurately replicate the firing patterns of biological 
SA-I afferent neurons in response to sustained pressure. To test the 
validity of the BNM, we obtained firing data from ex vivo experi-
ments on SA-I afferent neurons in rodents. We used this data to 
search for optimal parameter values for the BNM. We then gener-
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ated spike trains using the BNM and compared the resulting spike 
trains to those of the biological SA-I afferent neurons using spike 
distance metrics. Our results showed that the BNM could generate 
spike trains with long-term adaptation, which was not achievable 
with other conventional models. This suggests that the proposed 
BNM can simulate the dynamics of long-term spike frequency 
adaptation in SA-I afferent neurons. Remarkably, ex vivo firing 
data revealed that the intensity of applied pressure strongly influ-
enced the firing patterns of SA-I afferent neurons. As the pressure 
increased from 0.1 mN to 50 mN, the average firing rate of each 
neuron progressively increased. This trend was reversed at higher 
pressure intensities, with a decrease in the average firing rate ob-
served at a pressure of 300 mN. This suggests that the relationship 
between firing patterns of SA-I afferent neurons and pressure 
intensity may be nonlinear and highly sensitive to changes in pres-
sure intensity. Nevertheless, a further rigorous experiment with a 
neurophysical model should follow to justify this tentative obser-
vation.

We found that spike frequency adaptation occurred over several 

seconds in response to all pressure intensities, as evidenced by 
the exponential decay in firing rate over time. The time constant 
of this decay was approximately 4.7-second on average across all 
pressure intensities. It would be interesting to see if such a time 
constant is biologically intrinsic or not; it is questionable whether 
the range of time constant remains unchanged if stimulation du-
ration changes. Furthermore, we observed a significant difference 
between the peak and steady-state firing rates for every pressure 
intensity, indicating that the firing patterns of SA-I afferent neu-
rons undergo substantial changes over extended periods in re-
sponse to sustained pressure. Furthermore, our simulation results 
suggest that the long-term adapting Izhikevich model can capture 
the behavior of real biological SA-I afferent neurons that exhibit 
long-term adaptation. Additionally, we found that the decay pa-
rameter D p and the input scaler S p have a significant influence on 
the adaptation dynamics of the neuron, shaping the spike patterns 
and duration of adaptation. 

One potential advantage of the long-term adapting Izhikevich 
model is that it can more accurately capture the behavior of real 
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biological neurons that exhibit long-term adaptation, such as SA-I 
afferent neurons. This can be useful for studying the function and 
role of similarly behaving neurons in the brain and for developing 
more realistic computational models of brain computation. The 
long-term SFA Izhikevich model may also offer novel ways of cre-
ating artificial neurons in spiking neural networks, which can be 
applied for image processing, artificial tactile sensing, and robotics. 
Future investigation of the benefits and limitations of the long-
term SFA Izhikevich model in such applications may be of interest. 
In particular, the scalability of the long-term SFA Izhikevich model 
to other types of tactile afferents, such as RA (rapid adapting) af-
ferents, may be worth exploring. The long-term SFA Izhikevich 
model may provide a more efficient and realistic approach to ar-
tificial tactile sensing technology by emphasizing the advantages 
in terms of power consumption and the requirement for sensory 
adaptation. 
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