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In this paper, we propose a joint training framework that efficiently combines time-domain speech
enhancement (SE) with an end-to-end (E2E) automatic speech recognition (ASR) system utilizing
attention-based latent features. Using the latent feature to train E2E ASR implies that various time-
domain SE models can be applied for noise-robust ASR and our modified framework is the first approach.
We implement a fully E2E scheme pipelined from SE to ASR without domain knowledge and short-time
Fourier transform (STFT) consistency constraints by applying a time-domain SE model. Therefore, using
the latent feature of time-domain SE as appropriate features for ASR inputs is the main approach in our
framework. Furthermore, we apply an attention algorithm to the time-domain SE model to selectively
concentrate on certain latent features to achieve the better relevant feature for the task. Detailed exper-
iments are conducted on the hybrid CTC/attention architecture for E2E ASR, and we demonstrate the
superiority of our approach compared to baseline ASR systems trained with Mel filter bank coefficients
features as input. Compared to the baseline ASR model trained only on clean data, the proposed joint
training method achieves 63.6% and 86.8% relative error reductions on the TIMIT and WSJ ‘‘matched” test
set, respectively.
� 2023 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

End-to-end (E2E) automatic speech recognition (ASR) systems
have achieved significant advances (Graves and Jaitly, 2014;
Chorowski et al., 2015; Chiu et al., 2018) with the advantage of
directly predicting target sequences based on input speech. Never-
theless, the E2E ASR performance is still degraded under the influ-
ence of ambient background noise in real-world environments,
which is an essential and challenging problem to address in ASR
systems. There are two mainstreammethods to achieve robustness
against noise in E2E ASR systems. The first is the multi-condition
training (MCT) that trains an ASR model using both clean and noisy
data to improve ASR performance. The MCT method can improve
the ASR performance against noise, but it still has limitations in
that the performance improvement depends on the trained noisy
environments and is affected by environmental distortion
(Seltzer et al., 2013). The second method is to employ a speech
enhancement (SE) module for the ASR model (Weninger et al.,
2015; Wang et al., 2020; Gao et al., 2015; Wang and Wang,
2016). Depending on the application of the SE model, there are
two approaches: front-end of ASR (Weninger et al., 2015; Wang
et al., 2020) and joint training with ASR (Gao et al., 2015; Wang
and Wang, 2016). In the front-end approach, SE modules enhance
noisy speech and use enhanced speech for ASR systems. This
approach can also improve the ASR performance to some extent
but it cannot be fully optimized for higher ASR performance pur-
pose (Seltzer, 2008) because the SE and ASR networks are trained
separately, leading to a suboptimal problem. However, the joint
training approach can simultaneously optimize the overall net-
work (Mimura et al., 2016; Xu et al., 2019) to attain optimal perfor-
mance and alleviate speech distortion (Narayanan and Wang,
2014; Menne et al., 2019).

In previous studies, SE and E2E ASR networks integrated with
joint training have been widely applied for robust ASR (Wang
and Wang, 2016; Liu et al., 2019; Fan et al., 2020; Li et al., 2021;
Pandey et al., 2021; Kinoshita et al., 2020). Liu et al. (2019)
jointly trained a mask-based SE network, attention-based
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encoder–decoder network, and discriminant network for noise-
robust speech recognition. In addition, Fan et al. (2020) applied a
gated recurrent fusion (GRF) algorithm to a joint network, suggest-
ing that the joint training of SE and E2E ASR is better than that of
the MCT method. In addition, Li et al. (2021) jointly trained a GAN-
based SE network and an E2E ASR system, concluding that it is
more robust to noise than the MCT method. However, previous
studies (Wang and Wang, 2016; Liu et al., 2019; Fan et al., 2020;
Li et al., 2021) have a limitation in that the domain of the SE mod-
els was limited to the time–frequency (TF)-domain. In contrast to
previous studies, Kinoshita et al. (2020) proposed the use of a
time-domain SE model for robust speech recognition, arguing that
time-domain SE has more advantages than TF-domain SE and
improves the ASR performance by adding noise-loss to the time-
domain SE model. However, (Kinoshita et al., 2020) used the SE
model as the front-end of the ASR. As mentioned in (Wang and
Wang, 2016; Liu et al., 2019; Fan et al., 2020; Li et al., 2021),
employing SE models as a front-end may be limited in obtaining
a superior performance for the ASR system.

In this paper, we propose a joint training framework that effi-
ciently integrates latent features of time-domain SE with E2E
ASR. Recently, time-domain SE models have received considerable
attention owing to their excellent performance. Unlike TF-domain
SE models (Soni et al., 2018; Kim et al., 2020; Choi et al., 2018; Hu
et al., 2020; Yin et al., 2020) that transform the input waveforms
into spectral features via short-time Fourier transform (STFT),
time-domain SE models (Luo and Mesgarani, 2019; Luo et al.,
2020; Rethage et al., 2018; Pandey and Wang, 2019; Wang et al.,
2021) operate mainly on raw waveforms. Therefore, time-domain
SE models jointly enhance the magnitude and phase information
without additional phase estimation algorithms. In addition,
because time-domain SE is a fully E2E learning scheme that is
entirely free from the constraints of STFT consistency (Wisdom
et al., 2019; Nakaoka et al., 2021) and domain knowledge
(Graves et al., 2013; Han et al., 2015), it can extract more appropri-
ate features for the ASR task (Pandey and Wang, 2021; Kadıoğlu
et al., 2020).

Nevertheless, time-domain SE models have rarely been utilized
in joint training framework for robust E2E ASR. Unlike TF-domain
SE models that can directly use enhanced spectral features for
ASR training, time-domain SE models must extract spectral fea-
tures for ASR training from enhanced waveforms. This process does
not fully consider the advantages of time-domain SE models and
cannot implement a complete E2E learning scheme. To overcome
this limitation and implement a fully E2E learning scheme, we
exploit a latent feature of the time-domain SE model without the
need to reconstruct the waveform from a SE decoder module.
Moreover, we apply an attention algorithm to a Conv-TasNet
(Luo and Mesgarani, 2019) model to selectively concentrate on cer-
tain latent features to obtain better relevant features in noisy envi-
ronments. Our contributions can be summarized as follows:

(1) For the first time, our framework provides an efficient
approach for using latent features when performing joint
training of time-domain SE and ASR networks.

(2) For better performance, we apply an attention algorithm to
the time-domain SE model to extract more relevant latent
features according to their relative importance.

The remainder of this paper is organized as follows. In Section 2,
the original SE structure and E2E ASR network are reviewed and a
general joint training method of TF-domain SE and E2E ASR is
described. In Section 3, the attention-based SE structure and our
joint training framework in the latent domain are introduced. In
Section 4, various experimental setups and results are explored.
Finally, in Section 5, the paper is concluded. In this paper, scalars
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are represented in lowercase, vectors in bold lowercase, and matri-
ces in bold uppercase.

2. Related work

2.1. Original Conv-TasNet

Time-domain SE models have attracted considerable attention
because they do not raise the phase-estimation issue (Luo and
Mesgarani, 2019; Luo et al., 2020; Rethage et al., 2018; Pandey
and Wang, 2019; Wang et al., 2021; Pascual et al., 2017). Among
them, convolutional time-domain audio separation network
(Conv-TasNet) is a popular model introduced by Luo and
Mesgarani (2019) in the field of source separation and it specifi-
cally consists of encoder, mask estimation (separation), and deco-
der modules. The encoder module uses a one-dimensional (1-D)
convolution operation to project input waveforms into a latent
representation. The separation module then estimates a mask to
suppress a particular interference at each time–frequency bin sig-
nal by taking the input latent representation obtained from a tem-
poral convolutional network (TCN) comprising several 1-D
convolutional blocks with dilation factors. The mask is estimated
as follows:

M ¼ H
XR
r¼1

XB
b¼1

F rb Erbð Þ
( )

; ð1Þ

where Erb is the input latent representation of the r � bð Þ-th block
among several 1-D convolutional blocks comprising the TCN. B
and R denote the numbers of consecutive convolutional blocks
and repetitions, respectively. In addition, F and H are the convolu-
tion and nonlinear functions that constitute the estimation module.
Consequently, the mask is multiplied by the input latent represen-
tation to generate a masked latent representation. The decoder
module reconstructs the masked latent representations into wave-
forms using a transposed 1-D convolution operation. The corre-
sponding structure for source separation can be applied to
denoising tasks by estimating the noise mask (Koyama et al., 2020).

2.2. E2E ASR

E2E ASR models directly predict words or sequences from the
input speech and are categorized into three main architectures:
connectionist temporal classification (CTC) (Graves and Jaitly,
2014), attention-based encoder–decoder (AED) (Chan et al.,
2016), and recurrent neural network transducer (Graves et al.,
2012). In this study, we adopt the CTC/attention architecture
widely used for E2E ASR (Watanabe et al., 2017), which utilizes
both CTC and AED architectures. The CTC/attention architecture
is designed by sharing the encoder module, and the total ASR
model loss LASR is defined as follows:

LASR ¼ kLCTC þ 1� kð ÞLatt ; ð2Þ
where k is the weight that modulates the loss terms. In addition,
LCTC and Latt denote the CTC loss of CTC model and KL divergence
loss of AED model, respectively.

2.2.1. Connectionist temporal classification
The CTC architecture (Graves and Jaitly, 2014) models a single

output for each frame of the input sequence X ¼ xtf gTt¼1, with T
length input frames, without forced alignment between the input
X and target Y ¼ yuf gUu¼1 with U length output labels, where
yu 2 1; . . . ;Kf g represents the prediction label and K denotes the
number of distinct labels. CTC obtains a possible set of output com-
binations B Y;Xð Þ for each frame and eliminates redundant
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sequences to predict the final output sequence. The log-likelihood
function of all possible output sequences for the input feature X is
as follows:

P YjXð Þ ¼
X

ŷ2B Y;Xð Þ

YT
t¼1

P ŷt jXð Þ; ð3Þ

where ŷ represents the predicted label sequence. Therefore, the CTC
loss is expressed as follows:

LCTC ¼ �lnP YjXð Þ: ð4Þ
2.2.2. Attention-based encoder-decoder
The AED architecture (Chan et al., 2016) we use consists of

encoder, decoder, and attention modules. The encoder module

encodes the input feature X ¼ xtf gTt¼1 into H ¼ hlf gLl¼1, where L is
the number of frames in the encoder output. The attention module
calculates the similarity between the output H of the encoder and
decoder information su�1, providing information on where the out-
put sequence should focus on the input sequence. The following
represents the computation of the attention mechanism at the u-
th time step:

fu ¼ F � au�1; ð5Þ

eu;l ¼ score su�1;hlð Þ ¼ wTtanh Wsu�1 þ Vhl þ Ufu;l þ b
� �

; ð6Þ

au;l ¼ softmax eu;l
� �

; ð7Þ

cu ¼
XL

l¼1

au;lhl; ð8Þ

where fu is a convolutional feature vector of the previous attention
weight au�1 obtained by convolving with a trainable convolutional
filter F. The location-based attention mechanism is employed to cal-
culate the attention score eu;l from the decoder hidden state su�1 at
the previous output step of u and encoder hidden state hl.
w;W;V ; F;U, and b are the trainable parameters. Here, au;l is com-
puted by the softmax of the attention score eu;l and the attention
context vector cu is calculated by integrating all the inputs hl based
on the attention weight au over length L. The decoder generates the
u-th output sequence ŷu using yu�1; cu, and su�1. Each notation rep-
resents the previous output sequence, attention context vector, and
the decoder hidden state.

yu ¼ FFNN su�1; cuð Þ; ð9Þ

su ¼ RNN su�1; yu; cuð Þ; ð10Þ

P YjXð Þ ¼
YU
u¼1

P ŷujX; y1:u�1ð Þ; ð11Þ

where FFNN represents the feed-forward neural network generat-
ing an output sequence yu with the decoder hidden state and atten-
tion context vector. Subsequently, an RNN is used to produce a
decoder hidden state su. Finally, the probability distribution, given
X, is computed at each output step, conditioned on the previous
outputs.

2.3. Conventional joint training method

The joint training of the TF-domain SE and E2E ASR networks
has been utilized in various ways for noise-robust ASR. Previous
studies (Wang and Wang, 2016; Liu et al., 2019; Fan et al., 2020;
Li et al., 2021) integrated the TF-domain SE models for joint train-
ing with contemporary E2E ASR models (Liu et al., 2019; Fan et al.,
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2020; Li et al., 2021; Pandey et al., 2021) that primarily receive
spectrogram-based features as an input. The conventional baseline
framework for joint training is described as shown in Fig. 1(a):
First, STFT is applied to the noisy signal y tð Þ ¼ x tð Þ þ n tð Þ to pro-
duce Y t; fð Þ;X t; fð Þ, and N t; fð Þ. The noisy input Y is fed into the esti-
mation module to estimate the target clean X against N, indicating
the background noise. The estimation module yields the noise
mask MTF that eliminates noise from the noisy spectrogram and
results in enhanced spectra.

jbXj ¼ jYj �MTF ; ð12Þ

where bX is the enhanced spectrogram obtained from the TF domain
SE network. Consecutively, a Mel filter bank coefficients (Fbank) are

applied to the magnitude spectrogram jbXj to extract the input fea-
tures of E2E ASR. Since the output domain of the SE network is the
same as the input domain of the ASR network, the two networks are
jointly trained without additional modules as shown in Fig. 1(a).

3. Proposed methods

In this paper, we propose a joint training framework that effi-
ciently integrates time-domain SE with an E2E ASR system utiliz-
ing latent representations, as shown in Fig. 1(b). Using the latent
representation of the time-domain SE allows us to accomplish joint
training directly in the latent domain for E2E ASR without any need
to reconstruct a waveform. However, it is not possible to train an
ASR system directly using latent representations as ASR inputs. A
convolutional network with an absolute function allows the latent
representation to be transformed into latent features for ASR train-
ing, instead of a Fbank component. In other words, the entire
mechanism is jointly trained with the SE encoder, mask estimation
module (without a decoder), convolutional network, and E2E ASR
network. At this time, we modify the original Conv-TasNet into
an attention-based Conv-TasNet to further improve performance.

3.1. Attention-based Conv-TasNet

As the original Conv-TasNet model equally adds the information
of all 1-D convolution blocks, it has a limitation that it cannot uti-
lize 1-D convolution blocks which are relatively important for
denoising. To address this limitation, we apply learnable parame-
ters to each 1-D convolutional block to provide different weights
according to their relative importance while estimating a mask.
Our proposed attention-based Conv-TasNet is shown in Fig. 2,
where different weights are applied to the skip-connection paths
of the 1-D convolutional blocks. The modified equation for the esti-
mation module is described as follows:

Lrb ¼ F rb Erbð Þ; ð13Þ
where Erb is an input of the r � bð Þ-th 1-D convolutional block in the
TCN that comprises the estimation module. A successive 1-D convo-
lutional block of B times with an increasing dilation factor is
repeated R times. In addition, F rb is the r � bð Þ-th 1-D convolution
function which has two outputs: residual and skip-connection
paths.

MT ¼ H
XR
r¼1

XB
b¼1

wrb � Lrb

( )
; ð14Þ

The residual output is fed into the next F function and the skip-
connection output Lrb is multiplied by wrb to estimate the mask
MT , where wrb is the attention weight assigned to each r � bð Þ-th
output and is sequentially located in the attention block, as shown
in Fig. 2. Since wrb is a learnable parameter, it is determined by the
relative importance of 1-D convolutional blocks during SE network



Fig. 1. Joint training framework of SE and E2E ASR. (a) Conventional joint training method with integrated TF-domain SE and E2E ASR with Fbank. (b) Proposed joint training
method with integrated time-domain SE and E2E ASR with convolutional network.

Fig. 2. The overall joint training framework with attention-based Conv-TasNet and E2E ASR network using the latent feature.
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training. By assigning large parameters to relatively important
blocks, it leads to optimal performance for denoising. In other
words, the attention-based Conv-TasNet estimates the attention
205
mask according to the relative importance of the 1D convolution
blocks for more robust results. H :f g is a cascade of the PReLU,
1�1 convolution, and sigmoid function in the estimation module.
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3.2. Convolutional network

In this paper, we introduce a convolutional network that
subsamples the number of frames of the SE latent features. The
convolutional network allows the latent representations of the
time-domain SE to be trained on the ASR without being recon-
structed into waveforms. The convolutional network consists of
an absolute value function and four 1-D convolutional layers, as
shown in Fig. 2. The absolute value function is applied, for which
the ASR models use only magnitude spectra as the input. The abso-
lute function is a key point in the joint training framework that
allows training with latent features. The convolutional block con-
sists of 1-D convolution, max-pooling and nonlinear activation
function rectified linear units (ReLUs).

3.3. Joint training method on latent space

To implement our proposed method, we generate the noisy sig-
nal z tð Þ ¼ s tð Þ þ n tð Þ, where s tð Þ and n tð Þ denote the clean and noise
signals, respectively. The input signal z tð Þ can be divided into T
overlapping frames of length L, denoted by zt 2 RL, where
t ¼ 1; . . . ; T . The noisy signal is projected into a latent representa-
tion by the encoder module of the SE, as

E ¼ U � Z; ð15Þ

where Z 2 RL�T is transformed into N-dimensional representations
E 2 RN�T via multiplication through a trainable convolutional layer
encoder U 2 RN�L. The mask MT 2 RN�T is the output of the estima-
tion module and MT is elementwise-multiplied to E to remove the
noise, as expressed by

Ẑ ¼ E�MT ; ð16Þ

where Ẑ 2 RN�T becomes the enhanced latent-space attention rep-

resentation that consists of N dimensions with T frames, and Ẑ is
then fed into the convolutional network to be the trainable ASR
input feature. The convolutional network takes a positive value
from the input latent representation using an absolute value
function.

The latent feature is extracted from the convolutional network
and is used to train the E2E ASR system. Consequently, the overall
framework, including an E2E ASR network, convolutional network,
and attention-based Conv-TasNet, is jointly trained to optimize the
entire network. Since we removed the SE decoder to efficiently
integrate SE into ASR in the latent domain, the entire network is
trained using the ASR loss (Heymann et al., 2017; Ochiai et al.,
2017; Subramanian et al., 2019; Soni and Panda, 2019).
Table 1
Hyperparameters of Conv-TasNet.

Symbol Description

N Number of filters in encoder and decoder
L Length of the filters (in samples)
C Number of channels in bottleneck and the residual paths’ 1-D conv

blocks
Sc Number of channels in skip-connection paths’ of 1-D conv blocks
H Number of channels in convolutional blocks
P Kernel size in convolutional blocks
B Number of convolutional blocks in each repeat
R Number of repeats
4. Experimental results

4.1. Dataset

We used two corpus datasets for our experiment: TIMIT
(Garofolo, 1993) for a small dataset and wall street journal (WSJ)
(Consortium et al., 1994) for a large dataset. To evaluate the perfor-
mance in noisy environments, we generated noisy datasets by add-
ing noise to clean TIMIT and WSJ datasets. For the noisy datasets,
we prepared two types of noise data for evaluation in different
noise conditions: CHiME-4 and NOISEX DB. The CHiME-4 noise
dataset was recorded in the street, café, bus, and pedestrian envi-
ronments. The NOISEX DB (Varga and Steeneken, 1993) contains
babble, factory, and white noise.

TIMIT corpus: The TIMIT dataset consists of 10 sentences
uttered by each of 630 speakers. The training set comprises 3696
utterances with eight sentences (the SA records of the training
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set were removed: i.e., identical sentences for all speakers in data-
base) read by 462 speakers. The development set consists of 400
utterances and the core test set consists of 192 utterances. We
used the phone error rate (PER) as an evaluation metric for phone
recognition in the TIMIT data. PER is the number of phoneme errors
(inserted, deleted, and changed phonemes) divided by the total
number of phonemes. Lower values indicate better performance.

WSJ corpus: The WSJ dataset is a corpus of read English speech.
It consists of train-si284 for training, test-dev93 for development,
and test-eval92 for testing sets with 37416, 503, and 333 utter-
ances, respectively. Word error rate (WER) was used as the evalu-
ation metric for the WSJ dataset. It is the total number of word
errors divided by the total number of words; lower values indicate
better performance.

SE training noisy datasets: To pretrain the time-domain SE
network, we mixed CHiME-4 noise with a clean dataset by select-
ing each utterance from TIMIT and WSJ. We added CHiME-4 noise
to the clean data at signal-to-noise ratios (SNRs) randomly sam-
pled between [0 dB and 20 dB]. Totally, 16,000 noisy utterances
are generated in total by TIMIT and WSJ.

ASR training noisy datasets: We randomly mixed CHiME-4
noise from the training and development sets to generate a noisy
dataset for the joint training of the network in which SNRs were
randomly sampled between [0 dB and 20 dB].

Test noisy datasets: We generated the ‘‘matched” and ‘‘mis-
matched” test datasets. Test datasets were generated with SNRs
of 0, 5, 10, 15, and 20 dB. The ‘‘matched” test dataset refers to
the same environment as the training data and was generated
using CHiME-4 noise with clean test sets of TIMIT and WSJ. The
NOISEX DB was used for the ‘‘mismatched” test dataset, which
means it is not the same as the training data environment.

4.2. Experimental setup

4.2.1. Conv-TasNet
The parameters of Conv-TasNet and attention-based Conv-

TasNet are listed in Table 1 as follows: N = 512, L = 40, C = 128
Sc =128, H = 512, P = 3, B = 8, and R ¼ 3. We adopted global layer
normalization, Adam optimization algorithm (Kingma and Ba,
2015), and sigmoid function as the activation function. The sam-
pling rate of the dataset was 16 kHz.

4.2.2. Convolutional network
We extracted latent features by using four 1-D convolutional

layers, each with 512, 256, 128, and 128 filters. For the TIMIT data,
the first layer adopted a filter size of 9 and the rest adopted a filter
size of 3. In the WSJ, all the layers had a filter size of 3. These
parameters were chosen so that the number of frames of the latent
feature is similar to that of the original ASR input feature. We used
max-pooling of length 2 to reduce the length of the latent feature
and used ReLUs as an activation function. We also applied an abso-
lute value function to the input latent representation, resulting in
positive distributions. Because we considered the characteristic
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that the ASR model takes magnitude values as an input and pro-
duces a positive distribution. In addition to the absolute value
function, we applied ReLUs and a square function to obtain a pos-
itive distribution. However, these activation functions did not
work. We assumed that the activation functions did not play a pos-
itive role in training of the ASR model because they tend to over-
smooth or distort the latent representation.

4.2.3. E2E ASR model
We adopted the hybrid CTC/attention architecture with an RNN

structure for the E2E ASR system. Our method was implemented
using the ESPnet toolkit (Watanabe et al., 2018). For comparison
with the proposed latent features, the Fbank features were used
to train the baseline model. For TIMIT and WSJ, 23 and 80 mel-
scale filterbank coefficients with a window length of 25 and a win-
dow shift of 10 ms were used, respectively, as in (Parcollet et al.,
2020). To train the ASR model, five- and six-layer Bi-GRUP with
512 units ASR encoder were used for the TIMIT and WSJ data,
respectively. We trained the model for 20 and 15 epochs and
applied CTC loss weights as 0.5 and 0.2, respectively.

4.3. Experimental results

4.3.1. Effect of attention algorithm applied to the Conv-TasNet model
We conducted experiments in two ways to show that the pro-

posed attention-based Conv-TasNet is more effective for ASR sys-
tems, which consisted of:

(i) an experiment to train the ASR system using the Fbank fea-
ture; and

(ii) an experiment to train an ASR system using the latent
feature.

The Fbank feature is a widely used feature type in E2E ASR sys-
tems that are trained by extracting pre-computed features from
speech signals. To compare the ASR performance of Conv-TasNet
and attention-based Conv-TasNet using Fbank features, STFT trans-
formation was performed on the enhanced speech signal of each SE
network, and then, log Mel filterbank coefficients were applied. In
contrast, the latent feature was extracted from each time-domain
SE network without waveform reconstruction to efficiently train
the E2E ASR system. Each SE network was pretrained with SE train-
ing datasets and then frozen to extract latent features for training
ASR systems. Experimental results indicate that applying an atten-
tion algorithm to Conv-TasNet is effective with only small param-
eter increase for ASR training. The results are listed in Tables 2 and
3. Each table represents the PER and WER results for the TIMIT and
WSJ datasets, respectively. First, as shown in Tables 2 and 3, the
attention-based Conv-TasNet improves the speech recognition per-
formance for both Fbank and latent features. Therefore, in the fol-
lowing results, attention-based Conv-TasNet can acquire more
robust results than Conv-TasNet, regardless of the feature type.
An interesting fact from Tables 2 and 3 is that the performance
improvement gap of the latent feature outweighs the performance
improvement gap of the Fbank feature. This means that the atten-
Table 2
PER results (%) of the E2E ASR system trained by Fbank features and Latent features with sp
test sets.

Model Fea.

0 dB 5 d

Conv-TasNet Fbank 31.3 26.
Attention-based Conv-TasNet 31.1 26.

Conv-TasNet Latent 31.2 25.
Attention-based Conv-TasNet 30.0 24.
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tion algorithm is more effective on the latent feature than on the
Fbank feature. Since we applied a learnable parameter to each 1-
D convolutional block of Conv-TasNet, the parameter increases
by the number of 1-D convolutional blocks. In other words, the
attention-based Conv-TasNet increased the number of parameters
by 24 compared to the Conv-TasNet because 24 blocks were used
in our experiment.

In addition, we demonstrated that the latent feature is more
robust to noise than the Fbank feature. In Tables 2 and 3,
attention-based Conv-TasNet with latent results outperformed
that of with Fbank results. And the same results were observed
in the case of Conv-TasNet model. For this reason, we assumed that
the latent features have more information and less distortion than
the Fbank features extracted using filters on the speech signal.
From these results, we demonstrated that the latent feature gener-
ated from attention-based Conv-TasNet is efficient for the integra-
tion of time-domain SE and E2E ASR.
4.3.2. Effect of joint training with attended latent feature
Our experiments demonstrated that extracting latent features

by applying attention to Conv-TasNet is the most effective
approach for E2E ASR performance. Based on the above results,
we conducted an experiment to jointly train the SE and E2E ASR
networks in the latent domain for noise-robust speech recognition.
The annotations in Tables 4–7 are as follows:

(i) E2E_ASR-Clean: The ASR system was trained using only
clean data. This baseline model shows three test results
(None, Conv-TasNet, and attention-based Conv-TasNet)
according to the SE networks.

(ii) E2E_ASR-MCT: The ASR system was trained using multi-
condition data. This baseline model shows three test results
(None, Conv-TasNet, and attention-based Conv-TasNet)
according to the SE networks.

(iii) E2E_ASR-SE: The ASR system was trained using latent fea-
tures. The proposed model shows three test results (Conv-
TasNet without joint training, attention-based Conv-TasNet
without joint training, and attention-based Conv-TasNet
with joint training) according to the SE networks and joint
training. All SE networks were used in addition to each pre-
trained SE network.

Tables 4 and 5 present the experimental results for the TIMIT
data and Tables 6 and 7 list the WSJ data. For the test dataset,
‘‘matched” and ‘‘mismatched” sets were used.

The baseline models with E2E_ASR-Clean and E2E_ASR-MCT are
listed in Table 4. The MCT is one of the mainstream methods of
noise-robust ASR systems and preprocessing through SE networks
is also one of the method. E2E_ASR-Clean performs 60.5% and
64.4% in ‘‘matched” and ‘‘mismatched” noisy environments,
respectively. These results indicate that ASR systems are highly
susceptible to noise. In contrast, E2E_ASR-MCT improved the per-
formance by 30.1% and 36.8%. In addition, we also applied
enhancement networks, including Conv-TasNet and attention-
based Conv-TasNet, as the front-end of ASR to slightly improve
eech enhancement including Conv-TasNet and Attention-based Conv-TasNet on TIMIT

PER (%)

B 10 dB 15 dB 20 dB Average

2 23.9 22.8 22.6 25.36
0 23.4 22.8 22.5 25.16
5 22.6 20.8 20.3 24.08
8 21.7 20.3 20.2 23.4



Table 3
WER results (%) of the E2E ASR system trained by Fbank features and Latent features with speech enhancement including Conv-TasNet and Attention-based Conv-TasNet on WSJ
test sets.

Model Fea. WER (%)

0 dB 5 dB 10 dB 15 dB 20 dB Average

Conv-TasNet Fbank 16.1 10.0 8.5 8.0 7.7 10.06
Attention-based Conv-TasNet 16.0 10.4 8.1 7.6 7.5 9.92

Conv-TasNet Latent 14.7 9.7 7.1 6.6 6.6 8.94
Attention-based Conv-TasNet 14.2 8.9 7.3 6.5 6.3 8.66

Table 4
PER results (%) of the E2E ASR system trained by clean and multi-condition data with and without the speech enhancement on TIMIT development (dev.) and test set. Fbank
features were used as baseline models.

Model Preprocessing Fea. PER (%)

Matched Mismatched

Dev. Test Dev. Test

E2E_ASR-Clean None Fbank 59.0 60.5 63.0 64.4
Conv-TasNet 25.6 27.5 31.3 33.4

Attention-based Conv-TasNet 25.4 26.8 30.7 32.2
E2E_ASR-MCT None Fbank 29.0 30.1 35.9 36.8

Conv-TasNet 23.8 24.6 28.7 30.5
Attention-based Conv-TasNet 23.7 24.6 28.4 28.9

Table 5
Impacts of using latent features with and without joint training on TIMIT development (dev.) and test set. Results are in PER (%).

Model Preprocessing Joint Fea. PER (%)

Matched Mismatched

Dev. Test Dev. Test

E2E_ASR-SE Conv-TasNet – Latent 23.6 24.2 28.6 30.1
Attention-based Conv-TasNet – 22.8 23.4 27.1 28.8
Attention-based Conv-TasNet U 20.7 22.0 26.0 27.9

Table 6
WER results (%) of the E2E ASR system trained by clean and multi-condition data with and without the speech enhancement on WSJ development (dev.) and test set. Fbank
features were used as baseline models.

Model Preprocessing Fea. WER (%)

Matched Mismatched

Dev. Test Dev. Test

E2E_ASR-Clean None Fbank 78.5 68.0 64.6 67.6
Conv-TasNet 20.9 15.4 31.1 27.0

Attention-based Conv-TasNet 21.4 15.7 30.9 25.8
E2E_ASR-MCT None Fbank 17.8 12.0 22.3 16.4

Conv-TasNet 16.3 10.6 21.1 15.1
Attention-based Conv-TasNet 16.5 11.0 20.4 15.0

Table 7
Impacts of using latent features with and without joint training on WSJ development (dev.) and test set. Results are in WER (%).

Model Preprocessing Joint Fea. WER (%)

Matched Mismatched

Dev. Test Dev. Test

E2E_ASR-SE Conv-TasNet – Latent 13.6 9.7 19.7 14.9
Attention-based Conv-TasNet – 13.5 9.5 19.6 14.4
Attention-based Conv-TasNet U 13.3 9.0 17.7 12.9
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performance. As listed in Table 4, SE networks notably improves
the performance of the ASR system. Especially, attention-based
Conv-TasNet applied to E2E_ASR-MCT achieved good performance
at 24.6% and 28.9% in ‘‘matched” and ‘‘mismatched”, respectively.

Based on the above experimental results, we utilized the latent
feature of SE networks for ASR training. As Table 5 presents the
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results, both Conv-TasNet and attention-based Conv-TasNet
showedmore robust results than the results of the baseline models
just by altering the feature type to ‘‘Latent”. Indeed, attention-
based Conv-TasNet without joint training improved further by
0.8% and 1.3% on ‘‘matched” and ‘‘mismatched” test sets, respec-
tively, compared to Conv-TasNet. Finally, we jointly train the entire



Table 8
Comparison of the number of parameters and relative inference time according to the
E2E_ASR model.

Model Joint Fea. Params (M)

E2E_ASR-Baseline – Fbank 20.63
E2E_ASR-SE – Latent 22.28

U Latent 29.88
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network according to the facts demonstrated above: attention-
based Conv-TasNet is more robust than Conv-TasNet; and the
latent feature is more robust than the Fbank feature. Moreover,
our joint training framework shows the most robust results to
noise with 22.0% and 27.9% on ‘‘matched” and ‘‘mismatched” test
sets, respectively.

These processes were repeated for the WSJ data, and the results
are presented in Tables 6 and 7. Similar to the above results,
E2E_ASR-Clean performed poorly by 68.0% in the ‘‘matched” and
67.7% in the ‘‘mismatched” test sets. In addition, E2E_ASR-MCT
shows significant improvements of 12.0% and 16.4%. Applying
the SE network as a front-end of the ASR can further improve per-
formance to some degree. However, this is still not an optimal per-
formance result. To improve performance, we used latent features
for training the E2E ASR system, as shown in Table 7. Furthermore,
to implement a more optimal performance, we jointly trained the
entire network using attended latent features. Our joint training
framework shows 9.0% and 12.9% in the ‘‘matched” and ‘‘mis-
matched” test sets, respectively, showing the most robust results
against noise in all environments.

In addition, in the TIMIT data, the number of parameters
according to the E2E_ASR model were compared as shown in
Table 8. E2E_ASR-Baseline includes E2E_ASR-Clean and E2E_ASR-
MCT using the Fbank feature for training. The baseline model had
20.63 M parameters. Because it uses the pre-computed feature,
Fbank. When a latent feature is used instead of the Fbank feature,
the computational cost increases because a learnable feature is
extracted using a convolutional network. Therefore, E2E_ASR-SE
without joint training used 22.28 M learnable parameters. Further,
since joint training with SE and ASR networks combines the two
networks, more parameters were required to train the model.
5. Conclusions

In this study, we proposed a method for joint training with a
time-domain SE network and an E2E ASR network by using latent
features. For robust ASR, time-domain SE models have not been
widely applied compared to TF-domain SE models because domain
mismatch causes inefficiency. However, as time-domain SE models
have received increasing attention, it is necessary to integrate
them with ASR systems. Performing joint training with E2E ASR
by simply extracting spectral features from enhanced waveforms
of time-domain SE is an easy task, but this method does not fully
utilize the advantages of time-domain SE. We proposed for the first
time that the integration of the two networks in the latent domain
will provide good guidance for joint training with the time-domain
SE model and the E2E ASR system. Therefore, various time-domain
SE model and ASR models can be integrated in the future. In
addition to hybrid CTC/attention architecture for E2E ASR, we will
conduct a study to integrate various E2E ASR systems and time-
domain SE models using latent features via joint training.
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