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A B S T R A C T

Next Point-Of-Interest (POI) recommendation aim to predict users’ next visits by mining
their movement patterns. Existing works attempt to extract spatial–temporal relationships
from historical check-ins; however, the following critical factors have not been adequately
considered: (1) structured features implied in trajectory that reflect individual visit tendency; (2)
collaborative signals from other users and (3) dynamic user preference. To this end, we jointly
take into full consideration the graph-structured information as well as sequential effects of
user trajectory sequences and propose the Trajectory Graph enhanced Spatial–Temporal aware
Attention Network (TGSTAN). Given the general preference among users and the shifts of
individual interests over time, we present a novel trajectory-aware dynamic graph convolution
network module (TDGCN) to facilitate the capturing of local spatial correlations. Specifically,
TDGCN dynamically adjusts the normalized adjacency matrix of the trajectory graph by
element-wise multiplication with self-attentive POI representations. The local trajectory graph
is generated from the same training batch to reflect real-time and collaborative signals, while
also following causality. Moreover, we explicitly integrate spatial–temporal interval information
with bilinear interpolation to comprehensively attach relative proximity to attention mechanism
when capturing long-term dependence. Extensive experiments on three real-world Location-
Based Social Networks datasets (Foursquare_TKY, Weeplaces and Gowalla_CA) demonstrate that
the proposed TGSTAN consistently outperforms the existing state-of-the-art baselines with an
average of 8.18%, 6.59%, and 9.60% improvement on the three datasets, respectively.

. Introduction

With the rapid growth of Location-Based Social Networks (LBSNs) service providers such as Gowalla, Yelp and Foursquare,
haring check-ins, comments and tips when visiting points of interest (POIs) on social networking platforms has become a prevalent
ay to socialize among users in recent years (Islam, Mohammad, Das, & Ali, 2022). Consequently, the accumulation of rich user

heck-in data benefits the POI recommendation systems, which aims to model users’ visit preferences and predict the most plausible
OI on next movements. In addition to its applications in mobility prediction and route planning, from a business perspective, it
lso helps to implement more appropriate advertising strategies (Jiang, Qian, Shen, Fu, & Mei, 2015; Yang, Liu, & Zhao, 2022).

Since users’ historical trajectories have a profound influence on their current or future behavior patterns, sequential effects play
decisive role in the performance of POI recommendations. How to effectively mine the dependency of historical sequences has
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Fig. 1. Two trajectory examples in New York of Weeplaces dataset.

become the focus of many studies (Cheng, Yang, Lyu, & King, 2013; Christoforidis, Kefalas, Papadopoulos, & Manolopoulos, 2021;
Islam et al., 2022; Wang, Jiang, Xu, Wang, & Yang, 2022; Yang et al., 2022). Early studies mainly adopt Markov chains (Ye, Zhu,
& Cheng, 2013; Zhang, Chow, & Li, 2014) and matrix factorization (Gao, Tang, Hu, & Liu, 2013; Koren, Bell, & Volinsky, 2009;
Rendle, Gantner, Freudenthaler, & Schmidt-Thieme, 2011) to model sequential transitions for conventional POI recommendation,
which treat users’ behavior patterns as static. These traditional methods ignore the fact that user preferences change from time
to time and lack the ability to handle sparse sequential data, gradually replaced by neural network-based approaches with the
development of deep learning (Luo, Liu, & Liu, 2021; Wang et al., 2022). The pioneer work STRNN (Liu, Wu, Wang, & Tan, 2016)
explicitly incorporates temporal and geographic contextual information into RNN models due to its good ability to handle time-series
data. Numerous works such as Hidasi, Karatzoglou, Baltrunas, and Tikk (2015), Zhu et al. (2017), Li, Shen, and Zhu (2018), Yang,
Sun, Zhao, Liu, and Chang (2017), Zhao et al. (2019) and Feng et al. (2018) extend the LSTM or GRU models to enhance the
ability to capture both long-term and short-term dependencies by introducing dedicated spatial and temporal gates to control the
flow of contextual information (Lian, Wu, Ge, Xie, & Chen, 2020). Later on, since Self-Attention network (SAN) (Vaswani et al.,
2017) show its remarkable potential in handling sequential tasks, SAN-based models such as SASRec (Kang & McAuley, 2018),
TiSASRec (Li, Wang, & McAuley, 2020) quickly surpass CNN or RNN-based approaches as the state-of-the-art backbone for sequential
recommendation (Wang et al., 2022). Some recent SAN-based works has attempted to further improve the performance of next POI
recommendation by introducing hierarchical grids to efficiently exploit geographic information (Lian et al., 2020), considering
non-adjacent locations and non-consecutive visits (Luo et al., 2021), and explicitly reflecting spatial and temporal proximity with
interval information (Wang et al., 2022).

Previous SAN-based works have adequately explored the temporal and spatial information as well as sequential effects, however,
there are still several issues to be resolved. (1) The spatial correlations among POIs (i.e. structural information) are not effectively
leveraged, whereas spatial preferences of users can be inferred from the graph-structured check-in sequences. Zhao, Zhang et al.
(2020), Yang, Fankhauser, Rosso, and Cudre-Mauroux (2020) and Lian et al. (2020) implicitly capture spatial clustering phenomenon
by delineating spatial regions through hierarchical grids, which focus only on adjacent locations and are not capable of reflecting
global spatial distances (Luo et al., 2021). Besides, Luo et al. (2021) and Wang et al. (2022) generalize POIs as points without spatial
association and reflects proximity only by time interval and geographic distance, which focuses too much on interval information
and ignores structural features. A specific example of the trajectories of two users in same day is shown in Fig. 1 and we can
observe the spatial aggregation of users’ trajectories with their residences, implying non-trivial structural information among POIs
to be uncovered. (2) Collaborative signals among users are not properly considered in existing SAN-based recommenders. People
tend to be influenced by oral transmission from crowds or commercial propaganda and are hence attracted to specific real-life
2
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scenarios (e.g., mall promotions, influential sport events or performances), which manifests as overlap of users’ trajectory segments
within a certain range of time periods (both users visit the same mall and restaurant consecutively in Fig. 1). To better exploit these
collaborative signals, a recent work GETNext (Yang et al., 2022) designs a user-agnostic global trajectory flow map constructed
from historical check-in records of all users and then embedded by a multi-layer Graph Convolution Network (GCN) to represent
global transitions among POIs. However, we find that this approach of using global graph to generate POI embeddings is likely to
cause information leakage problem. In order to effectively mine the sequential nature of the data, the length of the input sequence
is dynamically increased during model training. More specifically, assuming that the current training step is 𝑖, the subsequence from
subscript 1 to 𝑖 is the input, and the 𝑖+1-th POI as label, while the data after the label should be invisible to the model. Apparently,
GETNext embeds global POIs prior to training in an attempt to capture generic movement patterns, but ignores causality. (3) The
dynamics of personal preferences are still not sufficiently modeled. As illustrated in Yin, Cui, Chen, Hu, and Zhou (2015), users’
preferences change over time due to shifting interests. Previous approaches simply treat this characteristic as a sequential prediction
task rather than dynamically tracking users’ latest preferences in real time.

In order to alleviate the above-mentioned shortcomings, we have done the following innovative work that distinguishes this
research from the existing studies. For the sequential effects aspect, we utilize a novel bilinear interpolation solution to integrate the
global nature of the spatial–temporal interval while alleviating the data sparsity problem. Then, we inject the above interpolation’s
embedding into the attention mechanism to facilitate the capture of long-term dependencies. In addition, it is applied to explicitly
realign the positional encoding in both temporal and spatial dimensions separately, aiming to enhance the relative proximity of the
POI sequence representation from a global perspective. For the structured feature aspect, we introduce graph learning to enhance
the modeling of spatial correlations among neighboring POIs. A novel Trajectory-aware Dynamic GCN (TDGCN) module is proposed
to exploit user preference from both the POI sequences and trajectory graph simultaneously. We first construct a local trajectory
graph based on the current training batch rather than a global graph, so as to absorb the collaboration signals from other users
while minimizing the probability of information leakage. The POI representation is then processed by the self-attention mechanism
and element-wise multiplied with the normalized adjacency matrix of the trajectory graph for reflecting dynamics. We integrate
the above innovative methods into SAN and propose the Trajectory Graph Enhanced Spatial–Temporal Aware Attention Network
(TGSTAN for short), which leads to a more stable and reliable performance for next POI recommendation.

Our main contributions can be summarized as follows:

(1) We propose a novel time-sensitive TDGCN module to mine the dynamics of user preferences. TDGCN extracts implied
structural feature and absorbs collaborative signals concurrently in a lightweight manner, while minimizing the probability
of information leakage.

(2) We apply a new approach to discretize the spatial–temporal information to alleviate the data sparsity problem while
comprehensively considering the influence between non-adjacent locations.

(3) We newly design an enhanced positional encoding method for attention mechanism to emphasize relative spatial–temporal
proximity.

(4) We propose a novel unified framework called TGSTAN, which first introduces graph learning to SAN-based methods. TGSTAN
comprehensively consider spatial–temporal effects, long-term and short-term sequential dependencies, and dynamic user
preferences from global and local perspectives to provide more comprehensive and interpretable recommendations.

(5) We demonstrate that the proposed framework consistently outperforms existing state-of-the-art methods significantly.
Experimental results also reveal the effectiveness of each key component, as well as the stability and robustness of the
proposed model.

The remainder of this paper is organized as follows. Sections 2 and 3 review related works and provide preliminaries for
the next POI recommendation, respectively. Then Section 4 details the implementation of our proposed TGSTAN framework. The
experimental results and analysis are discussed in Section 5. Finally, we conclude this paper and give future outlook in Section 6.

2. Related work

In this section, we briefly introduce existing representative studies related to our work, including conventional POI recommen-
dation, next POI recommendation and graph-based location recommendation. Then we state the difference between our method
and the existing studies.

2.1. Conventional POI recommendation

POI recommendation has been extensively studied over the past years. Early studies default user preference is static and build
latent factor models by migrating common methods used in other sequential recommendation tasks (Zhang, Sun, Zhang, Kloeden, &
Klanner, 2020), which mainly include Markov chains (Ye et al., 2013; Zhang et al., 2014) and matrix factorization (Gao et al., 2013;
Koren et al., 2009; Rendle et al., 2011; Shi, Larson, & Hanjalic, 2014; Zhao, Zhao, Yang, Lyu, & King, 2016). For instance, Zhang
et al. (2014) mine sequential patterns by proposed Additive Markov Chain with a location transition graph. Moreover, based
on personalized Markov chains (FPMC) proposed by Rendle, Freudenthaler, and Schmidt-Thieme (2010), Cheng et al. (2013)
linearly combine Markov chains and matrix factorization method to model personalized movement transition by considering region
localization constraint. A recent work (Zhao, Lou, Qian, & Hou, 2020) further improves general matrix factorization algorithm
3

by fusing sentimental attributes with spatial context and introducing a sentiment similarity measure between POIs. In general,
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early Markov-based approaches attempt to exploit sequential information between consecutive check-ins to learn the transition
probabilities of user movement. But trapped by the sparsity of sequential data, they perform poorly in modeling intermittent
visits (Luo et al., 2021). In addition to above methods, collaborative filtering (CF) is also a widely adopted approach in early
POI recommendation studies. Li, Ge, Hong, and Zhu (2016), Ye, Yin, and Lee (2010), Ye, Yin, Lee, and Lee (2011), Zhang et al.
(2014) employ the user-based CF method that incorporates social influences from friends into the modeling of user preferences.
Similarly, Yuan, Cong, Ma, Sun, and Thalmann (2013) perform CF-based recommendation by leveraging the temporal behavior
and geographic influence of other users on POIs. Since the CF-based method is generally based on similarity metrics among users
(i.e., common historical check-in behavior), the scarcity of check-in information is likely to prevent the similarity from being
accurately measured. In addition, the cold-start problem is likewise an inherent drawback of the CF-based approach (Qiao, Luo,
Li, Tian, & Ma, 2020).

2.2. Next POI recommendation

With the development of information technology and the accumulation of location-based data, deep learning and advanced
mbedding methods have garnered attention in recent years in next POI recommendation (Wang et al., 2022; Yang et al., 2022).
TRNN (Liu et al., 2016) extends RNN to capture spatial and temporal cyclic effects by constructing two specific transition matrices,
here the time and distance intervals between consecutive visits are explicitly represented. Likewise, STGN (Zhao et al., 2019)

ncorporates time and distance gates into the basic LSTM unit for capturing long-term and short-term preferences. A similar work
eepMove (Feng et al., 2018) employ a recurrent GRU layer and introduce a Historical Attention Module to capture periodicity of
uman mobility in multi-level. Meanwhile, as the self-attention mechanism (Vaswani et al., 2017) has shown its excellent ability
n capturing the long-range dependencies of trajectory sequences, attention-based recommendation models have been proposed one
fter another. Wu, Li, Zhao, and Qian (2020) combine attention mechanism and LSTM into a unified model to capture users’ long-
erm and short-term preferences respectively. For sequential recommendation task, the pioneering work SASRec (Kang & McAuley,
018) firstly introduce the self-attention to identify relevant items by leveraging the user’s recent interactions. And on the basis of
ASRec, TiSASRec (Li et al., 2020) further models relative time intervals as well as absolute positions between interactions explicitly
o capture spatial–temporal patterns, then assigns different weights to each item for future interaction prediction with the time-aware
elf-attention mechanism. To more fully exploit geographic information and capture spatial clustering phenomenon, GeoSAN (Lian
t al., 2020) uses a hierarchical map gridding approach to represent GPS coordinates of POIs and encodes them with a self-
ttention based geography encoder. By taking into account the correlations between non-adjacent locations in non-consecutive visits,
TAN (Luo et al., 2021) explicitly construct a trajectory spatial–temporal relation matrix and propose a bi-attention architecture
hat firstly aggregates key relevant locations and then recalls the most plausible target among candidates with consideration of
ersonalized item frequency (PIF). The most recent state-of-the-art work STiSAN (Wang et al., 2022), propose two lightweight
pproaches, Time Aware Position Encoder and Interval Aware Attention Block, adding dynamic positional encoding under temporal
onstraints to enhance sequence representations and focus on capturing spatial relationship with the modified attention layer.

In summary, the above attention-based models attempt to reflect the spatial–temporal relativity of user preferences by explicitly
omputing the relative temporal and geographic intervals, and then assigning different weights to each POI of the implicit latent
epresentation with attention mechanism. However, all models focus too exclusively on the interval information between check-in
ecords, while overlooking the potential effects of structural features between POIs on spatial transitions to a large extent.

.3. Graph-based location recommendation

The inherent properties of check-in data reflect the relationship between users and POIs, and the graph structure constructed
ased on the user–poi relationship can effectively reflect spatial dependencies. Consequently, graph-based methods have gained
ttention in recent years as an alternative paradigm for POI recommendation (Islam et al., 2022). Informed by the bipartite
ession-based Temporal Graph (Xiang et al., 2010), Yuan, Cong, and Sun (2014) propose Geographical–Temporal influences Aware
raph (GTAG) with both exploiting temporal and geographical influences that firstly introduce graph-based approach into POI

ecommendation task. The tripartite graph GTAG exploit user, POI and session nodes to represent a check-in record and reflecting
emporal proximity by adjusting weights of edges. However, the challenge of data sparsity tends to cause graph size explosion due to
he introduction of session nodes (Yang et al., 2022). The graph-based embedding model GE (Xie et al., 2016) utilizes four bipartite
elational graphs to model spatial and temporal influences as well as sequential and semantic effects, respectively, which are then
ointly embedded into a shared low-dimensional space. Then GE makes recommendations based on the similarity of the user’s query
mbedding and the unvisited POI. Another two similar works are JLGE (Christoforidis, Kefalas, Papadopoulos, & Manolopoulos,
018) and UP2VEC (Qiao et al., 2020). The main difference is that while both use joint representation learning, JLGE constructs
wo unbipartite (user–user and POI–POI) to better provide personalized recommendations for each user, while UP2VEC focuses on
he heterogeneous nature of LBSNs. Moreover, STGCN (Han et al., 2020) fuses the spatial–temporal context information with the
roposed user record multigraph and pioneers the application of GCN to POI recommendation.

Note that all the above graph-based methods are only applicable to the conventional POI recommendation scenario rather than
equential recommendation. For next POI recommendation, only few existing graph-based studies have been done. SGRec (Li,
hen, Yin, & Huang, 2021) introduces the Seq2Graph augmentation method for learning POI embeddings, aiming to exploit the
ollaborative signals of neighbor POI nodes. GNN is endowed with category awareness to learn denser sequential dependencies, thus
4

ealing with the data sparsity problem of POI-wise interactions. Lim et al. (2020) extend Graph Attention Network (Veličković et al.,
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Table 1
Notations and corresponding descriptions.

Notations Descriptions

𝑈, 𝑃 , 𝑇 user, POI and timestamp set
𝑆𝑢 user 𝑢’s historical trajectory sequence
𝑛 index of the last check-in(previously unvisited) as target
𝑙 maximum window length for splitting trajectory sequence
𝑑 embedding dimension for latent representations
𝑁 number of stacked encoder blocks
𝐸′ embedding representation of POI with GPS grid encoding
𝑅 spatial–temporal relation matrix
𝛥𝑡, 𝛥𝑠 time and geography interval
𝐸𝛥 bilinear interpolation embedding of 𝑀
𝑝𝑜𝑠 POI’s position index
𝑃 𝑇 , 𝑃 𝑆 temporal and spatial positional embedding
𝑍 final context embedding
𝑀,𝑌 mask matrix and output of Interval aware attention layer
𝐷,𝐴, 𝐼 degree matrix, adjacency matrix and identity matrix of trajectory graph
𝐻̃ (1) output of Trajectory aware Dynamic GCN
𝐹 (𝑁) output of the N stacked encoder blocks
𝐾 number of negative samples
𝐶 candidates embedding
𝑂 output of Target aware decoder
𝒚̂𝑖,𝑗 predicted score over POI j at step i
𝑇 ′ temperature factor in loss function
𝑤 weight for negative samples in loss function

2017) for Next POI Recommendation by representing spatial, temporal and preference factors in POI–POI graphs while neglecting
the sequential effect of user trajectories. Instead of capturing local transition patterns with randomly sampling neighbor nodes to
augment like SGRec does, the most recent work GETNext (Yang et al., 2022) constructs a unified trajectory flow map that manifest
global transition patterns of all POIs to reveal generic movements of users in a global view. The vectorized POI representation
of is learned from the trajectory flow graph using a multi-layer GCN and then fused with user, category and time embeddings
to be injected into the modified Transformer model. However, since the user-agnostic trajectory flow map is generated based on
all check-in records of all users, we doubt that GENext whether guarantee that future information will not be leaked during each
training step.

2.4. Summary

Conventional Markov-based or CF-based approaches suffer from data sparsity and cold-start problems, while SAN-based models
roposed in recent years mainly focus on mining the sequential effects by encoding time intervals and geographic distances
eparately. In addition, most previous graph-based approaches do not sufficiently consider the real-time dynamics of users’
ovement preferences in sequential recommendation. This study differs from existing work in that our proposed method firstly takes

emporal as well as spatial influence into account and dynamically mines the structured features implied in user trajectories, in a
nified framework. Take a step further, the present approach attempts to fuse the effect of collaborative signals on user preferences,
hich is still under-studied in deep learning-based sequential recommendation.

. Preliminaries

In this section, we providing basic term definitions and problem formulation for Next POI recommendation problem. We denote
he set of user, POI and timestamp as 𝑈 = {𝑢1, 𝑢2,… , 𝑢

|𝑈 |

}, 𝑃 = {𝑝1, 𝑝2,… , 𝑝
|𝑃 |} and 𝑇 = {𝑡1, 𝑡2,… , 𝑡

|𝑇 |}, respectively. The notations
used in this paper and their corresponding meanings are organized in Table 1.

Definition 1. POI: A point of interest (POI) is a specific spatial item associated with a geographic location that a user is likely
to visit. Each poi 𝑝 ∈ 𝑃 is represented by a tuple ⟨𝑙, 𝑙𝑎𝑡, 𝑙𝑛𝑔⟩, i.e., the location id of POI with its associated latitude and longitude
coordinates.

Definition 2. Check-In: A user’s check-in activity is denoted as a tuple 𝑐 = ⟨𝑢, 𝑝, 𝑡⟩ ∈ |𝑈 | × |𝑃 | × |𝑇 |, which indicates that user 𝑢
visits poi 𝑝 at timestamp 𝑡.

Definition 3. Historical Trajectory: All check-in records of user 𝑢 sorted in chronological order forms his/her historical trajectory
𝑢 𝑢 𝑢 𝑢 𝑢
5

= {𝑐1 , 𝑐2 ,… , 𝑐
|𝑆𝑢

|

} where 𝑐𝑖 is the 𝑖th check-in record of user 𝑢.
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Fig. 2. The architecture of the proposed TGSTAN: the chronological POI sequence is first processed by the contextual embedding layer to obtain a dense
representation and fed to the Encoder. Attention layer integrates an interpolation embedding of the contextual matrix to achieve spatial–temporal interval
awareness. The local Trajectory Graph is generated from the same training batch of check-ins, which can capture the collaborative signals while preventing
information leakage. The trajectory-aware GCN module incorporates attention mechanisms to capture dynamic user preferences in real time. The output of
encoder and the candidate embedding generated by the distance-aware sampler are input to the decoder to finally obtain a list of recommended POIs with
different weights.

Definition 4. Trajectory Graph: The trajectory graph of check-in sequences is a weighted directed graph, described as 𝐺 = (𝑉 ,𝐸,𝑊 ).
𝑉 stands for the set of nodes (POIs) and 𝐸 is the set of weighted edges connecting adjacent nodes. That is, for two nodes 𝑣1, 𝑣2 ∈ 𝑉 ,
there exists an edge 𝑒(𝑣1 ,𝑣2) ∈ 𝐸 between them only if they are adjacent (i.e.,visited consecutively in trajectory). And the weight
𝑤𝑒(𝑣1 ,𝑣2) ∈ 𝑊 indicates the total number of times this edge appears in the whole trajectories of sequences.

3.1. Problem formulation

The goal of next POI recommendation is to offer user a list of ranked POIs that user is inclined to visit at next timestamp, by
modeling user’s preference from historical trajectory. Given the user’s visited check-in sequence 𝑆𝑢 = 𝑐𝑢1 → 𝑐𝑢2 → ⋯ → 𝑐𝑢𝑚 where
𝑐𝑢𝑖 = ⟨𝑢, 𝑝𝑖, 𝑡𝑖⟩, we aim at predicting the next POI 𝑝𝑚+1 that are most probably visited at next timestamp 𝑡𝑚+1. In order to follow the
causal condition that no future data is used to predict future data (Luo et al., 2021), We define the last previously unvisited POI 𝑐𝑢𝑛
in the whole historical trajectory {𝑐𝑢1 , 𝑐

𝑢
2 ,… , 𝑐𝑢

|𝑆𝑢
|

} as the target POI label for predicting in validation stage, which is invisible to the
model training process. We takes the check-in sequence {𝑐𝑢1 , 𝑐

𝑢
2 ,… , 𝑐𝑢𝑛−2} that as source and the subscript right-shifted POI sequence

{𝑐𝑢2 , 𝑐
𝑢
3 ,… , 𝑐𝑢𝑛−1} as target during the training process. For each step 𝑖 ∈ {1, 2,… , 𝑛− 2}, sequence 𝑐𝑢1 → 𝑐𝑢2 → ⋯ → 𝑐𝑢𝑖 is used as input

and the goal is to predict the 𝑖 + 1-th visited POI.

4. Proposed framework

Fig. 2 shows the overall architecture of our proposed model Trajectory Graph Enhanced Spatial–Temporal Aware Attention
Network (TGSTAN). TGSTAN consists of three major components: (1) a contextual embedding module that encoding POI sequence
6
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and spatial–temporal proximity in multi-level to obtain denser latent representations; (2) a POI sequential dependency learning
Encoder block stacked with an Interval-aware Attention layer, a Trajectory-aware Dynamic Graph Convolution Network module and
a Feed-forward network; (3) a Target-aware Attention Decoder (Wang et al., 2022) that extracting user’s travel trend preference
from weighted POIs representations and ranking a list of candidates for recommendation. More details will be elaborated in the
subsequent sections.

4.1. Contextual embedding module

4.1.1. POI sequence embedding
Given that trajectories 𝑆𝑢 = {𝑐𝑢1 , 𝑐

𝑢
2 ,… , 𝑐𝑢

|𝑆𝑢
|

} of each user 𝑢 ∈ 𝑈 is not consistent in length, we first divide all trajectory inputs in a
niform length with a fixed-length window. The specific division method is elaborated in Section 5.1.2. Suppose the POI embedding
atrix is 𝐸 ∈ R𝑙×𝑑 , where 𝑙 ∈ R is the maximum POI sequence length and 𝑑 ∈ R is the embedding dimension. Moreover, in order

o exploit geographical information for each POI more efficiently, we employ the map gridding method and geography encoder
roposed in Lian et al. (2020) with original implementation,1 aiming to generate the grid addressing keys of POIs and to encode
earby grids in similar representations, respectively. Then we concatenate POI embedding and the embedded geographic encoding
o obtain the enhanced POI latent representation 𝐸′ ∈ R𝑙×𝑑′ , where 𝑑′ = 2𝑑.

.1.2. Spatial–temporal context matrix embedding
We propose a novel bilinear interpolation method to discretize the entire spatial–temporal context, aiming to further alleviate

he sparsity problem of check-in data. Luo et al. (2021) point out that the gridding-based encoding method used in Lian et al.
2020) ignores the explicit modeling of time intervals and spatial distances, which mainly aggregates adjacent locations resulting
n insufficient ability to capture non-adjacent spatial dependency. To compensate for this, we explicitly build a spatial–temporal
elation matrix aiming at reflecting the spatial–temporal relative proximity as well as long-term dependency. For a pair of check-ins
𝑢
𝑖 and 𝑐𝑢𝑗 (𝑗 < 𝑖) of user 𝑢’s historical trajectory 𝑆𝑢, the time interval and geographical distance are calculated as 𝛥𝑡

𝑖𝑗 = |𝑡𝑖 − 𝑡𝑗 | and
𝑠
𝑖𝑗 = 𝐻𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(𝑔𝑖, 𝑔𝑗 ) where 𝑔𝑖 represents the GPS coordinate information of the 𝑖th POI 𝑝𝑖. To be specific, the spatial–temporal
elation matrix 𝑅 ∈ R𝑙×𝑙×2 (1) is shown as below:

𝑅 =

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝑡,𝑠
11 0 … 0

𝛥𝑡,𝑠
21 𝛥𝑡,𝑠

22 … 0
⋮ ⋮ ⋱ ⋮
𝛥𝑡,𝑠
𝑙1 𝛥𝑡,𝑠

𝑙2 … 𝛥𝑡,𝑠
𝑙𝑙

⎤

⎥

⎥

⎥

⎥

⎦

(1)

ote that 𝑅 is a lower triangular matrix for the sake of preventing information leakage (Kang & McAuley, 2018; Lian et al., 2020;
ang et al., 2022), which ensures that check-in records after the 𝑖th subscript are not accessible to the model training at the step 𝑖.
Since the spatial–temporal relation matrix 𝑅 is generated by hundreds of thousands of check-in records, a proper encoding method

s needed for preventing data sparsity problem. Inspired by the linear interpolation approach in Liu et al. (2016) and Liu, Wu, and
ang (2017), we introduce a novel bilinear interpolation method to model the impact of continuous spatial–temporal context. The

pper and lower bound unit embedding vectors 𝑒𝑢𝑝 and 𝑒𝑙𝑜𝑤 are used to represent the explicit intervals via the bilinear interpolation,
hich are dense representations avoiding a sparse relation encoding. The motivation of this approach is to integrate the relative
roximity information in both time and space dimensions from a global perspective, rather than simply adding the temporal and
patial interpolation embeddings together like Luo et al. (2021). The bilinear interpolation embedding is denoted as 𝐸𝛥 ∈ R𝑙×𝑙×𝑑

2), where 𝑡𝑢, 𝑡𝑙, 𝑠𝑢, 𝑠𝑙 represent the upper bound and lower bound of time intervals and geographic distances, respectively.

𝐸𝛥 =
𝑒𝛥𝑡𝑢𝑝(𝑡𝑢 − 𝛥𝑡)(𝑠𝑢 − 𝛥𝑠) + 𝑒𝛥𝑡𝑙𝑜𝑤(𝛥𝑡 − 𝑡𝑙)(𝑠𝑢 − 𝛥𝑠) + 𝑒𝛥𝑠𝑢𝑝 (𝑡𝑢 − 𝛥𝑡)(𝛥𝑠 − 𝑠𝑙) + 𝑒𝛥𝑠𝑙𝑜𝑤(𝛥𝑡 − 𝑡𝑙)(𝛥𝑠 − 𝑠𝑙)

(𝑡𝑢 − 𝑡𝑙)(𝑠𝑢 − 𝑠𝑙)
(2)

4.1.3. Interval-scaled positional encoding
We propose the Interval-Scaled Positional Encoding method as an alternative to the traditional approach. The positional encoding

of each item in POI sequence is globally reconstructed based on the interpolation embedding of the corresponding dimension, which
enhances the attachment of importance to the relative spatial–temporal proximity. The original self-attention mechanism (Vaswani
et al., 2017) uses weighted sum function to establish dependencies between inputs and outputs. Nevertheless, attention is not
inherently able to model the position of elements in a sequence while the order information is crucial in the recommendation task,
hence the need for a positional encoding to capture relative positions. Sine and cosine functions (3) are used to encode positions
into 𝑑 dimension space (Vaswani et al., 2017) where 𝑖 ∈ {1, 2,… , 𝑑∕2} and 𝑝𝑜𝑠 represents the POI’s position. And based on this,
we further adopt an interval-scaled temporal positional encoding method informed by Wang et al. (2022), in order to enhance the
representation of the relative time proximity without losing the absolute order information. The dynamically adjusted position 𝑝𝑜𝑠𝑘
is calculated as (4):

{

𝑃 𝑇
(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛

(

𝑝𝑜𝑠∕100002𝑖∕𝑑′
)

𝑃 𝑇
(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠

(

𝑝𝑜𝑠∕100002𝑖+1∕𝑑′
) (3)

1 https://github.com/libertyeagle/GeoSAN
7
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𝑝𝑜𝑠𝑘 = 𝑝𝑜𝑠𝑘−1 +
𝐸𝛥𝑡𝑘−1,𝑘

𝐸𝛥𝑡
+ 1 (4)

where 𝐸𝛥𝑡𝑘−1,𝑘 is the interpolation embedding of time interval between the 𝑘th POI’s position and the previous position adjacent to
it. 𝐸𝛥𝑡 = 1

𝑙−1
∑𝑙

𝑘=2 𝐸
𝛥𝑡𝑘−1,𝑘 is an average normalization factor to balance the timestamp distribution with variability that exists among

ifferent users. The extra ‘‘1’’ is added to ensure that even for an extremely small time interval, its encoding is also distinguishable
or model.

We substitute the original method of explicitly computing time interval (Wang et al., 2022) with the embedding of its linear
nterpolation, which is superior to reflect the global temporal context. Considering that time interval and geographical distance
ave same properties in the constructed Spatial–Temporal Context Matrix, we further perform a spatial positional encoding on the
asis of geographic distance in a similar way. Then we inject the temporal positional encoding 𝑃 𝑇 ∈ R𝑙×𝑑′ and spatial positional
ncoding 𝑃 𝑆 ∈ R𝑙×𝑑′ into the embedded POI sequence and we obtain the final contextual embedding 𝑍 ∈ R𝑙×𝑑′ as (5):

𝑍 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐸′
1 + 𝑃 𝑇

1 + 𝑃 𝑆
1

𝐸′
2 + 𝑃 𝑇

2 + 𝑃 𝑆
2

⋮
𝐸′
𝑙 + 𝑃 𝑇

𝑙 + 𝑃 𝑆
𝑙

⎤

⎥

⎥

⎥

⎥

⎦

(5)

4.2. Encoder

As shown in Fig. 2, the encoder block consists of an Interval Aware Multi-head Self-Attention layer, a Trajectory Aware Dynamic
GCN module and a Position-wise Feed-Forward Network with each of the above components performing the residual connection
and layer normalization. The details about the implementation of each part are illustrated below.

4.2.1. Interval aware self-attention layer
The multi-head self-attention mechanism firstly proposed in Vaswani et al. (2017) has achieved great success in all kinds of

NLP tasks due to the full parallelism and ability to capture long-term dependencies. We adopt this mechanism, which has also been
widely used in sequence modeling, by further modifying the attention function to incorporate the spatial–temporal context matrix
above, aiming at prompting model to focus on local POI spatial information and enhancing the interpretability for recommendation.
Formally calculated as (6),

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
(

𝑄,𝐾, 𝑉 , 𝐸𝛥,𝑀
)

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

(𝑄𝐾𝑇
√

𝑑0
+ 𝐸𝛥) ∗ 𝑀

)

𝑉 (6)

where 𝑑0 = 𝑑′∕ℎ, ℎ is the number of attention heads and
√

𝑑0 is a scale factor to avoid the vanishing gradient caused by the
ormalization of too large dot-product (Cheng, Dong, & Lapata, 2016). 𝑄,𝐾, 𝑉 ∈ R𝑙×𝑑′ are query, key and value vector of sequence
epresentation, where 𝑄 = 𝐾 = 𝑉 in self-attention. 𝐸𝛥 represents the output of the interpolation embedding of the Spatial–Temporal
ontext Matrix 𝛥. In order to blind future data additionally, a mask matrix 𝑀 ∈ R𝑙×𝑙 with the same shape as the attention map

𝑄𝐾𝑇
√

𝑑0
∈ R𝑙×𝑙, whose upper triangular elements are filled with ‘‘−∞’’, is multiplied element by element (Luo et al., 2021; Wang et al.,

022). The attention function (6) calculates the correlation weights between queries and corresponding keys and assigns it to each
alue, summed weights as the attentive results. The multi-head self-attention mechanism ensures this process performed in parallel
y projecting vectors into different representation subspaces as (7). Finally, all the attention heads are concatenated and further
apped to get the final output. This interval aware self-attention layer takes the output of contextual embedding module 𝑍,𝐸𝛥 and
ask 𝑀 as input (8):

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
(

𝑄𝑊 𝑄
𝑖 , 𝐾𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 , 𝐸𝛥,𝑀

)

, 𝑖 ∈ {1, 2,… , ℎ0} (7)

𝑌 = 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑
(

𝑍,𝑍,𝑍,𝐸𝛥,𝑀
)

= 𝐶𝑜𝑛𝑐𝑎𝑡
(

ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2,… , ℎ𝑒𝑎𝑑ℎ0
)

𝑊 𝑜 (8)

where 𝑊 𝑄
𝑖 ,𝑊 𝐾

𝑖 ,𝑊 𝑉
𝑖 ∈ R𝑑′×𝑑0 are the corresponding linear projection matrices of the head 𝑖 and 𝑊 𝑜 ∈ R𝑑0×𝑑′ denotes the final

utput projection matrix.

.2.2. Trajectory aware dynamic GCN
Our intuition is that users’ trajectories not only reveal their routes of movement, i.e., in addition to the explicit temporal and

patial interval features that can be used to modeling, users’ distinct travel tendencies are hidden among POIs to be explored.
onsequently, in order to further exploit the spatial proximity from of structured POIs, we employ the spectral Graph Convolution
etwork (GCN) (Kipf & Welling, 2016), which is capable of mining the unstructured patterns hidden in topological information of
raphs. Given the Trajectory Graph 𝐺 and let 𝐴 represents the adjacency matrix of 𝐺. Firstly, we need to construct the normalized
aplacian matrix 𝐿 of the adjacency matrix, and since 𝐺 is a directed graph, it is calculated as follows (Yang et al., 2022):

( )−1( )
8
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where 𝐷, 𝐼 are the degree matrix and the identity matrix of 𝐺, respectively. And the layer-wise propagation rule of GCN is defined
as (10):

𝐻 (𝑖) = 𝜎
(

𝐿𝐻 (𝑖−1)𝑊 (𝑖)) (10)

where 𝐻 (𝑖−1) represents the input node representations of 𝑖th layer for 𝑖 > 0, which is the output of the previous layer as well. 𝑊 (𝑖)

is the linear transformation matrix and 𝜎 is the non-linear activation function. Specifically, GCN learn each node’s representation by
aggregating the information of its neighboring nodes to generate an intermediate representation firstly. And then after performing
the linear projection and non-linear activation, all nodes are updated with information from spatial aggregation.

However, the weights assigned by the original GCN to different neighbors are identical, a shortcoming that limits the model’s
ability to capture the relevance of POI spatial information. Moreover, the POIs in the sequence injected into the encoder are
in chronological order, while the graph convolution operation in (10) is not time sensitive. In other words, weight matrix 𝐿
corresponding to Trajectory Graph 𝐺 that contains the interactive relationship among POIs is invariant regardless of the timestamp
the time at which the training step is now performed. But considering realistic scenarios, the POIs that a user is inclined to visit
at different periods are significantly affected by time (e.g., restaurants are generally only visited during meal times). Accordingly,
the constant 𝐿 might result in the model failing to capture the correlation features between local POIs and the dynamic spatial
information under time-varying conditions if we directly adopting the original GCN.

Inspired by Guo, Lin, Wan, Li, and Cong (2021), we propose a novel Trajectory Aware Dynamic GCN (TDGCN) on the basis of
spectral GCN (Kipf & Welling, 2016) to address the above issues. A self-attention operation is integrated to adjust the correlation
weights among POIs dynamically so that TDGCN is able to learn the dynamic characteristics of POI information across spatial
dimension. In our case, we dynamically generate the local trajectory graph of the batch data based on the current training step
and then pass it into the TDGCN module, instead of generating a global graph containing all POIs of training set before training as
in Yang et al. (2022). One reason for this is conducive to better focus on modeling local trends of users and generate personalized
representations. And the other is to prevent information leakage effectively. As shown in Fig. 2, TDGCN takes the output of Interval
Aware self-attention layer 𝑌 and the normalized Laplacian matrix 𝐿̃ (9) computed from the local trajectory graph 𝐺̃ of current batch
of training data as input. TDGCN is conducted as (12):

𝑆̃ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
( 𝐻̃ (𝑖−1)𝐻̃ (𝑖−1)𝑇

√

𝑑′

)

(11)

𝐻̃ (𝑖) = 𝑇𝐷𝐺𝐶𝑁
(

𝐿̃, 𝐻̃ (𝑖−1)) = 𝜎
(

(

𝐿̃ ⊙ 𝑆̃
)

𝐻̃ (𝑖−1)𝑊 (𝑖)
)

(12)

where 𝐿̃, 𝑆̃ ∈ R𝑙×𝑙, 𝑆̃ is the self-attentive result and ⊙ represents dot-product operation. Let 𝐻̃ (0) = 𝑌 ∈ R𝑙×𝑑′ be the initial input
node representation and 𝜎 is a Leaky Relu with leaky rate 0.2 for non-linearity.

TDGCN performs only single-layer graph convolution operation, since the multi-layer graph convolution tried in our experiments
did not bring performance improvement. Intuitively, the specially modified single-layer graph convolution is able to sufficiently
aggregate spatial neighbor information. The mutual weights among POI nodes are dynamically updated at each training step by
dot-producting the self-attentive POI representations 𝑆̃ with the weight matrix 𝐿̃. After normalization by the softmax function, the
larger the element in 𝑆̃ is, the stronger the spatial correlation between its corresponding two POIs.

4.2.3. Feed-forward network
In addition to multi-head self-attention layer and DGCN module, we also employ a fully-connected feed-forward network in our

decoder block, which is used to endow the representation with non-linear capability as well as to integrate the impact of interactions
between different dimensional features (Chen, Zhao, Zhu, Zhuo, & Qian, 2022; Vaswani et al., 2017). The position-wise Feed-forward
network contains two distinct linear transformations and a Relu activation function between them (13):

𝐹 = 𝐹𝐹𝑁
(

𝐻̃ (1)) =
(

𝜎
(

𝐻̃ (1)𝑊1 + 𝑏1
)

)

𝑊2 + 𝑏2 (13)

where 𝑤1 ∈ R𝑑′×𝑑𝑖 and 𝑤2 ∈ R𝑑𝑖×𝑑′ are the two linear transformation matrices, 𝑑𝑖 is the dimension of inner-layer and we set 𝑑𝑖 = 4𝑑′.
𝑏1, 𝑏2 ∈ R1×𝑑′ are bias parameters to be learned and 𝐹 ∈ R𝑛×𝑑′ is the output of feed-forward network.

4.2.4. Residual connection & layer normalization
As in Fig. 2, we stacked 𝑁 encoder blocks, which facilitates capturing hierarchical features of sequence representation. However,

such a deep network with multi-layer is prone to gradient disappearance and network degradation. So we further conduct residual
connection (He, Zhang, Ren, & Sun, 2016) and layer normalization (Ba, Kiros, & Hinton, 2016) operation to improve model stability
and speed up the training process (Vaswani et al., 2017). Suppose 𝑥 as the input of each component (14):

𝑥 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚
(

𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟
(

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚
(

𝑥
)

)

)

(14)

where 𝑆𝑢𝑏𝐿𝑎𝑦𝑒𝑟(⋅) refers to one of the attention layer,dynamic GCN layer and feed forward layer. The normalization performed as
(15):

𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥) = 𝛼 ⊙
𝑥 − 𝜇

√

𝜎2 + 𝜖
+ 𝛽 (15)

where ⊙ represents element-wise product, 𝜇, 𝜎 stand for the mean and standard deviation of input 𝑥, and 𝛼, 𝛽, 𝜖 are the parameters
for scaling and bias to be learned. Moreover, according to Vaswani et al. (2017), we also adopt dropout operations in each module
to avoid overfitting led by rapidly growing number of parameters.
9
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4.3. Target aware cross-attention decoder

According to Lian et al. (2018) and Zhou et al. (2018), many previous attention-based works directly match the output of the
ttention module with the candidate set, with the consequence that the recommendations are generally sub-optimal. We denote the
utput of the 𝑁 encoder blocks as 𝐹 (𝑁), and adopt a target-aware multi-head cross-attention decoder (TCAD) following Lian et al.

(2020), Wang et al. (2022) and Rashed, Elsayed, and Schmidt-Thieme (2022), aiming at enhancing the representations of weighted
POIs in user trajectory with respect to candidates and predict the likelihood scores for each candidate according to user preferences.
TCAD takes the embedding of candidates as query input while feeding the normalized POI representations 𝐹 (𝑁) into the decoder
block as the keys and values in (16):

𝑂 = 𝑇𝐶𝐴𝐷
(

𝐹 (𝑁)
|𝐶

)

= 𝐶𝑜𝑛𝑐𝑎𝑡
(

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛
(

𝐶𝑊 𝑄
ℎ , 𝐹 (𝑁)𝑊 ′𝑊 𝑄

ℎ , 𝐹 (𝑁)𝑊 𝑉
ℎ
)

)

ℎ=1∶ℎ0
𝑊 𝑜 (16)

where 𝐶 ∈ R𝑙′×𝑑′ represents the candidates embedding, and 𝑙′ = 𝑙 × (1 + 𝐾) since the candidate set consists of the target POI and
𝑘 negative samples, which is embedded in the same way as in Section 4.1.1. 𝑊 ′ ∈ R𝑙×𝑙′ is the linear transformation matrix that is
sed to project queries and keys into latent representations with same dimension. In contrast to (8), spatial–temporal context matrix
s no longer added in self-attention operation, but the aforementioned mask is still required to satisfy the causality constraint.

Given the updated representations of user preference 𝑂𝑖 ∈ R1×𝑑′ at step 𝑖, the probability of each POI candidate to be the next
isit is calculated as (17):

𝒚̂𝒊,𝒋 = 𝑆𝑢𝑚
(

𝑂𝑖 ⊙ 𝐶𝑗
)

(17)

here ⊙ is the inner production and 𝐶𝑗 ∈ R1×𝑑′ represents the 𝑗th POI in the candidates. 𝑆𝑢𝑚(⋅) function does a weighted sum
peration on the last dimension of the tensor with the aim of converting the dimension of candidate scores 𝒀̂ ∈ R(1+𝐾)×𝑑′ to be
1+𝐾 .

.4. Optimization

Kang and McAuley (2018) and Li et al. (2020) use the binary cross-entropy loss to optimize their sequential models, which is
ot efficient due to the unbalanced ratio of positive and negative samples. Only one negative sample selected randomly, meanwhile
large number of informative negative samples are directly ignored, which might lead to a small gradient when updating loss and

low down the training process. Luo et al. (2021) balance the informativeness and training efficiency by setting a hyperparameter
or the number of negative samples, but simply performing random sampling still lacks stability in the effective use of information.
ccording to Lian et al. (2020), the geographic distance information between POIs can be further exploited for more effective
egative sampling. When a user 𝑢 visits POI 𝑝𝑖 at timestamp 𝑡𝑖, then the POI that is closer to 𝑝𝑖 has a higher probability of being a
otential location for the next visit than the POI that is far from 𝑝𝑖 empirically. Therefore we pre-retrieve 𝐾 ′ previously unvisited
OIs nearest to the target POI 𝑝̂, which contain more effective information than the general ones. Then, we randomly select 𝐾 POIs

among them as negative samples for optimization. We introduce the weighted binary cross-entropy loss function with importance
sampling as (18) proposed by Lian et al. (2020) to optimize our model:

 = −
∑

𝑆𝑢∈𝑆

𝑙
∑

𝑖=1

(

𝑙𝑜𝑔𝜎
(

𝒚̂𝒊,𝒑̂𝑖
)

+
𝐾
∑

𝑘=1
𝑤𝑘𝑙𝑜𝑔

(

1 − 𝜎
(

𝒚̂𝒊,𝒌
)

)

)

(18)

𝑤𝑘 =
𝑒𝑥𝑝

( 𝒚̂𝒊,𝒌
𝑇 ′ − 𝑙𝑛𝑄̃

(

𝑘|𝑖
)

)

∑𝐾
𝑘=1 𝑒𝑥𝑝

( 𝒚̂𝒊,𝒌
𝑇 ′ − 𝑙𝑛𝑄̃

(

𝑘|𝑖
)

) (19)

where 𝑤𝑘 represents the weight of the 𝑘th negative sample and 𝑆 is the historical trajectories of all users for training. In (19), 𝑇 ′ is
the temperature factor used to control the divergence of the negative samples’ probability distribution from the uniform distribution.
𝑄̃(𝑘|𝑖) denotes the unnormalized probability of proposal distribution and 𝑙𝑛𝑄̃(𝑘|𝑖) is an approximated term to compute normalization
in the probability efficiently (Lian et al., 2020). This specialized loss function makes the more informative negative sample contribute
more to the gradient, thus speeding up training process.

5. Experiments

5.1. Experimental details

5.1.1. Datasets
We follow recent works (Lian et al., 2020; Luo et al., 2021; Wang et al., 2022; Yang et al., 2022) and select the following three

real-world datasets of LBSNs to evaluate our proposed model, which are publicly available and widely used in LBSN recommendation
studies:

(1) Foursquare_TKY: The Foursquare dataset (Yang, Zhang, Zheng, & Yu, 2014) covers long-term check-in data within New
York City and Tokyo from Apr. 2012 to Feb. 2013. We follow choose the data of Tokyo for our experiment and named it
‘‘Foursquare_TKY’’, which contains 573703 check-ins.
10
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Table 2
Datasets statistics (after data pre-processing).

Dataset Foursquare_TKY Weeplaces Gowalla_CA

#user 2263 1357 4107
#POI 7873 18344 13051
#check-in 443732 650576 321203
sparsity 97.51% 97.39% 99.40%
mean traj. length 196.1 479.4 78.2

(2) Weeplaces2: The Weeplaces dataset is collected from Weeplaces, a location-based service website that aims to visualize
users’ check-in activity. It now integrates with the APIs of other LBSN services, such as Foursquare, Gowalla and Facebook
Places. All of the crawled data including user check-in history, user friendship and location profile is initially generated in
Foursquare.

(3) Gowalla_CA (Yuan et al., 2013): Gowalla_CA is extracted from the original Gowalla dataset provided by Cho, Myers, and
Leskovec (2011) and contains 736148 check-ins within California and Nevada from Feb. 2009 to Oct. 2010 (Yuan et al.,
2013).

To ensure the compatibility of the model across different datasets, although certain datasets provide additional information
e.g. POI categories, user relationships, etc.), we only use the original raw datasets where each check-in record contains only the
ser, POI, GPS coordinates and timestamp information. In the data pre-processing stage, we eliminate unpopular POIs with less than
0 visits and exclude those inactive users with fewer than 20 check-in records to ensure the quality of the data used for training.
ey statistics of three datasets after pre-processing are shown in Table 2.

.1.2. Training strategy
In order to maximize the utilization of check-in sequences in datasets during training, we adopt the following sliced partition

trategy with a fixed-length window to split the dataset into train/validation set according to Lian et al. (2020) and Wang et al.
2022). User trajectories are sorted by chronological order and we retrieve the last previously unvisited check-in for each user,
here the POI is in the future status for each of previous trajectories, denoted as the 𝑛th check-in. For the trajectory {𝑐𝑢1 , 𝑐

𝑢
2 ,… , 𝑐𝑢𝑛}

of user 𝑢,we use {𝑐𝑢1 , 𝑐
𝑢
2 ,… , 𝑐𝑢𝑛−1} check-ins for training and {𝑐𝑢𝑛−𝑙 , 𝑐

𝑢
𝑛−𝑙+1,… , 𝑐𝑢𝑛} for validation (the 𝑛th check-in as the target label and

the most recent previous 𝑙 check-ins to target as source input). We set the maximum window length 𝑙 = 100 as previous works (Lian
et al., 2020; Luo et al., 2021; Wang et al., 2022) do. Longer sequences will be split into non-overlapping sub-sequences of length 𝑙
from right to left. For shorter part, we repeatedly pad zeros to the left until the sequence length is equal to 𝑙 in order not to interfere
with the gradient updating.

5.2. Evaluation metrics

For effective evaluation, we select 100 previously unvisited POIs nearest to the target POI as negative samples, which together
with the target POIs form a plausible candidate list of length 101 for each user’s historical trajectory. We choose Hit Rate (HR) and
Normalized Discounted Cumulative Gain (NDCG) to evaluate the recommendation performance of the model. HR@𝑘 indicates the
rate of the target label hits in the top-𝑘 probability samples, calculated as (20),

𝐻𝑅@𝑘 =
𝛴
|𝑉 𝑎𝑙𝑖𝑑||𝐶𝑘 ∩ 𝑙𝑎𝑏𝑒𝑙|

|𝑉 𝑎𝑙𝑖𝑑|
(20)

where 𝑉 𝑎𝑙𝑖𝑑 and 𝐶𝑘 represents the validation set and the ranked candidates at a cutoff k, respectively. NDCG performs logarithmic
discounting based on rank, emphasizing the importance of positions in the recommendation list (Liang, Charlin, McInerney, & Blei,
2016), as formulated in (21),

𝑁𝐷𝐶𝐺@𝑘 = 1
𝐼

𝑘
∑

𝑖=1

2|𝐶𝑖∩𝑙𝑎𝑏𝑒𝑙| − 1
𝑙𝑜𝑔2(𝑖 + 1)

(21)

where 𝐶𝑖 means the top 𝑖th ranked sample of candidates and 𝐼 is the normalization factor ‘‘Ideal DCG’’, which equals to the maximum
possible value of 𝐷𝐶𝐺@𝑘. We report the above two metrics at cutoff 𝑘 = 5 and 10.

5.3. Baseline models

We choose several state-of-the-art models proposed recently as baselines for comparison to evaluate the effectiveness of our
proposed approach:

• ST-RNN (Liu et al., 2016): This method extends RNN to model local spatial–temporal features by incorporating time and
distance-specific transition matrices.

2 https://www.yongliu.org/datasets.html
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• SASRec (Kang & McAuley, 2018): This method is a classic sequential recommendation framework that introduce self-attention
mechanisms to focus on the ‘‘relevant’’ items from historical actions.

• STGN (Zhao et al., 2019): This method designs the time and distance gates in addition to LSTM for long and short term
sequential user’s preference learning.

• TiSASRec (Li et al., 2020): This method proposes a time-aware self-attention layer that explicitly modeling the relative time
intervals for future interactions predicting.

• GeoSAN (Lian et al., 2020): This method adopts a hierarchical gridding representation of GPS coordinates to discretize spatial
information and feed it into the proposed self-attention based geography aware encoder.

• STAN (Luo et al., 2021): The method is a state-of-the-art model for next location recommendation. A bi-layer attention
framework is proposed to capture the potential features between non-adjacent POIs and non-contiguous check-ins by explicitly
exploiting spatial–temporal interval information.

• STiSAN (Wang et al., 2022): The method utilizes a novel time aware position encoder and aggregates the spatial–temporal
relation matrix into self-attention mechanisms that outperforms existing state-of-the-art models without requiring much
computational burden.

5.4. Experimental settings

We implement our TGSTAN on the Pytorch 1.12.0 and conduct all experiments on the hardware platform with AMD Ryzen 7
700X 8-Core Processor and Nvidia GeForce RTX 2080Ti GPU. The hyperparameters settings of our model are listed as follows. The
nhanced POI representation is concatenated with two 𝑑 = 256 vectors of POI embedding and geographic encoding. The attention

head number ℎ0 is set as 2 so as to make each attention head handle a 128-dim latent representation as the same as Wang et al.
(2022). We stack 𝑁 = 4 encoder blocks and pre-retrieve 𝐾 ′ = 1000 nearest POIs to the target and randomly sample 𝐾 = 10 and 100
negative samples for training and evaluation, respectively. For Foursquare _TKY and Gowalla_CA datasets, the temperature 𝑇 ′ and
dropout rate are 1.0 and 0.7, while set as 100.0 and 0.3 for Weeplaces. Moreover, we adopt the Adam optimizer with a learning rate
of 1e-3 and weight decay rate of 5e-4. The number of training epochs is 35 for each dataset. All baseline models are implemented
using the official source code and optimal hyperparameters provided in original papers.

5.5. Recommendation performance

The experimental results of our proposed TGSTAN and baselines are as shown in Table 3. From our observations we can draw
the following conclusions:

(1) It is apparent that our TGSTAN outperforms all baseline models by a substantial margin on all three datasets. In terms of
HR@5 and NDCG@5 evaluation metrics, we achieve an average performance improvement of up to 7.95% and 10.77% over
the best baseline model STiSAN, indicating that TGSTAN provides more relevant and reliable recommendation results for
head part of recommendation list.

(2) Generally speaking, since the RNN-based STRNN and LSTM-based STGN are not able to capture the long-term dependencies
between POIs, they perform significantly worse than models based on attention mechanisms like SASRec,TiSASRec, etc.,
despite the consideration of temporal and spatial intervals for modeling. Based on this, the performances of attention-based
models are further improved by adequately exploiting the geographic information and interval relationships. Due to the fully
considered spatial–temporal matrix embedding, STAN slightly outperforms GeoSAN on the Foursquare_TKY dataset, while
GeoSAN’s dedicated hierarchical geo-coding approach makes it perform better to some extent on Weeplaces and Gowalla_CA
in case of distance-based sampling strategy and importance sampling optimization. STiSAN explicitly considers the spatial–
temporal interval information among POIs with two lightweight approaches, time-aware position encoder and interval-aware
attention layer, achieving the second best performance.

(3) We observe that all models have roughly similar performance on the Foursuqare_TKY and Weeplaces datasets, but all show
a significant decline on the Gowalla_CA dataset. Referring to Table 2, we empirically determine that the main reason for this
is that the sparsity of datasets directly affects the recommendation performance of the model. The impact of different data
sparsity levels on performance is further discussed in Section 5.8.3.

5.6. Ablation study

To evaluate the effectiveness of each component of our proposed framework, ablation study is conducted in this section. The
structure of TGSTAN maintains the same, except that a particular component is removed in each experiments. The following
experimental variants are considered: (1) without temporal positional encoding; (2) without spatial positional encoding; (3) without
interpolation embedding of spatial–temporal context matrix in attention layer; (4) POI embedding without geographic encoding;
(5) without Trajectory-aware Dynamic GCN; (6) without Target-aware Cross-attention Decoder; (7) fusing POI embedding with user
embedding and timestamp embedding.

The results of ablation experiments is shown as Table 4 and analyzed as follows:
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Table 3
Performance comparison. The best performance scores are in bold and second scores are underlined.

Foursquare_TKY Weeplaces Gowalla_CA

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

STRNN 0.1872 0.1217 0.2835 0.1689 0.1753 0.1064 0.2581 0.1745 0.1303 0.0927 0.2124 0.1174
STGN 0.1986 0.1346 0.2803 0.1827 0.1739 0.1169 0.2705 0.1994 0.1575 0.1083 0.2435 0.1301
SASRec 0.2964 0.2321 0.3563 0.2805 0.2965 0.2187 0.4048 0.2574 0.1928 0.1304 0.2770 0.1586
TiSASRec 0.3109 0.2457 0.3738 0.2932 0.3078 0.2358 0.4412 0.2839 0.2015 0.1343 0.2874 0.1647
GeoSAN 0.3728 0.2711 0.4842 0.3058 0.3578 0.2659 0.4712 0.3086 0.2486 0.1552 0.3283 0.2073
STAN 0.3905 0.3048 0.4738 0.3373 0.3424 0.2472 0.4496 0.2941 0.2349 0.1474 0.3037 0.1867
STiSAN 0.4326 0.3414 0.5332 0.3780 0.4297 0.3459 0.5465 0.3842 0.2785 0.2023 0.3675 0.2336

Ours 0.4702 0.3753 0.5696 0.4074 0.4606 0.3775 0.5643 0.4102 0.3007 0.2291 0.3925 0.2588
Improvement 8.69% 9.93% 6.83% 7.78% 7.19% 9.14% 3.26% 6.77% 7.97% 13.25% 6.80% 10.79%

We report the average performance of each model over five runs and perform a two-sample t-test between each baseline and our model. The test results denote
that the reported scores are statistically significant (𝑝-value < 0.01), rejecting the 𝐻0 hypothesis.

Table 4
Results of ablation study. Bold indicates the best result.

Foursquare_TKY Weeplaces Gowalla_CA

HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10 HR@5 NDCG@5 HR@10 NDCG@10

Original 0.4702 0.3753 0.5696 0.4074 0.4606 0.3775 0.5623 0.4102 0.3007 0.2291 0.3925 0.2588
−𝑃 𝑇 0.4569 0.3747 0.5320 0.3988 0.4480 0.3744 0.5372 0.4030 0.2681 0.2095 0.3511 0.2362
−𝑃 𝑆 0.4459 0.3615 0.5289 0.3882 0.4503 0.3750 0.5453 0.4058 0.2720 0.2109 0.3514 0.2367
−𝐸𝛥 0.4543 0.3653 0.5528 0.3972 0.4525 0.3733 0.5505 0.4051 0.2888 0.2267 0.3752 0.2545
−𝐺𝐸 0.4282 0.3418 0.5091 0.3677 0.4215 0.3398 0.5284 0.3742 0.2600 0.1940 0.3572 0.2253
−𝑇𝐷𝐺𝐶𝑁 0.4591 0.3665 0.5625 0.3997 0.4451 0.3621 0.5343 0.3905 0.2817 0.2185 0.3733 0.2479
−𝑇𝐶𝐴𝐷 0.4634 0.3727 0.5625 0.4020 0.4823 0.3983 0.5891 0.4325 0.2895 0.2278 0.3750 0.2550
+𝐸𝑈&𝑇 0.4556 0.3666 0.5484 0.3966 0.4451 0.3621 0.5343 0.3905 0.2978 0.2289 0.3876 0.2579

(1) GE is the component that has the greatest impact on the accuracy of recommendation, while each of the other components
also contributes to varying degrees to the final performance. Given the drawbacks that GE only aggregates adjacent POIs
and is not capable of reflecting spatial distance, the bilinear interpolation of the global spatial–temporal context matrix is
introduced as a supplement for further improvement. It can be seen that the performance of model decreases by 2.95%,
2.10%, 4.41% on three datasets in terms of HR@10 when 𝐸𝛥 is not summed with the attention map. This indicates that
the interpolation embedding can effectively reflect the spatial–temporal proximity between each check-in of the historical
trajectory, which enables the attention mechanism to achieve a more reasonable and more accurate weight assignment.

(2) TDGCN is proved to be effective in mining structural information and learning spatial aggregation. Without the TDGCN,
the performance of the model deteriorated by 1.89%, 4.80%, 4.21% in terms of NDCG@10 on three datasets, respectively.
Thanks to the consideration of collaborative signals and real-time dynamic modeling of user preferences, TDGCN is able to
capture more adequately the spatial correlations between relevant POIs even if GE and 𝐸𝛥 perform well enough. Moreover,
removing TDGCN leads to greater performance penalty on the Weeplaces and Gowalla_CA. The check-ins in Foursquare_TKY
are collected from relatively centralized geographic areas, with data in Foursquare_TKY constrained in 2,000 𝑘𝑚2, whereas
POIs in Gowalla_CA spread over 400,000 𝑘𝑚2 across California and Nevada (Yang et al., 2022). We infer that the 𝐸𝛥 for
global embedding does not effectively reflect the spatial aggregation effects among composite regions under actual geographic
conditions, which is rectified by TDGCN.

(3) TCAD is only applicable to specific cases. Introducing the TCAD into model brings some degree of performance improvement
on the Foursquare_TKY and Gowalla_CA datasets, but suppresses accuracy of the model on Weeplaces. We speculate that this
may be due to the lack of spatial–temporal relationship between candidates and current POI in TCAD. Intuitively, the effect
of this module is negatively correlated with the average length of the check-in sequences as shown in Table 2. Recall that an
attention matching layer similar to TCAD is introduced in STAN (Luo et al., 2021) to recall the most plausible candidates,
with the difference that STAN explicitly builds a matrix of spatial–temporal relationships based on all global POI candidates
beforehand. While considering the PIF information, however, this approach consumes a lot of computational and spatial
resources. As a compromise, the distance-based sampling strategy is used to simulate distance-aware POI transitions, aiming
to reduce computational complexity while satisfying the PIF to some extent.

(4) We follow Luo et al. (2021) to encode check-ins comprehensively by fusing embeddings of user, POI and timestamp, where
continuous timestamp is mapped into a representation of 168 dimensions (168 h units per week) to reflect the periodicity
in weeks. However, the fused embeddings does not lead to a performance improvement. One potential reason is that the
additional user and temporal embeddings introduce a deviation from the last POI of input sequence in the embedding space
when matching with the candidates.
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Fig. 3. Trajectory graph visualization on Foursquare_TKY dataset. (The edge weights, directions and self-loops are omitted for better visual presentation).

5.7. Inspecting the TDGCN

5.7.1. Visualization & interpretability of trajectory graph
We randomly select a trajectory graph generated during model training on the Foursquare_TKY dataset for visualization and

conduct a case study. Fig. 3 shows the spatial aggregation relationships among all POIs of this graph and check-in counts (after
normalization) for each POI. The graph is constructed with a batch size of 8 and contains 195 nodes and 429 edges representing the
visited POIs and the consecutive check-in relationships between the corresponding two POIs, respectively. The average degree of
the trajectory graph is 4.40, which means that with a general view of the local trajectory graph, user has 4.40 potential movement
options in the current state. In addition, the average weight of the edges is 1.43, indicating that a certain edge corresponding to the
consecutive visits between two POIs appears in the graph on average 1.43 times. We can observe that the trajectory graph shows a
significant spatial clustering phenomenon (with a mean clustering coefficient of 0.275), and the POIs with more check-ins tend to
be distributed in the core of the sub-clusters of the graph to assume the role of location transitions. As collaborative signals, such
POIs are endowed with greater weight in enhancing the POI sequence representation and play a greater role in recommendation.
Thus, the trajectory graph visualization experiment suggests that the structural information implied in the check-in sequences is
worth mining.

5.7.2. Influence of TDGCN
To clarify to what extent our TDGCN module can actually promote more accurate recommendations, we further conduct the

following experiments to verify the advantages of TDGCN. First, we remove all components that process spatial information
(including GE, 𝑃 𝑆 , 𝐸𝛥 and TCAD) to avoid potential redundancy with the effects of TDGCN. At this point our model is almost
equivalent to a vanilla multi-head self-attention network except that it still contains the 𝑃 𝑇 and the distance-aware negative sampler.
We then tested the following three sets of experiments on each of the three datasets: (1) pure attention mechanism (denoted as w/o
GCN); (2) attention mechanism & Spectral GCN in (10) (denoted as GCN); (3) attention mechanism & TDGCN. The experimental
results are shown in Fig. 4.

We can clearly see that the model incorporating TDGCN consistently performs best in the three comparisons, where the
introduction of TDGCN brings an average improvement of 14.81% compared to pure SAN without GCN, and 3.99% ahead of
regular GCN. This proves that taking into account the structural information of user trajectories and the collaborative signals is
indeed effective in improving the model performance, and also shows that our TDGCN is more effective in modeling dynamic user
preferences because of its time-sensitive nature. Referring to the Table 3, even with the removal of several components, our improved
SAN due to graph learning is still very competitive with other baselines, with performance only moderately lagging behind STiSAN.
Overall, TDGCN is an easily extendable and effective approach to capture spatial POI correlations.

5.8. Stability study

5.8.1. Embedding dimension
We vary the embedding dimension 𝑑 for POI sequence and its geographic encoding from 64 to 320 with a step 64. The result

is shown in Fig. 5. The optimal 𝑑 is 256 for Foursquare_TKY and Weeplaces datasets and 192 for Gowalla_CA. Generally, our
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Fig. 4. Influence of graph learning on model performance on three datasets.

Fig. 5. Impact of embedding dimension on model recommendation performance on three datasets.

proposed TGSTAN is insensitive to changes in the embedding dimension. In the case of HR@5, the recommended performance of
the model varies only in the range of 3.254%, 1.80% and 2.32% relative to their respective peak performance, which are acceptable
fluctuations. In addition to the embedded POI sequence, the model also embeds its hierarchical map gridding representation. This
geo-coding implies actual geographic relationships and is associated with the scaling of the map. Intuitively, this spatially discretized
encoding is not able to fully exploit its ability to reflect the spatial relationships between POIs when the embedding dimension is
not appropriate, resulting in a slight degradation of the model performance.

5.8.2. Number of negative samples
A crucial hyper-parameter for our model is the number of samples of the negative sampler 𝐾, who determines the efficiency of

the model optimization process. A too small 𝐾 leads to a loss function that tends to a binary cross-entropy loss and does not take
advantage of informative samples, while a too large K leads to an increase in computational effort when calculating the gradient.
We set 𝐾 = [1,5,10,15,20,25] and conduct a series of experiments that other hyper-parameters follow settings as in Section 5.4. As
results shown in Fig. 6, for the three datasets, the optimal 𝐾 for the distance-aware negative sampler is 10,20 and 5, respectively.
We observe that the number of negative samples has a significant impact on the improvement of the recommendation performance,
which proves the effectiveness of our sampling strategy that emphasizes distance information. Moreover, the statistics in Table 2
reveal that the volume of the dataset is positively correlated with the optimal sample size to some extent.

5.8.3. Threshold for cold user & POI
By adjusting the thresholds to eliminate different levels of inactive users and unpopular POIs, we obtain 5 sets of data with

sparsity ranging from 68.31% to 97.39% on the Weeplaces dataset, and the processed data statistics are shown Table 5. we
compare our TGSTAN with three recent strong baseline models GeoSAN, STAN, and STiSAN to analyze the stability of the model’s
recommendation performance as data sparsity varies. The results are shown in Fig. 7. From the figure, we can see that TGSTAN
still performs significantly better than the other three models over all sparsity levels. In addition, the performance of all models
first increases as the dataset becomes progressively denser and then tends to decrease when a critical value is reached. Clearly, the
15
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Fig. 6. Impact of the number of negative samples on model recommendation performance on three datasets.

Table 5
Statistics of Weeplaces under different cold user & POI thresholds.

Dataset Weeplaces

inactive user threshold 10 20 40 60 80
unpopular POI threshold 20 40 80 120 160
#user 1357 995 532 278 98
#POI 18344 8733 3903 2305 1552
#check-in 650576 465145 240681 126467 48201
mean traj. length 479.4 467.5 452.4 454.9 491.8
sparsity 97.39% 94.65% 88.41% 80.26% 68.31%

Fig. 7. Impact of different sparsity levels on model recommendation performance on Weeplaces.

most challenging cold-start problem for recommender systems is mitigated when users with shorter trajectories are not considered.
However, with increasing thresholds, a large number of users and POIs are filtered out, resulting in a degradation of performance
due to the model not having enough training instances to adequately fit the next POI recommendation problem. Overall, our model
performs well against a large number of cold users & POIs (e.g. case of 97.39% sparsity) and has good stability with data sparsity
greater than 80% (e.g., performance degrades by only 1.93% at sparsity level of 80.26%).

5.9. Complexity analysis

In this section, we analyze the space and time complexity of the key components to characterize the computational efficiency
of our proposed model compared to the state-of-the-art model.

5.9.1. Space complexity
In the Contextual Embedding Module, the parameters to be learned are the embedding of global POIs 𝑂(|𝑃 |𝑑), the upper and

lower bounds of the Spatial–Temporal Context Matrix in two dimensions, which equals to 𝑂(4𝑑). The Encoder consists of Multi-head
16
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Attention layer, TDGCN, Feed-forward Network and Layer Normalization, contributing to the learnable parameters with 𝑂(4𝑑′2),
𝑂(𝑑′2), 𝑂(8𝑑′2) and 𝑂(6𝑑′), respectively. Similarly, the number of parameters in the Target Aware Decoder is 𝑂(4𝑑′2+2𝑑′). Therefore,
he overall space complexity (total number of parameters) of the TGSTAN model is equivalent to 𝑂(|𝑃 |𝑑 + 𝑑′2 + 𝑑′). Compared to
TiSAN (Wang et al., 2022), the Multi-head Attention mechanism we adopt brings additional 𝑂(4𝑑′2) parameters in linear projection
atrices of queries, keys, values and final attention output. Besides, it is acceptable to introduce 𝑂(4𝑑 + 𝑑′2) additional parameters

nly because of the newly proposed interpolation embedding and TDGCN.

.9.2. Time complexity
The computational complexity of the TGSTAN mainly contains 𝑂(𝑙2) for bilinear interpolation embedding, 𝑂(𝑙) for Interval-

caled Positional Encoding, 𝑂((𝑙2 + 𝑙)𝑑′) for the Attention layer, 𝑂(|𝐸|𝑑′ + 𝑙2𝑑′) for TDGCN, and 𝑂(𝑙𝑑′2) for Feed-forward Network,
espectively. Our additional positional encoding for spatial distance introduces a complexity of 𝑂(𝑙), which is negligible compared to
(𝑙2𝑑) for the general self-attention operation. In addition, the two terms in 𝑂(|𝐸|𝑑′+ 𝑙2𝑑′) of TDGCN denote the graph convolution
nd spatial attention operations, respectively, where |𝐸| represents the number of edges in the local trajectory graph generated by
he current batch.

To better quantify the time complexity of our proposed model, we conduct a time cost experiment on the Foursquare_TKY dataset
nder the conditions of Section 5.4. Both training and validation batch size are set to 16. The running time of TGSTAN is around
.215 s per batch on the GPU during the training process and 0.034 s per batch during the validation stage. In comparison, the
tate-of-the-art model STiSAN (Wang et al., 2022) performs with training and validation times of 0.179 and 0.022 s per batch,
espectively, under the same conditions.

.10. Further discussion

.10.1. Theoretical & practical implication
The theoretical implications of this study is that we propose a unified framework that combines graph learning and SAN for the

ext POI recommendation task. A comprehensive consideration of spatial–temporal effects, long-term and short-term dependencies,
ollaborative signals and the dynamics of user preference leads to more accurate and interpretative recommendations. A novel
ilinear interpolation is introduced to refine the positional encoding and augment the attention mechanism for capturing sequential
ffects. Furthermore, we incorporate graph learning method to capture the spatial clustering relations of POIs, which reflect the
mplied movement tendencies as well as dynamics.

We further discuss the practical implications of this study below. First, in Section 5.8.3, we illustrate the superior performance
f our model compared to previous methods under varying levels of sparse data and cold-start situations, which are two crucial
hallenges typically faced by various recommender systems. We believe that this model can provide users with relatively reliable POI
ecommendation services in practical applications, even in the case of sparse data and cold starts. Moreover, our TGSTASN can be
xtended to be applied in travel service and business promotion, providing route planning solutions and more accurate advertising
lacement respectively.

.10.2. Limitations
Information leakage: We mention in Section 2.3 that GETNext (Yang et al., 2022) generates a global trajectory flow map to

btain POI embeddings, which inevitably has a high probability of leading to information leakage during the training iterations.
nstead, we use the check-in data from the same batch to construct a local trajectory graph that reflects the dynamics and is
ightweight. We do not claim that our approach completely avoids information leakage, but makes the probability of information
eakage much lower (from the full amount of POIs in the dataset to the number within a batch). Ji, Sun, Zhang, and Li (2020)
ndicate that in offline evaluation, not using a global timeline to partition the dataset causes information leakage. However, the
roposed timeline scheme has some contradictions with batch-learning recommendation models, i.e., non-incremental learning
ethods require retraining and it is difficult to decide the number of historical interactions to be used for retraining. An

nappropriate retraining strategy may lead to recommendation models that fail to capture dynamic changes in user preferences
r forget the long-term preferences of users (Ji et al., 2020). In addition, this approach based on global timeline partitioning may
e strongly influenced by the degree of balance in the distribution of user data in the dataset, which we argue is detrimental
o personalized recommendations. In summary, to the best of our knowledge, deep learning methods for POI recommendation
onsidering collaborative signals are under-researched for how to avoid information leakage altogether. We build the trajectory
raph by batch and recall only the POIs that users have not currently visited to constitute the candidate set as an attempt, but more
ine-grained solutions to the above limitations are yet to be explored.
Model complexity: This study focuses on improving the recommendation performance by considering the collaborative signals,

tructural features between POIs and dynamic preferences by incorporating several innovative approaches including TDGCN, bilinear
nterpolation and Interval-scaled Position Encoding into existing models. However, another limitation of our proposed model is that
he time and space complexity is somewhat higher than that of the state-of-the-art baseline model STiSAN (Wang et al., 2022). How
o reduce model size and computational burden to speed up the training process while maintaining the recommended performance
17

s an issue that needs to be addressed in future work.
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6. Conclusion & future work

In this paper, we propose an improving Spatial–Temporal Attention Network based on local-level dynamic trajectory graph
earning. Specifically, we represent spatial–temporal relative proximity explicitly and incorporate it into the attention layer and
ts position encoding. In this way, the attention mechanism captures the long-term dependencies of POI sequences more precisely
nd is able to reflect correlations of non-adjacent locations as well. In addition, we propose a novel dynamic trajectory-aware
CN to update the weights of the graph in real time and learn the user’s personalized local spatial relationships. We conduct
omparison experiments with the baselines on three real-world datasets and the results show that our proposed TGSTAN surpasses
he existing state-of-the-art approaches by a large margin. Ablation study and hyperparameter tuning demonstrate the necessity of
ach component in TGSTAN in terms of performance improvement and model stability.

For future work, we will further consider social attributes in studying the influence of collaborative factors on user’s preferences.
n addition, explicitly distinguishing user movement patterns under specific time periods (e.g., weekdays, weekends and holidays)
s a potential direction for improvement. And how to make the model lighter by introducing methods such as model compression
nd pruning is also in need of refinement.
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