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ABSTRACT This study aims to improve the performance of voice spoofing attack detection through self-
supervised pre-training. Supervised learning needs appropriate input variables and corresponding labels for
constructing the machine learning models that are to be applied. It is necessary to secure a large number of
labeled datasets to improve the performance of supervised learning processes. However, labeling requires
substantial inputs of time and effort. One of the methods for managing this requirement is self-supervised
learning, which uses pseudo-labeling without the necessity for substantial human input. This study experi-
mented with contrastive learning, a well-performing self-supervised learning approach, to construct a voice
spoofing detection model. We applied MoCo’s dynamic dictionary, SimCLR’s symmetric loss, and COLA’s
bilinear similarity in our contrastive learning framework. Our model was trained using VoxCeleb data and
voice data extracted from YouTube videos. Our self-supervised model improved the performance of the
baseline model from 6.93% to 5.26% for a logical access (LA) scenario and improved the performance of
the baseline model from 0.60% to 0.40% for a physical access (PA) scenario. In the case of PA, the best
performance was achieved when random crop augmentation was applied, and in the case of LA, the best
performance was obtained when random crop and random shifting augmentations were considered.

INDEX TERMS Spoofing detection, self-supervised learning, contrastive learning.

I. INTRODUCTION
In general, the performance of a machine learning model is
enhanced by increasing the number of data used in the learn-
ing process. This is especially true for deep learning com-
pared to other traditional machine learning models [1]. How-
ever, it is often not easy to procure a large amount of labeled
data in a supervised learning situation because of labeling
costs. Therefore, it is common to encounter semi-supervised
learning situations where only some of the data are labeled.
A self-supervised learning approach, that learns general fea-
ture representation using pseudo-labeling, is widely used to
handle semi-supervised learning [2], [3]. Contrastive learn-
ing is one of the best-performing self-supervised learning
approaches and we refer to [4], [5], [6] as references. In this
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study, we examined the performance of voice spoofing detec-
tion models using the latest contrastive learning frameworks.

A. VOICE SPOOFING ATTACK
Voice assistants have been applied for performing various
tasks, such as schedule management, home appliance control,
and financial transactions, via voice commands [7]. With the
rapid increase in voice assistant applicationmarket size, inter-
est in speaker recognition technology that allows voice assis-
tants to respond only to registered voices has increased [8].
Speaker recognition is a function that identifies a person from
a voice pattern, and there are two aspects: speaker identifica-
tion and speaker verification. Speaker identification selects
a specific speaker by finding the voice most similar to the
input voice among multiple candidates registered in the voice
assistant’s database [9]. It is possible for the speaker identi-
fication function to erroneously characterize an unregistered
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voice as the voice of one of the registered candidates. Speaker
verification uses technology to determine whether the input
voice matches the voice registered in the voice assistant and
supplements the speaker identification function [10].

Attempts to defeat speaker verification through voice
spoofing attacks threaten the security of voice assistants.
Voice spoofing attacks try to deceive the speaker verification
system by simulating the voice registered in the voice assis-
tant using the followingmethods: text-to-speech (TTS), voice
conversion (VC), and replay spoofing attacks. Figure 1 illus-
trates the two scenarios in detecting voice spoofing attacks.
The logical access (LA) attack detection scenario detects TTS
and VC voices, and the physical access (PA) attack detection
scenario detects replay spoofing attacks [11].

Deep learning models have been receiving increasing
attention in voice spoofing attack detection. For example,
the Automatic Speaker Verification Spoofing and Counter-
measures (ASVspoof) challenge has been held every two
years, starting in 2015, promoting the development of coun-
termeasures against voice spoofing attacks on speaker ver-
ification systems [11], [12], [13]. In the 2017 competition,
only 5 teams out of the top 10 considered deep learning
models, but in the 2019 competition, 8 teams out of the top
10 used deep learning models. Moreover, the top 5 teams in
the 2019 challenge all used deep learning models. As a result
of the challenge, the constant-Q transform (CQT) feature [14]
has been proven to work well in the deep learning model to
distinguish voice spoofing attacks, and it has been widely
used together with the short-time Fourier transform (STFT).
Among the deep learningmodels, the light convolutional neu-
ral network (Light CNN) model [15] ranked first in 2017 and
second in 2019. It has been established that the Max Feature
Map (MFM) activation function of the model works well in
detecting forgery attacks [16], [17]. In addition to Light CNN,
various ResNet-based deep learning models have appeared.
In particular, with ResMax (for ‘Residual network with Max
Feature Map’) [18], the model showed high levels of perfor-
mance in the form of equal error rates (EERs) of 2.19% for the
LA attack set and 0.37% for the PA attack set, respectively,
in the ASVspoof 2019 competition. Reference [18] used a
model that considers the MFM activation function in the
residual block.

B. SELF-SUPERVISED LEARNING
In supervised learning, all items in the dataset have asso-
ciated labels, and both input data and labels are critical at
the stage of the training process. A large number of labeled
data is an essential prerequisite to enhance the performance
of a supervised learning procedure. However, the labeling
process requires substantial time and human effort. In gen-
eral, the labeling cost increases linearly with the size of the
dataset, while the improvement in model performance has
a sublinear relation to the size of the dataset [3]. Various
methods, such as transfer learning, semi-supervised learn-
ing, and self-supervised learning, have been proposed to

reduce the labeling cost via relatively inexpensive unlabeled
data.

Self-supervised learning, like unsupervised learning, does
not use predetermined labels [2]. Rather, learning occurs
through unlabeled data by defining a new pretext task that
is used to pre-train a model using an automatically gener-
ated pseudo label. The pre-trained network is subsequently
transferred to the primary model for the execution of the
downstream task. By letting the neural network learn a
pretext task using many unlabeled data, the model can
improve our understanding of the dataset itself. In this study,
we achieved enhanced classification performance by per-
forming pre-training as a pretext task through self-supervised
learning and subsequently transferring the results from the
learning to the execution of a downstream task.

C. CONTRASTIVE LEARNING
Contrastive learning is a self-supervised learning algorithm
that has enjoyed much attention recently [4], [19], [20], [21],
[22], [23], [24], showing excellent performance in ImageNet.
Existing self-supervised learning methods utilize data aug-
mentation techniques, such as rotation [25], colorization [26],
jigsaw [27], and the prediction of relative positions [28]. Self-
supervised learning trains a model so that there is a high
similarity between an image and its transformation. There-
fore, feature representation resulting from the self-supervised
training of many image data would capture the traits of a
diverse range of essential image features.

Various studies on contrast learning were conducted quite
recently, including MoCo [19], [20], SimCLR [21], [22], and
BYOL [4]. The main aim of contrast learning in this context
is to learn whether two input images are similar or dissim-
ilar. MoCo and SimCLR use similar methods for applying
different techniques of data augmentation to a single image.
This approach embodies a learningmethod that generates two
deformed images by applying different random augmentation
techniques to one image. Through the learning process, the
model is trained to assign a higher degree of similarity to
the augmented images generated from the same image source
and a lower degree of similarity to the augmented images
generated from different images.

D. CONTRASTIVE LEARNING FOR AUDIO DATA
The use of contrastive learning has been explored in vari-
ous recent studies. Contrastive Predictive Coding (CPC) [6]
applies a method that predicts the representations of future
observations from those of past ones. It learns useful rep-
resentations in four domains of application: speech, images,
natural language, and reinforcement learning. CPC2 [29]
is a modified version of CPC based on speech. It also
studied the performance of combinations of augmenta-
tions. Various studies benchmarked SimCLR and MoCo
and applied them to speech datasets [30], [31], [32], [33].
COLA [30] is a self-supervised pre-training approach for
learning a general-purpose representation of audio input.
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FIGURE 1. Processes involved in detecting voice spoofing attacks, for logical access and physical access, respectively.

After pre-training on the large-scale dataset AudioSet [34],
a pre-trained model was tested on nine different tasks ranging
from speaker identification to music recognition. CLAR [31]
is a modified version of SimCLR applied to audio datasets
that include speech data. Speech SimCLR [32] is another
modified version of SimCLR using speech data, and it applies
augmentation to raw speech and the associated spectro-
grams. The MoCo speaker embedding system [33] modified
MoCo used for speaker verification. Similarly, as in Speech
SimCLR, this method applies augmentation to raw speech
and the associated spectrograms. The wav2vec 2.0 [35]
paper proposes a self-supervised learning method that learns
data representations from a large amount of speech data.
HuBERT [36] approach uses offline clustering to provide
aligned target labels for a prediction loss similar to that
of BERT. HuBERT focuses on consistency of unsupervised
clustering rather than the quality of assigned labels. By apply-
ing the prediction loss over masked regions only, the model
learns a combined acoustic and language model over contin-
uous inputs

E. EXPERIMENTAL CASE STUDY OF CONTRASTIVE
LEARNING FOR VOICE SPOOFING DETECTION
In this study, we investigated the effect of pre-training based
on contrastive learning on voice spoofing attack detection.
For training, we used two features, STFT and CQT. We used
ResMax models that had displayed good performance levels
in the ASVspoof challenge as a base model [18]. The pro-
posed method applies the data augmentation technique and
has the following characteristics:

• MoCo’s dynamic dictionary is considered to achieve
relatively good performance even with small batch sizes.
Since SimCLR creates negative pairs in one mini-batch
(the size of the negative pairs depends on the size
of the mini-batch, N ), SimCLR requires a large batch

size for efficient performance. MoCo relieves the Sim-
CLR’s problem that requires large batch sizes by using
a dynamic dictionary to generate negative pairs. There-
fore, the proposed model considered Moco’s dynamic
dictionary to ensure that experiments are feasible with
small batch sizes. In our experimental study, the pro-
posed outperformed the baseline model. EERs reduced
from 6.93% to 6.23% for the LA scenario and from
0.60% to 0.47% for the PA scenario.

• The symmetric loss of SimCLR and BYOL is consid-
ered. The symmetric loss re-calculates loss by changing
the original loss’s query and key, and the model uses
the average of the two resulting losses. In our study, the
proposed model showed better performance in EERs.
EERs reduced from 6.23% to 6.08% for the LA scenario
and from 0.47% to 0.45% for the PA scenario.

• COLA’s bilinear similarity is applied to learn weights for
each query and key. The performance levels of 6.08% for
the LA scenario and 0.45% for the PA scenario achieved
in the preceding experiment were further improved from
6.08% to 5.92% for the LA scenario and from 0.45% to
0.40% for the PA scenario.

• Random crop and noise addition are used, which are
commonly used augmentation techniques in existing
studies of contrast learning with audio data. We experi-
mented with center shifting, dynamic range change, and
speed change. The combination of random crop, additive
noise, and center shifting improved the performance in
the LA scenario from 5.92% to 5.26%.

II. METHODS
A. SimCLR
SimCLR [21] is a framework for contrastive learning based
on data augmentation. Say we have N image samples in a
given training batch (x1, · · · , xN ), two transformed images
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x̃i,1 and x̃i,2 are generated from each image xi, resulting 2N
transformed images in one batch. In 2N number of images x̃i,1
have one positive pair x̃i,2, generated from the same source of
image xi, and other images are negative images.
The images x̃i,j, i ∈ {1, · · · ,N }, j ∈ {1, 2} are passed

through the encoder f (·) to obtain fixed-size image repre-
sentations hi,j. The representations hi,j = f (x̃i,j) are passed
through the projection head g(·), which is a nonlinear net-
work, to obtain zk = g(f (x̃i,j)), k = 2(i− 1)+ j. Here, f (·) is
a base encoder, for example, we can use ResNet. A projector
header g(·) can be a simple multi-layer perceptron.

The similarity between zi, and zj, i, j ∈ {1, · · · , 2N } is
calculated using cosine similarity:

si,j =
zTi zj

τ∥zi∥∥zj∥
,

where the quantity τ is a temperature parameter and controls
the cosine similarity ranging from −1 to 1.
SimCLR uses a contrastive loss measure based on

InfoNCE [6]. For the positive pair of zi and zj, the cross
entropy can be obtained by taking the negative logarithm of
the softmax output:

ℓ(i, j) = −log
exp(si,j)∑2N

k=1 1[k ̸=i]exp(si,k )
.

When the InfoNCE loss is calculated for the same two
image pairs, the loss varies depending on the order of the
two input images. Therefore, the cross entropy is calculated
twice by exchanging zi and zj. The average of the two cross
entropies produces the symmetric loss for all data pairs:

L =
1
N

N∑
n=1

[ℓ(2n− 1, 2n)+ ℓ(2n, 2n− 1)]. (1)

The quantity L is a function of the weights of the encoder and
projection heads. The SimCLR model is trained to minimize
the symmetric loss L with respect to the weights of the
encoder and projection heads.

B. MoCo
SimCLR generates negative pairs within a mini-batch, and a
large batch size is required for a high level of performance
(because the number of the negative pairs depends on the
size N of the mini-batch). However, MoCo [19] obviates the
need for a large batch size by using a dynamic dictionary to
generate negative images.

The dynamic dictionary is maintained in a queue of con-
stant size (K ), greater than the batch size (N ). In the dictio-
nary, at the end of each batch, the key encoded by the current
batch’s momentum encoder is entered into the queue, and the
oldest key is output from the queue. Thus, K vectors in the
dynamic dictionary become negative pairs in the next batch.

The query and the key are representations created from the
given data by transforming an image among the input data.
The key works as an anchor that establishes the criterion
for a positive or negative assignment of images. The query

generated from the same image becomes the positive pair of
the key, while the queries generated from different images
become the negative pairs of the key.

Starting with one particular image x, two transformed
images x̃q and x̃k are generated by applying different random
augmentation techniques. The query q is generated by passing
x̃q through the encoder fq(·) and the key k+ is generated by
passing x̃q through the momentum encoder fk (·). The encoder
and momentum encoder share the same model architecture
such as ResNet, but the weight parameters are different. The
key k+ becomes the only positive pair of q, and the keys
(k1, k2, · · · , kK ) stored in the dynamic dictionary constitute
the negative pairs of q. That is, one positive pair and K nega-
tive pairs are generated from the original image.

The similarity between the query qi, i ∈ {1, · · · ,N } and
the key ki,j, j ∈ {+, 1, 2, · · · ,K } is calculated using cosine
similarity and the range of similarity is adjusted using the
temperature parameter:

si,j =
qTi ki,j

τ∥qi∥∥ki,j∥
.

The cross entropy is calculated in accordance with the
infoNCE framework:

L =
1
N

N∑
i=1

−log
exp(si,+)∑K
j=1 exp(si,j)

.

At the end of each batch, the encoder is updated to
minimize this cross entropy. The weight parameters of the
momentum encoder are updated with a certain momentum
from the previous weights of the momentum encoder. The
procedure reduces the imbalance between the encoder and the
momentum encoder.

C. COLA
COLA [30] is an approach that applies contrast learning to
audio data by referring to SimCLR, MoCo, and CURL [37].
COLA uses bilinear similarity to improve the model’s perfor-
mance.

Similar to SimCLR, COLA generates audio features x̃i,j,
i ∈ {1, · · · ,N }, j ∈ {1, 2} from transformed audio of the
original audio xi in one batch of size N . Audio features x̃i,j
pass through the encoder f (·) and the projection head g(·), and
then generate zk = g(f (x̃i,j)), k = 2(i−1)+j. COLA’s bilinear
similarity between zk and zl , k, l ∈ {1, · · · , 2N }, is calculated
as follows:

sk,l = zTkWzl .

The quantity W is a weight matrix representing the corre-
lation between each element of zk and zl . Subsequently, the
parameters are updated through the training process.

III. PROPOSED MODEL
The overall process is illustrated in Figure 2. The processing
of each batch is divided into four parts: (i) Two audio fea-
tures are generated by applying different data augmentation
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techniques to each audio sample in the batch and generating
the audio features by applying Short-Time Fourier Transform
(STFT) or a constant-Q-transform (CQT). Let’s define them
as x̃q and x̃+. And x̃+ is a positive pair of x̃q. (ii) One of the
two audio features generated from each audio sample passes
through the encoder, and the other passes through themomen-
tum encoder to obtain the representation of a fixed size
(fq(x̃q), and fk (x̃+)). (iii) Representations generated through
the encoder and themomentum encoder both pass through the
projection head, respectively, and generate queries and keys
(q = g(fq(x̃q)), and k+ = g(fk (x̃+))). (iv) The contrastive loss
is obtained by calculating the similarity between the query
and the keys in the dynamic dictionary.

A positive pair is generated by applying two different aug-
mentation techniques to one audio sample in a batch of size
N . Additive noise, dynamic range change, center shifting,
random crop, and speed change are used as augmentation
techniques. The quantities x̃q and x̃+ are 2D spectrogram
features generated by STFT or CQT from augmented audio
signals.

One feature x̃q is passed through the encoder fq(·), and
the other x̃+ is passed through the momentum encoder fk (·),
to obtain the fixed size representations hq = fq(x̃q) and
h+k = fk (x̃+). The encoder and the momentum encoder have
the same model structure as ResMax, but the weight of the
momentum encoder is not updated through learning.

The expressions passed through the encoder and the
momentum encoder, respectively, and then, subsequently
passed through the same projection head g(·) to generate
the query q = g(fq(x̃q)) and the key k+ = g(f +k (x̃+)).
A study using SimCLRv2 [22] found that deep projection
heads improve learning performance. Therefore, we consider
a three-layer non-linear network for the projection head in
our model. as described in Figure 2. The query q becomes
an anchor that forms the criterion for determining positive
and negative values, whereas the key k+ becomes the only
positive pair of the query q. We use the dynamic dictio-
nary queue of MoCo to generate negative pairs. The keys
k1, k2, · · · , kK in the dynamic dictionary become negative
pairs of the query q. That is, one positive pair and K negative
pairs are considered for each audio feature.

The bilinear similarity of COLA is used to calculate the
contrastive loss. The bilinear similarity between query qi, i ∈
{1, · · · ,N } and key kij, j ∈ {+, 1, 2, · · · ,K } is calculated as
follows:

si,j = qTi Wkij.

The quantity W is a weight matrix representing the corre-
lations among all the elements of qi and kij. This matrix is
updated through learning.

We use the infoNCE loss [6] to calculate the contrastive
loss. We calculated the cross entropy by taking the negative
logarithm of the softmax activation as follows:

ℓi = −log
exp(qTi Wki+)∑K
j=1 exp(q

T
i Wkij)

. (2)

We use SimCLR’s symmetric loss in our model.
Equation (3) is a combination of (1) and (2). By changing the
query qi and the key ki+, the matching loss is re-calculated,
and the average of the two losses is obtained:

L =
1
2N

N∑
i=1

[
−log

exp(qTi Wki+)∑K
j=1 exp(q

T
i Wkij)

−log
exp(kTi+Wqi)∑K
j=1 exp(k

T
i+Wkij)

]
. (3)

At the end of each batch, the 2N keys generated from the
current batch are input to the dynamic dictionary and the
oldest 2N keys are out from the dynamic dictionary.
The dynamic dictionary maintains a queue of constant size
K greater than twice the batch size, 2N , which is used as a
negative pair in the next batch.

The encoder parameters are updated with the aim of mini-
mizing the cross entropy at the end of each batch. Represent-
ing the encoder parameter by 2q and the momentum encoder
parameter by 2k , we update the parameter 2k as follows:

2k ←− m2k + (1− m)2q,

where the quantity m ∈ [0, 1) is called a momentum coeffi-
cient. This reduces the imbalance between the encoder and
the momentum encoder.

A. ENCODER AND MOMENTUM ENCODER
ResMax [18] is used as the encoder and momentum encoder.
ResMax uses the Max Feautre Map (MFM) layer of Light
CNN (LCNN) [15] and the skip connection of ResNet. The
MFM function divides the channel into two equal halves and
chooses the largest of the two values in the same position.
ThisMFM activation worked well in spoofing detectionmod-
els, LCNN based models ranked 1st and 2nd in the ASVspoof
2017 and 2019 competitions [16], [17]. A schematic rep-
resentation of the action of the MFM function is shown
in Figure 3(a).
The structure of ResMax block and ResMax model archi-

tecture is illustrated in Figure 3(b) and Figure 3(c). The
ResMax block adds the original input as a skip connection
to one or two convolution layers with MFM activation. The
output size and the number of parameters can be reduced by
using the 2 × 2 max pooling layer in the ResMax block.
ResMax model architecture consists of 9 ResMax blocks,
a global average pooling layer, a dropout layer, and a fully
connected layer with a softmax function. The ResMax block
is described by four parameters f , k , l, and m. The parameter
f represents the number of filters in the convolution layer,
and k represents the kernel size (k, k) of the first convolution
layer in the ResMax bloc. When l = 1, the ResMax block
has one more convolution layer followed by MFM activation
with (1, 1) kernel, and when l = 0, it has only one convo-
lution layer followed by MFM activation. When m = 1, the
ResMax block has the maximum pooling layer after the skip
connection. Both l and m are binary input parameters that
have values of 0 or 1.
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FIGURE 2. Self-supervised learning model architecture.

FIGURE 3. Residual network with the Max Feature Map (MFM) function: (a) MFM function, (b) ResMax block, (c) ResMax model architecture.

IV. EXPERIMENTS
A. DATASETS
VoxCeleb [38] was used for pre-training. VoxCeleb is an
audiovisual dataset that consists of voice clips (each clip
being at least 3 seconds long) obtained from interviews with
celebrities that have been uploaded to YouTube. The data set
includes 153,416 utterances of 1,251 speakers extracted from
22,496 videos.

We used the ASVspoof 2019 dataset to detect voice spoof-
ing attacks [11]. ASVspoof 2019 LA (for Logical Access)
is used to detect TTS and VC attacks. ASVspoof 2019 LA
consists of training, development, and evaluation datasets
of 25,380 (2,580 bonafide, 22,800 spoof), 24,844 (2,548
bonafide, 22,296 spoof), and 71,237 utterances, respectively.
ASVspoof 2019 PA (for Physical Access) is used to detect
replay spoofing attacks. ASVspoof 2019 PA consists of
training, development, and evaluation datasets of 54,000
(5,400 bonafide, 48,600 spoof), 29,700 (5,400 bonafide,
24,300 spoof), and 137,457 utterances, respectively.

B. DATA AUGMENTATION
A random crop was a widely used option in all our contrastive
learning models, and one or two following further augmen-
tation techniques, such as additive noise, center shifting,
dynamic range change, and speed change, were additionally
considered. The function of each augmentation technique is
briefly summarized as follows:
• Random Crop: Randomly cuts the original audio into a
second long audio file.

• Additive Noise: Adds white noise with a normal
distribution. The maximum amplitude of the added
white noise is selected as either 0.001, 0.003,
or 0.005 times the maximum amplitude of the original
audio.

• Center Shifting: Randomly adds a shifting constant to
the original audio. A shifting constant is taken from
a uniform distribution with parameter (−0.5k, 0.5k),
where k is the maximum amplitude of the original
audio.
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FIGURE 4. Data augmentation: (a) original, (b) random crop, (c) additive noise, (d) center shifting, (e) dynamic range change(DRC), (f) speed change.

• Dynamic Range Change: Randomly amplifies the
amplitude of the original audio ranging from 1 to 3 times
or ranging from 1 to 6 times.

• SpeedChange: Adjusts the speed of the original audio by
multiplying the signal with a value ranging from 0.8 to
1.2 or ranging from 0.9 to 1.1.

Figure 4 displays the audio waveforms resulting from
the applications of these respective data augmentation
techniques. The original audio wavelength is shown in
Figure 4(a), the result of a random crop in Figure 4(b), and the
results of applying additive noise, a center shifting, a dynamic
range change, and a speed change over and above the ran-
dom crop, in Figures 4(c)-4(f), respectively. These data aug-
mentation techniques are considered for our self-supervised
training.

C. IMPLEMENTATION DETAILS
A Short-Time Fourier Transform (STFT) or a constant-Q-
transform (CQT) was used as audio features. The frame size
of the STFT feature was 320, which corresponds to 20 ms,
and overlapped by 50%. In addition, a Hanning window was
used, with the number of Fast Fourier Transform (FFT) bins
set to 256. The generated STFT features were logarithmic
and normalized. The CQT feature was set to 12 octaves and
512 hop lengths, as in ResMax [18]. A Hanning window
was used with the number of frequency bins set to 120.
Logarithms were taken and normalized to the generated CQT
features.

In order to create negative pairs, the size of the dynamic
dictionary was set to 4, 096 and the encoder and momen-
tum encoder used ResMax; global average pooling generated
representations q and k+ of size 64. The projection head
consisted of three fully connected layers with 64 units; the

first and second fully connected layers were followed by a
Rectified Linear Unit (ReLU) activation function. The last
fully connected layer was followed by layer normalization
and the Tanh activation functions. The momentum coefficient
was set at 0.99.

For the downstream voice spoofing detection, we used only
the first 9 seconds of audio files. For audio files shorter than
9 seconds, the connection was repeated until 9 seconds had
elapsed. For fine-tuning, the weight up to the first activation
layer of the pre-trained projection head was continuously
updated as the initial weight.

In both the PA and LA training datasets of ASVspoof 2019,
the spoof datasets are about 10 times larger than the bonafide
datasets. Thus, we used cost-sensitive learning to solve
this class imbalance problem. The bonafide datasets were
weighted by a factor of 5 when calculating the loss function.

All models used the Adam optimizer [39] with initial learn-
ing rate was 10−3, reduced to 10−5 with sigmoidal decay. For
pre-training, 200 epochswere trainedwith a batch size of 128,
whereas 30 epochs were trained with a batch size of 16 for
downstream tasks.

D. EVALUATION METRIC
The biometric system uses the Equal Error Rate (EER) as an
index for evaluating performance. The ASVspoof challenge
uses the same evaluation index. The EER is evaluated as the
average error rate at the point where the False Acceptance
Rate (FAR) and the False Rejection Rate (FRR) are equal.
The FAR and FRR are calculated as follows:

FAR =
FP

TP+ FP
, FRR =

FN
TN+ FN

,

where TP, TN, FP, and FN represent true positive, true nega-
tive, false positive, and false negative, respectively. In order to
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mitigate bias caused by randomization, all experiments were
repeated 10 times, and the mean and standard deviation were
calculated.

V. RESULTS
A. RESULTS FOR THE STFT FEATURE
A comparison of the classification performance achieved
withASVspoof 2019 data using the STFT feature is displayed
in Table 1. The EER of the supervised learning process
was 6.93% and 0.60% for the LA and PA, respectively.
When pre-training was performed by contrast learning using
cosine similarity and unsymmetric loss, the EER for the
LA was 6.23%, confirming that the improvement achieved
with supervised learning was significant, according to the
t-test. (p-value≤ 0.05). Similarly, the EER for the PA was
0.47%, confirming that the improvement was significant.
When pre-trained with contrastive learning using cosine sim-
ilarity and symmetry loss, the EERs of the LA and PA
improved to 6.08% and 0.45%, respectively. The EER of the
LAwas improved to 5.92%when pre-training was performed
with contrastive learning using both bilinear similarity and

FIGURE 5. Barplot of averaged EER values for various augmentation
modes, with standard deviation indicated.

symmetric loss, but the significance of the performance was
not confirmed compared to the case when neither bilinear
similarity nor symmetric loss was used. On the other hand, the
EER of the PA was 0.40%, confirming that the improvement
was significant.

When noise less than 10−3 times the maximum amplitude
was added to the LA with data augmentation techniques, the
EER improved to 5.83%. When the center shifting of the
sound was adjusted to be small, the EER improved to 5.68%.
Even when the amplitude of the sound was amplified by a
factor of three, the EER was improved to 5.78%. The EER
was 6.95% when the noise was less than 5 × 10−3 times
the maximum amplitude and 6.47% when it was less than
3 × 10−3 times the maximum amplitude. These values were
larger than before, when noise was less than 10−3 times the
maximum amplitude, and the EER also increased as noise
increased.When the amplitude was amplified by a factor of 6,
the EER was 6.85%, which was a poorer performance level
than when the amplification factor was 3. Even when the
speed was adjusted to 0.2 times or 0.1 times slower or faster,
the EER was significantly degraded to 6.74% and 6.03%,
respectively. When both additive noise and center shifting
were used, the EER was improved to 5.26%. The EER was
increased to 5.71% when both additive noise and a dynamic
range change were used. Even after both center shifting and
a dynamic range change were used, the EER improved to
5.50%. In other words, performance was better when two
augmentation strategies were used than when only one aug-
mentation technique was used. On the other hand, when three
augmentation techniques, i.e., additive noise, center shifting,
and dynamic range change, were added at the same time,
the EER was 5.75%. Therefore, in the LA, the performance
was optimal when both additive noise and center shifting
were used simultaneously as data augmentation techniques.
Through a t-test, it was confirmed that the difference in
performance compared to when only a random crop was
used was significant (p-value≤ 0.05). The data augmentation
techniques, which had enhanced the performance in the LA
were, also applied to the PA, but resulted in a diminished level
of performance in the PA.

B. RESULTS FOR THE CQT FEATURE
A comparison of the classification performance using the
CQT feature is displayed in Table 2. Since CQT takes a
considerable amount of time to generate features, we only
performed experiments with a random crop as an augmen-
tation technique.

The EER of supervised learning was 2.13% and 0.35%,
respectively, for the LA and PA, and when pre-trained with
contrast learning using both bilinear similarity and symmetry
loss, the performance in the LA was enhanced with a sig-
nificant difference of 1.15%. However, in the PA case, the
performance level decreased by 0.44%.

We conducted additional experiments withASVspoof 2015
and ASVspoof 2017. ASVspoof 2015 deals with the logical
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TABLE 1. Values of the Validation EER (%) and the Test EER (%) for the pre-training dataset is VoxCeleb and the downstream dataset
ASVspoof 2019 with STFT.

TABLE 2. Validation EER (%) and Test EER (%) when pre-training dataset is VoxCeleb and downstream dataset is ASVspoof 2019 with CQT.

access scenario (similar to ASVspoof 2019 LA set), and
ASVspoof 2017 deals with the physical access scenario
(similar to ASVspoof 2019 PA set). we used cost sensitive
learning to solve this class imbalance problem. The bonafide
datasets were weighted by a factor of 5 when calculating
the loss function. In the case of ASVspoof 2015, we used
cost sensitive learning to solve this class imbalance problem.
The bonafide datasets were weighted by a factor of 2 when
calculating the loss function. The EER showed performance
improvement from 3.70% to 2.71%, while in the case of
ASVspoof 2017, the performancewas degraded from 29.65%
to 42.26%.

VI. DISCUSSION
A. COMPARISON WITH EXISTING RESEARCH
Wang et al. [40] also investigated self-supervised implica-
tions on the voice spoofing detection problem. While our
research focused on how to pre-train models using self-
supervised learning, [40] focused on how to use exist-
ing pre-trained networks such as wav2vec 2.0 [35] and
HuBert [36] to solve the spoofing detection problem. They
experimented with using a convolutional neural network
consisting of a bi-directional recurrent layer instead of a
non-linear network as a projection head.

Wu et al. [41] proposed the model using Mocking-
jay [42], a self-supervised learning-based model, to generate
a high-level feature for voice spoofing detectionmodel tomit-
igate the vulnerability to adversarial attacks. In pre-training,
they solve the masked-prediction task, randomly masking
audio frames and then reconstructing them. Adversarial noise
can be prevented by passing the audio feature through a

pre-trained model before inputting it into the voice spoofing
detection model.

VII. CONCLUSION
In this study, we showed that the performance of audio
spoofing attack detection could be enhanced through pre-
training based on contrastive learning. The VoxCeleb data set
was used for pre-training, and a new contrast learning model
was proposed by combining various previously proposed
contrastive learning techniques, such as a dynamic dictionary,
symmetric loss, and bilinear similarity. In addition, experi-
ments were conducted to determine whether the performance
was improved by using contrast learning coupled with five
different data augmentation techniques: a random crop, addi-
tive noise, center shifting, dynamic range changes, and speed
changes. LA and PA data from ASVspoof 2019 were used
as voice spoofing attack detection data. As a result, when the
STFT feature was used, it was confirmed that there was a sig-
nificant performance improvement in the LA data when one
or two from additive noise, center shifting, and dynamic range
change were applied as augmentation techniques in conjunc-
tion with a random crop. When center shifting, random crop,
and additive noise were used for the contrastive learning
model in the LA scenario, the best result of 5.26% EER was
obtained. This is 1.67% less EER than the baseline EER of
6.93%. In the PA scenario, the best result of 0.40% EER was
obtained with random crop augmentation, 0.20% lower than
the baseline of 0.60% EER. To obtain deeper insight into the
potential advantages of using contrastive learning and the
application of augmentation techniques as explored in this
study, further experiments with more complex models, large
epochs, and various data augmentation techniques should be
conducted.
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