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Self-Curable Synaptic Ferroelectric FET Arrays for
Neuromorphic Convolutional Neural Network

Wonjun Shin, Jiyong Im, Ryun-Han Koo, Jaehyeon Kim, Ki-Ryun Kwon, Dongseok Kwon,
Jae-Joon Kim, Jong-Ho Lee,* and Daewoong Kwon*

With the recently increasing prevalence of deep learning, both academia and
industry exhibit substantial interest in neuromorphic computing, which
mimics the functional and structural features of the human brain. To realize
neuromorphic computing, an energy-efficient and reliable artificial synapse
must be developed. In this study, the synaptic ferroelectric
field-effect-transistor (FeFET) array is fabricated as a component of a
neuromorphic convolutional neural network. Beyond the single transistor
level, the long-term potentiation and depression of synaptic weights are
achieved at the array level, and a successful program-inhibiting operation is
demonstrated in the synaptic array, achieving a learning accuracy of 79.84%
on the Canadian Institute for Advanced Research (CIFAR)-10 dataset.
Furthermore, an efficient self-curing method is proposed to improve the
endurance of the FeFET array by tenfold, utilizing the punch-through current
inherent to the device. Low-frequency noise spectroscopy is employed to
quantitatively evaluate the curing efficiency of the proposed self-curing
method. The results of this study provide a method to fabricate and operate
reliable synaptic FeFET arrays, thereby paving the way for further
development of ferroelectric-based neuromorphic computing.
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1. Introduction

Recent advances have allowed deep learn-
ing algorithms to outperform conventional
machine learning techniques in a wide
range of applications, including image
classification and speech recognition.[1–3]

Specifically, the convolutional neural net-
work (CNN) architecture which extracts
useful features from image using kernels
as filters, does not suffer from the bur-
den of input data engineering, resulting
in higher learning accuracy.[4,5] However,
CNNs based on conventional digital com-
puting systems have intrinsic drawbacks
owing to the physical separation between
processing and memory units.[6,7] The re-
sulting limited data transfer rate (i.e., von
Neumann bottleneck) incurs significant en-
ergy consumption and latency, which repre-
sent fundamental obstacles in the develop-
ment of artificial intelligence.

Inspired by the human brain, neuro-
morphic systems have been extensively
studied to overcome the von Neumann

bottleneck.[8–10] The neuromorphic hardware mimics the func-
tional and structural features of a biological neural system with
massive parallelism of neurons and synapses. Spikes from presy-
naptic neurons are transferred to postsynaptic neurons, with the
synaptic weight determining the relative strength of this transfer.
The plasticity of synapses whose weights can be modified dur-
ing learning and maintained over time enables a parallel func-
tion of learning and memory. Similarly, memory and process-
ing units are co-located in the neuromorphic hardware, allowing
information storage and processing to occur simultaneously.[8]

The synaptic device mimics the function of a biological synapse
by taking voltage input from the presynaptic neurons and emit-
ting the current output to the postsynaptic neurons. The conduc-
tance stored in the synaptic device controls the extent to which
the input voltage is amplified into the output current, and the
synaptic weight is updated according to the learning principles.
Throughout this process, vector-matrix-multiplication (VMM)
enables parallel data processing in the synaptic array, thereby
drastically reducing the power consumption of the neuromor-
phic hardware.[9]

As the neuromorphic system is primarily composed of synap-
tic devices, a significant amount of research effort has been put
into the development of such devices, most of which are based
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on two-terminal memristors.[11–13] Although the simple struc-
ture of two-terminal memristors enables their integration into
the system with a high density, the crossbar array structure ex-
hibits crosstalk and sneak current path problems.[14,15] A sneak
path carries unwanted current during the reading process, lead-
ing to extra energy consumption from unselected cells and de-
grading the update-read accuracy. To prevent the sneak path cur-
rent, an additional selector device is required, which inevitably
increases the size of the array and nullifies the primary benefit of
memristors.[16]

To circumvent the constraints of existing neuromorphic sys-
tems based on two-terminal memristors, three-terminal synap-
tic transistors have been developed.[17–20] These individually
programmable transistors eliminate crosstalk and sneak path
current between adjacent devices, enabling the weight up-
date process to be conducted in a selective and parallel man-
ner. In comparison to other types of three-terminal synaptic
transistors such as charge trap-based synapses,[17,18] hafnium-
oxide-based ferroelectric field-effect transistors (FeFETs) offer
the benefits of low program bias, quick switching speed,
high scalability, and complementary-metal-oxide-semiconductor
compatibility.[19,20] However, two significant challenges must be
resolved to successfully integrate FeFET into neuromorphic com-
puting as a synaptic device. First, as the synaptic weight is
updated iteratively during in situ training, the synaptic device
should handle multiple program operations. However, existing
FeFETs have poor endurance performance, with values of 104–
106 or lower.[21,22] Furthermore, prior studies were largely re-
stricted to single-device-level inquiries.[23,24] It is critical, however,
to examine how the characteristics of a single synaptic device
are reflected throughout an entire neuromorphic system. Con-
sidering these two aspects, it is necessary to establish a method
that enhances the durability of FeFETs and enables quantitative
device-to-system-level characterization.

The present study addresses the aforementioned issues by im-
proving the endurance of hafnium zirconium oxide (HZO) Fe-
FETs via a self-curing method and demonstrating the device-
to-system-level implementation of a synaptic FeFET array in a
neuromorphic system. First, synaptic behaviors of FeFETs are
demonstrated using the partial polarization of HZO. The weight
of a synaptic FeFET can be selectively updated using program-
inhibit operations, and each FeFET implements kernel weights
for convolution operations. The constructed synaptic FeFET ar-
ray yields an image learning accuracy of 79.84% on the Canadian
Institute for Advanced Research (CIFAR)-10 dataset. The degra-
dation of learning accuracy due to repetitive weight updating can
be fully recovered using the proposed self-curing method based
on punch-through current (Ipunch). Consequently, the results of
this study pave a promising avenue to enable reliable synaptic
FeFETs to be integrated into neuromorphic computing.

2. Results and Discussion

2.1. System Architecture

In machine learning algorithms for image recognition, feature
extraction from objects is a critical process that reduces the orig-
inal data’s dimensionality into a new space. Inspired by the hu-
man vision system, recently developed algorithms do not evaluate

entire images pixel-by-pixel for recognition; instead, they com-
pare only the extracted features with the learned memory, thereby
reducing the burden of work and energy consumption. A CNN is
a representative learning algorithm that performs feature extrac-
tion with high efficiency.[4] Inspired by the human visual cortex, a
CNN is comprised of a number of convolutional and pooling lay-
ers that are used to extract invariant features from input patterns.
Recent studies have reported that the CNN architecture yields
outstanding results in terms of learning accuracy and energy effi-
ciency compared to other types of learning algorithms. However,
when implementing a CNN using conventional von Neumann
architecture, the limited data transfer rate between the processor
and memory unit increases the energy consumption and process
latency.

The neuromorphic system can significantly improve the ef-
ficiency of a CNN by adopting VMM, which enables parallel
data processing in the synaptic array. The learning principle of
neuromorphic-based CNNs can be explained as follows: The in-
tensity of the pixels determines the magnitude of the presynap-
tic spikes (Vpre) emitted by the input neuron associated with a
pixel. The Vpres, which triggers synaptic devices and channel con-
ductance of the convolutional layer, is then added to an output
neuron. If the accumulated postsynaptic current level exceeds a
certain threshold, a postsynaptic spike (Vpost) is fired. According
to the correlation between the pre- and postsynaptic spikes, the
synaptic weight is adjusted to a certain analog state. The over-
all process is illustrated in Figure 1a,b. In this study, the three-
terminal HZO FeFET array was employed to emulate synaptic
behavior, as shown in Figure 1c,d. During in situ training, the
synaptic weights must be updated accurately and selectively over
multiple iterations. Two major requirements must therefore be
satisfied to successfully implement a FeFET as a synaptic device:
1) The multilevel synaptic weight should be selectively updated
to the targeted synaptic device (program) without interfering
with the untargeted device (inhibition). 2) High durability of the
synaptic device should be guaranteed for multiple program/erase
operations. However, most prior studies demonstrated the mul-
tilevel synaptic weight in a single device without considering the
program-inhibit in the synaptic array. In addition, conventional
FeFETs suffer from poor durability, and their endurance must be
improved.

2.2. Demonstration of Synaptic FeFETs From a Single Transistor
to the Array Level

We first demonstrate that the fabricated FeFET array success-
fully mimics the function of a biological synapse. A remnant po-
larization of ferroelectric material can be tuned by the electrical
bias, and partial polarization can be achieved by applying differ-
ent biases.[25–27] In this study, a multilevel conductance is real-
ized by utilizing the partial polarization of HZO. The ferroelec-
tricity of the HZO film is investigated using metal /ferroelectric
/insulator /semiconductor (MFIS) capacitance having the same
structure as the fabricated FeFET. The positive-up-negative-down
(PUND) approach is used to measure the polarization character-
istics of the HZO film. The corresponding measured current–
voltage curve of the HZO is shown in Figure S1a, Supporting
Information.
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Figure 1. a) CIFAR-10 dataset. b) Schematic of feature extraction in the convolutional neural network. The input neuron is connected to a pixel in the
image and emits Vpre, whose magnitude is defined by the pixel intensity. Then, the Vpres, which triggers synaptic devices comprising the convolutional
layer and corresponding channel conductance, are cumulatively added to an output neuron. When the accumulated postsynaptic current level exceeds a
given threshold value, one output neuron fires a Vpost. c) Schematic of biological neuron and synapse. d) Schematic of synaptic ferroelectric field-effect-
transistor array composed of word lines (WLs), bit lines (BLs), and source lines (SLs).

Likewise, Figure S1b, Supporting Information, depicts the po-
larization versus voltage curve with an increase in voltage sweep
range. The MFIS capacitance exhibits an increase in both positive
and negative remnant polarization with an increase in bias sweep
range, confirming partial polarization in the HZO film. Note that
the HZO film exhibits a 27.5 μC cm−2 and −26.7 μC cm−2 in the
sweep range from −6.5 V to + 6.5 V. Thus, partial polarization
successfully emulates synaptic behavior.

The effects of polarization switching on memory behaviors in a
single FeFET are subsequently investigated. The fabrication pro-
cess of the single FeFET is illustrated in Figure S2, Supporting
Information. The FeFET’s threshold voltage (Vth) can be mod-
ulated by applying bias to the gate, thereby changing the HZO
polarization. When the program pulse is applied to the gate, the
HZO is polarized to a Si direction, and the electron concentration
in the FET channel subsequently increases, thereby decreasing
Vth. Contrarily, when the erase pulse is applied to the gate, Vth
increases because polarization is induced to the TiN direction.
Figure S3a,b, Supporting Information, illustrates the erase and
program characteristics of the single FeFET, respectively. Note
that the FeFET’s switching speed far exceeds that of the previ-
ously reported ferroelectric thin-film transistor in the synaptic
array (10 ms).[28] In addition, the retention characteristics of the
single FeFET are investigated in both program and erase states.
As shown in Figure S4a, Supporting Information, the FeFET ex-
hibits excellent retention characteristics. Figure S4b, Supporting
Information, shows the corresponding 2Pr retention characteris-
tics of the FeFET. Note that retention characteristics were mea-
sured at 27 °C.

Accordingly, we investigate the synaptic characteristics of the
FeFET array. The CMOS-compatible synaptic FeFET array is fab-

ricated with dimensions of 12 × 24 (Figure 2a). Within the array,
the gate, source, and drain electrodes of the FeFETs can be ap-
proached via word lines (WLs), source lines (SLs), and bit lines
(BLs), respectively (Figure 2b). The SL and BL are in parallel,
with the WL being formed perpendicular to both. The inset rep-
resents a schematic of the unit FeFETs comprising the array. The
TEM image of the unit FeFET is illustrated in Figure 2c, and a
schematic of the fabricated synaptic array is presented in Fig-
ure 2d.

The switching properties of FeFETs are investigated by ap-
plying program (+ 4 V, 10 μs) and erase (−4 V, 100 μs) pulses.
Figure 2e illustrates the transfer characteristic (ID–VGS) distri-
bution of 25 synaptic FeFETs in the array following the program
and erase operations. These results demonstrate that the Vth of
each FeFET can be successfully tuned. Figure S5a, Supporting
Information, shows the corresponding Vth distribution after
program and erase operations. In the synaptic array, it is critical
to selectively program and erase each cell without affecting the
adjunct cells,[28,29] which necessitates the inhibit operations.
Five consecutive devices are selected to test the program-inhibit
operation. To program each selected device, the program pulse
(+ 4 V, 10 μs) is applied to the WL, while the inhibit pulse (+
2 V, 10 μs) is applied to the BL of the unselected device. The
inhibit pulse reduces the voltage difference between the WL and
channel of the unselected device, thereby preventing polarization
switching. Two cases of program-inhibit operations are tested in
the synaptic array. The bias condition for each case is noted in
Figure 2f. Figure 2g represents the probability of Vth distribution
in the synaptic array following parallel program/erase-inhibit
operations. The selected device exhibited an ≈0.6 V larger Vth
than the inhibited device in both cases, demonstrating excellent
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Figure 2. a) Top optic image of fabricated synaptic ferroelectric field-effect-transistor (FeFET) array with dimensions of 12 × 24. b) Enlarged optic image
of FeFET in Figure 1a. The source line (SL) and bit line (BL) are in parallel, with the word line (WL) being perpendicular to both. The inset represents a
gate stack schematic of the unit FeFETs comprising the array. c) TEM image of a unit FeFET. d) Schematic of synaptic FeFET array. e) Vth distribution of
25 synaptic FeFETs following program and erase operations. f) Program-inhibit bias scheme applied to the array. g) IDs (unit of nA) of FeFETs in synaptic
array following parallel program/inhibit operations.

program-inhibit performance. Figure S5b, Supporting Infor-
mation, shows the corresponding conductance mapping of the
synaptic FeFETs, exhibiting the program-inhibit operation.

The applicability of the fabricated synaptic array to neuromor-
phic computing is examined by testing the VMM. The VMM
algorithm, which is based on Ohm’s and Kirchhoff’s laws, can
be used to achieve parallel data processing in neuromorphic
computing. As synaptic devices can precisely adjust conduc-
tance states via analog conductance modulation, they are essen-
tial to ensure the accuracy of VMM. To evaluate the synaptic
array’s performance, a nine-layer visual geometry group (VGG-
9) network[30] is simulated using the CIFAR-10 dataset. This
VGG-9 network comprises six convolutional layers, three max-
pooling layers, and two fully-linked layers, wherein one max-
pooling layer is employed for each pair of convolutional layers.
All input CIFAR-10 images are 32 × 32 × 3 pixels in size, and
kernels with three weights are employed for the convolutional
layers. When CIFAR-10 pictures are processed via the first and
second convolutional layers, the feature maps are 32 × 32 × 32
and 32 × 32 × 64 pixels in size, respectively. Following the third
and fourth convolutional layer operations, 16 × 16 × 128 feature
maps are generated. Subsequently, the fifth and sixth convolu-
tional layer procedures are used to acquire feature maps with a
size of 8 × 8 × 256. All feature maps are connected to the fully
connected layers. Figure 3a illustrates a schematic of the VGG-9
network used in this study.

As the synaptic weight is a reflection of synaptic connectivity
between presynaptic and postsynaptic neurons, it must be selec-
tively updated during learning. To achieve this, an incremental

pulse scheme is used for the linear weight update, which ensures
a high learning accuracy.[31,32] The pulse amplitudes of potentia-
tion and depression are increased from 2.3 to 3.95 V in a 0.11 V
step, and from −2.2 to −4.1 V in a −0.14 V step, respectively. Note
that the pulse width is fixed to 10 μs. Figure 3b shows excellent
long-term potentiation/depression (LTP/LTD) characteristics of a
single FeFET in the array. Beyond the single transistor level, the
LTP/LTD characteristics must be selectively realized for accurate
learning in the synaptic array. To inhibit unselected synapses dur-
ing the weight update, the inhibit pulse (+ 2 V, 10 μs) is applied to
each unselected device. Figure 3c illustrates the LTP/LTD charac-
teristics of selected (C01, C03, and C05) and inhibited (C02 and C04)
FeFETs. Note that the locations of all five devices are shown in
Figure S6, Supporting Information. It is clearly observed that the
synaptic weights of the selected FeFETs are selectively updated
during learning, while those of the unselected FeFETs are inhib-
ited.

Based on the synaptic characteristics of FeFETs—including
LTP/LTD, selective weight updating, and Vth variation—the VGG-
9 network is simulated using the CIFAR-10 dataset. Figure 3d
represents a plot of the array‘s learning accuracy versus epoch.
The system exhibits an excellent overall learning accuracy of
79.21% on the CIFAR-10 dataset.

2.3. Self-Curable Synaptic FeFET

Although the fabricated synaptic FeFET array exhibits excellent
performance with a CNN, the degradation of LTP/LTD charac-
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Figure 3. a) Nine-layer visual geometry group network schematic. b) Long-term potentiation/depression (LTP/LTD) characteristics of selected and
inhibited ferroelectric field-effect-transistors (FeFETs) in the array. c) LTP/LTD characteristics of selected and inhibited FeFETs in the array. The program-
inhibit operation was successfully achieved at the array level. d) FeFET learning accuracy versus epoch.

teristics caused by repeated weight updates during in situ learn-
ing can severely degrade the learning accuracy, in a phenomenon
known as synaptic fatigue. Figure 4a-1 illustrates the DC dou-
ble sweep transfer characteristics (ID–VGS) of a single FeFET in
the pristine state, exhibiting a memory window of 1.01 V. How-
ever, this memory window is decreased to 0.64 V following 105

iterations of the potentiation/depression cycle, as shown in Fig-
ure 4a-2. The corresponding degradation of the 2Pr of the device
is shown in Figure S7, Supporting Information. This degradation
effect originates from cumulative defects at the gate oxide,[33–35]

wherein a large electric field is applied to the FE/DE interface
by the polarization of HZO, causing severe charge trapping and
defect generation. Accordingly, the synaptic characteristics of the
FeFET are distorted as a result. Synaptic fatigue is not unique to
the devices used in this study but inherent to the structural speci-
ficity of FeFETs. Consequently, most prior studies report an en-
durance between 104 and 106 or even lower.[21] It is therefore cru-
cial to improve the endurance of FeFETs irrespective of structure.

A self-curing method using electrothermal annealing (ETA)
may represent a means to improve the endurance of FeFETs to
synaptic fatigue. ETA utilizes the Joule heat (JH) generated dur-
ing transistor functions, including punch-through, gate-induced
drain leakage (GIDL), and body-bias curing.[36–39] As self-curing
methods utilize the internally generated JH of transistors, they do
not require bulky external equipment such as a furnace for global
annealing. Most importantly, because ETA can be applied even
after packaging, its curing effects can be applied selectively to a
damaged device even in the process of in situ training. We there-
fore propose a self-curing method based on Ipunch. As defects are
generated throughout the entire channel along the lateral dimen-
sion of gate oxide during weight updates, it is crucial to generate
the JH uniformly along the conductive channel. In this regard,

the GIDL and body-bias-induced current are not appropriate for
the curing as they locally generate the JH at the drain–channel
junction.

Figure 4a-3 shows the ID–VGS of the FeFET after the self-curing
is applied based on Ipunch. Note that VGS = 2.0 V and VDS = 6.5 V
are applied for 1 ms to induce punch-through. Figure 4b shows
the output characteristics (ID–VDS) of the FeFET measured at dif-
ferent VGS values. A rapid increase in ID is observed with an in-
crease in VDS due to the punch-through leakage. The VGS of 1.0 V
is too small to induce sufficient JH due to the small Ipunch. The
VGS of 3.0 V is unnecessary, considering the power consumption.
Therefore, the VGS of 2.0 V is selected. Figure 4c shows the cur-
ing efficiency of the Ipunch-based self-curing measured at different
VDS values. Note that the curing efficiency is defined as follows:

Curing Efficiency =
(

1 −
MWP − MWSC

MWP

)
× 100 (%) (1)

where MWP and MWSC denote the memory window of the pris-
tine and self-cured FeFETs. The curing efficiency is the largest at
VDS = 6.5 V, which generates the efficient JH to repair the damage
caused by the P/E cycling. An excessive VDS induces additional
damage to the device, resulting in a decrease in curing efficiency.
The JH caused by Ipunch is effectively transferred to defects inside
DE and FE due to the low thermal conductivity of the SiO2 com-
prising the SOI wafer (≈1 W mK−1). It is clearly observed that the
memory window of the FeFET almost fully recovers to its origi-
nal value (0.96 V). Figure 4d illustrates the ID–VGS of pristine,
fatigued, and self-cured FeFETs, demonstrating excellent curing
efficiency. The curing mechanism is schematically summarized
in Figure 4e. Figure S8, Supporting Information, shows pristine,
fatigued, and self-cured FeFETs under varying channel dimen-
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Figure 4. Transfer characteristics (ID–VGS) of a-1) pristine, a-2) fatigue, and a-3) self-cured FeFETs. b) Output characteristics (ID–VDS) of the FeFET
measured at different VGS values. c) Curing-efficiency of the Ipunch-based self-curing versus VDS. d) Combined ID–VGS of all ferroelectric field-effect
transistors (FeFETs) in (a). Schematic defect generation and curing mechanism of (c-1) pristine, (c-2) fatigue, and (c-3) self-cured FeFETs. Normalized
drain current power spectral density (SID/ID

2) and (gm/ID)2 of (c-1) pristine, (c-2) fatigue, and (c-3) self-cured FeFETs versus ID. e) Volume trap density
(NT) along the vertical distance (z) from the channel-gate oxide interface to gates of pristine, fatigue, and self-cured FeFETs.

sions. Note that curing efficiency decreases with an increase in
channel length, while exhibiting a weak dependence on chan-
nel width. This is because a larger bias is required to induce
the punch-through at a longer channel length. Here it is note-
worthy to mention that the power consumption for self-curing is
decreased with the scaling down of the channel length because
the lower VDS is required to induce the punch-through. There-
fore, the proposed self-curing method is more energy-efficient
in highly scaled-down FeFETs, which is beneficial for low-power
operation.

To quantitatively evaluate the proposed method’s curing effi-
ciency, LFN spectroscopy was adopted. LFN spectroscopy is an es-
tablished diagnostic tool to evaluate the reliability of semiconduc-
tor materials and devices, including FeFETs.[40–44] Unlike other
electrical measurements, such as current–voltage characteriza-
tion and the charge pumping method, LFN spectroscopy mea-
sures not only the defects at the gate oxide-channel interface but
also the bulk defects. In FETs, LFN is generated from the carrier

trapping/de-trapping processes to/from defects in the gate oxide,
and the defect density can be quantitatively characterized by mea-
suring the power spectral density (PSD) of all devices. This behav-
ior is reflected by the carrier number fluctuation (CNF) model,
which is described as[45,46]

SID

I2
D

=
(

gm

ID

)2 q2kBTNT𝜆

WLC2
oxf

(2)

where gm is transconductance, q is the electron charge, kB is the
Boltzmann constant, NT is the volume trap density, 𝜆 is the tun-
neling attenuation coefficient, Cox is the gate oxide capacitance
per unit area, and f is the frequency. Figure S9, Supporting In-
formation, shows the normalized ID PSD (SID/ID

2) of pristine,
fatigued, and self-cured FeFETs measured at ID = 200 nA. In
all cases, the FeFETs exhibit 1/f noise behavior, which increases
following P/E cycle-induced stress and decreases to its original
value after self-curing is applied. To verify whether the 1/f noise
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Figure 5. a) Bias scheme for enhancement of endurance against synaptic fatigue. b) Threshold voltages (Vth) of ferroelectric field-effect transistors
(FeFETs) at the program and erase states as functions of the number of program/erase (P/E) cycles. c) Learning accuracy of pristine, fatigued, and
self-cured FeFETs versus epoch.

of the FeFETs originates from the CNF, the SID/ID
2 sampled at

10 Hz and (gm/ID)2 are plotted as a function of ID, as shown in
Figure 4f. In all cases, the SID/ID

2 and (gm/ID)2 exhibit equivalent
behavior with an increase in ID, demonstrating that the 1/f noise
of the FeFETs originates from the CNF.

As the 1/f noise stems from the CNF, the trap density (NT)
along the vertical direction inside the gate oxide can be extracted
from the PSD according to the following equation:[47,48]

z = 𝜆 ln
(

1
2𝜋f 𝜏0

)
(3)

where z is the vertical distance from the channel/gate oxide in-
terface, and 𝜏0 is the time required for tunneling into a trap state
at the interface (z = 0). Figure 4g plots the NT in pristine, fa-
tigued, and self-cured FeFETs versus vertical depth along the gate
oxide. It is clearly shown that the increased NT following synap-
tic fatigue is reduced to its original value after the self-curing is
applied, quantitatively demonstrating the proposed method’s ex-
cellent curing efficiency.

2.4. Application of Self-Curing Method to Neuromorphic
Computing

The proposed self-curing method based on ETA significantly im-
proves the performance of synaptic FeFETs. Accordingly, we de-
signed an efficient bias scheme for the endurance enhancement
of said devices. As the number of weight updates during in situ
learning exceeds a certain threshold, the FeFET is permanently
damaged due to a collapse in the memory window. In the fab-
ricated FeFETs, this collapse is observed after 106 program/erase
(P/E) cycles. We also found that the device could not be recovered
following the collapse even using ETA. Accordingly, we apply ETA
to recover the damaged device prior to the collapse of the mem-
ory window. Figure 5a illustrates the proposed bias scheme for
self-curing, wherein ETA is applied following 105 P/E cycles. Fig-
ure 5b shows the Vth of a FeFET with and without an application
of the self-curing method. After 106 P/E cycles, the gate oxide ex-
hibits a significant increase in defects, impeding the ferroelectric
switching; and thus; collapsing the memory window. As shown in
Figure 4e, the bulk defects in HZO likewise increase with cycling,
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which cannot be fixed by the JH. It is therefore critical to recover
the device prior to the trap being formed. When the self-curing
method is applied to the device every 105 P/E cycles, the memory
window is maintained even after the threshold of 106 cycles. The
endurance to synaptic fatigue can thus be improved tenfold via
ETA self-curing. In addition, retention characteristics of the Fe-
FETs with and without the application of the self-curing method
are investigated. Figure S10, Supporting Information, shows the
retention characteristics of the device after the 105 times of P/E
cycles with and without the repeated self-curing method. A sig-
nificant improvement in retention characteristics is observed by
adopting the self-curing method.

Figure 5c presents a plot of learning accuracy versus epoch
of pristine (79.84%), fatigued (34.41%), and self-cured FeFETs
(78.13%). When a synaptic FeFET is fatigued, learning cannot
proceed. However, when the self-curing method is applied, it is
confirmed that the learning capacity is fully recovered. These re-
sults demonstrate the promising applicability of the self-curing
method to synaptic FeFETs.

The results presented in this study provide a comprehensive
investigation and demonstration of synaptic characteristics in
FeFET arrays. Despite the fact that a substantial volume of re-
search has previously been conducted on synaptic FeFETs, two
fundamental issues still remain: 1) Most prior studies solely ex-
amined synaptic properties at a single device level. 2) Existing
methods for enhancing the endurance of FeFETs to synaptic fa-
tigue rely mostly on the optimization of the fabrication process,
such as thermal annealing, which cannot be exploited during
in situ learning. By demonstrating the applicability of the self-
curing method to the synaptic FeFET array, the present study
represents a suitable solution to the aforementioned issues. Note
that the self-curing methods have been applied to various tran-
sistors, including FeFET.[49] However, this study proposed the
punch-through current-based self-curing method in the synaptic
FeFET array level for the first time. More importantly, the effects
of self-curing method on the synaptic behavior of the FeFETs and
CNN have not been reported. The novelty of the proposed method
is explained in Note S1, Supporting Information, in detail.

Here, we want to emphasize that the use of the proposed self-
curing method is not restricted to the FeFETs utilized in this
study. As punch-through can be induced in FETs with source and
drain junctions, the proposed curing method can be applied to
all FeFETs by optimizing bias conditions. Therefore, we believe
that implementing the proposed self-curing method will be a sig-
nificant breakthrough in the ferroelectric-based neuromorphic
system by solving the most crucial obstacle FeFETs experience,
which is limited cycling endurance.

3. Conclusion

We constructed a synaptic FeFET array based on HZO and
demonstrated its applicability to neuromorphic computing. By
utilizing the partial polarization of HZO film, the multilevel con-
ductance of synaptic weights was achieved. The program-inhibit
operation was also successfully realized at the array level, selec-
tively programming the targeted synapses. Based on the LTP/LTD
characteristics, CNN performance was evaluated on the CIFAR-
10 dataset, wherein the fabricated synaptic FeFETs exhibited an
excellent learning accuracy of 79.84%. Furthermore, a self-curing

method based on Ipunch was employed to improve the endurance
of FeFET to synaptic fatigue owing to program/erase cycles by a
factor of 10. The proposed method’s excellent curing efficiency
was quantitatively evaluated using LFN spectroscopy. The results
obtained in this study indicate the potential of synaptic FeFETs
to be successfully adopted into neuromorphic computing.

4. Experimental Section
Fabrication Process of FeFETs: The FeFETs were fabricated on a lowly-

doped p-type silicon-on-insulator (SOI) wafer with a device silicon thick-
ness of 100 nm (Figure S3a, Supporting Information). The wafer was
cleaned using an SPM solution (H2SO4: H2O2 = 4: 1), SC-1 solution
(NH4OH: H2O2: H2O = 1: 1: 5), SC-2 solution (HCl: H2O2: H2O = 1:
1: 5), and diluted HF solution (HF: H2O = 1: 100) after active patterning
(Figure S3b, Supporting Information). Next, the dielectric (SiO2) and fer-
roelectric (HZO) layers were deposited via ALD (Figure S3c, Supporting
Information). Note that the deposition cycles of HZO film comprise two
cycles of HfO2 and one cycle of ZrO2. The cycles were repeated 23 times,
and the HfO2 cycle was repeated two additional times to form a 6.2 nm
HZO. A 1.0 nm layer of SiO2 and 6.2 nm layer of HZO were formed as the
dielectric and ferroelectric layers, respectively. Subsequently, 100 nm TiN
was sputtered (Figure S3d, Supporting Information) and patterned for a
gate metal and hard mask for implantation (Figure S3e, Supporting In-
formation). Phosphorus ions were implanted on the source/drain region
with a dose of 1015 cm−2 and energy of 10 KeV (Figure S3f, Supporting
Information). Post-metal annealing was performed using RTA at 500 °C
for 30 s in N2 ambient to crystallize HZO film and activate dopants. Last,
high-pressure annealing (HPA) was conducted to improve the ferroelec-
tricity of FeFETs. HPA was maintained at 400 °C in the forming gas ambient
conditions (H2: 4% and N2: 96%) for 30 m.

Electrical Measurement: The ferroelectricity of FeFETs was investigated
using a parameter analyzer (Keithley 4200-SCS) and current–voltage mod-
ule (4225-PMU). The P–V curves were measured via the PUND method in
conjunction with a time-transient measurement using a triangular pulse
with a 2.5 kHz frequency. A semiconductor parameter analyzer (B1500A),
low-noise current amplifier (SR570), and signal analyzer (35670A) were
used to measure the PSD of the constructed FTJs. B1500A was used to
supply voltage to the top gate. The output current was fed to SR570, which
converted the current fluctuation into a voltage fluctuation. Last, 35670A
transformed the SR570 dynamic signal into the PSD.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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