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a b s t r a c t

0.5Ba (Zr0.2Ti0.8)O3-0.5(Ba0.7Sr0.3)TiO3 (BST-BZT) ceramic composition is known for exihi-

biting electrical properties. The present study brings out the prospective approach of uti-

lizing well known BST-BZT ceramic composition for water cleaning application via

piezocatalysis, photocatalysis and piezo-photocatalysis process. For this, BST-BZT ceramic

composition was synthesized through solid state route reaction method and was charac-

terized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectros-

copy and X-ray photoelectron spectroscopy (XPS). Methylene Blue (MB) a cationic dye was

used as a representative organic pollutant, where the maximum degradation was observed

in piezo-photocatalysis process (~92%) followed by photocatalysis process (~82%) and

piezocatalysis process (~65%) in 240 min. Furthermore, the degradation of MB dye was

examined under solar light irradiation in order to assess the potential of the BST-BZT

ceramic composition. A study on the BST-BZT ceramic composition's photocatalytic ac-

tivity in an indoor setting was also conducted. Finally, the phytotoxicity level of “Vigna

radiata” seeds was examined to determine the extent of MB dye breakdown and its sub-

sequent usage.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
.kr (A. Kumar).

y Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:anuruddh07@hanyang.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmrt.2023.01.073&domain=pdf
www.sciencedirect.com/science/journal/22387854
http://www.elsevier.com/locate/jmrt
https://doi.org/10.1016/j.jmrt.2023.01.073
https://doi.org/10.1016/j.jmrt.2023.01.073
https://doi.org/10.1016/j.jmrt.2023.01.073
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 3 ; 2 3 : 1 6 6 6e1 6 7 9 1667
1. Introduction

With an exponential increase in the human population, there

is an urgent need of environmental sustainability due to

which the current research is highly focused on reusability,

recyclability and reducibility. Particularly, sticking to water

resources, our intentional or unintentional dumping of pol-

lutants into the water bodies have degraded its quality [1].

Textile industries in itself consume a large fraction of water

for its working and the used water (contaminated) is directly

dumped into the river bodies [2]. The polluted water is not

only dangerous for human but also the marine life gets

affected which is one of the major constituents of our

ecosystem [3]. Thus, it become upmost important to reuse this

contaminated water by removing the harmful pollutants from

it. However, in this regard, various solutions such as ion

floatation, sedimentation, filtration, coagulation, adsorption

etc., are widely accepted for water treatment [4e7]. These

methods have their own challenges as most of them are less

efficient, operating cost is high or sometimes the process re-

sults in inclusion of secondary toxic pollutants [8]. Photo-

catalysis is one of the advanced oxidation processes for water

cleaning applications which has gained much popularity. Ti-

tanium oxide (TiO2) is one of the most studied photocatalyst

having high stability and superior electrochemical properties

[9,10]. However, TiO2 as a photocatalyst is been cornered due

to its less visible light absorption capacity. Besides this

recombination of the electronehole pair results in surface

defect effecting the efficiency of the energy conversion

[11e13]. Surface functionalization, forming heterojunctions

and tuning defects are however some of the strategies which

can be employed to enhance the overall efficiency of the

photocatalysis process [14,15]. Synthesis route ofmaterial also

effects the efficiency of the any process such as traditional

materials like Bi2MoO6, Co3O4 obtained in nano-scale synthe-

sized through hydrothermal process showed excellent pho-

tocatalytic activities [16,17].

In the recent times, ferroelectric materials, with inbuilt

spontaneous polarization are proved to be an effective pho-

tocatalyst in electrochemical processes. Ferroelectric mate-

rials such as SrTiO3, PbTiO3, BaTiO3, and BiFeO3 falls into such

category [18e21]. Mechanical energy can be utilized for

degrading the organic pollutants present in the water through

piezocatalysis process. In piezocatalysis process, polarization

is induced due to the mechanical strain (energy) whereas in

conventional electrocatalytic process the electric potential is

used to drive the electron [22]. Piezocatalyst having ability of

the charge separation onto the surface when mechanical

stress in the form of vibrations are applied can be utilized in

water splitting, organic dyes, organic compound synthesis

applications [23e26]. Ferroelectric materials such as BaTiO3,

BiFeO3, Pb(Zr0.52Ti0.48)O3 etc. having inbuilt spontaneous po-

larization, which are employed for water cleaning application

through piezocatalysis process [27e29]. Nevertheless, most

piezoelectric materials have restricted charge carrier (elec-

tronehole pair) due toweak conduction of electricity. This can

be improved by perceptive attention of using piezoelectric

material in photocatalysis process to achieve efficient organic

pollutant degradation. It can be anticipated that if the
piezocatalytic and photocatalytic characteristics of the ferro-

electric material are coupled into single physical-chemical

process, then the efficiency of the photocatalytic process

will be enhanced by the piezo-driven separation of photo-

generated electronehole pairs.

Being a perovskite structure, ferroelectric BaTiO3 based

ceramics are generally given more attention due to its versa-

tile characteristics. Calcium (Ca), Zirconium (Zr) and Stron-

tium (Sr) are some common elements which are generally

doped in BaTiO3, and as a result these BaTiO3 based ceramics

have shown excellent multicatalytic properties (photo-

catalysis, piezocatalysis, and piezo-photocatalysis) in envi-

ronmental remedies [30e32]. Doping Sr in BaTiO3, increases

the dielectric constant of the synthesized ceramics whereas

similar trend of enhanced dielectric constant is been observed

when Zr is doped replacing Titanium (Ti) lattice in BaTiO3

ceramic [33,34].

As there are promising results of doping Sr and Zr in BaTiO3

solid solution, multicatalytic properties of BaTiO3 ceramic can

be improved by introducing Sr and Zr elements simulta-

neously. Interestingly, Sr and Zr in BaTiO3 solid solutions are

also reported for excellent electrical properties [35,36]. Thus the

present study focuseson thephotocatalytic, piezocatalytic, and

piezo-photocatalysis performance of BaTiO3 based composi-

tion i. e, 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Sr0.3)TiO3(BSTeBZT). Due to

its potential piezoelectric and ferroelectric capabilities, BST-

BZT can be potential candidate for a key lead-free non-toxic

piezoelectricmaterial. However, its Curie temperature is not so

high, so it cannot be treated a promising material in higher

temperature applications. To the best of our knowledge, BST-

BZT has not been explored for piezo/photo/piezo-photo cata-

lytic activities for water cleaning application. Further, the

composition was explored for photocatalysis performance

under solar light source. At last degree of MB dye degradation

was quantified by growing “Vigna radiata” seeds using treated

water obtained from the piezo-photocatalysis process.
2. Experimental

2.1. Synthesis of BST-BZT composition

The BST-BZT composition was synthesized through solid

state reaction route. The precursors were BaCO3, ZrO2, SrCO3

and TiO2 which were of analytical reagent grade (purity~99%).

The precursors were manually mixed according to their stoi-

chiometric ratio inmortar pestle for 45minwhere the acetone

was used a mixing medium. The obtained mixture was

calcined at 1350 �C for at 6 h in Nabertherm (Germany) electric

furnace.

2.2. Characterization

The phase formation of the synthesized BST-BZT composition

was revealed from the X-ray diffraction data obtained from

the Smart Lab X-ray diffractometer (Rigaku Corporation). The

XRD data was recorded between 20 and 75� at a rate of 2�/
minute. Further, the phase formed in the BST-BZT composi-

tion and the vibrational modes present were identified

through Raman spectroscopy. For this, laser beam having
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532 nm wavelength with 25 wt power having acquisition time

of 10 s was pointed on the surface. For analyzing the surface

morphology of the BST-BZT composition, synthesized powder

was observed under the field emission scanning electron mi-

croscope (FE-SEM) (FEI SEM NOVA Nanosem 450, Hillsboro,

OR). Further, for confirming the elements present in the BST-

BZT composition, X-ray photoelectron spectroscopy (XPS

technique) was employed using X-ray photoelectron spectro-

photometer (NEXSA). The energy band gap of the synthesized

BST-BZT compositionwas calculated fromTauc's plot through
diffuse reflectance spectrum (DRS) facilitated in UVevisible

spectrophotometer (SHIMADZU-2600). The degradation of

the dye was also measured through UVevisible spectropho-

tometer.

2.3. Photocatalysis, piezocatalysis and piezo-
photocatalysis experiments

For photocatalysis, piezocatalysis and piezo-photocatalysis

experiments, initially 100 mg of BST-BZT powder (sample)

was immersed in 10 ml of ~5 mg/L concentrated MB dye. The

sample was powered by magnetic stirrer at 300 rpm for 6 h

while keeping the temperature at 15 �C in the dark environ-

ment. In photocatalysis experiments, visible light source was

obtained from 2 LEDs bulbs (15 W each, Havells) while for

piezocatalysis experiments, ultrasonicator (40 kHz, 150 W)

was utilized for generating stressestrain in the sample. In

piezo-photocatalysis experiments, the two system i. e, pie-

zocatalysis and photocatalysis setups were combined for

conducting the experiments.

2.4. Photocatalysis under solar light

100 mg of BST-BZT was immersed in 10 ml of ~5 mg/L

concentrated MB dye overnight at 300 rpm powered by a

magnetic stirrer for attaining adsorptionedesorption equi-

librium. For solar-driven photocatalysis process, the solution

containing BST-BZT sample was exposed directly to the sun

in south campus, Indian Institute of Technology (IIT) Mandi

on 12th February, 2022 (Saturday). The campus is situated in

Himachal Pradesh (a state in India) at a height of ~1044 m

(3425 feet) from sea level (Latitude:31�77440 N, Longi-

tude:76�9849’ E). The atmospheric conditions were recorded

as: 20-23 �C, atmospheric pressure 1014 mbar, wind speed

5 km/h towards northwest direction having relative humidity

of 61%. For repeatability test, centrifuge device was used

where the sample (catalyst and the degraded dye) was

transferred to centrifuge tubes where it is rotated at high rpm

for a specific time. The degraded dye is separated out by

using a pipette and measured new tested dye is transferred to

the centrifuge tube where it is shaked such that we have

another tested sample (catalyst and new dye). The tested

sample is now transferred to a beaker for performing

repeatability test.

2.5. Photocatalysis under indoor irradiations

100 mg powder sample of BST-BZT was taken in 10 ml of MB

dye having concentration of ~5 mg/L. Initially, the solution

was kept for adsorptionedesorption equilibrium on magnetic
stirrer for around 6 h at 300 rpm in dark condition. Then for

investigating indoor photocatalytic activity, MB dye contain-

ing BST-BZT sample was directly kept in closed room (open

atmosphere) having an area of 150 square feet equippedwith 4

tube lights (20 Watts each, Havells). Experiments were per-

formed at night in order to avoid any solar light disturbance.

2.6. Phytotoxicity test

Phytotoxicity test was conducted on “Vigna radiata” seeds

using MB dye having concentration 100 mg/L, 5 mg/L, treated

water (obtained through piezo-photocatalysis process) and

running tap water titled as W1, W2, W3 and W4 respectively.

“V. radiata” seeds were purchased from local shop and were

washed rigorously with water in order to get rid off the dust

particles. Four lots having 10“V. radiata” seeds were kept in

15 ml glass vial (Borosil). Moisture content in the glass vials

was maintained by keeping cotton bud beneath the “V. radi-

ata” seeds. The seeds were kept in the dark environment for

15 days (temperature 20-26 �C in day and 2-8 �C at night time),

where after every two days 1 ml of the W1, W2, W3 and W4

were pipette into the vials.
3. Results and discussion

Fig. 1 shows the XRD pattern obtained in a range of 20e80�.
The peaks obtained were well matched with JCPDs No

05e0626. No extra peaks were formed in the synthesized BST-

BZT composition revealing the complete doping of Sr and Zr in

BaTiO3 ceramic. The Raman spectrum of the synthesized BST-

BZT composition was analyzed to confirm the phase forma-

tion. Fig. 2 shows Raman spectrum between 150 and

1000 cm�1 obtained by using 532 nm wavelength laser

revealing the phase transition and structural changes of the

BZT-BST ceramic. Dominating peaks in spectrum of BST-BZT

composition are at ~247, ~307, ~514 and ~716 cm�1 at room

temperature. Also, at ~180 wavenumber (cm�1) a dip has been

observed which is due to the A1 (TO2) anti-symmetry mode.

The peaks at ~247 cm�1 and ~514 cm�1 are basically due to the

transverse optical modes of A1 symmetry [37]. Whereas the

peak at around ~307 cm�1 is due to B1 mode and ~716 cm�1 is

as consequence of A1 (LO3)E (LO) mode confirming the

tetragonal phase formed in BST-BZT composition [37,38].

Fig. 3(a), (b) and (c) show the surface morphology of the

synthesized BST-BZT composition at 10,3 and 1 mm scale ob-

tained from scanning electron microscope. It can be clearly

seen that the morphology of BST-BZT composition have

clusters which are irregular in shape with smooth edges. It is

noted that size and shape of a particle governs the catalytic

performance of the material. Also, the performance of catal-

ysis can be effectively enhanced by tuning the nano/micro-

structures. However, for the first time BST-BZT composition is

studied for catalysis, so the effect of microstructure on catal-

ysis is not considered.

Fig. 4(a) shows the XPS survey of the synthesized BST-BZT

composition in the range of 0e900 eV. XPS technique was

employed to detect the elements present on the surface of

BST-BZT composition. From Fig. 4(a), it can be seen that

Barium (Ba), Strontium (Sr), Titanium (Ti), and Zirconium (Zr)
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Fig. 1 e XRD pattern of BST-BZT powder.
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were detected on the surface of BST-BZT composition.

Further, in Fig. 4(b), the Ba spectrum was deconvoluted into 4

peakswhere peaks at ~794.16 eV and ~778 eV are assigned due

to the Ba atoms present in BST‒BZT ceramics, and peaks at

binding energy ~779.6 eV and ~795.18 eV can be attributed due

to Ba atoms obtained during decomposition of carbonate

layers of barium [39]. The Fig. 4(c) shows the Ti

spectrum ~ 458 eV and ~463.6 eV which can be assigned to

Ti2p3/2 and Ti2p1/2 orbitals showing Ti4þ cations [40]. Fig. 4(d)

shows three peaks at ~528.97 eV, ~531.09 eV and ~532.83 eV

which were obtained after deconvolution of O1s spectrum,
Fig. 2 e Raman spectrum of BST-BZT composition in range

of 150e1000 cm¡1.
which can attributed to oxygen lattice, vacancy and absorbed

oxygen respectively [41]. However, ~531.09 eV binding energy

peak specifically does not resembles oxygen vacancy, but it

can be also associated to absorbed O�, O2
�, and eOH groups

[42,43]. Fig. 4(e) shows the orbitals peak of Zr at ~176.4 eV and

~178 eV representing 3d5/2 and 3d3/2 orbitals. The Sr spec-

trum can be deconvoluted into ~132.5 eV and ~134.32 eV

binding energy as shown in Fig. 4(f). The absorbance spectrum

of the synthesized sample in the range of 200e800 nm wave-

length is shown in Fig. 5(a). The sample absorbs very less

energy in the range of 550e800 nmwavelength, whereas there

is gradually increment in the absorbance in range of

415e550 nm wavelength. After 415 nm wavelength there is a

sudden rise in the absorption revealing the maximum ab-

sorption of the light in this particular range of wavelength.

The energy band gap of the synthesized BST-BZT composition

was calculated through Tauc's relation given by equation (1)

[44,45].

aðhnÞ¼Bðhn�EgÞ^m (1)

where, “B” is the energy independent coefficient, “a” is the

coefficient of the absorption, “Eg” is the energy band gap of the

synthesized sample, “h” is the plank's constant, “n” is the

frequency of the light and “m” represent the nature of the

electronic transition responsible for optical absorption. For

determining the direct and indirect energy band gap “m” is

taken as 1/2 and 2 respectively. The energy band gap of the

synthesized BST- BZT composition estimated by Tauc's plot is
shown in Fig. 5(b). The value of the BST-BZT composition was

found out to be ~3.19 eV. There is not much significant

decrement in the band gap of the BST-BZT composition as the

band gap of the tetragonal phase of the Barium titanate is ~3.2

eV [46]. The calculated energy band gap of the BST-BZT
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Fig. 3 e SEM images of BST-BZT powder.
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composition i. e, 3.19 eV should only be limited to the ultra-

violet region (100e400 nm wavelength) of the electromag-

netic waves. However, when the BST-BZT composition was

used as the photocatalyst for degradation of MB dye, a

considerable amount of photoactivity under visible light

source was observed. This can be due to gradual increment in

absorption in the range of 415e550 nm wavelength as shown

in Fig. 5(b).

Actually, for efficient photocatalysis process to occur

numerous parameters such energy band gap, particle

morphology and size, concentration of defects, crystallinity of

synthesized materials, rate of recombination etc. plays an

important role. However, in the present study, it is difficult to

explain the full mechanism as well as the parameter respon-

sible for showing the photocatalytic activity under visible

light. Literature supports similar observations in few other

materials. Cerium (Ce) doped Magnesium Oxide (MgO)is such

an example having band gap higher than 3.0 eV showed

excellent photoactivity, degrading phenol dye under visible

light [47].

Fig. 6(a), (b) and (c) show the absorbance vs wavelength

plots of photocatalysis, piezocatalysis and piezo-

photocatalysis processes using 100 mg of BST-BZT composi-

tion for degrading 10 ml of ~5 mg/L concentrated MB dye. It

can be clearly seen from the Fig. 6(a), (b) and (c) shows that the

intensity of the absorption spectra is ~664 nm wavelength

which decreased with time. Decrease in the intensity of the

absorption spectra ~664 nm wavelength clearly indicates

degradation of the MB dye. Fig. 6(d) shows the C/Co vs time

plots depicting decrease in concentration of the MB dye under

photocatalysis, piezocatalysis and piezo-photocatalysis pro-

cesses. The degradation (D) (in %) of the MB dye is measured

through using the following equation (2) [18].

Dðin%Þ¼
�
Co� C
Co

�
� 100 (2)

where, “Co” and “C” represent the initial concentration and

concentration of MB dye at particular time.

Fig. 6(e) shows the kinetic performance of theMB dye using

photocatalysis, piezocatalysis and piezo-photocatalysis pro-

cesses. The kinetic study of MB dye degradation was analyzed
through LangmuireHinshelwood model expressed in equa-

tion (3)-(4) [48].

Rate¼ �
�
dC
dt

�
¼kq¼

�
kKaC
1

�
þ KaC (3)

for very low concentration when KaC <<1

�ln

�
C
Co

�
¼Kt; (4)

where, “k” and “Ka “represents the rate constant and adsorp-

tion coefficient of the reactant on the photocatalyst surface.

Generally, the product of adsorption coefficient and concen-

tration of dye is less than 1 i. e, KaC <<1 thus the kinetic rate (K

in min�1) becomes first ordered kinetic equation as shown in

equation (4).

The values of kinetic rate constant (K) were found to be

0.0043 min�1, 0.00647 min�1 and 0.00848 min�1 for peizoca-

talysis, photocatalysis and piezo-photocatalysis processes

respectively for MB dye degradation using 100mg of BST-BZT

ceramic. It can be clearly observed from the spectra that

maximum kinetic rate was found for piezo-photocatalysis

process followed by photocatalysis and piezocatalysis

processes. This implies more degradation extent compared

to photocatalysis and piezocatalysis processes. The degra-

dation of MB dye using 100 mg of BST-BZT ceramic was ~65,

~82 and ~92% through peizocatalysis, photocatalysis and

piezo-photocatalysis processes in 240 min. The maximum

degradation of MB dye obtained is basically due to the com-

bined effect of both photocatalysis and piezocatalysis

process.

A general photocatalysis, piezocatalysis and piezo-

photocatalysis processes start with the adsorption of the dye

onto the surface of the BST-BZT ceramic powder. Once the

adsorptionedesorption equilibrium is attained than the tested

sample was exposed to visible light in photocatalysis process,

mechanical vibrations were applied to the tested sample in

dark environment whereas both mechanical vibrations and

visible light source were subjected to piezo-photocatalysis

process. In photocatalysis, when the light of the particular

wavelength is subjected to photocatalyst the electron in the

valence band gains enough energy that it leaves the valence

https://doi.org/10.1016/j.jmrt.2023.01.073
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Fig. 4 e (a) XPS survey showing elemental composition in BST-BZT composition, (b) Ba3d spectrum, (c) Ti2p spectrum, (d)

O1s spectrum, (e) Zr3d spectrum and (f) Sr3d spectrum.
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band and enters the conduction band creating the equal

number of holes in the valence band. This generated

electronehole pair reacts with water components present in

the dye solution creating a reactive species which attacks the

dye molecules. A schematic representation of photocatalysis

under visible light is shown in Fig. 7(a), Also, a typical photo-

catalysis process is explained through following equations

5e10, [49].

Energy (visible source) / e- (Conduction Band) / hþ (Valance

Band) (5)
H2O þ hþ / �OH þ Hþ (6)

O2�- þ Hþ/�OOH (7)

�OOH þ�OOH / H2O2 þ O2 (8)

O2�- þ pollutant / CO2 þ H2O (9)

�OOH þ pollutant / CO2 þH2O (10)
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Fig. 6 e (a) Absorbance spectra of MB dye through photocatalysis process under visible light using 100 mg of BST-BZT

composition, (b) Absorbance spectra of MB dye through piezocatalysis process using 100 mg of BST-BZT composition, (c)

Absorbance spectrum of MB dye through combined effect of piezocatalysis and photocatalysis process i. e, piezo-

photocatalysis process using 100 mg of BST-BZT composition, (d) C/Co vs time plot showing degradation of MB dye under

photocatalysis, piezocatalysis and piezo-photocatalysis process, (e) Kinetic performance of MB dye under photocatalysis,

piezocatalysis and piezo-photocatalysis process.

Fig. 5 e (a) Absorbance spectrum of BST-BZT composition in a range of 200e800 nm wavelength, (b) Tauc's plot showing

energy band gap of BST-BZT composition.
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Fig. 7 e Schematic representation of processes (a) Photocatalysis, (b) Piezocatalysis and (c) Piezo-photocatalysis.
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In piezocatalysis process, ultrasonicator produces the

shock waves which exert pressure on the catalyst to produce

direct piezoelectric effect in the synthesized samples con-

tained within the dye. The positive charge (holes) and nega-

tive charge (free electron) generated due to direct piezoelectric

effect results in the charge separation. These electronehole

pairs are the generated charge produced due to piezoelectric

effect which takes part in redox reaction. It very interesting to

know that during ultrasonication the cavities forms bubbles,

which grows and ultimately bursts during ultrasonication.

This formation/growth/collapse of the bubble leads to in-

crease in localized temperature up to 4000e5000 K and gen-

erates shock wave up to ~108 Pa pressure [50]. Due to this

discussed phenomenon called thermolysis (sonolysis) the

degradation of the dyes may take place. However, in our

present study when control reading without any synthesized

sample was subjected to 4 h of ultrasonification a negligible

amount of MB dye degradation was observed. Thus, degra-

dation observed during ultrasonification was solely due to

piezocatalysis process under vibrations. The end result of

both photocatalysis and piezocatalysis process is same i. e,

separation of charges, however the process of generation and

separation of charges in both the charges are different. Also,

the charge separated due to direct piezocatalysis process is

not in free state unlike photocatalysis process. In piezocatal-

ysis process, a continuous stress with varying amplitudemust

be applied as in the absence of the force else the recombina-

tion of charges will occur before performing oxidation and

reduction process. A schematic representation of piezocatal-

ysis process is shown in Fig. 7(b). A typical piezocatalysis

process is been explained through following equations 11e16,

[31].

BST-BZT þ vibrations / BST-BZT (hþþ e-) (11)

e- þ O2 / O2
,� (12)
hþ þ OH� /,OH (13)

2O2
,� þHþ þH2O /H2O2þO2þOH� (14)

H2O2þO2,
- /,OH þ OH� þO2 (15)

,OH (O2
,-) þDye molecule/ Decomposition (16)

Fig. 8 shows that even after the piezo-photocatalysis ex-

periments there was no structure change in the synthesized

BST-BZT ceramic powder which implies that BST-BZT can be

used for repeatability test. In Fig. 9(a), it can be clearly seen

that maximum degradation percentage of MB dye was found

in piezo-photocatalysis process and followed by photo-

catalysis and piezocatalysis process. Actually, in the process

like photocatalysis, piezocatalysis and piezo-photocatalysis,

attacking species like holes (hþ), hydroxyl radicals (_OH), elec-

trons (e�), and superoxide radicals (_O2) is been generated

which is responsible for the degradation of the MB dye.

However, only one of the attacking species have domi-

nating characteristics which is responsible for the degrada-

tion of dye. Particular scavenger traps specific attacking

species, which means if that specific attacking species is been

trapped than the dye degradation will not happen to that

extent whichwas to be without that particular scavenger. The

scavenger test was performed in order to identify the reactive

species responsible for the degradation of MB dye. In the

present study, scavenger test was performed in piezo-

photocatalysis process by adding 1000 mL of Ethylene dia-

minetetra acetic acid (EDTA), Isopropanol (IPA) and Benzo-

quinone (BQ) scavengers to 10 ml of ~5 mg/L concentrated MB

dye. Fig. 9 (b) shows ~32, ~26 and ~42% degradation of MB dye

using scavenger EDTA, IPA and BQ respectively. Scavenger

EDTA, IPA and BQ traps reactive species like. OH, hþ and _O2

respectively [30]. From Fig. 9(b) it can be observed that among

https://doi.org/10.1016/j.jmrt.2023.01.073
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Fig. 8 e XRD patterns of BST-BZT composition before and after piezo-photocatalysis process.
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all the scavengers, MB dye containing IPA have shown the

minimum degradation indicating the minimum participation

of. OH radical. This clearly indicates scavenger IPA trapped.

OH radical which was the main responsible attacking species

in piezo-photocatalysis process.

Further, to explore the catalytic properties of the synthe-

sized BST-BZT composition, degradation of 10 mle5 mg/L

concentrated MB dye was attained in 120 min through pho-

tocatalysis process under sun light. Actually, the energy band

gap of BST-BZT composition was ~3.19 eV which will corre-

spond to UV range of light spectrum. Thus, it becomes

essential to check the photocatalytic activity of the BST-BZT

composition under real time solar light. A schematic
Fig. 9 e (a) Percentage degradation of MB dye using piezocataly

Scavenger test showing percentage degradation of MB dye thro
representation of the photocatalysis process under the solar

light is shown in the Fig. 10. Basically, sun light is an electro-

magnetic radiation comprising ofmajorly three types of bands

i. e, infrared (700e1000 nm), visible (400e700 nm) and ultra-

violet light (100e400 nm). When this sun light having such a

wide range of wavelength falls onto the surface of the pho-

tocatalyst, the electron in the valance band corresponds to the

energy of the falling photons. By this an equal number of holes

is created in the valance band as a result of excitation of

electron to the conduction band. This electronehole pair

participate in the redox reaction and as a result, degradation

of MB dye starts. Fig. 11(a) shows the absorbance spectra ofMB

dye under solar light obtained in 120 min.
sis, photocatalysis and piezo-photocatalysis process, (b)

ugh piezo-photocatalysis process.

https://doi.org/10.1016/j.jmrt.2023.01.073
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Fig. 10 e Schematic representation of photocatalysis process under real time solar conditions.

Fig. 11 e (a) Absorbance spectra of MB using BST-BZT under solar light, (b) C/Co vs time plot showing degradation MB dye,

(c) Repeatability test.
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Table 1 e Performance of ferroelectric photocatalyst under solar light.

S.No Material Pollutant % Degradation

1. BiVO4/SrTiO3 composite [51]. Sulfamethoxazole (10 mg/L) ~91%/60 min

2. AgeBaTiO3 (Cubic)

AgeBaTiO3 (Tetragonal) [52].

Rhodamine B (10 mg/L) ~53%/60 min

~100%/60 min

3. MnTiO3 nanoparticles [53]. Methylene Blue (10 mg/L) ~70%/240 min.

4. BaTiO3/TiO2 composite [54]. Acetaminophen (5 mg/L) ~95%/240 min.

5. Na0.5Bi2.5Nb2O9 nanosheets [55]. Rhodamine B, Methyl orange (20 mg/L) ~98, ~38%/120 min.

6. BaTiO3@g-C3N4 composites [56]. Methyl Orange (5 mg/L) ~76%/360 min.

7. BST-BZT particles. [present study] Methylene Blue (5 mg/L) ~80%/120 min

j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c hno l o g y 2 0 2 3 ; 2 3 : 1 6 6 6e1 6 7 91676
Further, Fig. 11(b) displays the C/C0 vs time plot for showing

the degradation achieved at particular time. For any ideal

catalytic material, it is necessary that it should have a char-

acteristic of repeatability and be used for several cycles

without undergoing any change in its efficiency. Fig. 11(c)

shows the repeatability performance of the synthesized BST-

BZT under real time conditions where no significant change

was observed in photocatalysis experiment in a span of

120 min for three cycles. So, it is very clear that BST-BZT

composition can be used multiple times without any notice-

able drop in performances. Some of the ferroelectric photo-

catalyst and their performance under solar light are listed in

Table 1. Thus, synthesized BST-BZT provides cost effective

ferroelectric ceramic obtained via solid state reaction method

in micro-scale capable of performing multicatalytic

properties.
Fig. 12 e (a) Absorbance spectra of MB dye using BST-BZT unde

degradation MB dye, (c) Pictorial representation of MB dye been
Apart from the outdoor study (sunlight exposure) to our

sample, the catalytic activity was observed under indoor light

irradiation. Fig. 12(a) shows the absorbance spectra of MB dye

degradation under indoor light in 6 h. Fig. 12(b) shows the C/C0

vs time plots of MB dye degradation in indoor condition with

and without BST-BZT. Interestingly, dye degradation was

observed in real time indoor condition. As compared to re-

ported data, BST-BZT has shown comparable performance.

Some materials performing photocatalysis in indoor condi-

tions are presented in Table 2.

The treated water obtained after degradation of MB dye

through piezo-photocatalysis process was preserved in order

to quantify the degree of organic pollutant removed. For this,

seed germination test was conducted on “V. radiata” seeds

where it was nourished with W1, W2, W3 and W4. Fig. 13 (a)

shows 4 vials having germinated “V. radiata” seeds. The
r indoor condition, (b) C/Co vs time plots showing

degraded in indoor conditions.

https://doi.org/10.1016/j.jmrt.2023.01.073
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Table 2 e Indoor performance of various reported catalysis.

S. No. Material Pollutants % Degradation/time

1. Pure Ag3PO4 [57] Rhodamine B 100%/36 h

2. N-doped TiO2 [57] Rhodamine B 18%/120 h

3. Pure Bi2WO6 [58] Rhodamine B 30%/150min

4. ZreEreBi2WO6 [58] Rhodamine B 100%/150 min

5 BST-BZT (present study) Methylene Blue 42%/6 h

j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 3 ; 2 3 : 1 6 6 6e1 6 7 9 1677
number of germinated “V. radiata” seeds and their respective

length (in cm) were measured for estimating the germination

index (GI) according to the equation [59]. The germination

index obtained after using W1, W2 and W4 were used to

compare phytotoxicity levels.

GI¼
�

Seed germination ð%Þ� root treatments
Seedgermination ð%Þ� root lengthof the control

�
�100

(17)

The average length of germinated “V. radiata” seeds were

~1.8, ~2.3, ~4.5 and ~5.8 cm by using W1, W2, W3 and W4

respectively. High degree of toxicity will result in reduced
Fig. 13 e (a) 4 Vials containing 10 green gram dal nourished by W1, W

phytotoxicity.
length of germinated “V. radiata” seeds and its growth through

treated water will account for the non-toxicity approach [60].

Fig. 13 (b) shows the germination index (GI) % of “V. radiata”

seeds calculated after using W1, W2, W3 and W4. The values

of the GI for “V. radiata” seeds usingW1,W2, W3 andW4were

found out to be ~6.2, ~16.14, ~54.31 and ~90% respectively. The

GI values can estimate phytotoxicity into threemajor levels, (i)

high phytotoxicity ðGI <50%Þ, (ii) moderate phytotoxicity

50%<GI<80%, (iii) absence of phytotoxicity ðGI >80%Þ [61,62].
Clearly 100 mg/L and 5 mg/L concentrated MB dye fall under

high toxicity whereas ~54% value of GI for “V. radiata” seeds

using treated water i. e W3 showed moderate phytotoxicity.
2, W3 andW4, (b) Germination Index (GI) showing the level of

https://doi.org/10.1016/j.jmrt.2023.01.073
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4. Conclusions

Ferroelectric ceramic composition 0.5Ba(Zr0.2Ti0.8)O3-

0.5(Ba0.7Sr0.3)TiO3(BST-BZT)was synthesized through solid state

reaction route. The elements Sr and Zr were completely doped

while maintaining the integrity of tetragonal BaTiO3 ceramic.

Thecompositionwasstudied formulticatalyticperformance i.e,

piezocatalysis, photocatalysis and piezo-photocatalysis pro-

cesses for degrading 10 ml of ~5 mg/L concentrated MB dye in

240 min. There was a remarkable ~92% degradation of the MB

dye achieved through piezo-photocatalysis process due to

combined effect of piezocatalysis and photocatalysis processes.

The photocatalytic behavior of the BST-BZT ceramic was also

analyzedunder real timesolarconditionswherethedegradation

was found out to be ~80% in 120min. In the samemanner BST-

BZT sample is also analyzed as a indoor catalyst for the degra-

dation ofMB dye in presence of only room light irradiations and

it was found that around 42% degradation in 6 h. There was no

significant change in the degradation of MB dye in three cycles

whileperforming thephotocatalysis processwhich revealed the

repeatable characteristics of BST-BZT ceramic. Thus, from the

present study it can be concluded that BST-BZT ceramic has

multicatalytic ability in water cleaning application. Later, the

Germination Index (GI) was calculated on “V. radiata” seeds

usingW3which was found in themoderate phytotoxicity level.
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