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ABSTRACT

The impact of the poloidally inhomogeneous particle source on the onset of Stringer spin-up (SSU) and geodesic acoustic mode (GAM) is
investigated. Using a gyrofluid model with Hammet–Perkins closure, it was found that Landau damping stabilizes both waves and subse-
quently makes a threshold. To capture the full effects of Landau damping, a gyrokinetic model is adopted and results are compared with
those from the gyrofluid model. Both models predicted the same value of the threshold for SSU, while for the case of GAM, the gyrofluid
model overestimates the threshold value. Considering maximal throughput of the ITER pellet fueling system, the source intensity is calcu-
lated at a similar or slightly lower level compared to the source threshold for SSU.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0148895

I. INTRODUCTION

A poloidally inhomogeneous particle source has been widely
used in present-day tokamak experiments. Low or high field side pellet
injection is used for either the replenishment of fuel ions1–3 or the mit-
igation of edge localized modes (ELMs).4,5 If the particle throughput is
high enough to modify the plasma equilibrium, it may cause macro-
scopic magnetohydrodynamic (MHD) instabilities, which is believed
to be the physics basis for the pellet pacemaking of ELMs. On the
other hand, if the intensity of the inhomogeneous particle source is
moderate, it may not cause an MHD instability but have an influence
on plasma transport via generation of poloidal E� B flow.6 The goal
of this paper is to reexamine this E� B flow generation process by a
poloidally inhomogeneous source while considering Landau damping
and other kinetic effects.

It was first found by Stringer that poloidally inhomogeneous
transport can drive a poloidal rotation.7 This unstable poloidal rota-
tion was named after him as Stringer spin-up (SSU) and further ana-
lyzed by Hassam and Drake.8 It was found that an inhomogeneous
particle source further destabilizes this process. This effect is useful to
explain some experimental observations, such as the low to high (LH)
mode transition6 and the formation of the pellet enhanced perfor-
mance (PEP) mode.9 In addition to SSU, the inhomogeneous source
can also destabilize the geodesic acoustic mode (GAM). In tokamak

plasmas, the presence of E� B compressibility due to a temporally
fast variation coupled with geodesic curvature can drive GAMs.10–12

Early studies on GAM generation concentrated on the turbulence
driven process,11,13,14 while more recent studies reported the GAM
excitation during a nonlinear pedestal collapse15 and the parametric
process.16,17 However, we do not consider turbulence or any other
nonlinear and kinetic drive but only the poloidally asymmetric particle
source driven GAM in this paper.

In realistic tokamak geometry, poloidal rotation and GAMs, once
generated, are subject to damping via various physical processes. In a
short ion transit time scale, the transit time magnetic pumping pre-
vails,18,19 while the ion–ion collision governs the eventual damping in
a long time scale when t > esii (e: inverse aspect ratio, sii: ion–ion col-
lision time).20 In particular, the Landau damping representing the par-
allel phase mixing will have influence on the E� B flow generation by
the source because its time scale may well be relevant to that in
dynamics involved (i.e., 1=xti � 1=cLD � sD, where cLD is the
Landau damping rate21–23 and sD is the parallel particle relaxation
time). Therefore, one may expect that the Landau damping should
have an impact on the efficacy of the E� B flow generation by a poloi-
dally inhomogeneous particle source. Therefore, the focus of this paper
is to extend the theory of the source induced SSU and GAM, with a
special emphasis on the impact of the Landau damping. This requires
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an extension of the original reduced MHDmodel (rMHD)8 to capture
the physics of the Landau damping, which is the main motivation for
us to utilize either gyro-Landau fluid 4-moment (GLF4M) or gyroki-
netic (GK) model.

In the GLF4M model, a closure model of Hammet–Perkins24 is
implemented in order to reproduce the Landau damping. As will be
shown in Sec. III, compared to the rMHD model, the GLF4M model
exhibits a threshold source intensity beyond which either GAM or
SSU becomes destabilized. It is because the Landau damping gives sig-
nificant attenuation to both waves. Next, having demonstrated that
Landau damping is key to threshold physics, the GK model is addi-
tionally adopted in Sec. IV for the exact calculation of the threshold.
The effect of Landau damping can be fully captured in GK dispersion
relation by using plasma dispersion functions. By comparing results
with GLF4M and GK models, it was found that both models give the
same evaluation to the threshold of SSU; however, for the case of
GAM, some deviations between them is shown.

The scope of this paper is restricted to the initial growing phase
of an unstable mode from an equilibrium condition. If a poloidally
asymmetric particle source is once injected, an equilibrium flow is gen-
erated to prevent particles to be accumulated in one direction on the
poloidal coordinate. All the simulations and dispersion relations are
conducted and derived on this well-established equilibrium condition.
The saturation and final damping of the E� B flow require other
physics elements, such as the residual zonal flow20,25 and collisional
damping,18,19,26 which is outside of scope of this paper.

The rest of this paper is organized as follows. The rMHD model
by Hassam, which describes unstable E� B flow driven by a poloi-
dally asymmetric source, is briefly reviewed in Sec. II. In Sec. III, the
GLF4M model equations are presented and the dispersion relation is
derived. Comparing numerical results between the GLF4M model and
the rMHDmodel, the distinguishing features of the GLF4Mmodel are
highlighted, while equivalence between the two models is also demon-
strated in Appendix C. In Sec. IV, the GK model is presented and the
dispersion relation is also derived using a plasma dispersion function.
Parameter scans of the source threshold are conducted using the GK
and GLF4M dispersion relations. Finally, we conclude this paper in
Sec. V with a summary of the main results and some discussions with
the practical example of ITER pellet injection system.

II. REDUCED MHD DESCRIPTION
A. Equations

In this section, we briefly review the rMHD that has been used in
Ref. 8 for a study of a poloidally inhomogeneous source driven insta-
bility. This consists of the conservation equations for the density n and
the fluid velocity u,

@n
@t
þr � nu? þ B � r

nuk
B

� �
¼ S; (1)

nmi
@u
@t
þ u � ru

� �
¼ �rpþ J� B�miSu; (2)

together with the quasi-neutrality condition

r � J ¼ 0 (3)

and the ideal Ohm’s law Eþ u� B ¼ 0. Here, p¼ nT is the pressure,
J is the current density, E is the electric field, and S ¼ Sðr; hÞ is a

particle source with r and h the radial and poloidal coordinates,
respectively. A concentric circular equilibrium is considered here.
Note that there is no momentum source but only particle one in this
model. The last term in Eq. (2) arises from the relation @nu

@t þr
�ðnuuÞ ¼ n @u

@t þ ur � u
� �

þ uð@n@t þr � ðnuÞÞ together with Eq. (1).

The equation for the parallel velocity uk is obtained by taking a scalar
product with b ¼ B=jBj on both sides of Eq. (2),

@uk
@t
þ bu : ru ¼ �v2Ti

rk ln n�
S
n
uk; (4)

where vTi ¼
ffiffiffiffiffiffiffiffiffiffiffi
T=mi

p
is the ion thermal velocity, rk ’ ðqR0Þ�1@=@h

is the derivative along the parallel direction, q � rB0=ðR0BpÞ is the
safety factor, and R0 is the major radius. The parallel temperature gra-
dient is assumed to be negligibly small, and isothermal plasmas
between species are assumed. The vorticity equation for the E� B
velocity is obtained by taking a scalar product with R2Bp on Eq. (2)
and applying the quasi-neutrality condition. Then, it is represented by
an integral form on a given flux-surface average,þ

dh
B � rh

R2Bp � nmi
du
dt
þ Trn

� �
¼ 0; (5)

where d=dt ¼ @=@t þ u � r is a convective derivative and Bp is the
poloidal magnetic field. Now, from Eqs. (1), (4), and (5), one can
derive a set of reduced equations by expanding them in terms of the
inverse aspect ratio e � r=R0, which is assumed to be small by consid-
ering a high aspect ratio tokamak. After expansion, equations can be
further simplified by separating them into the poloidally averaged part
and the varying one [i.e., f ðr; hÞ ¼ �f ðrÞ þ ~f ðr; hÞ]. The linearized
equations for normalized density ~N � n1=n0, parallel velocity ~uk, and
E� B velocity uE are then given by

@ ~N
@t
þ uE

r
@ ~N
@h
� 2e

uE
r
sin hþrk~uk ¼

~S
n0
; (6)

@~uk
@t
þ uE

r

@~uk
@h
¼ �v2Ti

rk ~N ; (7)

@uE
@t
¼ �

2ev2Ti

r

þ
dh
2p

� �
~N sin h; (8)

where n0 and n1 are the averaged and perturbed density, respectively.
The set of reduced Eqs. (6)–(8) can describe not only SSU but also
GAM driven by a poloidally inhomogeneous source.

B. Dispersion relation

Since we focus on the initial growing phase of the perturbation,
we first set an equilibrium condition following Ref. 8 and consider
how the initial perturbation evolves. The equilibrium condition can be
simply derived by assuming a steady-state without any perturbation
(uE¼ 0), giving rise to

rk~uEq
k ¼

~S
n0
; (9)

rk ~N
Eq ¼ 0; (10)

where the superscript “Eq” means an equilibrium quantity. From Eq.
(9), one finds that a parallel equilibrium flow is established as
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~uEq
k ¼ qR0

ð
dh

~S
n0
; (11)

which balances out the poloidally inhomogeneous particle source.
Then, for a small perturbation from the equilibrium, a dispersion rela-
tion can be derived in the form of

x̂ x̂2 � 1þ 2q2
� �	 


þ i
q2

e
Ŝc ¼ 0: (12)

Here, x̂ � x=xti is the normalized frequency with the transit fre-
quency for thermal ions xti ¼ vTi=qR0 and Ŝc � ~Sc=n0xti is a nor-
malized in-out asymmetric source intensity. The subscripts s and c
denote the Fourier coefficients of its sin h and cos h components,
respectively. The detailed derivation can be found in Ref. 8. From Eq.
(12), note that SSU is destabilized in the case of an outboard source
(Ŝc > 0), while GAM becomes unstable in the case of an inboard
source (Ŝc < 0). If there is no poloidally asymmetric source (Ŝc ¼ 0),
marginally stable GAM is derived as xrMHD

GAM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2q2

p
xti. One

notable point here is that an up–down asymmetric source (Ŝ / sin h)
does not cause these source-driven modes.

A time evolution of the E� B flow obtained by numerically solv-
ing rMHD Eqs. (6)–(8) when e ¼ 0:1 and q¼ 1.4 is shown in Fig. 1.
In this computation, a normalized poloidal source is used with various
intensities, and the initial condition is set by the equilibrium condition
shown in Eqs. (9)–(11) while allowing a little perturbation to the initial
E� B flow. The results with an outboard source Ŝc ¼ 0:05 and an
inboard one Ŝc ¼ �0:05 are plotted in Figs. 1(a) and 1(b), respectively,
while one without any poloidal source Ŝc ¼ 0:00 is depicted in Fig.
1(c). As expected from the rMHD dispersion relation, SSU (GAM)
becomes unstable with an outboard (inboard) source. A non-growing
GAM, however, is observed without any poloidal source. Here, note
that there is no threshold of the source intensity to destabilize SSU or
GAM in either cases of outboard and inboard sources. It is because the
rMHD model excludes any kinetic effects that brings about significant
damping to the wave. In Secs. III and IV, the kinetic effect, especially
the ion Landau damping, will be included by employing a closure to
the fluid model (Sec. III) or by a full kinetic model (Sec. IV).

III. GYROFLUID DESCRIPTION

In this section, we study the poloidal source-driven instability
using a gyro-Landau fluid 4-moment (GLF4M) model. We follow the
procedure developed by Beer and Hammet27–29 to obtain a set of
GLF4M equations from an appropriate gyrokinetic (GK) equation.
Although the Beer–Hammet GLF model focused on a study of drift
wave type micro-turbulence, our focus is in studying the meso-scale
instability whose characteristic scale length is set by that of the poloi-
dally asymmetric source [i.e., k?qi � OðeÞ, where k? is the perpen-
dicular wave number and qi is the ion Larmor radius]. Since poloidally
inhomogeneous sources usually have low poloidal mode number m
due to their slow parallel variation (i.e., m ¼ 0;61;62;… are small),
one can assume that the poloidal source has a zonal-like structure [i.e.,
n¼ 0,m ’ 0, but krqi � OðeÞ, where n is the toroidal mode number].
Therefore, one can neglect terms that are proportional to the diamag-
netic frequency ix� � �ðT=eBn0Þrn0 � b̂ �r / khqi, which usually
play a role as a driver of drift wave-type instabilities, such as ion tem-
perature gradient modes (ITG) or trapped electron modes (TEM). To
summarize before deriving GLF4M equations, physics of the meso-
scale source driven instability is isolated from that of micro-scale

turbulence assuming that the poloidal source has a zonal-like structure
and there is no nonlinear interaction between them in our study.

A. Equations

The collisionless GK equation for the zonal component with the
perpendicular wavenumber vector k? ’ krrr is given in terms of the
perturbed gyro-center distribution function df ðgÞk?

by

@

@t
þ vE � r þ vkb � r þ ixD

� �
df ðgÞk?

¼ � vkb � r þ ixD
� �

F0J0
e/k?

T

� �
þ Sk?F0; (13)

where F0 is an equilibrium distribution function taking the
Maxwellian form, J0 ¼ J0ðk?qÞ is the zeroth-order Bessel function,

FIG. 1. Time evolution of the E� B flow in the rMHD model when ðe; qÞ
¼ ð0:1; 1:4Þ. Results with outboard Ŝc ¼ 0:05 and inboard sources Ŝc ¼ 0:05
are shown in (a) and (b), respectively. Shown in (c) is when Ŝc ¼ 0:00.
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q � v?=X is the gyroradius with the gyrofrequency X � eB0=ðmcÞ,
and vE � ðb�rJ0/k?Þ=B0 is the gyroaveraged E� B drift. The drift
frequency xD due to rB and curvature is defined as

ixD � ð
v2kþv

2
?=2

XB2 ÞB�rB � r. Here, the subscript representing the par-
ticle species is omitted for simplicity. The perturbed gyrocenter distri-

bution function df ðgÞk?
consists of adiabatic and non-adiabatic parts

[i.e., df ðgÞk?
¼ �F0J0ðe/k?=TÞ þ gk? ]. The electrostatic potential /k? is

determined by the Poisson equation�
J0df̂

ðgÞ
ik?

�
� n0

e/k?

Ti
1� C bið Þ½ 	

 !

�
�
J0df̂

ðgÞ
ek?

�
þ n0

e/k?

Te
1� C beð Þ½ 	

 !
¼ n0

e/k?

Te
k?kDeð Þ2

(14)

using a velocity-integral hAi � ½
Ð
d3v F0A	=½

Ð
d3vF0	 ¼ ½2p

�
Ð Ð

v?dv?dvk	=n. Here, f̂
ðgÞ
ik?
� f ðgÞik?

=F0 is the gyrocenter distribution

function normalized to the equilibrium one, kDe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=ð4pe2n0Þ

p
is

the electron Debye length, bs ¼ ðkrqtsÞ2 with qts ¼ vTs=Xs, and
CðbsÞ ¼ I0ðbsÞe�bs with I0 denoting the zeroth-order modified Bessel
function.

By taking velocity moments of Eq. (13), one can derive a set of
gyrofluid equations as

@dnk?
@t
þ uE � rdnk? þB � r

n0ukk?
B
þ ixD

dpkk? þ dp?k?

T

� �

¼� 2þ 1
2
r̂?2

� �
ixD

e/k?

T
e�b=2 þ Sdn

k? ; (15a)

mn0
@ukk?
@t
þ uE � rukk? þ B � r

dpkk?
B

þ dp?k?
rk lnBþ ixD

qkk? þ q?k?
þ 4p0ukk?

T=m

� �

¼ �n0e B � r
/k?

B
e�b=2 þ 1

2
r̂?2/k?e

�b=2rk lnB
� �

þ Sukk? ;

(15b)

@dpkk?
@t

þ uE � rdpkk? þ B � r
qkk? þ 3p0ukk?

B

� �

þ 2 qkk? þ 3p0ukk?
� �rk lnBþ ixD

drk;kk? þ drk;?k?

T=m

 !

¼ � 4þ 1
2
r̂?2

� �
ixDp0

e/k?

T
e�b=2 þ S

dpk
k?
; (15c)

@dp?k?

@t
þ uE � rdp?k?

þ B � r
q?k?

þ p0ukk?
B

� �

� q?k?
þ p0ukk?ð Þrk lnBþ ixD

drk;?k?
þ dr?;?k?

T=m

 !

¼ � 3þ 3
2
r̂?2 þ

^̂r?2
� �

ixDp0
e/k?

T
e�b=2 þ Sdp?

k?
; (15d)

where ðe/k?=TÞe�b=2 represents the gyroaveraged potential by using
the approximation hJ0i ’ e�b=2. Here, definitions of all the fluid

variables ½dnk? ; n0ukk? ; dpkk? ; dp?k?
	, ½Sdn

k?
; S

uk
k?
; S

dpk
k?
; Sdp?

k?
	, ½qkk? ;

q?k?
	, and ½drk;kk? ; drk;?k?

; dr?;?k?
	 and the gyroaveraging operators

½r̂?2;
^̂r?2	 are defined in Appendix A for conciseness. Note that Eqs.

(15a)–(15d) all contain nonlinear E� B convective terms represented
by uE � rð� � �Þ. Here, uE ¼ B�1b�r/k?e

�b=2 is the gyro-averaged

E� B flow, which can be approximated as uE ’ ðikr=BÞ/k?e
�b=2eh

with eh the unit vector along the poloidal direction. Finally, considering
the wavenumber region of krqti < 1, the quasi-neutrality condition
with an adiabatic electron response dnek? ¼ n0eð/k? � h/k?iwÞ=Te is
given by

e�bi=2
dnk?
n0
� bi

2

dT?k?

Ti

� �
� 1�C0ðbiÞ½ 	

e/k?

Ti
¼ e
Te

/k? � h/k?iw
� �

;

(16)
where hAiw � ½

Þ
dhðB � rhÞ�1A	=½

Þ
dhðB � rhÞ�1	 is a flux-surface-

average (FSA) of A.

B. Closure model

Closure models for the third-order ½qkk? ; q?k?
	 and the fourth-

order ½drk;kk? ; drk;?k?
; dr?;?k?

	 fluid variables are necessary to close
the set of Eqs. (15a)–(15d). For the third-order variables, we take the
Hammet–Perkins type closure24 that has been devised to reproduce
the linear Landau damping. The closures implemented in this work
are represented by

qkk?m ; q?k?m½ 	 ¼ �i v
m
jmj n0vTi 2dTkk?m ; dT?k?m

	 

; (17)

where “m” is the poloidal mode number and the perturbed parallel
and perpendicular temperatures are determined by the linear relation
½dTkk? ; dT?k?

	 ¼ ð½dpkk? ; dp?k?
	 � Tdnk?Þ=n0. Here, the coefficient

v has been evaluated as
ffiffiffiffiffiffiffiffi
2=p

p
by matching the fluid response function

to the kinetic one in the low frequency limit ðqR0xÞ=vTi � 1.
Although the GAM oscillations is found to have frequency of
xGAM / vTi=R0, the closure gives good approximation to the local
kinetic response even in the high frequency limit ðqR0xÞ=vTi 
 1. It
can be inferred that it is because the closure is used in fluid equations.
For the fourth-order variables, we use simple Maxwellian closures29

for long-time evolution, which means that perturbed parallel and per-
pendicular temperatures are ignored due to the short-time phenom-
ena, the Landau damping

drk;kk? ; drk;?k?
; dr?;?k?

	 
 ¼ v2Ti
Tdnk? 3; 1; 2½ 	: (18)

Finally, the GLF4M model including an inhomogeneous poloidal
source is derived. It is composed of four-moment gyrofluid Eqs.
(15a)–(15d), the quasi-neutrality condition Eq. (16), and closure mod-
els for the third- and fourth-order fluid variables Eqs. (17) and (18).

C. Dispersion relation

As done in Sec. II B, the equilibrium condition corresponding
to the GLF4M model can be derived by assuming a steady-state in
Eqs. (15a)–(15d) without any perturbation uE ¼ 0. They corre-
spond to

B � r
n0~u

Eq
kk?
B
¼ ~S

dn
k? ; (19a)
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B � r
~qEqkk?
þ 3p0~u

Eq
kk?

B

 !
¼ 0; (19b)

B � r
~qEq?k?

þ p0~u
Eq
kk?

B

 !
¼ 0: (19c)

From Eq. (19a), a parallel equilibrium flow is generated when one
neglects small terms of order OðeÞ. In addition, parallel and perpen-
dicular heat flows are also generated from Eqs. (19b) and (19c) to sat-
isfy the equilibrium of Eqs. (15c) and (15d). These corresponding
equilibrium particle and heat flows are given in the form of

~uEq
kk?
¼ qR0

ð
dh

~S
dn
k?

n0
; (20a)

~qEqkk?m
¼ �3p0~uEq

kk?m
; (20b)

~qEq?k?m
¼ �p0~uEq

kk?m
: (20c)

To make an analytic interpretation, we only consider dominant poloi-
dal mode components m ¼ 0;61 of Eqs. (15a)–(15d) and apply a lit-
tle E� B perturbation from pre-described equilibrium conditions.
Then, one can derive a linear dispersion relation for the perturbation,
which is given in the form of

c5 x̂5 þ c4 x̂4 þ c3 x̂3 þ c2 x̂2 þ c1 x̂1 þ c0 ¼ 0; (21)

where the coefficients cn ðn ¼ 0; 1;…; 5Þ are given in Eq. (B17). By
considering Eq. (B26), one can find that only an in-out asymmetric
source affects the source-driven modes, which is consistent with the
rMHD dispersion relation shown in Eq. (12). However, because iso-
thermality between species is not assumed and the Hammet–Perkins
closure is adopted in the GLF4M model, effects of temperature ratio
between species and Landau damping influence the dispersion relation
via the coefficients se � Te=Ti and v. It is also worth noting that the
dispersion relation obtained from the GLF4M model is exactly
reduced to that from the rMHD model under certain limit [i.e., when
dnek? ¼ 0 and v!1, Eq. (21) becomes Eq. (12)]. This is because
the quasi-neutrality condition Eq. (16) in the GLF4Mmodel is equiva-
lent to the vorticity Eq. (8) in the rMHD model. The equivalence
between Eqs. (16) and (8) is demonstrated in Appendix C with an
appropriate limit.

A time evolution of the E� B flow obtained by numerically solv-
ing GLF4M Eqs. (15a)–(15d) when e ¼ 0:1, q¼ 1.4, and se ¼ 1:0 is
shown in Fig. 2. In the simulation, the normalized poloidal source
Ŝc � Sdn

k?
=ðn0xtiÞ is used with various intensities and the initial condi-

tion is set by the equilibrium condition shown in Eqs. (19) and (20)
while allowing a small perturbation to the initial E� B flow. The
results with outboard sources Ŝc ¼ 0:05 and 0.15 are plotted with dot-
ted and solid curves in Fig. 2(a), respectively, while those with inboard
sources Ŝc ¼ �0:05 and –0.15 are also shown with dotted and solid
curves in Fig. 2(b), respectively. For the outboard source case shown
in Fig. 2(a), the initial damping of GAM occurs regardless of the
source intensity (cf. the oscillatory damping feature when Time
� 5 ½qR0=vTi 	). By comparing with the damping of GAM for the case
with the less intense source Ŝc ¼ 0:05 (dotted), the unstable SSU
appears when a more intense source Ŝc ¼ 0:15 ðsolidÞ is applied, indi-
cating an existence of source threshold for SSU between Ŝc ¼ 0:05

and Ŝc ¼ 0:15. On the other hand, as shown in Fig. 2(b), GAM
is destabilized by the inboard source as shown with the result for
Ŝc ¼ �0:15 (solid), while it is Landau damped out when the source is
weak as shown with the result for Ŝc ¼ �0:05 (dotted). In other
words, there exists the threshold source intensity in both cases.
However, each case has a different type of unstable mode; unstable
SSU for the outboard source and unstable GAM for the inboard one.
Thus, the existence of the source threshold is revealed with the
GLF4M model because it retains the effect of Landau damping.
However, the effect of Landau damping actually originates from a
wave–particle resonance in the parallel direction, which means that it
may not be recovered in the fluid model perfectly. This fact motivates
us to utilize a gyrokinetic (GK) model as will be described in Sec. IV.

IV. GYROKINETIC DESCRIPTION
A. Dispersion relation

For a gyrokinetic description of source-driven SSU and GAM, we
consider a GK equation for the zonal component, which is given by

@

@t
þ vkb̂ � r þ ixD

� �
df ðgÞk?

¼ � vkb̂ � r þ ixD

� �
F0J0

e/k?

T

� �
� vE � rF0: (22)

Equation (22) is different from Eq. (13) in twofold. First, the E� B
convective term is applied to the equilibrium distribution function F0

FIG. 2. Time evolution of the E� B flow in the GLF4M model when
ðe; q; seÞ ¼ ð0:1; 1:4; 1:0Þ. Results with outboard sources Ŝc ¼ 0:05 (dotted)
and Ŝc ¼ 0:15 (solid) are shown in (a), while those with inboard sources
Ŝc ¼ �0:05 (dotted) and Ŝc ¼ �0:15 (solid) are shown in (b).
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instead of the perturbed one f ðgÞk?
. Second, the poloidal source term

Sk?F0 is removed. It is because finding a kinetic equilibrium of Eq.
(13), that is, exactly equivalent to the fluid model, is unattainable.
Instead, we assume that F0 is not simple local Maxwellian but has a

poloidally inhomogeneous equilibrium flow ~uEq
kk?

to offset the density

source ~S
dn
k?FM . Then, the newly defined local equilibrium distribution

function is given in the form of

F0 ¼
n0

2pT=mð Þ3=2
exp �

vk � ~uEq
kk?

� �2
þ v2?

2T=m

2
4

3
5

’ FM 1þ
vk~u

Eq
kk?

v2T

 !
¼ FM 1þ

vk
vT

ð
dh

~S
dn
k?

n0xti

 !
; (23)

where the normalized poloidal source Ŝ � ~S
dn
k?=ðn0xtiÞ and the corre-

sponding equilibrium flow ûkk? � ~uEq
kk?
=vTi are assumed to be order

OðeÞ and terms with higher orders are neglected. For the perpendicu-
lar wave number adopted in ~S

dn
k? and ~uEq

kk?
, we use the same condition

assumed in Sec. III. Thus, the last term on the right hand side of Eq.
(22) operated as a driver for source-driven modes, rather than a turbu-
lence driver. This new F0 satisfies the fluid equilibrium conditions of
both the rMHD and GLF4M models shown in Eqs. (11) and (20a),
respectively. Hereafter, we only consider an in–out asymmetric particle
source because the up–down asymmetric one does not drive source-
driven modes as demonstrated in Secs. II and III.

In deriving a GK dispersion relation, we follow Ref. 22, which
originally considers the collisionless damping of GAM. Considering
passing ions, we neglect the mirror term and rewrite Eq. (22) as

@

@t
þ

vk
qR0

@

@h

� �
eikr d̂ cos hdf̂ k?

� �

¼ �
vk
qR0

@

@h
eikr d̂ cos hJ0

e/k?

T

� �
� eikr d̂ cos hvE � rF̂0
� �

; (24)

where df̂ k? � dfk?=FM , F̂0 � F0=FM ; d̂ � ðe=XpÞ½vkþlB0=ðmvkÞ	,
and Xp ¼ eBp=ðmcÞ. Here, d̂ cos h represents the radial displacement
of the passing ion. Using Fourier–Laplace transform, a perturbed dis-
tribution function including a poloidally inhomogeneous source can
be calculated from Eq. (24) giving rise to

df̂ kr ;m xð Þ ¼
X
l;l0

il
0�l Jlðkr d̂ÞJl0 ðkr d̂Þ

ðmþ lÞðvk=qR0Þ
x� ðmþ lÞðvk=qR0Þ

 !

�
e/̂kr ;mþl�l0 ðxÞ

T

 !
þ q

e
krai
2

� � ~S
dn
kr ;c

n0xti

e/̂kr ;0ðxÞ
T

 !

�
X
l;l00

il
00�l Jlðkr d̂ÞJl00 ðkr d̂Þ dmþ1l�l00 þ dm�1l�l00

� �

�
ðvk=qR0Þ

x� ðmþ lÞðvk=qR0Þ

 !)
þ dÎ kr ;mðxÞ; (25)

where dÎ kr ;mðxÞ denotes the initial condition term and dij is the
Kronecker delta. In deriving Eq. (25), the small gyroradius limit
k?q! 0 has been used. The second term proportional to ~S

dn
kr ;c in Eq.

(25) represents the poloidal source effect. From Eq. (25), one can
derive df̂ kr ;61 as

df̂ kr61ðxÞ ¼
6ðvk=qR0Þ

x7ðvk=qR0Þ
e/kr61ðxÞ

T

�

þi kr d̂
2

� �
7 i

Ŝc
e

kraiq
2

� �( )
e/kr0ðxÞ

T

#
; (26)

where Ŝc � ~S
dn
kr ;c=ðn0xtiÞ and the terms /kr ;m with jmj � 2 are

neglected owing to their smallness. We also neglect the higher har-
monic resonance occurring at x ¼ n vk=ðqR0Þ ðn ¼ 2; 3; 4…Þ, which
actually enhance Landau damping by the finite-orbit-width (FOW) of
passing ions.25 By substituting df̂ kr61 given above into Eqs. (2.4) and
(2.5) of Ref. 25, which are omitted for simplicity, we finally obtain the
GK dispersion relation with the poloidal source effect

K�1GKðx̂Þ ¼ �i
x̂ffiffiffi
2
p � i

q2

2
2Z4

x̂ffiffiffi
2
p
� �

þ 2Z2
x̂ffiffiffi
2
p
� �

þ Z0
x̂ffiffiffi
2
p
� � �2

664

� x̂

2
ffiffiffi
2
p

2Z2
x̂ffiffiffi
2
p
� �

þ Z0
x̂ffiffiffi
2
p
� � �2

si þ Z1
x̂ffiffiffi
2
p
� �

� 2Z3
x̂ffiffiffi
2
p
� �

þ Z1
x̂ffiffiffi
2
p
� � �

iŜcffiffiffi
2
p

e

þ x̂ffiffiffi
2
p

Z1
x̂ffiffiffi
2
p
� �

2Z2
x̂ffiffiffi
2
p
� �

þ Z0
x̂ffiffiffi
2
p
� � �

si þ Z1
x̂ffiffiffi
2
p
� � iŜcffiffiffi

2
p

e

3
775 (27)

when it satisfies /kr0ðx̂Þ ¼ Kðx̂Þ � /kr0ðt ¼ 0Þ. Here, Zn is the newly
defined plasma dispersion function whose expression is given in
Appendix D. In Eq. (27), the first two terms in the bracket on the right
hand side represent Landau damping due to resonance at vk ¼ qR0,
while the remaining terms, which is proportional to Ŝc=e, denote the
poloidal source effect. One can easily find that, if there is no poloidal
source Ŝc ¼ 0, Eq. (27) is reduced to results given by Sugama and
Watanabe22 and Gao et al.23 when neglecting the resonance term at
x ¼ 2vk=qR0 and also the result given by Zonca and Chen,16 which
shows the degeneracy between GAM and beta-induced Alfv�en
eigenmodes in the limit of x�=x! 0.

B. Source threshold: Comparison between GK
and GLF4M models

By numerically solving the dispersion relations, Eqs. (27) for the
GK model and (21) for the GLF4M model, we can compute and com-
pare the real frequency and the growth rate of SSU and GAM. In addi-
tion, we conduct parameter scans of threshold source intensity for
SSU and GAM with respect to e, q, and se. Because either SSU or
GAM is destabilized depending on the deposited location of the parti-
cle source, we investigate them as a function of outboard and inboard
source intensity, separately.

In Fig. 3, the frequency (xSSU) and the growth rate (cSSU) of SSU
are plotted as a function of the outboard source intensity ðŜout ¼ Ŝc
> 0Þ for fixed parameters ðe; q; seÞ ¼ ð0:1; 1:4; 1:13Þ. Here, dotted
and solid curves represent xSSU and cSSU, respectively, while the red
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and blue curves depict the result from GK and GLF4Mmodels, respec-
tively. As shown in Fig. 3, deviation between two models is obvious
when the source intensity is lower than the source threshold.
However, when the source intensity is higher than the threshold, the
deviation diminishes significantly. Also, cSSU from each model shows a
good agreement. One more interesting fact here is that xSSU and cSSU

from GK and GLF4M formulations coincide well when ðx; cÞ ! 0 as
plotted by a black arrow around Ŝout ’ 0:12 in Fig. 3. It means that
the source threshold predicted by each model has a same value. To
verify this, we derive an expression for a source threshold of SSU
(Ŝ

Th
SSU) by taking Taylor expansion around x¼ 0 in Eqs. (27) and (21),

respectively, which is given in the form of

Ŝ
Th
SSUjGLF4M ¼

e
v
¼ e

ffiffiffi
p
2

r
¼ Ŝ

Th
SSUjGK: (28)

Here, Ŝ
Th
SSUjGLF4M and Ŝ

Th
SSUjGK denote the source threshold derived

from the GLF4M and the GK models, respectively. One can find that
both models yield the same value. This is because the closure coeffi-
cient v is determined by matching fluid response to the kinetic one in
the low frequency limit (x! 0). Therefore, results of both GLF4M
and GK models perfectly match for SSU due to its zero-frequency
(xSSU ¼ 0) nature.

Next, parameter scans of Ŝ
Th
SSU using GK (red circles) and GLF4M

(blue diamonds) dispersion relations are conducted with respect to e,
q, and se whose results are plotted in Figs. 4(a), 4(b), and 4(c), respec-
tively. The analytic result in Eq. (28) is also presented by black dotted
lines. In each figure, the same parameters to produce Fig. 3 are used
except for the one being utilized as a variable. One can see that results
from GK and GLF4M models coincide in overall parameter ranges.
Also, the analytical results are perfectly matched with the numerical
ones. Again, it is due to the fact that the closure coefficient v is approx-
imated in the low-frequency limit (x! 0). For the case of GAM
(x � vTi=R0), however, some deviations are inevitable as will be
shown shortly.

Figure 5 shows the frequency (xGAM) and the growth rate
(cGAM) of GAM as a function of the inboard source intensity
(Ŝin ¼ �Ŝc > 0) using the same parameters in Fig. 3. The results from
GK and GLF4M dispersion relations are plotted with the same colors
used in Fig. 3. As mentioned earlier, the discrepancy between the two

FIG. 4. Threshold source intensity for SSU (Ŝ
Th
SSU) as a function of the (a) inverse

aspect ratio e, (b) safety factor q, and (c) electron to ion temperature ratio se.
Results are obtained using the GK [Eq. (27), red circles] and the GLF4M [Eq. (21),

blue diamonds] dispersion relations. Analytical expression for Ŝ
Th
SSU given in Eq.

(28) is also plotted by black dotted lines. All parameters are fixed as ðe; q; seÞ
¼ ð0:1; 1:4; 1:13Þ except for the one being used as a variable.

FIG. 3. Real frequency (xSSU, dotted) and growth rate (cSSU, solid) of SSU as a
function of the outboard source intensity (Ŝout). Results are obtained by numerically
solving GK [Eq. (27), red] and GLF4M [Eq. (21), blue] dispersion relations when
ðe; q; seÞ ¼ ð0:1; 1:4; 1:13Þ.
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models is inevitable for the case of GAM because the effect of Landau
damping is approximated in the GLF4M model with a fifth-order poly-
nomial, while it is fully captured in the GKmodel through plasma disper-
sion functions. As shown in Fig. 5, although both models show a similar
tendency, GLF4M somewhat underestimate both xGAM and cGAM. This
implies that the Hammet–Perkins closure model gives a stronger damp-

ing of the wave and subsequently the source threshold for GAM (Ŝ
Th
GAM)

can be overestimated as indicated by black arrows in Fig. 5.
Results of parameter scans for Ŝ

Th
GAM in terms of e, q, and se are

shown in Figs. 6(a), 6(b), and 6(c), respectively. In Fig. 6, same colors
and symbols in Fig. 4 are used to represent results obtained from GK
and GLF4M dispersion relations. Also, the same parameters used in
Fig. 4 are used except for the one being used as a variable. In contrast
to the SSU case shown in Fig. 4, two models show some discrepancy.

Specifically, we find that Ŝ
Th
GAM for each model exhibits distinct func-

tional dependence on q2 and se. In the GK model, Landau damping
induces exponential damping to the threshold [i.e., ŜGAMjGK
Th / e exp ð�q2Þ exp ð�seÞ]. On the other hand, in the GLF4M

model, the analytic expression for Ŝ
Th
GAM is derived as

Ŝ
Th
GAMjGLF4M ¼ ev

5
2ð2þ seÞ

þ 1
q2

�

�
ð7þ 4seÞ 26� 24v2 þ 27ð1� v2Þse þ 7s2e

� �
14þ 15se þ 4s2e
� �2

#

(29)

using the GLF4M dispersion relation. Here, the small terms of order
Oðq�nÞ with n � 4 are neglected. The analytic result presented in
Eq. (29) is also plotted by blue dotted curves in Fig. 6. As shown in
Fig. 6, Landau damping causes an exponential damping of Ŝ

Th
GAM

with regard to q2 and se in the GK model, while it does an algebraic
damping in the GLF4M model. The GLF4M model even predict a
finite value of the source threshold Ŝ

Th
GAMjGLF4M ¼ 5

2 ev=ð2þ seÞ in
high q limit. This discrepancy between models is because Landau
damping, which brings about a significant damping to GAM can be
fully reproduced only with the GK model, while the GLF4M one
captures it approximately. Thus, for an accurate evaluation of the
source threshold, the GLF4M model is sufficient for SSU, while a
GK model is inevitable for GAM.

V. SUMMARY AND CONCLUSIONS

The poloidal E� B flow has a profound influence on turbulent
transport and confinement of tokamak plasmas. In this paper, we have
studied the impact of the poloidally asymmetric particle source on the

FIG. 6. Threshold source intensity for GAM (Ŝ
Th
GAM) as a function of (a) inverse

aspect ratio e, (b) safety factor q, and (c) electron to ion temperature ratio se.
Results are obtained using the GK [Eq. (27), red circles] and the GLF4M [Eq. (21),
blue diamonds] dispersion relations. All parameters are fixed as ðe; q; seÞ
¼ ð0:1; 1:4; 1:13Þ except for the one being used as a variable.

FIG. 5. Real frequency (xGAM, dotted) and growth rate (cGAM, solid) of GAM as a
function of the inboard source intensity (Ŝ in). Results are obtained by numerically
solving the GK [Eq. (27), red] and the GLF4M [Eq. (21), blue] dispersion relations
when ðe; q; seÞ ¼ ð0:1; 1:4; 1:13Þ.
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generation of axisymmetric poloidal E� B flow. We first review the
work by Hassam and Drake8 who finds out that a poloidal source can
destabilize either SSU or GAM depending on its deposition location.
To capture the effect of Landau damping, we employ a GLF4M model
in place of rMHD one by Hassam and adopt the Hammet–Perkins
closure. With the GLF4M model, the poloidal E� B flow is generated
by the destabilization of either SSU or GAM. The SSU and GAM are
driven by outboard and inboard sources, respectively. This result is
consistent with that in the rMHD model. In fact, we have shown that
the dispersion relation obtained from the GLF4M model yields the
same one that derived from the rMHD model under an appropriate
condition in Appendix C.

The crucial difference between the two models is that the GLF4M
model predicts the presence of the source threshold. It is well known
that GAM is usually Landau damped out due to its fast frequency
(xGAM � vTi=R0) comparable to the transit one [xti � vTi=ðqR0Þ
� xGAM=q]. Thus, it is quite obvious for the GLF4M model to predict
the source threshold for GAM. However, one interesting point not
emphasized in this paper is that Landau damping affects not only
GAM but also SSU, which is found to have zero-frequency from the
rMHD model. Note that there is no parallel resonance for SSU due to
its zero frequency. However, in fact, SSU is found to have a finite fre-
quency when the source is not intense enough with both GLF4M and

GK results as one can see that xSSU has finite value when Ŝout � Ŝ
Th
SSU

in Fig. 3. Thus, the threshold for SSU can be affected by the Landau
damping.

To substantiate that Landau damping does have an influence
on these source driven instabilities, we make a further analysis using
a GK model that captures the full effect of Landau damping. Then,
using dispersion relations derived from GLF4M and GK models, we
calculate the frequency and the growth rate of each mode in terms of
source intensity. This procedure allows us to conduct parameter
scans of source threshold with regard to e, q, and se. For the case of
SSU driven by an outboard source, the growth rates calculated from
both models are consistent once the source intensity is higher than
the threshold (Ŝout > Ŝ

Th
SSU) as shown in Fig. 3. We also have shown

that Ŝ
Th
SSU for both models is identical as presented in Eq. (28). The

reason for this identity is because the closure coefficient v is evalu-
ated in the low-frequency limit ðx! 0Þ. On the other hand, for the
case of GAM driven by an inboard source, the real frequency and
the growth rate calculated from each model deviate in overall range
of the inboard source intensity as shown in Fig. 5. The parametric
dependence of Ŝ

Th
GAM on e, q, and se also differs by model as shown in

Fig. 6. It is because the GLF4M model overestimates the Landau
damping effect. specifically, the GLF4M model that considers only a
few finite-order fluid variables is unable to reproduce the exponen-
tial damping of Ŝ

Th
GAM with regard to q2 and se given by the GK

dispersion.
On the basis of these results, one can conclude that Landau

damping may determine the critical particle source throughput
beyond which an instability sets in. At this point, it is instructive
to estimate Ŝc from a model of low field side (LFS) pellet fueling
system in a tokamak. We consider the ITER pellet injector that has
been designed with the maximum throughput of 120 Pam3 s�1 and
vp ¼ 300m s�1 (vp: pellet speed). Suppose a pellet injector with the
throughput RPam3 s�1 and the pellet speed vp. Then, the number of
particles deposited to the tokamak per unit time is

N ¼ 2R
mpv2p

; (30)

where mp is the fuel ion mass. If we assume that injected particles
occupy volume V 0 with maximal poloidal asymmetry, then the nor-
malized number of particles deposited during a transit time is

N̂ ¼ 4pR
mpv2pV

0n0xti
: (31)

One can easily recognize that Eq. (31) relates the amount of particles
injected by a realistic pellet injection system30 N̂ to the outboard source
intensity Ŝout in this paper. As an example, if we assume that the pellet
deposition radius is given by 0:8 < r=a < 1:0,30 one can obtain the
range of Ŝout, which is given as 0:02� Ŝout � 0:1, from Eq. (31). Here,
Ŝout is given as a range because it depends on n0, Ti, and q whose values
are determined by the deposited position of the pellet. For the ITER
case, 0:1 < n0 < 1:0 ½1020atomsm�3	, 4 < Ti < 10 ðkeVÞ, and
1:6 < q < 3:5 are used to calculate Ŝout. The maximum value of

Ŝoutð� 0:1Þ is smaller or quite close to Ŝ
Th
SSU in Fig. 4. Therefore, one can

expect that the LFS pellet system in ITER may excite SSU if maximum
throughput is applied. Here, we take a pellet injection system as an illus-
trative example inducing a poloidally asymmetric density. It realistic
tokamak experiments, sources of poloidal asymmetry will arise, but not
limited to, from inhomogeneous turbulent transport and/or the
mechanical structure. It will be of interest if the theory presented in this
paper is verified with more experiments and simulations.
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APPENDIX A: DEFINITIONS AND THE GYRO-
AVERAGING OPERATORS FOR GLF4M MODEL

In this appendix, all the missing definitions and messy coeffi-
cients used in Sec. II are given. Fluid variables up to the second
order, which are used for time evolution, are defined as
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dnk? ; n0ukk? ; dpkk? ; dp?k?

	 
 ¼ ð d3v df ðgÞk?
1; vk;mv2k;

1
2
mv2?

� �
;

(A1)

where quantities inside the bracket in the left hand side represent
gyrocenter density, parallel velocity, parallel, and perpendicular
pressures. In the same manner, the source terms corresponding to
them are defined as

Sdn
k? ; S

uk
k?
; S

dpk
k?
; Sdp?

k?

h i
¼
ð
d3v Sk?F0 1;mvk;mv2k;

1
2
mv2?

� �
: (A2)

The third- (parallel heat fluxes) and fourth-order fluid variables are
defined as

qkk? ; q?k?½ 	 ¼
ð
d3v df ðgÞk?

vk mv2k � 3T
� �

;
1
2
mv2? � T

� �� �
; (A3)

drk;kk? ; drk;?k?
; dr?;?k?

	 
 ¼ ð d3v df ðgÞk?
m v4k;

1
2
v2kv

2
?;

1
4
v4?

� �
: (A4)

These higher order variables must be expressed in terms of lower
order fluid variables by taking an appropriate closure model. In our
GLF4M model, the Landau and Maxwellian closures are employed
for them, respectively. Also, note that perturbed parallel and per-
pendicular temperatures ðdTkk? ; dT?k?

Þ are determined by the fol-
lowing relations:

dpkk? ¼ n0dTkk? þ Tdnk? ;

dp?k?
¼ n0dT?k?

þ Tdnk? :
(A5)

For appropriate gyro-averaging operators, we use simple
approximations given elsewhere.29 As simply mentioned in Sec. III,
the velocity space average of J0 is approximated as hJ0i ’ e�b=2.
One can easily find that C1=2

0 is replaced by e�b=2 for hJ0i in Eq. (20)
of Ref. 29. Because we consider the long-wavelength scale with
k?q � OðeÞ in this study, approximating hJ0i to e�b=2 instead of
C1=2
0 , which are devised to compensate a discrepancy between C0

and e�b=2 when deriving linear dispersion relation for large b,27

causes no technical difficulty. Other gyro-averaging operators,
which recover the finite Larmor radius (FLR) effect, are given by

1
2
r̂2
? hJ0i/k?

� �
¼ b

@hJ0i
@b

/k? ;

^̂r
2

? hJ0i/k?

� �
¼ b

@2

@b2
bhJ0ið Þ/k? ;

(A6)

which correspond to Eqs. (26) and (27) of Ref. 29, respectively.

APPENDIX B: DERIVATION OF THE DISPERSION
RELATION FROM GLF4M EQUATIONS

In this appendix, we derive a linear dispersion relation from
the GLF4M model presented in Eq. (21). Here, we follow the same
procedure used in Appendixes B–D of Ref. 25, which derive a
GAM dispersion relation from gyrofluid equations. To start, we
subtract equilibrium conditions shown in Eqs. (19a)–(19c) from
GLF4M Eqs. (15a)–(15d) to separate equilibrium part and the per-
turbed one. Then, equations for the perturbed part are given in the
form of

@dnk?
@t
þ B � r

n0ukk?
B
þ ixD

dpkk? þ dp?k?

T

� �

¼ � 2þ 1
2
r̂2
?

� �
ixD

e/k?

T
e�b=2; (B1)

mn0
@ukk?
@t
þ uE � r~uEq

kk?
þ B � r

dpkk?
B

þ dp?k?
rk lnBþ ixD

qkk? þ q?k?
þ 4p0ukk?

T=m

� �

¼ �n0e B � r
/k?

B
e�b=2 þ 1

2
r̂2
?/k?e

�b=2rk lnB
� �

; (B2)

@dpkk?
@t

þ B � r
qkk? þ 3p0ukk?

B

� �
þ 2 qkk? þ 3p0ukk?
� �rk lnB

þixD

drk;kk? þ drk;?k?

T=m

 !
¼ � 4þ 1

2
r̂2
?

� �
ixDp0

e/k?

T
e�b=2;

(B3)

@dp?k?

@t
þ B � r

q?k?
þ p0ukk?
B

� �
� q?k?

þ p0ukk?
� �rk lnB

þixD

drk;?k?
þ dr?;?k?

T=m

 !

¼ � 3þ 3
2
r̂2
? þ

^̂r
2

?

� �
ixDp0

e/k?

T
e�b=2: (B4)

Hereafter, we use the following normalization:

t
vT
qR0

;
dnk?
n0

;
ukk?
vT

;
uEk?
vT

;
dpkk?
p0

;
dp?k?

p0
;
~uEq
kk?
vT

;
~S

dn
k?

n0xti

" #

! t; dn; uk; uE; dpk; dp?; u
Eq
k ; S

h i
;

e/k?

T
;
qkk?
p0vT

;
q?k?

p0vT
;
drk;kk?
piv2T

;
drk;?k?

piv2T
;
dr?;?k?

piv2T

" #

! /̂; q̂k; q̂?; dr̂k;k; dr̂k;?; dr̂?;?
h i

:

(B5)

Then, using the normalization (B5), the perturbed Eqs. (B1)–(B4)
can be rewritten as

@dn̂
@t
þ
@ûk
@h
� eûk sin h ¼ i krqtiqð Þsin h dp̂k þ dp̂? þ 2/̂

h i
; (B6)

@ûk
@t
þ q

e
ûE

@~uEq
k

@h
þ
@dp̂k
@h
þ e sin h dp̂? � dp̂k

� �

¼ i krqtiqð Þsin h q̂k þ q̂? þ 4ûk
� �� @/̂

@h
; (B7)

@dp̂k
@t
þ
@ q̂k þ 3ûk
� �

@h
þ e sin h 2q̂? � q̂k � ûk

� �
¼ i krqtiqð Þsin h dr̂kk þ dr̂k? þ 4/̂

h i
; (B8)

@dp̂?
@t
þ
@ q̂? þ ûk
� �

@h
� 2e sin h q̂? þ ûk

� �
¼ i krqtiqð Þsin h dr̂k? þ dr̂?? þ 3/̂

h i
: (B9)
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Here, we assume a long wavelength perturbation (krqti < 1) and
the large aspect-ratio tokamak (e� 1) with concentric circular sur-
faces. The small terms of the order Oðe2Þ � OðbiÞ are neglected,
where bi ¼ ðkrqtiÞ2. Now, each equation can be divided into three
components of 0, c, and s, each of which corresponds to the Fourier
coefficient of m¼ 0, sin h, and cos h component, respectively.
However, we do not represent all the components here but only the
components those contribute to the dispersion relation (i.e.,
dn̂s; ûkc; dn̂0; p̂ks, and p̂?s) and they are given in the form of

@dn̂s

@t
¼ ûkc þ eûk0 þ krqtiqð Þ dp̂k0 þ dp̂?0 þ 2/̂0

h i
; (B10)

@ûkc
@t
¼ � q

e
ûEŜc � dp̂ks � /̂s; (B11)

@dn̂0

@t
¼ e

2
ûks þ i

krqtiqð Þ
2

dp̂ks þ dp̂?s þ 2/̂s

h i
; (B12)

@dp̂ks
@t
¼ q̂kc þ 3ûkc
� �� e 2q̂?0 � q̂k0 � ûk0

� �
þ i krqtiqð Þ dr̂kk0 þ dr̂k?0 þ 4/̂0

h i
; (B13)

@dp̂?s
@t
¼ q̂?c þ ûkc
� �

þ 2e q̂?0 þ ûk0
� �

þ i krqtiqð Þ dr̂k?0 þ dr̂??0 þ 3/̂0

h i
: (B14)

To obtain linearized equations of Eqs. (B10)–(B14), we replace
@=@t with �ix and replace higher order variables with lower order
ones using closure relations shown in Eqs. (17) and (18). Then, the
linearized equations for perturbed quantities can be represented by
a simple matrix equation, which is given in the form of

M �~x ¼

�ix �1 �2q 0 0

se �ix q
e

~Sc 1 0

seq 0 �ix q=2 q=2

�2v �3 �4q �ixþ 2v 0

�v �1 �3q 0 �ixþ v

2
66666664

3
77777775

dn̂s

ûkc
ûE

dp̂ks
dp̂?s

2
66666664

3
77777775

¼

0

0

0

0

0

2
6666664

3
7777775
: (B15)

Then, one can finally derive a dispersion relation from Eq. (B15),
giving rise to

detjMj ¼ c5x̂
5 þ c4x̂

4 þ c3x̂
3 þ c2x̂

2 þ c1x̂
1 þ c0 ¼ 0; (B16)

where

c5 ¼ �ið Þ5; c4 ¼ �ið Þ4 3v½ 	;

c3 ¼ �ið Þ3 q2
7
2
þ 2se

� �
þ 3þ se þ 2v2

� �
;

c2 ¼ �ið Þ2 q2 2v 4þ 3seð Þ � 2þ seð Þ Ŝc
e

 �
þ v 5þ 3seð Þ

� �
;

c1 ¼ �ið Þ1 q2
5þ 3se

2
þ 4v2 1þ seð Þ � v 4þ 3seð Þ Ŝc

e

� ��

þ2v2 1þ seð Þ
�
;

c0 ¼ �ið Þ0 2q2v 1þ seð Þ 1� v
Ŝc
e

� �� �
:

(B17)

Note that, if there is no poloidal source (Ŝc ¼ 0), the coefficients
shown in Eq. (B17) are exactly reduced to Eq. (D4) of Ref. 25 whose
coefficients represent those of a fluid GAM dispersion relation. By
solving Eq. (B16), one can find the source-driven modes can be
excited only when the poloidal source is intense enough for the
wave to overcome Landau damping.

APPENDIX C: EQUIVALENCE BETWEEN RMHD
AND GLF4M MODELS

Here, we demonstrate the equivalence between the quasi-
neutrality condition shown in Eq. (16) from the GLF4M model and
the vorticity Eq. (8) from the rMHD model, in certain limits. From
the quasi-neutrality condition in the GLF model, one can relate the
ion polarization density to the continuity equation shown in Eq.
(15a). The radial magnetic drift in the continuity equation of the
GLF model explicitly provides the equivalence to the vorticity equa-
tion of the rMHD model. First, E� B flow is assumed to have only
m¼ 0 component, giving the zero adiabatic electron density,
dnek? =n0 ¼ /k? � h/k?iw ¼ 0. Then, the quasi-neutrality condi-
tion results in dnikr 0=n0 ¼ �ðikrqtiÞ2e/kr0=T . Keeping that condi-
tion, we obtain a vorticity equation

ddnik?
dt
þ B � r

Jk=e

B
þ 2ixDdnik? ¼ 0 (C1)

by multiplying the ionic charge number Zs on Eq. (15a) and sum-
ming over species. Here, Jk ¼ n0eðuikk? � uekk? Þ is a parallel current
density and the particle source for electrons and ions are same to
satisfy the quasi-neutrality. The isotropic temperature T? ¼ Tk and
the isothermal plasmas between species Ti¼Te are assumed in the
drift term.

Then, taking a flux-surface average on Eq. (C1) with a
substitution of the quasi-neutrality condition of dnikr =n0
¼ �ðikrqtiÞ2e/kr=T and the drift frequency of ixD ¼ �ðikrv2Ti=
XRÞ sin h gives

@huEiw
@t

¼ � 2ev2Ti
r

�
dnik?
n0

sin h

�
w

: (C2)

One can easily find that Eq. (C2) has exactly the same from as the
vorticity Eq. (8) of the rMHD model.

APPENDIX D: MODIFIED PLASMA DISPERSION
FUNCTION FOR GK DISPERSION RELATION

In this appendix, the definition of the modified dispersion rela-
tion Zn used in Sec. IV is provided. We newly define
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Zn fð Þ ¼ 1ffiffiffi
p
p
ð1
�1

dt
tn exp ð�t2Þ

t � f
(D1)

for a simple representation of the GK dispersion relation presented
in Eq. (27). Here, “n” is an arbitrary integer and Z0 denotes the con-
ventional plasma dispersion function. Then, Zn can be derived by a
combination of Z0 and f whose from is given by

ZnðfÞ ¼

fnZ0ðfÞ þ
1ffiffiffi
p
p

XQ�ðnþ2Þ2

k¼0
C � 2kþ 1

2

� �
fnþ1þ2k; n < �1;

fnZ0ðfÞ; n ¼ �1; 0;
fnZ0ðfÞ þ fn�1; n ¼ 1; 2;

fnZ0ðfÞ þ fn�1 þ 1
2

XQn�3
2

k¼0

ð2kþ 1Þ!
4kk!

an�3�2k; n � 3;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(D2)

where Qi
j means the quotient of i divided by j. Although our disper-

sion relation is somewhat simplified by considering only the reso-
nance at vk ¼ qR0 and neglecting /kr ;m with m � 2, using Zn will
be more convenient if it involves more complicated physics, such as
harmonic resonance occurring at vk ¼ n qR0 with n � 2 including
/kr ;m with m � 2.
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