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Spatial Transcriptomics: Technical Aspects of Recent
Developments and Their Applications in Neuroscience and
Cancer Research

Han-Eol Park, Song Hyun Jo, Rosalind H. Lee, Christian P. Macks, Taeyun Ku,
Jihwan Park, Chung Whan Lee, Junho K. Hur, and Chang Ho Sohn*

Spatial transcriptomics is a newly emerging field that enables
high-throughput investigation of the spatial localization of transcripts and
related analyses in various applications for biological systems. By
transitioning from conventional biological studies to “in situ” biology, spatial
transcriptomics can provide transcriptome-scale spatial information.
Currently, the ability to simultaneously characterize gene expression profiles
of cells and relevant cellular environment is a paradigm shift for biological
studies. In this review, recent progress in spatial transcriptomics and its
applications in neuroscience and cancer studies are highlighted. Technical
aspects of existing technologies and future directions of new developments
(as of March 2023), computational analysis of spatial transcriptome data,
application notes in neuroscience and cancer studies, and discussions
regarding future directions of spatial multi-omics and their expanding roles in
biomedical applications are emphasized.

1. Introduction

1.1. Spatial Transcriptomics: Emerging Technology

Each cell in a multicellular organism interacts with the surround-
ing environment. Stem cells differentiate during development
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primarily through cell-to-cell interactions
and subsequent signaling, which is gov-
erned by the relative positions of cells
within the embryo.[1,2] The spatial orga-
nization of tissues regulates the expres-
sion of transcription factors related to dif-
ferentiation and ultimately generates a ro-
bust organization of cellular structures re-
lated to their functions.[3–5] Another exam-
ple that illustrates the importance of spa-
tial organization is cancer tissue, in which
cells actively interact with the surround-
ing tumor microenvironment to generate
suppressive conditions that block the ac-
tion of immune cells, thereby bypassing
immune defense mechanisms and facili-
tating proliferation.[5,6] To understand the
complexity of biological systems ranging
from various physiological phenomena to
the pathological principles of diseases, it is

necessary to assess the functions of individual cells and their in-
teractions to orchestrate complex functions of tissues and organs.
Strategies for examining these biological principles include ex-
ploring cells that exist in the tissue (cell-type inventory) and their
spatial arrangement and interaction with each other (understand-
ing their spatial organization).
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Molecular expression patterns of diverse biological states have
been analyzed by RNA sequencing owing to the efficient and sen-
sitive detection of RNA by the simple amplification of nucleic
acids by polymerase chain reaction (PCR) and high-throughput
readouts by next-generation sequencing (NGS). RNA sequencing
has served as one of the major approaches for basic biological re-
search and clinical diagnosis because the transcriptome serves
as a blueprint of the proteome, the actual functional proteins of
the cell, and therefore reflects the current cellular state.[7] Fur-
thermore, recent advances in single-cell transcriptome analysis
techniques allow researchers to analyze transcriptomes with un-
precedentedly high throughput and single-cell resolution.[8,9] De-
spite the improvements in sequencing technologies, single-cell
transcriptome analysis techniques are still limited in that all in-
formation related to the spatial organization of cells in the tissue
is permanently lost owing to tissue dissociation.

Spatial transcriptomics provides information on the spa-
tial distribution of gene expression profiles, thereby eluci-
dating interesting features previously not revealed by single-
cell RNA sequencing methods that lack spatial information.
Several high-quality review papers already exist on spatial
transcriptomics.[10–14] Therefore, in this review article, we instead
focus on providing a comprehensive review of the technical dif-
ferences between sequencing- and imaging-based methodolo-
gies, recent advances in the spatial approach utilizing spatial data
and their computational interpretation, and current research and
future perspectives in various fields of application in biological
studies, including neuroscience and cancer, and in biomedical
and clinical studies of disease.

2. Imaging and Sequencing-based Spatial
Transcriptomics Methods

2.1. Imaging-Based Methods [Fluorescence In Situ Hybridization
and In Situ Sequencing-Based Methods]

To detect transcripts from cells, pioneering studies reported
single-molecule fluorescence in situ hybridization (smFISH)
methods that employed in situ hybridization of reverse-
complementary oligo probes conjugated with fluorophores.[15,16]

These smFISH methods facilitated the detection of target RNAs
with high specificity and sensitivity at the single-molecule level.
smFISH also provides single-cell and subcellular resolution with
optimized protocols for cell cultures and thin (<20 μm) tis-
sues respectively. Recently, spatial applications of smFISH have
demanded more scalable platforms in order to investigate bi-
ologically meaningful dimensions according to their detection
targets.[17] Fast cycling of probe hybridization allows the spa-
tial investigation of relatively large areas with high specificity
and sensitivity when targeting 20–40 highly expressed marker
genes (ouroboros smFISH, or osmFISH) without barcoding.[18]

However, the limited multiplexing capacity of smFISH, caused
by the spectral overlap of fluorescent dyes, precludes efficient
transcriptome-level spatial investigations when creating a profile
of the transcriptional status of cells in a tissue.

Separating the fluorescence signals obtained from individual
transcripts is the key to highly increasing the multiplexing capac-
ity. This idea has been previously implemented for DNA, but in

most cases, these attempts were close to the preliminary, proof-
of-concept stage.[19] Initial efforts for multiplexed RNA profiling
focused on improving the barcoding capacity using 1) spectral
barcoding by super-resolution microscopy[20] and 2) sequential
barcoding using DNase I (Figure 1a).[21] Without barcoding, dif-
ferent RNAs can be resolved near diffraction-limited spots; how-
ever, the barcoding capacity can be further extended if one can
resolve overlapping signals. Lubeck et al.[20] first demonstrated
a multiplexed barcoding scheme for resolving the RNA expres-
sion of 32 target genes in a single yeast cell by super-resolution
microscopy. This approach, however, requires expert-level knowl-
edge of optics for accurate implementation due to the techni-
cal difficulties of its setup. Moreover, the super-resolution ver-
sion of the spectral barcoding method consumes a very long
time for imaging (i.e., a yeast cell takes 30 min to barcode 32
genes), precluding the scalable application of this method to real-
world samples. An improved protocol for a sequential barcod-
ing scheme by DNase I dramatically enhanced the performance
of repeated probing for multiplexed RNA FISH and simplified
the experimental procedure so that multiplexed barcoding ex-
periments could be executed with an ordinary epifluorescence
microscope.[21] Although the initial report on the DNase I-based
sequential barcoding scheme only presented its application to
yeast cells, the concept of multi-round imaging and registered
barcode calling for smFISH-based experiments was continuously
adapted to the later versions of highly multiplexed FISH experi-
ments.

In 2015 and 2016, continued efforts to develop highly mul-
tiplexed FISH methods increased the number of detected
genes from a dozen to several hundred and then up to one
thousand transcripts per cell [multiplexed error-robust FISH
(MERFISH)[22] and sequential FISH (seqFISH),[23] Figure 1a,b].
To encode as many transcripts as possible, sequential barcode
schemes were implemented using repeated 3–4 color imaging
cycling platforms. The key to successful and highly multiplexed
barcoding is to seek schemes for improving barcode calling rates
to distinguish probe signals from noise- and crosstalk-prone
raw images and to minimize unwanted dye quenching during
fast imaging cycles. However, the barcoding schemes for ever-
increasing multiplexity are not always compatible with traditional
highly expressed marker genes because these high-copy genes
easily saturate the fluorescence field of view, resulting in poor
barcode calling rates due to signal overlap.[24,25] To evenly dis-
tribute the “loading” of gene expression in each fluorescence
channel, careful estimation of expression from bulk sequenc-
ing results is employed to design orders of imaging and to de-
termine which genes can be co-imaged. Super-resolution imag-
ing by localization microscopy was employed to resolve more
transcripts in each diffraction-limited spot, which finally en-
abled true transcriptome-level detection in the order of ten thou-
sand transcripts per cell (seqFISH+) (Figure 1c).[26] Error-robust
barcoding schemes, corrections for optical aberrations, lower-
ing autofluorescence by tissue clearing, and semi-automated
microfluidics-based staining and imaging cycling systems fur-
ther improved the quality of the resulting datasets in compari-
son to those obtained by sequencing-based methodologies (dis-
cussed in the next section) (Figure 1b).[27,28] From the point of
view of biomedical and translational/clinical applications, know-
ing whether a particular method can cover clinically meaningful
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Figure 1. Imaging-based spatial transcriptomics methods. a) seqFISH by DNaseI-based digestion and sequential staining/imaging cycles to decode
transcripts in space. b) MERFISH employing error correction in barcode assignment for robust barcode calling in noisy FISH-based images. c) seqFISH+
for genome-scale transcriptome investigation by dilution of fluorescent signals, separating individual transcripts into fluorescent spectra, and employing
20 probes per each encoding round. d) in situ sequencing methods by sequencing by ligation (ISS, FISSEQ, STARmap) and sequencing by synthesis
(BaristaSeq). e) SOLiD sequencing of cDNA sequence by FISSEQ while cross-linking cDNA and amplicon generated by rolling-circle amplification (RCA)
to adjacent proteins. f) STARmap with SNAIL probes and SEDAL sequencing for identifying gene-specific identifiers. The polymerization of amplicons
with acrylamide moieties introduced by N-acryloxysuccinimide (NAS) into the hydrogel network and optical clearing by hydrogel-histochemistry enables
spatial transcriptome detection in thick tissues.

ranges of tissue size and thickness is critical. Although these mul-
tiplexed FISH-based methods have excellent sensitivity and cov-
erage of transcriptomes with subcellular resolutions, they all suf-
fer from substantially long imaging times, which limits practical
tissue size and thickness. For example, in seqFISH+, an imag-
ing time of 1 week is required to image a single optical plain

of a partial region of the cortex in a thin coronal tissue section
of the mouse brain when performing 80 rounds of hybridiza-
tion/imaging to detect 10 000 transcripts. Even after this effort,
a typical tissue section in these methods is only 10–20-μm thick,
and therefore, the cells at this thickness are mostly not intact. In
addition to the difficulty in registration and barcode calling from
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these large raw image datasets, the resulting data suffer from in-
complete analysis of single-cell expression profiles that are inher-
ently non-intact in a spatial context. Future efforts should focus
on developing fast imaging schemes by implementing simple
and easy signal amplification, which will eventually enable the
analysis of thick tissues by improving sample coverage. Easy and
user-friendly interfaces in data acquisition and analysis for com-
mercialization processes are crucial for facilitating widespread
usage. Enhanced Electric FISH (EEL FISH) is an electrophoresis-
aided large tissue RNA sampling and multiplexed FISH study
that attempts to reduce data acquisition time by transferring RNA
from 10-μm-thick tissue to the plane of an RNA capture slide for
imaging the transcriptome of thick tissues with an epifluores-
cence microscope.[29]

In contrast to sequential imaging of barcoded FISH probes,
in situ sequencing (ISS) is an alternative approach for identify-
ing a larger number of RNA-targeting probes by direct imaging
of nucleotide sequences in situ (Figure 1d–f). In principle, both
FISH and ISS provide similar transcriptome information at sub-
cellular resolution. However, ISS can read nucleotide sequences
directly from tissues, which is a critical feature that allows the
possibility for new applications such as in situ detection of sin-
gle nucleotide polymorphisms. In 2013, the first ISS study em-
ployed sequencing-by-ligation chemistry to read short sequences
of gene barcodes in situ.[30] In ISS, reverse-transcribed com-
plementary deoxyribonucleic acids (cDNAs) are hybridized with
padlock probes containing gene-specific barcode sequences, and
the padlock probe is ligated at the location of specific hybridiza-
tion before being amplified by rolling-circle amplification (RCA)
using a circularized padlock primer probe (Figure 1d). Sequen-
tial imaging by sequencing-by-ligation allows the identification
of repeatedly amplified barcode sequences in situ. Fluorescentin
situ sequencing (FISSEQ) detects RNA by employing sequencing
by oligonucleotide ligation and detection (SOLiD) chemistry to
directly read cDNA sequences synthesized by random hexamers
and provide an unbiased examination of the whole transcriptome
distribution (Figure 1e).[31,32]Spatially-resolved transcript ampli-
con readout mapping (STARmap) uses a novel in situ sequenc-
ing chemistry called sequencing with error-reduction by dynamic
annealing and ligation (SEDAL) for the highly efficient synthesis
of barcoded probe sequences (Figure 1f).[33] For volumetric inves-
tigations of in situ RNA distribution, STARmap uses CLARITY-
based hydrogel-tissue chemistry for sample processing to secure
biomolecules and support the spatial architecture of tissues. Bar-
code in situ targeted sequencing (BaristaSeq) utilizes Illumina
sequencing-by-synthesis chemistry to read barcode sequences in
situ with multiple rounds of imaging.[34] The optimized proto-
col has shown improved signal-to-noise ratios, thereby enabling
better detection during in situ synthesis of target-specific RCA
products (Figure 1d).

Since both FISH and ISS use pre-designed probes to label
target transcripts, only preset genes related to a certain experi-
mental hypothesis are profiled, and this preset repertoire of tar-
get genes leads to biased detection of transcriptomes.[35,36] Al-
though FISSEQ-synthesized cDNA uses random hexamers and
direct reading of cDNA sequences by SOLiD chemistry to avoid
target selection bias and enable de novo discovery of expressed
genes, it also shows low efficiency of gene detection owing to
overwhelming occupancy of the fluorescence channels by sig-

nals originating from rRNAs (Figure 1e). Additionally, random
hexamer priming results in a very poor yield after reverse tran-
scription (0.2–1%), which inhibits the efficient detection of mR-
NAs. FISSEQ-based methods also involve complex enzymatic re-
actions, a week of long imaging time, and challenging data pro-
cessing owing to large raw data volumes. Therefore, despite map-
ping transcripts at the sub-cellular resolution, imaging-based
technologies suffer from several technical limitations that ham-
per their clinical and biomedical applications for large tissues.
In contrast, hybridization-based ISS (HybISS)[37] and STARmap-
based schemes allow the detection of signals by employing low
magnification objectives (20×, numerical aperture (NA) 0.8 air
for HybISS; 40×, NA 1.3 oil for STARmap), which enables the
investigation of relatively large-sized tissues.[38] Directly target-
ing RNA with padlock probes to eliminate inefficient reverse
transcription during cDNA synthesis can enhance the efficiency
of ISS [barcoded oligonucleotides ligated on RNA amplified for
multiplexed and parallel insitu analyses (BOLORAMIS)[39] and
hybridization-based RNA ISS (HybrISS)[40]]. Moreover, commer-
cialized options for imaging-based spatial transcriptomics tech-
nologies will soon be available, including MERSCOPE[41] (Viz-
Gen, Cambridge, MA, United States; MERFISH), Xenium[42]

(10X Genomics, Pleasanton, CA, United States; ISS and FIS-
SEQ), products from Spatial Genomics (Pasadena, CA, United
States; seqFISH), and GeoMX and CosMX from NanoString
(Seattle, WA, United States).

2.2. Sequencing-Based Methods

NGS platforms have shown unprecedented success in produc-
ing massive genomic sequencing data because of their superior
sequencing capacity at a substantially reduced cost.[43] The lack
of spatial context in transcriptomic data, however, has led to the
development of new techniques capable of encoding spatial in-
formation as nucleotide barcoding sequences. The spatial loca-
tion of transcripts can be recovered using NGS by incorporat-
ing spatial barcodes to construct RNA sequencing libraries. NGS-
based spatial transcriptomics approaches have superior through-
put compared to imaging-based methodologies because the en-
tire transcript information is detected and massively parallel-
processed. Additionally, NGS-based approaches do not require a
pre-targeted list of genes because the retrieval of transcript spatial
distribution is accompanied by cDNA synthesis in an unbiased
and non-targeted manner.[35]

Early approaches for including the spatial context in NGS
performed microscopy-guided selection and isolation of re-
gions of interest (ROIs) for analysis by full-read RNA se-
quencing. Laser capture microdissection (LCM) is a widely
used strategy for the physical dissection of tissue ROIs by
laser cutting.[44,45] LCM-seq,[44] and the more recent spatial-
histopathological examination-linked epitranscriptomics con-
verged to transcriptomics with sequencing (Select-seq),[45] com-
bine LCM with Smart-seq2 for polyA+ RNA sequencing of select
cell populations that are identified for dissection by immunohis-
tochemistry (IHC). Tomo-seq uses a tomography-inspired sec-
tioning approach to resolve the transcriptome of anatomical
ROIs.[46] Through a combination of LCM-seq and Tomo-seq,
Geo-seq (geographical position sequencing) enables 3D tran-
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scriptome analysis of select ROIs and single cells.[47] For an al-
ternative to physical dissection, methods such as NICHE-seq,[48]

ZipSeq,[49] Light-seq,[50] and GeoMX Digital Spatial Profiling[51]

instead use optical methods to mark regions or cells of inter-
est. The strength of these regioselective sequencing methods
is easy implementation and sensitive sequencing with small
sample sizes (<200 cells) where a clear spatial ROI is al-
ready defined by IHC staining. Additionally, LCM with SMART-
3Seq[52] and GeoMX[51] have demonstrated their applicability for
formalin-fixed paraffin-embedded (FFPE) samples. Recent in-
vestigations employed GeoMX to study archived FFPE human
cancer samples.[53–55] Although there are notable advantages to
LCM methods, they typically have limited spatial resolution and
throughput compared to recent spatial barcoding NGS tech-
niques.

In general, spatial transcriptomics describes techniques used
for analyzing the spatial information of transcriptomes. Accord-
ing to a methodology reported earlier, spatial transcriptomics is a
non-generic term that has originated from the technique itself.[56]

This new method has been used to locate transcripts by transfer-
ring RNA molecules to a glass slide coated with poly-T primers
containing a unique molecular identifier (UMI) and a spatial bar-
code using ≈100 μm pixel size resolution (Figure2a). While cap-
turing mRNAs with poly-T on the slide surface, the newly syn-
thesized cDNAs templated by these captured transcripts contain
pre-allocated spatial barcodes, which enable retrieval of the origi-
nal transcript locations. Through library construction and NGS
analysis, cDNAs and spatial barcodes can be sequenced to si-
multaneously identify and locate specific RNA transcripts in tis-
sues. However, this strategy suffers from low RNA-capturing ef-
ficiency and poor spatial resolution at a spot-to-spot distance of
200 μm and consequently lacks single-cell resolution. Follow-up
techniques have been developed with an improved spatial resolu-
tion by reducing the pixel size of spatial barcodes (Figure 2b–e).
Slide-seq[57,58] has achieved a spatial resolution of 10 μm using
a random distribution of barcode-containing polystyrene beads
on a slide (Figure 2b). High-definition spatial transcriptomics[59]

(HDST) has subsequently demonstrated a spatial resolution of
2 μm using a silicon wafer (Figure 2c). However, the improved
spatial resolution for Slide-seq and HDST requires random dis-
tribution of beads containing spatial barcodes in space, and
therefore, their exact distribution must be determined by time-
consuming imaging-based in situ sequencing. Additionally, the
detection efficiency is negatively affected by the mechanism of
mRNA capture from even smaller sample volumes used with
these methods.

To facilitate the fabrication of an mRNA-capturing oligo ar-
ray with encoded spatial barcodes, the Illumina NGS instrument
can be employed to simplify the identification of spatial barcode
distributions (Figure 2d). Seq-Scope directly adopts the sequenc-
ing process utilized by Illumina NGS devices to generate spa-
tial barcode arrays at a separation distance of ≈0.6 μm.[60] Illu-
mina sequencing libraries are generated containing both spatial
barcodes and oligo-dT, amplified by PCR, and dispersed on the
flow cell through clustering of the sequencing device. Spatial bar-
codes are then identified through the actual sequencing steps. By
treating tissue samples overlaid on the flow cell with digestive
enzymes, the released mRNAs can be captured by the oligo-dT
domain anchored at the surface of the flow cell that also incorpo-

rates spatial barcodes. Similar Illumina chemistry employed in
polony-indexed library-sequencing (Pixel-seq)[61] includes a mod-
ified polymer surface for clustering to minimize gaps between
the barcoded pixels. This polymer-based surface can generate
continuous features by tightly distributed mRNA capture oligos.
Subsequently, the spatial barcode is incorporated into the cDNAs
by reverse transcription, and the cDNA sequence and spatial bar-
code are simultaneously analyzed by NGS. Spatial enhanced res-
olution omics sequencing (Stereo-seq)[62] also utilizes NGS de-
vices to manufacture spatial barcode arrays using MGI’s DNA
nanoball sequencing (DNBseq) chemistry (Figure 2e). Stereo-seq
can localize the position of spatial barcode oligo arrays with a su-
perior resolution at a diameter of ≈0.22 μm with a 0.5-μm spacing
in the DNBseq instrument. The UMI sequences are then ligated
to mRNA-capturing oligos for quantification. This ultrafine res-
olution increases the cost of sequencing an enormous number
of pixel areas, thereby limiting large-scale tissue investigation. In
addition, at this ultrafine resolution, the lateral diffusion of mR-
NAs could lead to incorrect localization of transcripts by blurring
their spatial locations.

Therefore, platforms that do not rely on delivering mRNA to a
spatially barcoded oligo array anchored on the surface of chips or
slides have been explored (Figure 2f–h). In deterministic barcod-
ing in tissue for spatial omics sequencing (DBiT-seq), oligos en-
coding spatial barcodes are directly delivered to fixed tissues us-
ing a microfluidic chip[63] (Figure 2f). Oligos with predetermined
spatial barcodes are loaded into each channel of the microfluidic
chip and delivered to a certain grid position of the tissue. The
same process is repeated along the axis of the fluidic channel
that is perpendicular to the initial axis, and the resulting oligo
mixtures at each grid position are ligated into cDNA in a combi-
natorial manner to produce spatial barcodes. The location where
the two axes intersect is determined by examining the combina-
tions of spatial barcodes by sequencing. Controlling the channel
width of a microfluidic chip can also confer higher spatial res-
olution. Compared with Slide-seq and HDST, each channel in
DBiT-seq contains a predetermined barcode sequence and does
not require identifying the distribution of spatial barcodes us-
ing time-consuming in situ sequencing. Furthermore, proteins
can be labeled by treating fixed tissues with antibody-oligo con-
jugates, which, with concomitant detection of nucleic acids, ren-
ders quantitative analysis of both proteins and mRNAs with their
respective spatial distributions.

Labeling mRNAs with spatially barcoded oligos in compart-
mentalized microfluidic channels is still insufficient to reflect
actual single-cell-level transcriptomes in space. Transcriptomes
of relatively large pixels only provide mixed information on
transcripts of multiple cells. By extension, inferred transcrip-
tomes from multiple small pixels have inherent limitations
in their correspondence to genuine single-cell-level data. The
sci-Space[64] and XYZeq[65] methods provide true single-cell or
single-nucleus-level spatial transcriptomes by dissociating cells
or nuclei while preserving their spatial origins at a certain well-
or pixel-scale resolution (Figure 2g,h). After delivery of either
hashing oligos containing spatial barcodes with poly(A) tail
(sci-Space, Figure 2h) or capturing mRNA by infiltrating tissues
with spatially barcoded reverse transcription primers (XYZeq,
Figure 2g), the single-cell level transcriptome can be retrieved by
inserting additional cellular barcodes via a non-spatial version of
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Figure 2. Next-generation sequencing (NGS)-based spatial transcriptomics methods. a) General workflow of the spatial transcriptomics (ST) method.
The spatial barcode-encoded oligos are immobilized on a functionalized surface to capture mRNA released from the mounted tissue or cells. Subsequent
cDNA synthesis, followed by sequencing libraries yield transcript sequences and their spatial locations, simultaneously. b–e) Developments of methods
for the spatial patterning of barcoded oligos with enhanced spatial resolution. Unlike imaging-based ST, these methods require barcode decoding after
patterning due to the random spatial distribution of spatial barcodes. b) Slide-seq employs random spatial bead spreading and in situ sequencing
decoding. c) HDST deposits beads with combinatorial barcodes on patterned wafers, followed by decoding with serial hybridization. d) Seq-Scope and
Pixel-seq utilize Illumina clustering for oligo patterning and directly read sequences using Illumina sequencers. e) Stereo-seq utilizes DNBSEQ chemistry
to generate DNA nanoballs with spatial barcodes, which are patterned on a flow cell, and barcode calling is performed by the MGI sequencer. f) DBiT-
seq delivers barcoded RT primers and ligation oligos through orthogonal microfluidic channels. The predetermined spatial distribution of overlapping
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combinatorial single-cell or single-nucleus indexing. However,
these techniques suffer from RNA integrity issues because these
protocols require chemical fixation to maintain cellular integrity
during combinatorial indexing.

2.3. 3D Spatial Investigation by Tissue Clearing and Expansion

Recent spatial transcriptomic technologies are restricted to 2D
investigations of transcripts. Because NGS-based methods use
spatially-barcoded oligo arrays to capture and label mRNAs to
preserve their spatial origin, the tissue mRNA or spatially bar-
coded oligos must spread along the Z-axis of tissues toward the
surface in contact with the array. As a result, 3D spatial distri-
bution is analyzed in a projected form on the 2D sample plate.
In highly multiplexed FISH and in situ sequencing methods,
the true 3D distribution of individual transcripts can be mea-
sured; however, imaging procedures involve time-consuming mi-
croscopic measurements with very limited fields of view, such as
the single optical plane that is analyzed in seqFISH+. Therefore,
the collected data corresponds to a sequence of 2D samples, and
local 3D spatial information is limited by the thickness of tissue
sections. Although a 3D atlas can be constructed by serial sec-
tioning, a systematic gap exists between the image data points
because not all tissue sections can be subjected to imaging owing
to the enormous volume of samples and the restricted through-
put imposed by the imaging methods.

Tissue clearing techniques enable direct observation of 3D
structures from transparent thick-tissue blocks prepared by opti-
cal clearing and refractive index matching.[66] In cleared tissues,
lipids are removed to minimize light scattering inside tissues for
optical clearing. Target proteins are labeled by immunostaining,
however, owing to the harsh nature of tissue clearing protocols
that involve organic solvents or highly concentrated aqueous so-
lutions, tissue clearing methods may lead to damage or loss of
RNA transcripts and are typically incompatible with RNA de-
tection. For certain hydrogel-based clearing methods, smFISH
is compatible after lipid removal by detergents [CLARITY[67]

and passive clarity technique (PACT)[68]]. Additional RNA fix-
ation helps to improve RNA retention during tissue clearing
(EDC–CLARITY).[69] MERFISH, an imaging-based multiplexed
FISH method, is also compatible with hydrogel-embedded tis-
sues and was previously employed to reduce autofluorescence
signals from tissues. The tissue clearing method stabilization un-
der harsh conditions via intramolecular epoxide linkages to pre-
vent degradation (SHIELD)[70] utilizes a polyepoxy crosslinker
as a fixative and was originally developed to protect multimodal
biomolecules and tissue architecture. RNA molecules are easily
detected by FISH hybridization chain reaction (HCR) after tis-
sue clearing by SHIELD; therefore, SHIELD could serve as a 3D
spatial multi-omic tissue processing and imaging platform.

Tissue expansion techniques allow super-resolution imaging
with diffraction-limited light microscopy by physically expanding
hydrogel-embedded tissues. In expansion microscopy (ExM),[71]

swellable hydrogel-embedded tissues expand and magnify their

structure, which improves their effective resolution by increas-
ing intermolecular distance. Following subsequent optimization
of ExM using swellable hydrogels and a nucleic acid crosslinker
(Label-X), expansion FISH (ExFISH) has demonstrated multi-
plexed FISH in expanded biological samples.[72] Further opti-
mization of the ExFISH method led to expansion-assisted iter-
ative FISH (EASI-FISH), which can quantitatively analyze rela-
tively large tissue volumes (up to 300 μm thickness before ex-
pansion) to enable true single-cell transcriptomics by investigat-
ing multiple layers of intact cells by imaging.[73] Development
of in situ sequencing using expansion methods yielded ExSeq[74]

for combining tissue expansion with in situ sequencing meth-
ods such as FISSEQ. Expansion sequencing (ExSeq) has further
improved the resolution of FISSEQ by adding a physical expan-
sion, resulting in better coverage of transcript detection in vol-
ume. Unified ExM (UniExM)[75] employs glycidyl methacrylate
(GMA) as a nucleic acid crosslinker, which dramatically reduces
experimental costs. Using GMA improves nucleic acid retention
in polyacrylamide-based hydrogels and provides excellent results
when applied in multiplexed FISH in situ sequencing with ex-
pansion. These 3D tissue investigation approaches may play sig-
nificant roles in studying transcriptomes and multi-omes of tis-
sues and organoids as multi-cell layer spatial information is nec-
essary to understand the complex behavior of biological systems.

3. Challenges and Opportunities of Current
Methods

3.1. Inherent Technical Difficulties in Imaging-Based Methods

Highly multiplexed FISH and in situ sequencing methods are
based on imaging using fluorescence microscopy to locate single
transcripts at subcellular resolution. Although the spatial resolu-
tion varies among techniques, imaging-based methods can pro-
vide sub-micron resolution when employing a high-NA objective
during imaging. When additional information is obtained us-
ing probes [e.g., proteins labeled with antibodies and nuclei with
nucleic acid-labeling dyes such as 4’,6-diamidino-2-phenylindole
(DAPI)], the spatial data can be projected onto the cell contours
by cell segmentation. Although these imaging-based methods
provide high spatial resolution, this feature inevitably limits the
size of tissue coverage. The tissue area captured within a single
imaging cycle is limited by the field of view of the objective, and
the imaging time depends on the signal-to-noise ratio and tar-
get resolution. In addition, detecting broad features from various
transcriptional profiles requires multiple rounds of imaging fol-
lowed by probe hybridization or enzymatic reactions for ISS. Ac-
quiring multiple images includes time-consuming steps, such as
probe replacement between each image, and requires a substan-
tial amount of time that limits the acquisition of information over
a large area.

Optical crowding in raw images is another technical hurdle
in imaging-based methods. Considering that one cell is typically
populated with thousands of transcripts, the point-spread func-

regions eliminates time-consuming steps for random spatial barcode sequencing procedures. g) True single-cell and single-nucleus resolutions with
regional spatial barcode printing in XYZeq. h) sci-Space delivers hashing oligos with spatial barcodes into tissue followed by additional fixation to retain
hashing oligos in the nuclei. After combinatorial barcoding for single-nucleus RNA sequencing, hashing oligos are sequenced as a transcriptome.
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tions of the fluorescence signals emitted from these transcripts
often overlap when simultaneously detecting multiple species
in a single acquisition step. Highly multiplexed FISH methods
can detect a large number of transcripts owing to their excel-
lent hybridization efficiency; however, consequently, signal over-
lap makes the deconvolution of barcodes difficult. MERFISH and
seqFISH+ can resolve optical crowding issues by reducing the
number of transcripts detected in a single image providing in-
creased space for barcode combination. However, this approach
directly impacts imaging time by increasing the number of imag-
ing rounds and time required to image large combinations of
barcodes. In ISS-based methods, optical crowding is less prob-
lematic because these methods exhibit low detection efficiency
when converting transcripts to cDNAs in situ. FISSEQ detects
≈0.2–1% of transcripts owing to the low yield of in situ reverse
transcription and cDNA synthesis. Other methods utilizing pad-
lock probes that hybridize to their target RNA species require en-
zymatic ligation that results in low detection compared to those
of multiplexed FISH methods.

3.2. Inherent Resolution Issues in NGS-Based Methods

NGS-based methods generate massive amounts of raw data ow-
ing to the high throughput of NGS devices. Initial capturing of
mRNAs using barcode oligos and subsequent cDNA synthesis
does not require specialized equipment. An additional benefit is
that NGS-based methods use poly-T oligos for unbiased capture
of mRNAs, and therefore do not require predefined probe pan-
els to label target RNA. This feature allows de novo discovery of
RNAs with statistically significant differences in spatial distribu-
tion.

Owing to the limited spatial resolution, deciphering spatial
barcodes to infer the spatial origin of transcripts cannot provide
their cellular origin. The mRNA-capturing oligos contain specific
spatial barcode sequences that represent specific regions in 2D
coordinates to distinguish the spatial origin of transcripts. A set
of transcriptomes sharing the same spatial barcode constitutes
transcriptome information for each tissue region, such as pixels
in an image, and the arrangement of these pixels eventually rep-
resents the spatial distribution of the entire tissue transcriptome.
However, each pixel specified by the same spatial barcode in the
2D coordinates does not provide the actual cellular boundaries
required to reconstruct single-cell-level information. Therefore,
different technologies require different information processing.
If the size of a pixel is greater than that of a single cell, the tran-
script of one pixel would be a mixture of the transcripts of several
cells and vice versa. Although sci-space and XYZeq enable single-
nuclear distinction of the transcriptome by dissociating nuclei,
the spatial resolution of nuclear location is still limited by pixel
size.

3.3. Processing Speed for 3D Spatial Investigation with Tissue
Clearing and Expansion

Tissue clearing and expansion techniques can enhance the ef-
fective resolution of 3D spatial transcriptomic investigations for
future biomedical applications. Despite the valuable information
that can be extracted through these methods, there are remaining

points of optimization that continue to limit widespread imple-
mentation. To our best knowledge, the combinatorial barcoding
scheme has not been applied for increasing multiplexity due to
technical challenges in registration of fluorescence signals from
large 3D raw images. As a result, the processing time required for
repeated 3–4 color imaging and staining/destaining cycles with
linearly increasing numbers of gene targets is lengthy for cap-
turing large area samples. Additionally, the increased resolution
and addition of volumetric analysis inherently result in immense
data sets in biomedical applications. The current analysis plat-
forms require considerable improvement before they are capable
of handling data volumes in the order of a hundred terabytes to
several petabytes. Following optimization of these aspects of tis-
sue clearing and expansion techniques, large biomedical datasets
with enhanced spatial resolution can be leveraged to uncover ad-
ditional transcriptomic information from complex and crowded
environments.

4. Challenges in Raw Data Processing

After successfully implementing spatial transcriptome experi-
ments, interpreting large amounts of raw gene expression matri-
ces is challenging. Each method for spatially resolved transcrip-
tomics generates data of various scales, resolutions, and modali-
ties, according to their working mechanisms, to capture and iden-
tify transcripts. Therefore, analytical pipelines that process raw
data should consider these differences for successful interpreta-
tion. Additionally, limited information on current spatial tran-
scriptome data is sometimes analyzed together with the exist-
ing information. In this section, we introduce useful analysis
pipelines and algorithms for handling data from spatial transcrip-
tomics (Figure 3). Since imaging-based and sequencing-based
methods generate raw data in different classes, the workflows are
depicted in two categories.

4.1. Dealing with Error-Prone Raw Data

Regardless of their working principles, all imaging-based meth-
ods for spatial transcriptomics require three crucial steps in raw
data processings: 1) registration of barcoded fluorescence sig-
nals from raw images, 2) barcode calling or processing to as-
sign target RNA reads, and 3) efficient cell segmentation to as-
sign barcoded dots to each cell. Prior to further processing, raw
images are stitched and maximum-projected along the z-axis to
generate 2D xy plane images. These images are typically sub-
jected to various filters, such as Laplacian of Gaussian filters
to remove noise and thresholding for dot detection. Initially,
coarse-grained registration among color channels and imaging
rounds is applied with reference to specified registration mark-
ers (e.g., fluorescence beads or blood vessel staining). One signif-
icant challenge in assigning barcodes is to determine the accept-
able error range in terms of pixel distances for successful bar-
code calling with minimal error. When the number of barcod-
ing genes is small, less accurately registered fluorescence sig-
nals may be tolerated without substantially affecting the suc-
cess rate in barcode calling. Some methods such as MERFISH
have error correction schemes to reduce the effect of incorrect
barcode assignment. However, transcriptome-level barcoding re-
quires raw images obtained through super-resolution imaging
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Figure 3. The workflows for preprocessing raw data in a) imaging-based and b) sequencing-based spatial transcriptomics methods. In the imaging-
based workflow, spatial transcriptomics data is predominantly analyzed independently, while single-cell sequencing data is occasionally integrated. In
contrast, sequencing-based methods more commonly employ both single-cell sequencing data and histological images simultaneously. The resulting
outputs of the two workflows differ in their celltype format. For sequencing-based methods, the spot size is usually larger than a single cell, so the cell
type of each spot is described proportionally. In contrast, imaging-based methods provide a cell-level gene count matrix, which directly labels the cell
type on each cell. These outputs are then employed for downstream analysis.

modalities to further resolve multiple transcripts located within
diffraction-limited spots. With this level of complexity, barcode
calling rates can be significantly reduced compared to those of
experiments with dozens and hundreds of target genes, and the
resulting analysis scheme inherently yields decreased RNA detec-
tion efficiency. Imaging-based methods also involve image pro-
cessing and error correction steps for chromatic correction be-
tween fluorescent channels and image registration between mul-
tiple rounds. For example, initial MERFISH papers employed
only the 647 channel to avoid chromatic aberration.

It is important to note that all of the correction steps men-
tioned earlier are typically performed with specific ad hoc param-
eters optimized for a particular spatial transcriptomics method
and setup, which makes the raw image data processing pipeline
difficult to generalize. Therefore, it may be more practical for
researchers to begin their imaging-based spatial transcriptomic
analysis with pre-processed data generated by commercial or pre-
optimized protocols. The following sections will focus more on
reviewing data-processing techniques for NGS-based methods.

Due to technical limitations of currently available NGS-based
spatial transcriptomic methodologies, raw data may contain
noise from various sources and often suffer from signal loss. As
a result, a low signal-to-noise ratio (SNR) can compromise the
accuracy of data analysis. To address this issue, preprocessing
methods for noise reduction have been explored.

The datasets generated by NGS-based methods, such as 10X
Visium, contain spot swapping, where a certain spot may contain
transcripts from nearby spots. These unwanted contaminants
can be removed using a probabilistic model called SpotClean[76]

[Figure 3b(i)]. Due to the low transcript-capturing efficiency of
NGS-based spatial transcriptomic methodologies, raw data suf-
fer from loss of gene expression information. Thus, data imputa-
tion methods that are specifically tailored to the characteristics of
the spatial data can enable the combination of spatial spots with
corresponding pathological images[77] and provide consolidated
analysis by spatial transcriptomics and pure single-cell sequenc-
ing data[78,79] [Figure 3b(ii)].

Normalization of spatial transcriptome data is crucial for com-
paring gene expression between spots or genes [Figure 3b(iii)]
and is performed using conventional methods (e.g., regularized
negative binomial regression).[80] Recently, using deep-learning
models, morphological features have been extracted using spa-
tial gene expression patterns in combination with hematoxylin
and eosin (H&E)-stained images. The extracted features can be
compared among spatial data spots to complete the normaliza-
tion of spatial data, which is called Spatial Morphological gene
Expression Normalization (SME Normalization).[81]

4.2. Integration of Spatial and Single-Cell Transcriptome Data

4.2.1. Predicting the Spatial Distribution of Transcripts

Single-cell and single-nucleus sequencing databases have grown
rapidly in terms of higher throughput and data quality. When
consolidating these rich databases, it is important to predict the
spatial distribution of transcripts by combining relatively crude
quality spatial data [Figure 3b(iv)]. Spatially reconstructed tran-
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scriptomic data already provides valuable information, but single-
cell sequencing data can be used to address some of the limita-
tions of spatial transcriptomics methods. One drawback of FISH
or ISS data is that it only includes preselected genes and ex-
cludes others. These excluded genes can be imputed using spa-
tially reconstructed single-cell sequencing data because scRNA-
seq can profile all types of transcripts using poly-T or random
primers [Figure 3a(ii)]. In the case of sequencing-based spatial
transcriptomics data, it often suffers from a low number of cap-
tured genes. Integrating single-cell sequencing data can improve
this, as single-cell sequencing data typically contain a sufficient
number of genes [Figure 3b(v)].

Seurat[82] allows seamless integration between single-cell se-
quencing data and multiplexed FISH data by comparing the ex-
pression of landmark genes in single-cell sequencing data with
their spatial distribution in multiplexed FISH data. The expres-
sion data obtained from this process is represented by a bi-
modal mixture model. Spatial backmapping[83] adopts a simi-
lar approach, but comparisons are based on specificity-weighted
mRNA profiles, which indicate the expression of each gene in a
specific cell relative to that of all other cells.

Unlike these methods focusing on the spatial reconstruc-
tion of single-cell sequencing data, spatial gene enhancement
(SpaGE)[78] imputes missing genes in multiplexed FISH data us-
ing single-cell data via principal component analysis (PCA)-based
domain adaptation and k-nearest-neighbor regression. Gene im-
putation with Variational Inference (gimVI)[79] method also per-
forms imputation using a deep generative model.

Recently, data for the integration of spatial contexts is more di-
versified, and deep learning is widely employed. Seurat v3[84] inte-
grates single-cell and spatial data, as well as chromatin accessibil-
ity and immunophenotyping data. Integrative analysis of multi-
omics at single-cell resolution (GLUER)[85] integrates single-cell
sequencing data with transcript and protein spatial data captured
by highly multiplexed methods such as co-detection by indexing
(CODEX)[86] and MERFISH.[22] Both DEEPsc[87] and Tangram[88]

employ single-cell sequencing data for spatial reconstruction and
can consolidate with spatial data obtained by spatial transcrip-
tomics methodologies without limitations; therefore, both multi-
plexed FISH and NGS-based data can be used as inputs. GLUER,
DEEPsc, and Tangram have recently started using deep neural
network models for improved prediction and data integration.

4.2.2. Cell-Type Inference and Spot Deconvolution

Performing cell-type-based analysis is challenging when the spa-
tial resolution of a method is lower than the size of a single
cell because in this situation multiple cells can contribute to the
transcripts extracted from each spot. Therefore, it is essential to
estimate the proportion of cell types in each spot through de-
convolution using nonspatial single-cell sequencing data [Fig-
ure 3b(vi)]. Because the spot size of recent NGS-based spatial
techniques is larger than the size of a cell, deconvolution meth-
ods for spatial transcriptomic data have been actively proposed
since 2020. On the other hand, Slide-seq, HDST, Seq-Scope, and
Pixel-seq have finer resolutions; therefore, the spot size is com-
parable to a cell or even smaller. For deconvolution, statistical
models or matrix decomposition can be employed,[89–94] but treat-

ing deconvolution by substituting it as a domain adaptation task
is also plausible.[95,96] These methods initially define cell type as
discrete or solid. Based on this hypothesis, they carry out cell-
type inference. However, tissues with cancer and inflammation
may contain transcriptome variations in each cell type. Deconvo-
lution of spatial transcriptomics profiles using variational infer-
ence (DestVI) conducts cell-type inferences based on a continu-
ous cell-type model.[90] While most spot deconvolution methods
estimate the proportion of different cell types within a given spot,
the results do not provide single-cell level resolution. In contrast,
cellular spatial positioning analysis via constrained expression
alignment (CytoSPACE) employs single-cell sequencing data to
assign each cell to a specific spot in spatial transcriptomic data,
thereby achieving single-cell level resolution.[97]

Detailed benchmarking of the performance of spatial
and single-cell transcriptome integration has recently been
published.[98] Notably, performance benchmarking may be heav-
ily affected by data volume, particularly in deep learning models.
Additionally, the spatial resolution of each method significantly
affects the performance of the cell-type inference. For example,
robust cell type decomposition (RCTD)[91] and stereoscope[92]

use a direct-count model for their inference; therefore, better
performance is expected on high-resolution spatial data.[99]

When performing cell type detection, certain cell types may not
be identified if the corresponding cells or transcripts are not cap-
tured in the single-cell sequencing data or spatial transcriptomic
data. This can result in misinterpretation of the overall results,
especially if the cell type of interest is rare. Therefore, to improve
the reliability of a spatial transcriptomics analysis, a power anal-
ysis framework has been proposed.[100]

4.3. Alignment and Integration of Multiple Spatial Data

Currently, NGS-based methods may exhibit poor transcript-
capturing efficiency. The computational strategy used for im-
provement is to collect multiple adjacent 2D spatial transcrip-
tome datasets from tissues and then perform alignment and
integration from multiple 2D data points [Figure 3b(iv)]. Here,
alignment means finding pairwise spots (i.e., overlapping zones)
between 2D data points, and the integration constructs single-
domain 2D data by consolidating multiple 2D data. As a re-
sult, these integrated spatial transcript data contain more gene
expression information than that of the source data. In STU-
tility, histological images obtained from the same tissue used
for spatial transcriptome data acquisition are employed for 2D
data alignment.[101] The probabilistic alignment of ST experi-
ments (PASTE) method is effective without employing histolog-
ical images.[102] Instead, PASTE finds pairwise alignment be-
tween several 2D datasets based on probable transcriptomic and
spatial resemblance.

4.4. Cell Segmentation and Cell Typing of Imaging-Based
Methods

Analyzing data produced by imaging-based methods requires
a cell segmentation task for classifying transcripts to each as-
signed cell [Figure 3a(i)]. Approaches to cell segmentation tasks
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for imaging-based methods can be classified into three major cat-
egories: 1) manual, 2) supervised image segmentation, and 3) un-
supervised approaches. It is worthwhile to note that conventional
image processing approaches without machine-learning models
show inferior accuracy compared to supervised image segmenta-
tion techniques and are rarely studied nowadays. With this con-
sideration, conventional approaches have not been discussed fur-
ther in this paper.

Manual and supervised image segmentation approaches first
fluorescently stain cell bodies and/or nuclei, and then recog-
nize cell and/or nuclei boundaries by manual or supervised algo-
rithms. Manual approaches require huge amounts of labor and
the results are often unsatisfactory. Commonly, cell boundaries
are not clearly distinguishable from multiplexed FISH or ISS im-
ages. Supervised image segmentation requires a manually anno-
tated dataset for training machine learning models,[103–106] often
resulting in inaccurate segmentation for other datasets due to the
low performance of the generalized models.

Unsupervised approaches utilize transcript distribution to
cluster transcripts for assignment to each cell. These ap-
proaches could be adequate alternatives or complements to pre-
viously discussed cell segmentation approaches because they are
annotation-free and often show better performance on cell-level
transcripts clustering as transcript distribution can be a better
indicator of segmentation than visually recognizable cell bound-
aries in messy fluorescence images.[107] Also, supervised image
processing and unsupervised transcript clustering approaches
can be used together to complement each other.[108,109]

By analyzing the imaging-based spatial transcriptomics data,
cell types can be also identified [Figure 3a(iii)]. This can be con-
ducted with data obtained purely from imaging-based methods
without aids from sequencing data. In these approaches, cell
types are defined within the cell segmentation results.[107] Hence,
inaccurate cell segmentation results in poor cell type identifica-
tion. This issue can be resolved by employing a cell segmentation-
free method, which uses spots as a unit of cell-type inferences.[110]

Additionally, single-cell sequencing data can be combined to
identify cell types from FISH or ISS data more precisely.[36]

4.5. Future Works for Analyzing Spatial Transcriptomics Data

Spatial data processing studies focus on single-cell or
supracellular-scale data, probably obtained using NGS-
based methods. However, imaging-based methods can obtain
subcellular-level details; therefore, subcellular-level processing
of the spatial distribution of transcripts will be highly important.
Currently, the database may be too limited to employ deep
learning approaches, as found in earlier studies by Seurat and
gimVI for <2000 cells. Therefore, the performance of analysis is
not guaranteed, and more experimental databases are expected
to be available to develop algorithms.

5. Application Note in Neuroscience

The nervous system of higher organisms has a complex struc-
ture. By orchestrating organism-level responses to internal or ex-
ternal stimuli, the nervous system governs complicated commu-
nications across the peripheral and central nervous systems. Be-
cause the function of the nervous system is primarily determined

by the connections between functional neurons, a comprehen-
sive understanding of this system requires elucidation of the
wiring between different types of neurons by dissecting neuronal
communication. Spatial transcriptomics can provide important
information regarding the molecular states of cells, which can be
integrated with various physiological features by precise assign-
ment of individual cells (Figure 4).

5.1. Brain Transcriptomic Atlas

The brain is the most segmented and annotated organ according
to its spatial architecture. The brain is precisely divided into re-
gions or areas associated with specialized functions and connec-
tivity. However, as brain regions become more fragmented, the
accuracy of defining their entities becomes controversial.[111] Spa-
tial transcriptomic analysis on a series of coronal sections across
the whole brain provides new borders for region annotation de-
fined by molecular characteristics. The hierarchical clustering of
spatial transcriptomic data points is highly correlated with con-
ventional neuroanatomical annotation and provides novel spatial
borders to segment molecular subregion candidates.[112] To es-
tablish a single-cell spatial atlas with cell-type annotation, Zhang
et al.[113] profiled ≈300 000 cells in the primary motor cortex of
mouse brain using MERFISH with a selected gene panel de-
rived from the results from previous single-cell RNA sequencing
(scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq).
Manno et al.[38] demonstrated the potential to create a spatial at-
las of developing mouse embryos by integrating scRNA-seq data
with in situ sequencing of transcripts using HybISS applying a
deep-learning-based method.[88] STARmap PLUS established a
spatial molecular atlas with single-cell resolution by successful
segmentation from transcript annotation,[114] from which the im-
puted gene expression pattern of a brain section was found to be
comparable to the in situ hybridization (ISH) database of Allen
Mouse Brain Atlas.[115] STARmap PLUS also enables the study of
engineered recombinant adeno-associated virus (rAAV) tropism
across whole mouse brain regions by capturing transcripts pack-
aged in AAVs. Given that the mouse brain atlas is not merely an
architectural map of the brain but also contains various func-
tional annotations, integrating functionality with the molecular
atlas is noteworthy for further improvements. The Brain Initia-
tive Cell Census Network has initiated the integration of multiple
transcriptome data generated by different methods, samples, and
laboratories to construct a multimodal atlas of the primary motor
cortex while tracking the laminar distribution of diverse neuronal
types using MERFISH.[116] Allen Institute for Brain Science re-
cently announced the creation of an extensive spatial transcrip-
tomic atlas covering the entire adult mouse brain. This achieve-
ment was made possible by integrating data from scRNA-seq
analysis of 7 million cells and MERFISH analysis of 4 million
cells, resulting in a total of nearly 11 million cells analyzed.[41]

The resulting atlas is an unprecedented achievement that sheds
light on the spatial organization of individual cell types and val-
idates the role of transcription factors in determining cell type
through an integrated hierarchical classification of spatial tran-
scriptomics. Building a comprehensive reference atlas is a critical
endeavor that will facilitate the generation and validation of new
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Figure 4. Applications of spatial transcriptomics in neuroscience. The transcriptomic atlas is established by cell-type identification with the spatial context
of precisely compartmentalized brain structure. Transcriptome-based neuronal cell types can be further dissected by integrative studies employing tools
for functionality and connectivity investigations. Accurate neural classification will lead to circuit-level studies to investigate individual circuits to elucidate
the comprehensive function of the entire brain.

hypotheses as spatial transcriptomics continues to uncover novel
transcriptional relationships with functions and architectures.

5.2. Neural Classification

The classification of neuronal types can facilitate investigating
the comprehensive relationship between the structure and func-
tion of individual cells. Various criteria are applied to dissect neu-
rons for proper classification based on their morphology, physiol-
ogy, and molecular features.[117]scRNA-seq has been widely em-
ployed in the molecular profiling of neurons to identify specific
molecular characteristics that correlate with their physiology and
function.[118–123] Spatially resolved transcriptomics can provide
new insights for criteria to tabulate ambiguous cell types into dif-
ferent categories according to their origins.

Connectivity, another criterion for neuronal classification that
was merely accessible previously owing to the lack of effi-
cient methodologies,[117] can be analyzed through a spatially re-
solved transcriptomic investigation. In barcode analysis by se-
quencing (BARseq),[124] the anterograde tracing virus packaged
with random RNA barcodes was injected into the cortical area,
and the barcodes were sequenced by in situ sequencing using
BaristaSeq.[34] The single-cell projection pattern was identified
by matching RNA barcodes and barcode reads using bulk-RNA
sequencing in multiple projection areas. The gene expression
pattern from smFISH was integrated to identify the cell types
of projection-mapped neurons. BARseq2,[125] an improved ver-
sion of BARseq, allows multiplexed gene detection with padlock
probes and in situ sequencing, followed by mapping of projection
patterns to broad molecular profiles with single-cell resolution.

The landscape of isoform expression is modulated by alter-
native splicing as post-transcriptional regulation of gene expres-
sion, thereby contributing to the phenotype of individual cells.
Therefore, different isoforms can provide various criteria for sub-
dividing cell types identified by gene expression profiling. The
conjunction of high-throughput single-cell gene expression pro-
filing by 3′-end sequencing and full-length RNA-seq could sub-
divide clusters that were previously identified by RNA profiling
based on their isoform expression patterns. The gradient dis-
tribution of isoform landscape in the primary motor cortex of
the mouse brain was observed using MERFISH, with marker
genes correlated with isoform expression.[126] Joglekar et al.[127]

directly observed the spatial distribution of isoforms by long-read
sequencing of RNAs captured by 10X Genomics Visium.

5.3. Studying Neural Circuits

Neural circuits are composed of substantially intermingled neu-
ronal connections across the entire nervous system. Dissecting a
specific circuit to study the functions of individual neurons is a
fundamental approach to comprehending the entire system. The
functional connectivity of neural circuits is being explored with
developed genetic tools for dissecting neural circuits according to
their phenotypic properties.[128,129] For instance, in vivo calcium
imaging enables functional observation of neurons even within
freely moving animals.[130,131] Spatially resolved neuronal func-
tionality and transcriptomics integrate different modalities of
neuronal phenotypes to further dissect neuronal identities.[132,133]

Post-hoc molecular profiling of the recorded cells can be car-
ried out using IHCof ex vivo brain sections of the same ani-
mals, enabling the detection of marker genes to identify neuronal
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subtypes.[134–136] In this regard, rather than simply detecting a
few marker proteins by IHC, multiplexed FISH can further en-
hance the performance of molecular profiling by analyzing the
higher number of markers to classify neurons of interest accord-
ing to their expression patterns.[137–139] Bugeon et al.[140] devel-
oped combinatorial padlock-probe-amplified FISH (coppaFISH)
for multiplexed FISH to detect 72 genes in the primary visual cor-
tex of mouse brain for posthoc transcriptomic profiling after in
vivo calcium imaging during visual stimulation. This increased
number of detected transcripts enabled the precise classification
of individual cells based on the previous scRNA-seq transcrip-
tome. The dependency of neuronal responses to visual stimuli
according to the cortical state was related to the transcriptional
profile of cells.

Moffit et al.[25] characterized the molecular profiles of neu-
rons activated by social behavior using MERFISH. Represen-
tative marker genes for MERFISH analysis were selected after
scRNA-seq of the preoptic area, which is a subregion of the hy-
pothalamus, and MERFISH analyzed the spatial organization of
each cell type in this area. By integrating neuronal activities de-
rived from immediate early gene expression with cellular tran-
scriptome, the transcriptomic profile of behavior-related neurons
and their locations were identified. The analysis subdivided pre-
defined cell types into precise classes and provided anatomical
information for socially relevant neural circuits.

5.4. Pathology

Pathology of the neural system is extremely complex owing to
cellular heterogeneity and complex interactions among resident
cells. Spatially resolved transcriptomics offers new perspectives
on how these interactions influence the study of pathological
mechanisms. In mechanistic studies with animal models, spa-
tial transcriptomics can validate specific hypotheses of causal-
ity of diseases with spatial context[141–143] or directly character-
ize a new concept to find disease-related features from spatial
correlation.[144,145] Chen et al. is a representative study demon-
strating how to generate and validate new hypotheses concerning
correlations between genetic signatures and pathological struc-
tures related to Alzheimer’s disease. Novel genetic signatures for
Alzheimer’s disease were suggested by the identification of gene
network alterations in the periphery of 𝛽-amyloid plaques us-
ing low-resolution spatial transcriptomics and characterization
of cellular identity for cells possessing altered gene expression
using ISS.[146]

Studying pathology in the human brain requires precise target-
ing, as its physical scale generally exceeds the currently available
biochemical tools used for small animals, and these procedures
require pathologists who can distinguish between physiologically
normal and diseased regions within a specimen. This encour-
ages the application of spatial transcriptomics to clinical speci-
mens to characterize the biological features that can be discrim-
inated from a diseased partition of tissues compared to adjacent
healthy tissues. Candidate genes associated with hereditary amy-
otrophic lateral sclerosis can be identified by detecting cerebel-
lar granule cell layer-specific transcripts in H&E-stained sections
of post-mortem tissue specimens.[147] Kaufmann et al.[148] identi-
fied the T-cell subtype crossing the blood-brain barrier to colonize

the brain and cause autoimmune multiple sclerosis and observed
the residence of T-cells inside the brain during disease progres-
sion using spatial transcriptomics. The same group identified pu-
tative drug targets for progressive multiple sclerosis with inter-
actome analysis based on transcriptome distance derived from
spatial transcriptomics.[149]

5.5. Future Perspectives in Neuroscience Application

Spatial transcriptomics has impacted various fields of neuro-
science by providing additional spatial dimensions to other exist-
ing research modalities. As the application of spatial transcrip-
tomic technology in neuroscience matures, spatially resolved
transcriptome data will be further consolidated with separate an-
alytical modalities. Applying spatial transcriptomics to the in-
vestigation of the brain during different developmental stages
has enabled spatiotemporal tracking of transcriptomic changes
in specific developmental structures, allowing us to impute the
intermediate cellular and molecular profiles during neurodevel-
opment processes.[150] By integrating rich scRNA-seq data with
limited gene profiles generated by seqFISH, entire gene expres-
sion patterns were successfully inferred, and this provided addi-
tional gene profiles related to the organization of developmen-
tal processes, specifically those associated with the formation of
the midbrain-hindbrain boundary.[151] By integration of data from
spatial transcriptomics and imaging of dynamics of chromatin
structure, it has been suggested that chromatin condensation is
a predictive criterion for Alzheimer’s disease progression.[152] As
we found in these examples, spatial transcriptomics has the po-
tential to provide high-dimensional molecular profiling to con-
ventional neurodevelopmental and neuropathological investiga-
tions. Since neuroscience is a multidisciplinary field with various
tools available for research, the addition of spatial information us-
ing spatial transcriptomics is expected to dramatically expand the
boundaries of existing knowledge.

Spatial transcriptomics is still a new approach in neuro-
science research, particularly for clinical studies. By enabling
high-throughput molecular profiling with spatial contexts, it will
offer a unique opportunity to comprehend complex biological
systems composed of intricate cell-to-cell interactions. Addition-
ally, spatial transcriptomics holds promise as a valuable screen-
ing tool to enhance disease diagnosis accuracy, which will be fur-
ther discussed in the following section.

6. Application Note in Cancer Studies

Heterogeneity increases as cancer transitions from a benign to
malignant state. The increasing heterogeneity hinders the pre-
vention and treatment of cancer. Cellular components of the tu-
mor immune microenvironment (TIME) and communication
between cells in the TIME are associated with cancer progno-
sis and response to therapies.[153] Spatial transcriptomics can
help clinicians and scientists discover new cell types and co-
localization patterns, characterize the TIME, and monitor tumor
response to therapy (Figure 5).

By linking spatial transcriptomes with scRNA-seq data, new
cell types can be identified, and cellular interactions can be in-
ferred from cell-type co-localization patterns. In a study of human
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Figure 5. Applications of spatial transcriptomics in cancer research. Spatially resolved transcriptomics can be used to define the cell type compositions
and discover new cell–cell interactions of specific tumor ecosystems, profile and characterize these ecosystems by utilization and integration in multi-
modal/omics analyses, and help fuel the joint renewal of current histopathological standards to accommodate these new findings. (Figure created with
icons and redesigned templates provided by Biorender.com).

cutaneous squamous cell carcinoma (cSCC), researchers iden-
tified a specific cell type, tumor-specific keratinocytes (TSKs),
crowding the leading edge of the tumor and confirmed a sur-
rounding fibrovascular niche consisting of cancer-associated fi-
broblasts (CAFs) and endothelial cells.[154] This confirmation of
spatial transcriptomics colocalization was used to support in-
ferences on cell interaction drawn from scRNA-seq, and subse-
quently, TSKs were found to be a pillar of intercellular commu-
nication. Some immune cells were also found to possibly hin-
der effector lymphocytes from accessing the tumor. These dis-
coveries showcase the potential of spatial transcriptomics for dis-
covering targets for therapeutic intervention by immune con-
trol. Overall, the cell subpopulations constituting the cSCC tu-
mor and stroma, and interaction among their spatial niche could
be characterized. Another study reinforced previous knowledge
that epithelial-to-mesenchymal transition (EMT) and prolifera-
tion are inversely correlated—for example, an exit from the EMT
is required to enter proliferation, by reporting the cellular rela-
tionship of cells of the two states. Cell states related to the respec-
tive processes were segregated into their own distinct zones, the
regions being mutually exclusive.[155] In the case of pancreatic
neoplasms, spatial transcriptomics profiling directly confirmed
the initial annotations of pancreatic intraepithelial neoplasia con-
structed with scRNA-seq data.[156] Furthermore, receptor-ligand
analyses suggested the interaction of the T cell immunorecep-
tor with Ig and ITIM domains (TIGIT) receptor of lymphocytes
with Nectinligands, TIGIT being highly expressed in tumor cells.

The spatial results help to weigh in on the speculation that tumor
cells could exploit TIGIT-Nectininteraction to evade the immune
response.

Spatial transcriptomics is emerging and gradually gaining
recognition as an essential tool for sifting through the tumor mi-
croenvironment. A spatial transcriptome constructed from 21 tis-
sues progressing from non-tumor to ecotone, to tumor regions
of primary lung cancer revealed that the tumor capsule was in-
volved in transcriptome complexity, immune cell infiltrations,
and continuity of intratumor spatial clusters; intratumor archi-
tecture was supported by bidirectional ligand-receptor signaling
at the cluster perimeters; and PROM1+, CD47+ cancer stem cell
niches contributed to the remodeling of the tumor microenvi-
ronment and metastasis.[157] Hunter et al. described an “inter-
face” cell state located at the ecotone of tumor and normal tis-
sues, including the possibility that this new cell state induces
tumor invasion into surrounding tissues.[158] Although the se-
quencing resolution and depth of spatial transcriptomic data may
not be comparable to those of scRNA-seq data, sufficient spa-
tial data are preserved for linking and deconvoluting the spatial
transcriptomic data with scRNA-seq data. Analysis of spatial tran-
scriptome data can indicate specific transcriptomic signals orig-
inating from the location of cellular aggregation and enables ad-
ditional insights into cell types and interactions that may assist
TIME formation. This can help determine whether specific cell–
cell interactions are enhanced in segregated niches or separately
organized structures.[155,159,160]
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Spatial transcriptomic data along with scRNA-seq have be-
come routine procedures in exploring and characterizing tis-
sues, cell types, and diseases. Consequently, spatially resolved
multi-omics studies will be increased in cancer biology. A com-
bination of scRNA-seq, spatial transcriptomics, genomics, and
metabolomics was used to reveal spatially segregated transcrip-
tion patterns, which revealed distinct genomic alterations and
identified hypoxia as a driver for genomic instability.[160]

The inference of copy number alterations (CNAs) using spatial
transcriptomics is consistent with bulk whole-exome sequenc-
ing (WES) data, thereby reinforcing its practicality.[157] Distinct
clonal patterns of spatial CNAs are found near and within tu-
mors and could be used to distinguish tumors from normal and
transitional cell states. These clonal CNA patterns located in can-
cer drivers are not associated with immediately visible morpho-
logical transformation; therefore, they are strongly proposed as a
measure for early diagnosis of cancer.[161]

Novel transcripts, such as fusion transcripts and alternative
splicing variants, are frequently observed in various cancers. Spa-
tial transcriptomics fusion (STfusion)[162] can infer the existence
of fusion transcripts from spatial transcriptomic data. By apply-
ing this method to prostate cancer, cis-SAGe SLC45A3-ELK4 has
been detected mostly in physiologically altered, inflamed, or neo-
plastic areas. Long-read sequencing that enables the profiling of
full-length transcripts has been applied to spatial transcriptomics
and scRNA-seq.[163] Full-length spatial transcriptomics can be
used to explore alternative splicing events during tumorigenesis.

Recently, base-specific in situ sequencing (BaSISS) of muta-
tion branches that were obtained from whole genome sequenc-
ing was utilized to simultaneously track the cancer-specific so-
matic mutations arising in breast cancer.[164] Spatial transcrip-
tomics was integrated to generate maps that quantitate these ge-
netically distinct subclones. Genetically similar subclones were
found to exhibit similar co-localization patterns and histological
features regardless of their spatial vicinity, in the same way, dis-
tinct subclones localized with different groups of immune cells,
possibly mediating clone-specific immune interactions.

The discovery of new factors influencing tumorigenesis and
characterizing malignancy using spatial transcriptomics will
bring new diagnosis criteria and standards for cancer research.
As the niches of TIME, cell-type interactions, and cancer ex-
pression regions become unveiled, they deviate from tradition-
ally annotated regions of cancer.[165] The future of automating
the process of histopathology-based diagnosis is near, especially
with the advent of machine learning technology and artificial
intelligence.[166–170] These technology-based methods are trained
on pathologist-annotated histology slides and spatial transcrip-
tomics data, then are able to distinguish healthy and diseased ar-
eas of the tissue, infer gene expression levels to spatially char-
acterize tumor heterogeneity, and detect expression-supported
morphological patterns that are indistinguishable to the human
eye. The application of a deep learning method trained on whole
slide images to breast and lung cancer slides deduced a statisti-
cally significant link between high tumor heterogeneity and poor
survival.[167] A neural network-based method trained to relate his-
tological morphology to the underlying gene expressions was not
only able to generally match the manual assessments by pathol-
ogists but also provided more detailed interpretation, taking the
actual expression patterns into account.[168] These techniques can

detect and classify specific tumor subregions, streamlining the
laborious task of manual annotation. Additionally, they can be
quickly trained on large datasets and minimize potential errors
and variations that may arise from human annotation. These ad-
vantages will aid in making better decisions regarding the spe-
cific treatment type for matching specific disease stages or sub-
types. With the support of future research, existing histopatho-
logical diagnosis criteria may need to undergo minor to major
updates to accommodate the new findings presented by spatial
transcriptomics.

The use of spatial transcriptomics holds promise in cancer de-
tection and subtype classification, however at its current state is
in need of more case studies, data, and process standardization
before its use as a clinical classifier.[166,171] With more spatial can-
cer data acquired through movements such as the Human Tumor
Atlas Network launched by the US National Cancer Institute in
2018 to construct cellular, morphological, and molecular features
of progressing cancer, and with higher resolution, researchers
will be more equipped to identify the key genes and regulators in
the processes of mutation acquisition, factors differentiating hot
and cold tumors, and tumor invasion.[172] In summary, spatial
transcriptomics technology enables the dissection of tumor het-
erogeneity, and its ongoing developments will reshape the can-
cer research landscape and open up new possibilities for precise
prognosis and treatment of cancer.

7. Conclusion and Future Perspectives

Here, we have provided a review of the recent technical aspects
of spatial transcriptomics and related fields of application. Spa-
tial transcriptomic technologies are rapidly evolving. This review
provides historical background and practical examples in both
imaging- and NGS-based spatial transcriptomics.

Using spatial transcriptomics is challenging and the scale of
studies should be carefully considered. This sample scale is di-
rectly connected to the method of choice, and one may still strug-
gle to use imaging-based techniques for whole-brain slices. In-
stead, gross expression patterns at a voxel of 10–20 μm are prac-
tically available on NGS-based commercial platforms. To reduce
experimental cost and improve single-cell clustering quality, sam-
ples can be split into parts, one for non-spatial regular single-cell
RNA-seq and the other for the spatial version of the technique.
Computational analysis is key to investigating spatial informa-
tion, and established commercial platforms with modification
will soon be available for ease of use.

Spatial technologies are bringing new horizons in investigat-
ing epigenomes, chromosome accessibility, chromosomal struc-
tures, proteomes, CRISPR gene perturbation, lipid nanoparticles
for gene therapy and mRNA vaccine development, AAV serotype
optimization, and T-cell receptor (TCR) sequencing.

Recent reports have demonstrated the spatial version of assay
for transposase-accessible chromatin using sequencing (ATAC-
seq).[173–175] By combining RNA expression profiling, spatial in-
vestigation of chromosome accessibility can precisely define cell
types in neuroscience and cancer research. Updated protocols
have been reported for cleavage under targets and tagmentation
(CUT&Tag) methods optimized for investigating specific histone
mark distribution, and such methods for the spatial version are
expected to be multiplexed.[176–178] Epigenomic MERFISH also
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achieved spatial analysis of single-cell level epigenetic features
by in situ tagmentation followed by antibody-driven capturing of
epigenetic features.[179]

Cellular indexing of transcriptomes and epitopes (CITE-
seq)[180] and RNA expression and protein sequencing (REAP-
seq)[181] showed that it is possible to simultaneously analyze
single-cell transcriptome and proteome by employing DNA-
barcoded antibodies. NGS-based spatial transcriptomics takes
this a step further by incorporating antibody-derived tags during
the library generation, allowing for the analysis of spatial multi-
omics data. Spatial multiomics methods such as CITE-seq with
ST,[182] 10X Visium,[183] and DBiT-seq[184] have facilitated the so-
phisticated classification of cell types by integrating transcrip-
tome and proteome data, yielding insights into the spatial orga-
nization of these molecules in tissue.

Advances in clustered regularly interspaced short palindromic
repeats (CRISPR) technology have provided versatile tools for
genome editing and gene therapy.[185] Genome-wide CRISPR
knockout screens to cell models have helped identify im-
portant genes in pathogenic pathways.[186,187]Pooled CRISPR-
based screen with single-cell RNA-sequencing readouts (Perturb-
seq)[188–190] has been developed by combining CRISPR screen-
ing with single-cell sequencing methods and enables system-
atic investigation of the knock-out effect of individual genes at
the single-cell level. Additionally, Perturb-seq can explore high-
throughput intracellular and cell-extrinsic spatial features at
the single-cell level.[191] The recent spatial version of Perturb-
seq, Perturb-map, utilizes combinatorial protein barcoding for
a detailed spatial context of interactions between the “CRISPR-
perturbed” and surrounding cells. These toolkits will facilitate
research on genomic and functional aspects of model organisms
and organs with spatial molecular information on cell–cell inter-
actions.

Lipid nanoparticles (LNPs) are evolving for improved RNA-
based therapeutics[192] and gene-editing tools for delivery.[193] Bar-
coded LNPs have been utilized to assess heterogeneity in cellular
expression and its effect on LNP-mediated mRNA delivery.[194]

The spatial version of this technology may open a new era for
gene therapy and its efficacy assay with massive data to better
understand the process of LNP formulation and mRNA inserts.

AAV virus serotypes have been actively optimized for target-
specific gene therapy.[195,196] Organ and cell-type specificities have
been optimized by screening capsid proteins of AAV serotypes at
single-cell resolution.[197,198] Spatial and temporal information ac-
quired from spatial transcriptomics of optimized candidates with
AAV serotype barcodes can be employed, and by reading these
barcodes from each tissue and cell type, the efficiency of AAV in-
fection can be determined in detail, which should be useful in
further optimization.

Spatial transcriptomics and TCR sequencing are essential for
tracing and dissecting T-cell infiltration and their interactions in
metastatic cancer tissues.[45,199] A recent product from 10X Ge-
nomics allows simultaneous investigation of mRNA and TCR in-
formation from H&E-stained tissue slides.[200] High resolution
and coverage are crucial in understanding the tumor microenvi-
ronments and metastases; therefore, the sensitivity and coverage
of sequences need further improvement.

For clinical applications, spatial transcriptomics should be ef-
fective in clinical practice and sampling environments. Nucleic

acids in human tissue specimens are readily degraded prior to
cryopreservation. Certain clinical institutions, such as university
hospitals, have limited resources for deep freezing to preserve
nucleic acids from nuclease digestion. Moreover, histological di-
agnosis and research are based on FFPEsamples; therefore, next-
generation technologies should be effective in analyzing heav-
ily fixed samples. 10X Genomics has recently announced two
platforms for NGS-based and imaging-based spatial transcrip-
tomes for FFPE samples.[201] NanoString Technologies reported
the compatibility of their CosMx Spatial Molecular Imager (SMI)
platform with FFPE samples.[202] Based on these commercial
platforms, spatial transcriptomics can be more easily applied in
clinical research.

Finally, spatial information obtained from clinical samples
should yield new classes of biomarkers that are often underes-
timated because of the lack of appropriate investigative technolo-
gies. Therefore, seamlessly integrating multiple sources of tran-
scriptome data that may or may not include spatial or molecular
information is important. Computational efforts to analyze mas-
sive spatial transcriptomic data may help improve the success of
clinical applications for marker discovery and drug development.
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