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A B S T R A C T   

In this study, a multiphysics-informed neural network (MPINN) is proposed for the estimation and prediction of 
thermal runaway (TR) in lithium-ion batteries (LIBs). MPINNs are encoded with the governing laws of physics, 
including the energy balance equation and Arrhenius law, ensuring accurate estimation of time and space- 
dependent temperature and dimensionless concentration in comparison to a purely data-driven approach. Spe
cifically, the network is trained using data from a high-fidelity model of an LIB, which describes TR by addressing 
several coupled partial differential equations. Quantitative analysis reveals that the mean absolute error (MAE) 
and root mean squared error (RMSE) of the MPINN for TR estimation are less than an artificial neural network 
(ANN) by 0.71 and 1.57, respectively, when using fully labeled data for training. It outperforms the ANN in terms 
of MAE and RMSE by 90.56 and 118.64, when only a small portion of labeled data (semi-supervision) are used 
for TR prediction. Importantly, it predicts TR without any labeled data when the decomposition of reactive 
species is modeled in the positive electrode. The MPINN exhibits promising results in surrogate modeling, 
implying it can be successfully implemented in practical scenarios and stimulate further research related to TR 
modeling using physics-informed deep learning.   

1. Introduction 

The advent of various electric vehicles (EVs) has led to the wide
spread adoption of lithium-ion batteries (LIBs) as a primary source of 
energy. The current form of LIBs is favorable over other types owing to 
its EV-friendly characteristics, including high energy density, long 
duration, and fast charge rate. Nevertheless, LIBs encounter limitations 
in expanding their territory owing to safety and reliability concerns. The 
primary safety concern in LIBs is thermal runaway (TR), which refers to 
an irreversible state in LIBs wherein owing to an internal short circuit 
(ISC) at the initial stage, the local cell temperature rises and leads to 
combustion until the internal reactive species of LIB components are 
burned. TR is hazardous in industrial applications because it may lead to 
explosion in LIBs; in other words, irreversible and exothermic reactions 
in LIBs may result in fire, explosion, and even mass mortality [1]. 

On-time prognosis of TR and estimation of the TR phenomenon 
under various operational conditions is an active field of research 
because it not only enables TR forecast, but also provides information 
regarding the optimal design of LIB structures (for example, the surface- 
to-volume ratio) such that TR is restrained or mitigated when LIBs are 
exposed to charge, discharge, and external conditions of the daily 
routine or extremely harsh conditions. Because TR is characterized by 
several factors and chain reactions, including thermodynamics, chemi
cal reaction degradation of each component, and aging, multiphysics 
along with these phenomena should be considered when modeling TR. 
Ping et al. [2] presented an electrothermal model in which electric 
conduction was coupled with heat transfer and energy balance. The 
evolution process of TR was investigated using the OpenFOAM software 
under various conditions, including different discharge rates, airflow 
velocities, ambient temperatures, and airflow channel thicknesses. 
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Kwak et al. [3] coupled three multiphysics phenomena, including aging, 
thermodynamics, and chemical degradation, to investigate TR pathways 
under several abuse conditions. The aging model was shown to influence 
the peak and onset temperatures under electrical and thermal abuse 
conditions. TR has also been investigated under particular abuses, 
including nail penetration [4,5], overcharge [6], external short circuit 
[7,8], ultra-high discharge rates [8], and pack-level propagation [9]. It 
should be noted that the computation time is essential for preventing TR 
or reducing the experimental cost during control enabling solutions and 
design optimization in LIB cells, modules, and packs; however, all pre
vious studies relied on numerical simulations, such as the finite element 
method (FEM) and finite difference method (FDM), that require signif
icant computational effort. In other words, conventional modeling tools 
cannot be used readily to predict or estimate TR in a stochastic and 
rapidly changing environment and under various practical operational 
conditions encountered by LIBs. In addition, they cannot be used more 
effectively during system and design optimization owing to their 
considerable computational time (hours to several days, depending on 
the complexity of the multiphysics model of LIBs). 

Physics-informed neural networks (PINNs) have been extensively 
studied in recent years as a prospective surrogate model for numerous 
time-dependent systems in engineering with the goal of replacing the 
traditional FEM/FDM. The major advantage of PINNs is that they are 
capable of rapidly modeling time-dependent systems of interest without 
losing generality and accuracy. Fundamentally, PINNs are different from 
ordinary data-driven deep learning models because they are trained in 
conjunction with the governing laws of physics to ensure that they do 
not violate these laws and produce results that are robust to outliers. 
This also implies that the governing laws of physics effectively supervise 
neural networks along with the given data, thus increasing the proba
bility of approaching the global minimum from an optimization 
perspective. Hence, the estimation results are interpretable and physi
cally reasonable. In contrast to the FEM/FDM, which requires a separate 
long training session for each operating condition or control variable, 
PINNs are trained to meet the requirements represented by the gov
erning equations of a time-dependent system in the beginning, which 
allows them to output system response at any given operating condition. 
For example, Sun et al. [10] leveraged a PINN to solve parameterized 
geometries in a fluid flow problem, wherein multiple geometry designs 
were solved simultaneously at a reduced computational cost. Owing to 
their mesh-free nature, PINNs can ultimately be agnostic to the geom
etry, boundary, and initial conditions, albeit with several restrictions. 
Such characteristics can significantly reduce the amount of time and 
effort required to evaluate product performance and durability under 
diverse conditions. 

Prior studies regarding PINN-based estimation are manifold and 
their applications cover a wide range of engineering fields, including 
fluid mechanics, heat transfer, geophysics, biomedicine, structural me
chanics, and reaction kinetics. Raissi et al. [11] proposed a physics- 
informed deep learning framework to infer physical quantities, such as 
velocity and pressure fields, in complex domains, such as human arteries 
and brain aneurysms, in both 2D and 3D settings. The partial differential 
equations (PDEs) involved in their study were the well-known Navier- 
Stokes equations, whose numerical computation time is long. The 
training data were retrieved from numerical results, for which direct 
measurements may not be possible, and the regression results of the 
suggested algorithm were highly similar to the reference data. Niaki 
et al. [12] presented a PINN to estimate the thermochemical evolution of 
a composite material. The proposed model consisted of two distinct 
networks for learning different physics, which were trained sequentially 
because the two physical laws are coupled in time. In addition, they 
were trained using a technique called adaptive learning rate annealing 
to overcome the possible stiffness present between the loss terms of the 
objective function. Similarly, Cai et al. [13] addressed the general heat 
transfer problems of industrial complexity by considering forced and 
mixed convection scenarios. To solve the renowned two-phase Stefan 

problems that involve the joint evolution of a liquid and solid and their 
moving phase transition interface, the first network inferred the 
spatiotemporal temperature fields of both the liquid and solid, while the 
second network predicted the moving interface over time. Some of the 
derivative terms of the network outputs were connected by the heat 
equation and Stefan conditions. The aforementioned case studies 
investigated the feasibility and effectiveness of replacing the traditional 
FEM/FDM with PINNs in the near future, and several presented prom
ising results under particular assumptions or restrictive conditions. 

Nevertheless, to the best of our knowledge, no study has reported the 
application of PINNs for estimating the TR in LIBs thus far. More 
importantly, only a few PINN-related studies have discussed the depth of 
surrogate modeling and possibly substituted the FEM/FDM. This is 
mainly because PINNs do not necessarily guarantee the perfect confor
mation of unseen data points to the governing equations, despite 
learning the equations during network optimization. Moreover, it has 
been discovered that the convergence of PINNs during training depends 
significantly on the type of physics involved [14–17]. In other words, 
PINNs are vulnerable to out-of-distribution data, similar to most deep- 
learning models, because the governing equations are provided as soft 
constraints in the objective function. Moreover, investigations related to 
solving complex multiphysics dynamics with singularities are limited 
because they are more challenging and stiffer to solve from a mathe
matical standpoint using PINNs owing to the highly non-convex nature 
of the loss function and the imbalance caused when optimizing multiple 
loss functions simultaneously. Inspired by PINN applications in other 
disciplines, a PINN is first developed exclusively for the estimation and 
prediction of TR, which involves a complex thermochemical multi
physics phenomenon with a sharp inflection point at the TR. Subse
quently, its feasibility as a surrogate model for the FEM/FDM under 
diverse operating conditions for its broad implementation ranging from 
design optimization to on-board vehicle battery management is inves
tigated. The contributions of this study are summarized below: 

1. To the best of our knowledge, this is the first study that compre
hensively investigated the use of a multiphysics-informed neural 
network (MPINN) to estimate and predict TR in LIBs. Estimating 
the multiphysics nature of TR was resolved by assigning an 
independent network for modeling each dynamics simultaneously 
undergoing a different optimization process. However, different 
dynamics should be coupled at each iteration step during 
optimization. Therefore, an MPINN was used instead of a single 
PINN for TR estimation.  

2. This study discussed the effects of a commonly adopted technique for 
PINN optimization, i.e., learning rate annealing, and data-fit loss for 
the faster convergence of MPINN to estimate TR. The estimation 
results indicated that the use of learning rate annealing and data-fit 
loss reduced the overall error.  

3. This study also highlighted the challenges and solutions involved in 
estimating TR induced by the degradation of different types of 
chemically reactive species. Based on the results presented in Section 
4, the MPINN exhibited better performance for less-sophisticated 
chemical reactions.  

4. The MPINN was compared with the output of a numerical simulation 
software (hereafter referred to as the reference data) and deep neural 
network (DNN) with equivalent structure in various aspects to 
emphasize the advantages of the MPINN as a potential alternative to 
the conventional FEM/FDM. 

The remainder of this paper is organized as follows. Section 2 in
troduces the TR mechanism, proposed MPINN model, and imple
mentation details. Section 3 discusses the details of the data generation 
process using a numerical simulation software and the experimental 
design. Section 4 presents the overall results to compare the perfor
mance of MPINN against a standard DNN as a potential surrogate model 
of the numerical simulation method. Finally, Section 5 concludes the 
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study with a quantitative and qualitative summary. 

2. Multiphysics-informed neural network 

2.1. Multiphysics of thermal runaway 

TR in an LIB refers to the occurrence of successive chain reactions of 
component degradation owing to temperature rise from exothermic 
reactions or increased current flow and power dissipation [8]. It is a 
complex multiphysics phenomenon in which many physical phenomena 
contribute to the exothermic reaction. The thermodynamics and chem
ical reaction in TR can be formulated as follows: 

ρCp
∂T(x, t)

∂t
= ∇k∇T + Q̇exo, x ∈ Ω, t ∈ [0, tmax] (1)  

where ρ, Cp, T, k, and Ω denote the cell density, heat capacity, temper
ature, thermal conductivity coefficient, and subset of RD, respectively. 
Eq. (1) represents the energy balance equation that describes the rate of 
temperature change on the left-hand side and heat conduction, along 
with the volumetric heat generation rate, Q̇exo, originating from an 
exothermic reaction due to stimulated chemical reaction on the right- 
hand side. Note that the third term of the equation, Q̇exo, defined by 
Eq. (2), is a new contribution to the energy balance equation, which is 
proportional to the rate of dimensionless concentration change. 

Q̇exo = HWR = HW
(

−
∂c(x, t)

∂t

)

= HWAexp
(

−
E

RcT

)

cm, x ∈ Ω, t ∈ [0, tmax]

(2)  

where H, W, R, c, A, E, Rc, and m denote the specific heat release, specific 
active material content per volume, reaction rate, dimensionless con
centration of lithium in electrolyte, frequency factor of electrolyte 
decomposition, thermal activation energy, gas constant, and reaction 
order, respectively. Eq. (3) describes the convectional heat exchange 
between an LIB and external environment: 

k∇T = h(Tamb − T), x ∈ ∂Ω (3)  

where h and Tamb denote the convective heat transfer coefficient and 
ambient temperature, respectively. Finally, Eq. (4) presents the initial 
condition of the temperature and dimensionless concentration of 
lithium ions in electrolyte defined over the entire computational domain 
Ω as follows: 

T(x, t = 0) = T0, c(x, t = 0) = c0, x ∈ Ω (4) 

TR modeling requires solving the aforementioned governing equa
tions by providing the distributions of temperature T and dimensionless 
concentration c as a function of space x, time t, and ambient temperature 
Tamb. 

Exothermic reactions triggered by a sequential chemical degradation 
of the four components of lithium-ion batteries is known to account for 
the rapid temperature escalation during thermal runaway. The chemical 
degradation occurs in the following order: solid electrolyte interphase 
(SEI), negative electrode, positive electrode, and electrolyte. The heat 
generated via the exothermic reactions is simply the addition of each 
contribution and it is represented as the following equation: 

Q̇exo = Q̇SEI + Q̇ne + Q̇pe + Q̇e (5)  

In this study, only the positive electrode decomposition model (Q̇pe) and 
the electrolyte decomposition model (Q̇e) are investigated separately 
because adding up all four models requires excessive computation, and 
the two models are known to be the major contributors to the heat 
generation leading up to TR. More importantly, a precise estimation of 
TR that reflects the reality is beyond the scope of this study, and it is to 
be done in future work. For the two models, Rpe and Re are represented 

by the following Arrhenius law: 

Rpe =
dα
dt

= Apeαmp
pe (1 − α)mr

pe exp
(

−
Ea,pe

RT

)

(6)  

Re = −
dce

dt
= Aeexp

(

−
Ea,e

RT

)

cme
e . (7)  

As the equations describing the reaction rates of the models are 
different, this leads to significant difference in the rates as time passes 
and temperature reaches a certain level, explaining the fundamental 
difference in resultant temperature between the positive electrode 
decomposition model and the electrolyte decomposition model as 
shown throughout Section 4. 

2.2. Formulation of MPINN 

A general PINN approximates a solution of a PDE by adding the 
equation as a penalty term or constraint to the empirical loss function of 
a DNN such that data fitting and the governing equation are satisfied 
after parameter optimization; the model output is equal to the solution 
of the equation or system response of a time-dependent system. Simi
larly, to establish a PINN framework for modeling TR, Eqs. (1)–(4) 
should be added as penalty terms to the empirical loss function. From 
this perspective, Eqs. (3) and (4) are the boundary and initial conditions, 
respectively, which lead to a unique solution for the governing PDE of 
Eq. (1). Such physics-based constraints are often referred to as residual 
loss, whereas empirical loss is often referred to as data-fit loss. Ideally, 
optimization is complete when each residual and data-fit loss equals 
zero, implying that the governing laws of physics, boundary conditions, 
and initial conditions are satisfied. Meanwhile, a thermochemical re
action is involved in the case of TR, indicating that the heat transfer and 
heat generation dynamics caused by chemical reactions interact, with a 
differential equation describing each dynamic. It is worth noting that 
these physics-related factors co-supervise the neural network with the 
given data, thereby improving the accuracy and robustness of the PINN. 
Therefore, TR estimation through a PINN requires a distinct network for 
modeling each dynamic separately and simultaneously; hence, the 
name, MPINN, of the specific model. Following the predominant 
approach of a PINN, the total loss, L, of the MPINN can be expressed as: 

L = λ1LD + λ2LPDE + λ3LODE + λ4LBC + λ5LIC (8)  

where LD, LPDE, LODE, LBC, and LIC denote the data-fit loss, PDE loss, or
dinary differential equation (ODE) loss, boundary-condition loss, and 
initial-condition loss, respectively, which are defined as: 

LD = ‖T̂ − T‖
2
Ω×[0,L] + ‖ĉ − c‖2

Ω×[0,tmax ]
(9)  

LPDE =

⃦
⃦
⃦
⃦ρCp

∂T̂ (x, t)
∂t

− ∇k∇T̂ − Q̇exo

⃦
⃦
⃦
⃦

2

Ω×[0,tmax ]

(10)  

LODE =

⃦
⃦
⃦
⃦

∂ĉ(x, t)
∂t

+ Aexp
(

−
E

Rc T̂

)

ĉm
⃦
⃦
⃦
⃦

2

Ω×[0,tmax ]

(11)  

LBC = ‖k∇T̂ − h(Tamb − T̂ ) ‖
2
∂Ω×[0,tmax ]

(12)  

LIC = ‖T̂ 0 − T0‖
2
Ω×{t=0} + ‖ĉ0 − c0‖

2
Ω×{t=0}. (13)  

It should be noted that the definitions of constants and variables in these 
equations have been addressed previously. In particular, λ* is the rela
tive weighting coefficient of each loss function. In addition, ‖•‖2 refers 
to the mean squared error (MSE) of a set of collocation points defined 

over a specified range. For example, ‖k∇T̂ − h(T̂ − Tamb) ‖
2
∂Ω×[0,tmax ]

de
notes the MSE evaluated along the Neumann boundary, i.e., ∂Ω × [0, 
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tmax]. In the above formulation, the loss terms, except LD, may be 
considered as penalty terms. Eq. (12) states a Neumann boundary con
dition that is a function of Tamb, i.e., a control variable that determines 
the rate of temperature change. It is important to note that the data-fit 
loss (Eq. (9)) can sometimes be omitted in previously reported cases 
[10,13,16]. This study investigates the effect of its presence, which is 
further discussed in Section 4. 

Considering the loss formulation of the MPINN, the network struc
ture of the proposed MPINN is illustrated in Fig. 1; x, y, t, and Tamb are 
the inputs of the network. Because two physical quantities must be 
estimated for TR modeling, two distinct networks were used, namely, 
Network T and Network C, that shared the same input; the former and 
latter learn and output the temperature (T) and dimensionless concen
tration of reactive species (c), respectively, given the inputs. The 
network outputs are then used to calculate the partial derivative terms 
by automatic differentiation [18] followed by the computation of loss 
terms. Importantly, the PDE loss, i.e., the energy-balance equation, 
couples the outputs of the two distinctively trained networks, enabling it 
to consider the multiphysics characteristics of TR. Hence, the main 
difference between the proposed MPINN and a single PINN lies in the 
structure with interconnected loss functions. Note that α1 = kxtmax/ 
xmax

2 ρCp, α2 = kytmax/ymax
2 ρCp, α3 = HW/TmaxρCp, β = tmaxA, γ1 = kx/ 

hxmax, and γ2 = ky/hymax. The loss terms are multiplied by the adaptive 
weighting coefficients, λ*, and added to calculate the total loss, L. ̀ Based 
on the total loss, L, the error is backpropagated to further optimize the 
network parameters. The hyper-parameters involved in the training are 
given as follows. A single network consists of an input layer of 4 nodes, 6 
hidden layers of 20 nodes, and an output layer of a single node. The 
specified numbers regarding the network structure are determined 
heuristically through numerous experimentations. The number of 
training data used for optimizing the network parameters are 1,271,571 
for the data-fit loss, 1,132,400 for the PDE loss, 68,571 for the boundary 
condition loss, and 3171 for the initial condition loss. The size of 
training set for the loss terms vary because each loss term can be 
minimized using only the samples fetched from the domain of interest. 
For example, the boundary condition loss is minimized using data points 
along the boundaries of the domain, which critically reduces the number 
of trainable samples compared with the case of the data-fit loss. The 
batch size and the learning rate are set to 15,000 and 1e-3, respectively. 
The network was programmed using Python 3.5.2, TensorFlow 1.14.0, 

and Keras 2.2.5. The computations were performed using a GeForce RTX 
2080TI GPU. 

2.3. Training algorithm 

Training a PINN is a challenging task that remains an active research 
topic. This is because PINNs encounter convergence issues owing to 
failure modes originating from the type, nonlinearity, and number of 
physics involved. It has been reported that PINNs fail to converge near 
the global minimum owing to the complex loss landscape [14], unbal
anced backpropagated gradients [15], and slow convergence [16]. Some 
widely known nonlinear and high-order PDEs that fail to accurately 
converge include the Allen–Cahn and Cahn–Hilliard equations. There
fore, numerous techniques, such as curriculum regularization [14], 
sequence-to-sequence learning [14,19], sequential training [12], varia
tional or weak-form PDE regularization [20–22], domain decomposition 
[21,23], adaptive activation function [23], learning rate annealing 
[12,24], and PINN-specialized optimizers [25] have been proposed or 
exploited to overcome the failure modes. However, such workarounds 
are applicable to specific PDEs [14,15,17] and, to the best of our 
knowledge, no solution has yet been introduced to solve a family of 
general PDEs with varying boundary and initial conditions, which is 
currently the main limitation of PINN-based modeling in comparison to 
FEM/FDM. Investigating the existing approaches is beyond the scope of 
this study. However, most PINNs encounter a common convergence 
issue originating from the presence of multiple loss functions with 
different minimization speeds. Learning rate annealing [15], which was 
devised to address this issue, is relatively intuitive and easy to follow. 
Thus, it has been presented to address the TR problem in this study. 

Learning rate annealing adaptively rebalances the weighting co
efficients, λi, specified in the total loss function of Eq. (8). When mini
mizing the loss function, some loss terms tend to be minimized faster 
than others owing to differences in convexity [15,24] and scale [16]. 
This phenomenon typically results in slower convergence and poor local 
minima. The former issue is generally resolved by tuning the parameter 
λi

(n), where subscript n denotes the iteration number at each training 
iteration, to balance the contribution of each term to the total loss. Al
gorithm 1 describes the modification of the weighting coefficients at 
each training iteration in a pseudo-code format. 

Fig. 1. Graphical illustration of the MPINN structure and model optimization.  
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Algorithm 1. Learning rate annealing  
Assume a PINN with the following loss function, where i and n denote the loss function 

index (excluding PDE loss) and training iteration index, respectively.  
L(θ) = LPDE(θ) + λi

(n)Li(θ). (14) 
For i = 1, …, M and n = 1, …, S,  

(1) Compute  

λ̄(n)i =
max

(⃒
⃒
⃒∇θLPDE

(
θ(n)

) ⃒
⃒
⃒

)

mean
(⃒
⃒
⃒∇θLi

(
θ(n)

) ⃒
⃒
⃒

) . (15)  

(2) Update the weights  

λ(n)i = αλ̄(n)i + (1 − α)λ̄(n− 1)
i (16) 

End 
α denotes the exponential moving average decay that is normally set to 0.9.  

Specifically, Eq. (14) is another expression of Eq. (8), with λ2 = 1. 
The gradient of PDE loss generally exhibits the largest value owing to the 
high nonlinearity of the function. Therefore, other loss terms must be 
assigned weight coefficients larger than one (max(|∇θLPDE(θ(n))|) ≥
mean(|∇θLi(θ(n))|)). New weight coefficients are determined (Eq. (15)) 
and updated in each iterative training loop considering the new co
efficients (λ̄(n)i ) and those from the previous loop (λ̄(n− 1)

i ). During weight 
update, the two terms are weighted by the exponential moving average 
decay to provide an averaging effect (Eq. (16)). 

The difference in the scale of input and output is another factor 
contributing to weight imbalance between the loss terms. Unlike purely 
data-driven deep learning models, PINN setups encounter problems 
when the network output is scaled but physics residual loss terms, such 
as PDE loss, are unscaled. To eliminate the mismatch between the 
normalized network output of the physical quantity and PDEs with 
physical dimensions, the variables and coefficients of PDEs should also 
be normalized and nondimensionalized. To scale the loss in Eqs. (1)–(4), 
nondimensionalization [26,27], which removes physical dimensions by 
substituting variables, is used as follows: 

x* =
x − xmin

xmax − xmin
,

y* =
y − ymin

ymax − ymin
,

T* =
T

Tmax
,

c* = c,

t* =
t

tmax

(17)  

where x*, y*, T*, c*, and t* denote the dimensionless quantities of their 
counterparts. Their values range from zero to one and are provided as 
inputs to the model in Fig. 1. The nondimensionalization results of Eqs. 
(18)–(20) are the new dimensionless equations. 

ρCp
Tmax

tmax

∂T*

∂t*
= kx

Tmax

x2
max

∂2T*

∂x*2 + ky
Tmax

y2
max

∂2T*

∂y*2 −
HW
tmax

∂c*

∂t*
(18)  

kx
Tmax

xmax

∂T*

∂x* + ky
Tmax

ymax

∂T*

∂y* = hTmax
(
T*

amb − T*) (19)  

T*(x, t = 0) =
T0

Tmax
, c*(x, t = 0) = c0 (20)  

3. Experiment 

Fig. 2 illustrates the proposed framework for TR estimation and 
prediction using MPINN. First, a sufficient amount of data was generated 
through a high-fidelity model using COMSOL Multiphysics 5.6. The 
MPINN was then fed with the data for training. The model comprised 
two different networks to consider the multiphysics in TR. Network T 
was trained to learn the evolution of temperature distribution over space 
and time, whereas Network C was set to learn the concentration of 
reactive species that degrade over time due to temperature increase. 

Each network was assigned a different task; thus, a different objective 
function was required by each network. However, the networks were 
optimized simultaneously because they were coupled with one another 
by the total governing equation. After successful optimization, the re
sults were visualized and analyzed, as described in Section 4. 

3.1. Experimental design 

TR in an LIB is a multiphysics phenomenon, wherein numerous 
factors contribute to the elevation in temperature. Previous studies have 
reported various models involving aging characteristics [3], Joule 
heating [28], heat generation in the SEI layer [29–31], negative elec
trode [29–31], positive electrode [29,31], and electrolyte [29,31]. 
However, a precise estimation of TR that reflects the reality is beyond 
the scope of this study. For the sake of model simplicity, a cylindrical 
lithium-ion cell was assumed to be heated inside an insulated oven 
without any charge or discharge process, implying that there was no 
electrochemical heat source but only an exothermic heat source from 
thermal abuse. In practical applications, this is equivalent to a situation 
in which heat is propagated between several stacked batteries. There
fore, this study focused mainly on a scenario where exothermic heat is 
generated only by electrolyte decomposition, which is the main 
contributing factor to the instant rise in temperature during TR. How
ever, a special case of a chemical reaction in the positive electrode has 
also been investigated in Section 4 for a comparative analysis of the 
MPINN. The two chemical reactions cannot be modeled simultaneously 
because they increase the computational complexity, which leads to 
failure in MPINN convergence, a limitation of MPINNs, as stated in 
Section 2.3. Thus, a more precise TR model will be explored in future 
research. Constants H, W, R, A, and E are properties that rely on the type 
of species of interest, and they are adjusted to the case of electrolyte in 
this study; moreover, ρ and Cp are isotropic thermal properties and k is 

Fig. 2. Flowchart of MPINN-based TR estimation and prediction of LIB.  

Table 1 
Thermochemical properties for TR estimation.  

Property Abbreviation Value 

Thermal conductivity in angular direction [W/(m • K)] ka 140 
Thermal conductivity in radial direction [W/(m • K)] kr 0.7 
Initial temperature [◦C] T0 25 
Cell density [kg/m3] ρ 2231.2 
Heat capacity [J/(kg • K)] Cp 1100 
Heat transfer coefficient [W/(m2 • K)] h 12 
Gas constant [J/(mol • K)] Rc 8.314 
Activation energy value of electrolyte [J/mol] E 2.7e+5 
Reaction factor of electrolyte [1/s] A 5.14e+25 
Reaction order of electrolyte m 1 
Initial dimensionless concentration c0 1 
Heat released [J/kg] H 6.2e+5 
Specific active material content [kg/m3] W 335  
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an anisotropic property that varies depending on the direction. Table 1 
summarizes the thermochemical properties obtained from [3], modeling 
a commercial Lithium iron phosphate (LFP) cell. 

3.2. Data generation through numerical simulation 

COMSOL Multiphysics 5.6 is a popular FEM-based software that 
features various modules to help users simulate heat transfer, electro
chemistry, aerodynamics, and fluid dynamics. Numerous studies 
[3,28,32,33] have reported applications related to LIB simulation using 
this software owing to its ease of use and high modeling capability. 
Inspired by prior examples, the same software was used in this study to 
generate reference data. 

To numerically solve the TR problem, a simplified yet accurate 
geometric assumption was made (Fig. 3(a)), followed by mesh creation 
over the computational domain (Fig. 3(b)). A 3D cylindrical cell can be 
computed efficiently using a 2D axisymmetric model, wherein a single 
rectangular cross-section is computed. The outcome was rotated 360◦

with respect to the axis of rotation (located at r = 0) to retrieve the 3D 
model in polar coordinates. Quadratic meshes were used in finite 
element analysis, and a total of 1560 meshes were created. To account 
for the multiphysics in TR, two distinct sub-models, i.e., the heat transfer 
module and distributed ODE interface featured within the software, 
were built. In the TR model, the heat transfer theory and exothermic 
heat generation from the active materials of an LIB were coupled. They 
were merged such that the initial temperature, T0, became the first input 

to the chemical reaction model to obtain Q̇
′

exo, which was then fed into 
the heat transfer model to obtain T′

cell. 

4. Results and discussion 

4.1. Multiphysics phenomena of TR 

To understand the multiphysics phenomena of TR in an LIB, TR in a 
cylindrical LIB was estimated using COMSOL Multiphysics 5.6, as 
described in Section 3.2. The estimated results with the input ambient 
temperature (Fig. 4(a)) included the mean temperature (Fig. 4(b)), mean 
dimensionless concentration of lithium in the electrolyte (Fig. 4(c)), 
mean reaction rate (Fig. 4(d)), and temperature change rate (Fig. 4(e)). 
Specifically, the ambient temperature, Tamb, was constant at 308.15 K 
until t=60 min, when it linearly increased to 473.15 K until t=90 min 
(Fig. 4(a)). The remaining computation time was kept constant at 
473.15 K. The increase in ambient temperature affected the LIB tem
perature and stimulated an internal chemical chain reaction. Even after 

the ambient temperature became 473.15 K (=200 ◦C) at t=90 min, the 
temperature continued to rise until the TR reached the maximum tem
perature of 543.84 K at t=224 min, implying that the given ambient 
temperature was sufficient for the cell to reach the crucial temperature, 
thereby initiating exothermic chemical degradation of the electrolyte. 
This temperature elevation in the LIB resulted in the evolution of 
dimensionless concentration of reactive species, which started from 
t=168 min near the onset temperature (Fig. 4(c)), indicating the onset of 
electrolyte decomposition . The reaction rate shown in Fig. 4(d) implies 
an inverse behavior compared to the dimensionless concentration, and it 
mainly focuses on the rapidly generated heat before the TR. Lastly, Fig. 4 
(e) plots the temperature change rate (C/min) against the temperature 
(K). It shows that the onset temperature, defined as the point where the 
self-heating becomes prominent, occurred at t = 184 min and T = 468.9 
K, and the crucial temperature, defined as the point where the self-heat 
rate exceeds 2 ◦C/min, occurred at t = 218.3 min and T = 489.1 K. This 
point is often regarded as the beginning of the thermal runaway. It takes 
34.3 min from the point of the onset temperature to reach the crucial 
temperature. The maximum temperature (T = 543.48 K) is reached at t 
= 222.6 min. It takes 38.6 min from the start of the point of the onset 
temperature to reach the maximum temperature, and it takes 4.6 min 
from the start of the point of the critical temperature to reach the 
maximum temperature. 

Fig. 5 illustrates the results depicting the evolution of temperature 
distribution over space and time. It should be noted that the figure in
tends to show the varying spatial temperature gradient across the cy
lindrical cell at sequential time steps; therefore, the scale bar at each 
time step changes accordingly. At t=85 min, it can be observed that the 
cell temperature closer to the boundary, in other words, the surface 
temperature increases with the ambient temperature. This is the TR 
propagation stage from the external environment. Moreover, chemical 
reactions and electrolyte decomposition can be observed at the center of 
the cell starting at t=168 min, leading to a relatively higher temperature 
at the center. This is regarded as the point of exothermic onset, from 
which exothermic reactions become more dominant than heat escaping 
from a cell, leading to a heat-temperature-reaction loop [34]. Subse
quently, the generated heat was propagated outward toward the 
boundaries at t=179 min. Finally, at t=233 min, the temperature was 
evenly distributed across the entire domain after going through the peak 
temperature, and all reactants in the electrolyte were consumed. The 
temperature at the outer surface of the cell was slightly lower owing to 
the persistent heat exchange with the external environment. It should be 
noted that the acquired data have been used as reference data for 
comparative purposes in the following subsections. 

Fig. 3. (a) Three-dimensional cylindrical cell and (b) computational mesh for its 2D cross-section.  
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4.2. TR estimation by MPINN 

This subsection presents the results of TR estimation using the pro
posed MPINN. To validate the accuracy of the method in the estimation 
of temperature T and dimensionless concentration c, the estimated re
sults were compared with numerical results shown in Section 4.1. The 
results of an ANN model of the same network structure as the MPINN 
were also compared to highlight the accuracy and robustness of the 
MPINN over the purely data-driven method. As summarized in Table 2, 
the MAEs of the estimated temperature and dimensionless concentration 
obtained by the MPINN and ANN with respect to reference data (when 
size of training data is 30,600) are 0.46 and 2.06e-4 and 1.17 and 2.28e- 
3, respectively, indicating that the MAEs of the proposed method are less 

than those of the ANN by 0.71 and 2.07e-3; moreover, the RMSEs of the 
proposed method is less than that of the ANN by 1.57 and 4.01e-4, 
respectively. In general, the MPINN outperforms the ANN at every 
different sizes of the training data used for data-fitting. It can be 
observed that the accuracy improves as the size of the training data 
increases, implying that training larger datasets normally brings more 
benefits. However, this is only possible at the cost of exponentially 
growing training time, and the training time increases much faster in 
case of the MPINN. Although, it takes much longer to optimize, it 
generally guarantees higher accuracy on unseen data points. The MPINN 
accurately estimated the evolutions of temperature and dimensionless 
concentration distributions over time, even at points with no labeled 
data (Fig. 6). Specifically, the ANN exhibited large errors in the interval 

Fig. 4. Illustration of (a) ambient temperature Tamb, (b) mean temperature, (c) mean dimensionless concentration of lithium in electrolyte, (d) reaction rate over 
time, and (e) temperature change rate. 

S.W. Kim et al.                                                                                                                                                                                                                                  



Journal of Energy Storage 60 (2023) 106654

8

of t=162 min to t=199 min, as shown in Fig. 6(b), where the concen
tration started dropping and no label points were provided (the area 
inside the red dashed circle is magnified in the inset). This observation 
implies that an ordinary data-driven model cannot perform interpola
tion at points demonstrating a sudden change in pattern unless a label is 
provided to present clues about the change. Interestingly, the MPINN 
showed different behaviors because it was minimized on the ODE loss 
(Eq. (11)), which describes the evolution of dimensionless concentration 
over time, as well as other losses. This means that the MPINN presented 

a significantly low level of overfitting. A similar observation can be 
made from Fig. 6(a) inside the specified circle. This phenomenon implies 
that the MPINN requires less instances of labeled data to accurately 
capture the underlying dynamics, i.e., extra information in the form of 
loss function fills the gap between two consecutive labeled points. This 
factor is a significant advantage for practical applications in which only 
the physical laws are known, but collecting or measuring the actual 
labeled data is challenging [11]. It should be noted that the number of 
labeled training data and network structures for the MPINN and ANN 
were set to be equal to ensure fair comparison. 

In regard to the thermal runaway parameters estimated by the 
MPINN, the onset temperature occurred at t = 183.6 min and T = 467.7 
K, the crucial temperature occurred at t = 218 min and T = 488.1 K, and 
the maximum temperature (T = 543.5 K) is reached at t = 222.7 min. 
Therefore, it takes 34.4 min and 39.1 min from the point of the onset 
temperature to reach the crucial temperature and the maximum tem
perature, respectively. 

Fig. 7 presents further results regarding the estimated temperature at 
the cross-section of the cylindrical cell (Fig. 7(a)). From a cross-sectional 
viewpoint, the temperature distribution is symmetric with respect to the 
center point because the external heat that interacts with the cell is 
uniform throughout the boundaries. Because the heat inside the cell 
propagates significantly faster (ky ≫ kx) along the y-axis (or axial di
rection) than the x-axis (or radial direction), the temperature gradient is 
sufficiently large and is thus visible only horizontally. Fig. 7(b) and (c) 
show the estimated temperature distributions at t=133 min by the 
MPINN and ANN, respectively, which emphasize this gradient symmetry 
along the x-axis. Unlike the MPINN output, which exhibits a perfect bell- 
shaped curve, the ANN output is relatively less symmetric. This implies 
that the ANN fails to accurately capture symmetricity, disobeying one of 
the physical laws. More specifically, the estimation results are compared 
in relation to the relative percent error (RPE) in Fig. 7(d) and (e) at 
t=133 min and t=210 min, respectively. In general, MPINN demon
strates better symmetricity and lower RPE than ANN. Observing the RPE 
distributions of the MPINN and ANN, the MPINN exhibits a relatively 

Fig. 5. Spatial TR simulation of a cylindrical LIB.  

Table 2 
Estimation results by MPINN and ANN. Best scores are marked in bold font.   

MPINN ANN  

Size of training 
data 

MAE RMSE MAE RMSE 

Temperature 17,400 3.02 8.71 3.69 10.9 
24,000 1.63 3.44 2.81 6.50 
30,600 
(reference) 

0.46 0.76 1.17 2.33 

37,200 0.45 0.76 0.77 1.14 
43,800 0.37 0.73 0.65 0.96 

Dimensionless 
concentration 

17,400 9.1e- 
4 

1.9e- 
3 

9.9e- 
4 

4.8e- 
3 

24,000 5.1e- 
4 

1.1e- 
3 

5.2e- 
4 

2.9e- 
3 

30,600 
(reference) 

2.1e- 
4 

4.7e- 
4 

2.3e- 
4 

7.7e- 
4 

37,200 1.7e- 
4 

4.2e- 
4 

1.9e- 
4 

5.6e- 
4 

43,800 1.0e- 
4 

3.9e- 
4 

1.3e- 
4 

4.4e- 
4 

Training time (hours) 17,400 36 1.1 
24,000 47 1.2 
30,600 
(reference) 

52 1.5 

37,200 59 1.6 
43,800 70 1.9  
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Fig. 6. TR estimation results of the MPINN and ANN w.r.t. reference data; (a) temperature and (b) dimensionless concentration.  

Fig. 7. (a) Cross-section of cylindrical cell. (b) Estimated temperature at t=133 min by the MPINN. (c) Estimated temperature at t=133 min by the ANN. (d) 
Comparative estimation results at t=133 min. (e) Comparative estimation results at t= 210 min. 
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higher error near the boundaries, whereas the ANN exhibits a more 
evenly distributed error across the domain. This trend can be attributed 
to the minimization of the MPINN on the boundary condition loss 
function separately from other loss functions. Even though the boundary 
condition loss is considered during optimization, sufficient minimiza
tion of this loss function cannot be guaranteed to satisfy the boundary 
condition and no errors at each point on the boundaries. All loss func
tions comprising the total loss of Eq. (8) should be equally minimized; 
however, the different levels of non-convexity inherent to each loss 
hinder uniform minimization. The next subsection discusses how the 
learning-rate annealing technique addresses this issue during training. 

4.2.1. Effect of learning rate annealing 
The learning rate annealing (LRA) algorithm discussed in Section 2.2 

was leveraged to balance the interaction between multiple loss terms. To 
validate the effect of the algorithm in training the MPINN, the estimated 
outputs and training loss were analyzed for a case with and without the 
LRA. Fig. 8 depicts the estimated temperature (Fig. 8(a)), estimated 
dimensionless concentration (Fig. 8(b)), and loss over training iteration 
(Fig. 8(c)). The model optimized with the LRA exhibited significantly 
better estimation performance, particularly around the TR marked by 
red dashed circle in the figure. In contrast, the performance of the model 
optimized without the LRA was considerably worse than its counterpart 
when they were trained for the same number of iterations (210,000). In 
general, this model exhibited a smoother loss curve throughout the 
process; however, its convergence rate was slower than its counterpart. 
Moreover, it exhibited a higher loss value while reaching almost a flat 
curve; hence, there is no guarantee of further drastic loss reduction. In 
contrast, the model optimized with the LRA demonstrated high insta
bility with large fluctuations in the early phase, but it stabilized after 
approximately 80,000 iterations and eventually resulted in a 

significantly lower loss value of two orders of magnitude (Table 3). 
Considering that the estimated output of the model without the LRA 
demonstrated a large error near the TR point, the presence of the LRA is 
critical for the stable and sufficient convergence of the MPINN. Table 3 
summarizes the quantitative results of the estimated outputs and 
training loss. 

4.2.2. Drawbacks related to MPINN and its potential 
Although the MPINN yielded promising results and higher estima

tion performance than the ANN, the major drawback of the proposed 
MPINN is that it has limited usability under particular circumstances in 
comparison to the conventional FEM. Technically, while both the 
MPINN and ANN use labeled data for training, the FEM does not need 
them for modeling. The availability of data labeling becomes a problem 
in situations where measurement or observation is costly or even 
impossible. A great example of the absence of measurement is prognosis 
because future measurements cannot be obtained in advance unless 
predicted. Therefore, MPINNs may still not be a preferred choice over 
FEM in a practical sense. However, in many cases, PINNs can be trained 
without labeled data [10,13,16]. To support this claim, the proposed 
MPINN was trained in a semi-supervised and unsupervised manner; the 

Fig. 8. (a) Estimated temperature, (b) dimensionless concentration estimated by the MPINN, and (c) training loss when training the MPINN.  

Table 3 
Estimation results by MPINN with and without LRA. Best scores are marked in 
bold font.   

MPINN w/ LRA MPINN w/o LRA 

Temperature 
MAE 0.46 1.67 
RMSE 0.76 2.79 

Dimensionless concentration MAE 2.06e-4 3.18e-3 
RMSE 4.66e-4 8.10e-4 

Loss MSE 6.22e-7 2.46e-5  
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following sections discuss its operation under specific circumstances. 
More importantly, MPINN is capable of surrogate modeling in limited 
circumstances, as discussed in Section 4.3.2. The FEM is widely known 
to fail in generalizing unseen data. Table 4 summarizes the advantages 
and disadvantages of these methods in the presence of a limited amount 
of labeled data [10]. Although the FEM yielded the highest accuracy 
without the requirement for labeled data, its training time was relatively 
high and surrogate modeling cannot be implemented. The major 
drawbacks of the FEM can ultimately be complemented by the advan
tages of MPINN. The following subsection discusses the potential of the 
proposed MPINN as an alternative to conventional FEM. 

4.3. Practical applications 

This subsection presents case studies related to semi-supervised 
learning, unsupervised learning, and surrogate modeling using the 
proposed MPINN in more practical scenarios. Semi-supervised learning 
refers to a scenario in which a small subset of the entire data is exploited 
to train a model and then predict the remaining unseen but time- or 
domain-wise correlated parts [35]. In the field of prognostics and health 
management, the future system state must be predicted in a semi- 
supervised manner, given past states. Unsupervised learning is a type 
of model training that does not use labeled data. Surrogate modeling 
refers to obtaining the model solution for different values of problem 
parameters, such as boundary conditions and material properties. This is 
crucial in the design optimization stage because a large number of test 
conditions must be evaluated to finalize the product design. This can 
significantly reduce the cost and repetitive tasks. Therefore, the afore
mentioned case studies reflect the possible practical applications of the 
proposed model. 

4.3.1. Case study: Semi-supervised and unsupervised learning for TR 
prediction 

In semi-supervised learning settings, two modifications were made to 
investigate the feasibility of the MPINN. First, the prediction results of 
the positive electrode decomposition model were analyzed in lieu of the 
previously used electrolyte decomposition model because the former 
demonstrates significantly higher accuracy than the latter. Thus, the 
proposed MPINN was investigated in terms of the effect of data-fit loss 
and different chemical reaction degradations. Second, the data-fit loss 
(Eq. (6)) was used in the first half of the training phase, but it was 
omitted in the second half. The boundary between the first and second 
halves was determined heuristically, but one should consider which part 
of the TR has already been observed and which part must be predicted 
for prognostic purposes. 

Fig. 9 shows the prediction results under various circumstances, i.e., 
three different Tambs, which are indicated by blue dashed lines in Fig. 9 
(a), (b), and (c). Specifically, Tamb starts off at 308.15 K and remains 
constant for a while until it increases linearly (Fig. 9(a) and (b)) or as a 
step function (Fig. 9(c)) until it reaches 473.15 K in all three scenarios. 
Note that Tamb is the control variable that determines the overall TR 
characteristics; it also reflects the time-dependent heat propagation 
profile in experimental settings, as mentioned in Section 3.1. In addition, 
Tamb represents the ambient temperature controlled by a cooling system 
in a battery thermal management system, suggesting that the analysis 

would be helpful in designing a battery thermal management system. 
Hence, one may be interested in the predicted performance of the pro
posed model when Tamb is varied for design optimization in diverse 
usage profiles during product development. 

The observed part, i.e., the first half with data-fit loss, is shaded in 
green, whereas the area of interest for prognostic measures (i.e., the 
second half without data-fit loss) is shaded in blue in Fig. 9. Note that the 
linearly increasing part of Tamb is placed inside green and blue regions in 
Fig. 9(a) and (b), respectively, to demonstrate that the MPINN can 
forecast the TR regardless of the characteristics of the observed data in 
the first half. Fig. 9(c) shows a good fit of an MPINN prediction to the 
reference data for a highly factitious and randomized Tamb represented 
in the form of multistep functions. To further demonstrate the effec
tiveness of the MPINN, it was compared with ANN; the results of the 
MPINN for the temperature (Fig. 9(a), (b), and (c)) and dimensionless 
concentration (Fig. 9(d), (e), and (f)) were found to be similar to those of 
the ANN in the green region, but they differed by a large margin in the 
blue region, where prediction was performed. This result is reasonable 
because ANNs and most other DNNs are known to fail in extrapolating 
unless prior knowledge is given for generalization to out-of-distribution 
[36]. In contrast, the MPINN demonstrated good extrapolation perfor
mance because the unseen part was informed during optimization in the 
form of loss functions or inductive bias [37]. It also implies that the 
MPINN has not been overfitted to the training data. Table 5 presents a 
quantitative evaluation of the results. 

Following the evaluation of semi-supervised learning, unsupervised 
learning was investigated. Although it has been reported that several 
PINNs do not require labeled data, this is not true for all previously 
studied PINNs [12,38–40]. This is because the convergence of PINNs 
significantly relies on the type and nonlinearity of loss functions 
involved; those that require the assistance of labeled data for better 
convergence must be trained differently, and this is currently an open 
research topic. Similarly, TR generally requires labeled data for PINN 
convergence, as discussed in Section 4.2 and the case of semi-supervised 
learning. 

Moreover, Fig. 10 demonstrates that labeled data may not be 
mandatory under a particular condition; this figure presents the pre
diction outcomes of the positive electrode decomposition model (Fig. 10 
(a)) and electrolyte decomposition model (Fig. 10(b)). It can be 
observed that the MAE and RMSE in both results are higher than those of 
the first model, Tamb, 1, of the semi-supervised setting, implying that 
labeled data are necessary for better fitting to the reference. However, 
unlike the electrolyte decomposition model, which presents large errors 
around the TR point, the positive electrode decomposition model 
ensured tolerable accuracy even without supervision. This difference 
can be attributed to the complexity of landscape loss for different PDEs, 
as discussed by Krishnapriyan et al. [14]. Even for the same governing 
laws, the loss landscape can be smooth or extremely complex depending 
on the values of coefficients in PDEs. 

To illustrate the effect of different PDEs in optimization, the tem
poral (Tt) and spatial (Txx and Tyy) temperature gradients of both models 
for comparative analysis are plotted, as shown in Fig. 11. The plots in 
Fig. 11(a) show an increase in the gradient magnitude at approximately 
t=60 min, followed by a decrease starting at t=100 min, implying that 
relatively high gradients must be computed during this period. This 
observation explains the slight error found in the temperature prediction 
results of the MPINN from t=60 min to t=100 min in Fig. 10(a). How
ever, the error was generally low because the change in gradient 
magnitude was not significant. In contrast, a significant change was 
observed in the gradient at t=224 min in the electrolyte decomposition 
model (Fig. 11(b)). Owing to the sudden jump in the gradient, the 
complexity of the loss landscape significantly increased, leading to 
insufficient convergence at a particular point and relatively large pre
diction error at the TR point, as observed in Fig. 10(b). In summary, the 
use of labeled data for supervision is not always mandatory for pre
dicting the positive electrode decomposition model, but it is for the 

Table 4 
Pros and cons of the FEM, MPINN, and ANN for limited amount of labeled data. 
Best choices are marked in bold font.   

FEM MPINN ANN 

Accuracy Extremely high High Medium 
Training time Long Long Short 
Inference time Instantaneous Instantaneous Instantaneous 
Label necessity No Limited Yes 
Surrogate modeling No Limited No  
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electrolyte decomposition model owing to the nontrivial PDE of the 
model. 

4.3.2. Case study: surrogate modeling 
This subsection discusses the potential application of the MPINN as a 

surrogate model for TR estimation. Assuming that one is interested in 

estimating the response variables, T and c, as a function of Tamb with a 
predefined space and time, its mathematical formulation can be given 
by: T, c = MPINN(x,y, t,Tamb). In addition to the Tamb profile detailed in 
Fig. 4(a), two similar profiles (refer to Fig. S1 in Supplementary Mate
rial) and their associated datasets were added to the entire training 
dataset. In contrast to conventional FEM/FDM-based methods that 

Fig. 9. Semi-supervised settings: Predicted temperature and dimensionless concentration over time for Tamb, 1, Tamb, 2, and Tamb, 3 are shown in (a), (b), and (c), and 
(d), (e), and (f), respectively. 
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enable one model construction for a single Tamb profile, the MPINN can 
handle multiple Tamb profiles simultaneously. 

This would be computationally beneficial when evaluating 
numerous operational profiles to ensure safety and reliability in LIB 
cells, modules, and packs using the Monte Carlo method for uncertainty 
quantification in the product development phase. After a model is 
optimized, it can be evaluated on the trained Tamb profiles, which takes 
approximately 0.01 s per evaluation. This is approximately 42,000 times 
faster than the computation time of COMSOL Multiphysics, which re
quires approximately 7 min to compute each Tamb profile. Fig. 12 illus
trates the estimated temperature and dimensionless concentration at 
different Tamb profiles for the positive electrode decomposition model 
(Fig. 12(a) and (b)) and electrolyte decomposition model (Fig. 12(c) and 
(d)). As summarized in Table 6, the estimation performance is compa
rable to previous cases discussed in Sections 4.2 and 4.3.1 in terms of the 
MAE and RMSE, even though multiple Tamb profiles were trained 

simultaneously. The MAE remained small for all cases, below 1.0 and 
0.001 for the temperature and dimensionless concentration, respec
tively. Even though the estimation performance degrades when evalu
ating multiple profiles simultaneously, the reduced computational cost 
is the major advantage, implying that the proposed MPINN methodology 
can be leveraged as a surrogate model in more complex and diverse 
scenarios. 

5. Conclusion 

An MPINN was proposed in this study to estimate and predict TR in 
an LIB; further, its applicability to semi-supervised learning, unsuper
vised learning, and surrogate modeling was investigated. The proposed 
methodology featured four main characteristics as the key contribu
tions. First, this study presented the first MPINN-based TR estimation in 
an LIB; the results of this study can be used in future research related to 
MPINNs to estimate and predict more sophisticated incidents of TR in 
real time. Second, the difference between positive electrode decompo
sition and electrolyte decomposition was highlighted from the 
perspective of PINN convergence. This study supported the claim that 
PINNs generally encounter convergence issues owing to drastic changes 
in gradients stemming from an inflection point. Hence, estimating the 
electrolyte decomposition model through the MPINN is more chal
lenging because its chemical reactions are more substantial, instanta
neous, and momentous. Third, the effects of data-fit loss and learning 
rate annealing to address the convergence issues were analyzed and 
demonstrated via case studies, which revealed that labeled data and 
learning rate annealing improve the MPINN estimation performance. 
Fourth, the MPINN was compared against an ANN to prove its effec
tiveness over standard data-driven methods. The MAE and RMSE of the 
proposed MPINN were less than those of the ANN by 0.71 and 1.57, 
respectively, when labeled data were used for training. The MPINN 
outperformed the ANN in terms of the MAE and RMSE by approximately 
90.56 and 118.64, respectively, in the semi-supervised setting for TR 
prediction. In future studies, including additional chemical reactions 
and dynamics for charge and discharge during TR estimation, and 
focusing on validating the MPINN for more diverse input profiles that 
reflect the randomness of LIB usage and harsh environmental conditions 
are considered. In addition, a one-to-one comparison of the estimation 
and prediction results of MPINN with those of TR experiments using real 
batteries needs to be done to enhance the reliability of the proposed 

Table 5 
Quantitative summary of predicted results under semi-supervised and unsu
pervised settings. “PE” and “E” inside brackets denote the positive electrode 
decomposition model and electrolyte decomposition model, respectively. Best 
scores are marked in bold font.   

Semi-supervised 
learning 

Unsupervised 
learning 

MPINN ANN MPINN 
(PE) 

MPINN 
(E) 

Tamb, 

1 

Temperature MAE 0.08 47.46 1.29 12.30 
RMSE 0.17 59.96 2.51 21.57 

Dimensionless 
concentration 

MAE 
5.70e- 
4 0.10 2.35e-3 0.29 

RMSE 
2.34e- 
3 0.19 8.25e-3 0.49 

Tamb, 

2 

Temperature MAE 0.12 90.68 5.47 47.95 
RMSE 0.25 118.89 9.62 78.83 

Dimensionless 
concentration 

MAE 8.5e-4 0.32 0.03 0.19 

RMSE 
3.46e- 
3 0.54 0.09 0.40 

Tamb, 

3 

Temperature 
MAE 0.54 49.05 5.81 57.59 
RMSE 0.91 67.11 8.28 85.58 

Dimensionless 
concentration 

MAE 1.5e-3 0.34 0.03 0.20 

RMSE 4.05e- 
3 

0.56 0.10 0.41  

Fig. 10. Unsupervised settings: Predicted temperature over time for (a) positive electrode decomposition model and (b) electrolyte decomposition model.  
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Fig. 11. Evolution of temporal (Tt) and spatial (Txx and Tyy) temperature gradients for (a) positive electrode decomposition model and (b) electrolyte decompo
sition model. 

Fig. 12. Estimated temperature and dimensionless concentration at three different Tamb profiles for ((a) and (b)) positive electrode decomposition model and ((c) and 
(d)) electrolyte decomposition model. Numbers marked with arrows denote profile numbers. 
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model. 
Supplementary data to this article can be found online at https://doi. 

org/10.1016/j.est.2023.106654. 
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