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Organic Memristor-Based Flexible Neural Networks with
Bio-Realistic Synaptic Plasticity for Complex Combinatorial
Optimization

Hyeongwook Kim, Miseong Kim, Aejin Lee, Hea-Lim Park, Jaewon Jang, Jin-Hyuk Bae,
In Man Kang, Eun-Sol Kim,* and Sin-Hyung Lee*

Hardware neural networks with mechanical flexibility are promising
next-generation computing systems for smart wearable electronics. Several
studies have been conducted on flexible neural networks for practical
applications; however, developing systems with complete synaptic plasticity
for combinatorial optimization remains challenging. In this study, the
metal-ion injection density is explored as a diffusive parameter of the
conductive filament in organic memristors. Additionally, a flexible artificial
synapse with bio-realistic synaptic plasticity is developed using organic
memristors that have systematically engineered metal-ion injections, for the
first time. In the proposed artificial synapse, short-term plasticity (STP),
long-term plasticity, and homeostatic plasticity are independently achieved
and are analogous to their biological counterparts. The time windows of the
STP and homeostatic plasticity are controlled by the ion-injection density and
electric-signal conditions, respectively. Moreover, stable capabilities for
complex combinatorial optimization in the developed synapse arrays are
demonstrated under spike-dependent operations. This effective concept for
realizing flexible neuromorphic systems for complex combinatorial
optimization is an essential building block for achieving a new paradigm of
wearable smart electronics associated with artificial intelligent systems.
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1. Introduction

Hardware neural networks with mechanical
flexibility have received considerable atten-
tion as next-generation computing systems
for smart wearable electronics.[1–3] A hard-
ware neural network, which is suitable for
the parallel computation of large amounts
of data, is a promising candidate for over-
coming the von Neumann bottleneck.[4,5]

In such systems, an electric signal is si-
multaneously processed with the transmis-
sion along the synaptic cells, which leads
to rapid computation and high energy ef-
ficiency. It is essential to develop artificial
synapses with bio-realistic functions to real-
ize practical neuromorphic systems that are
similar to their biological counterparts.[6–8]

In the human brain, synapses possess
volatile and nonvolatile memory charac-
teristics, called short-term plasticity (STP)
and long-term plasticity (LTP), respectively,
and history-dependent learning from se-
quential stimuli is achieved via the correla-
tion of STP and LTP.[9,10] Another transient
memory feature is homeostatic plasticity,

which is induced by hormonal effects. It is combined with synap-
tic plasticity, which enables the solving of nonpolynomial hard
problems that require combinatorial optimization.[11] Until now,
several studies were conducted to develop flexible and rigid ar-
tificial synaptic devices for mimicking STP and LTP.[12–16] How-
ever, such devices were used only as an analog memory compo-
nent in neuromorphic systems for simple pattern recognition,
due to their restricted functions of synaptic plasticity. To realize
practical hardware neural networks capable of solving complex
problems, such as combinatorial optimization, it is essential not
only to achieve synaptic plasticity (STP and LTP) for computa-
tion but also hormone-based homeostatic plasticity for system
stabilization.[11] Specifically, in complex neural networks for com-
binatorial optimization, the signals transmitting from the synap-
tic cell should possess the decaying noise to obtain the high so-
lution accuracy. Despite considerable effort has been made to
achieve the artificial synapse with complete synaptic plasticity, it
is still challenging to realize the bio-realistic synaptic cells.

Solution-processed organic memristors are favorable for flexi-
ble neuromorphic electronics and smart wearable systems owing
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to their advantages of mechanical flexibility, biocompatibility, and
integration density.[12,17–19] For such devices, nanosized conduc-
tive filaments (CFs) are grown or disrupted by the electrochem-
ical metallization (ECM) mechanism, which leads to the resis-
tive switching characteristics of the devices. Moreover, volatile
memory characteristics, which are analogous to the STP of
synapses, can be induced when the CFs are grown incompletely
in devices.[18,20] However, it is difficult to manipulate CF dynam-
ics owing to their stochastic and abrupt properties. Therefore, the
synaptic plasticity of organic memristors is primarily governed by
the inherent properties of the material.[21,22] Furthermore, both
short- and long-term memory characteristics are governed by a
single mechanism for CF growth, which results in difficulties in
implementing STP and LTP independently in devices.[23,24] Re-
cently, polymer molecular weight has been reported as a diffu-
sive parameter of CFs for replicating synaptic plasticity in organic
memristors.[25] The memory volatility of the organic memristor
changed according to the molecular weight; however, the engi-
neering of the material parameter related to its insulating prop-
erties inevitably caused high operating voltages when replicating
synaptic plasticity. Therefore, achieving flexible neural networks,
which are ideal for smart wearable systems, requires a new ver-
satile parameter for controlling CF dynamics and developing an
organic memristor with bio-realistic synaptic plasticity.

In this study, we demonstrate a flexible artificial synapse with
bio-realistic synaptic plasticity for complex neural networks (see
Figure 1a), for the first time. The ion density for the ECM phe-
nomena in the organic memristor was explored as a diffusive pa-
rameter for the CF, and it was controlled by active metal (Ag)
nanoparticles inserted at the interfaces. As the ion injection dur-
ing the writing process was restricted, the CF stability degraded,
which enhanced the short-term memory characteristics of the
devices. To leverage the independent memory characteristics for
STP and LTP, we developed a flexible artificial synapse composed
of two different memristor parts (computation and memory parts
for STP and LTP respectively), where deficient and sufficient ion
injection can be induced at the electric stimulus, respectively. In
the proposed flexible synapse, the spike-dependent learning pro-
cesses in biological systems were completely mimicked, and the
time window of synaptic plasticity was easily tuned via the inter-
facial Ag particle density for ion injection. In addition, homeo-
static plasticity was effectively represented in the device owing
to the precisely matched conductance states between the com-
putation and memory parts. Flexible neural networks consisting
of the developed synapse arrays were reliably trained and com-
puted for combinatorial optimization, and our network exhibited
strong potential for realizing complex systems, such as stochastic
Hopfield neural networks.

2. Results and Discussion

We prepared a device with Ag nanoparticles on its top and bot-
tom interfaces, Device 1 (see Figure 1b), to study the effects
of restricted ion injection during the writing process on the
memory characteristics of the organic memristors. The nanopar-
ticles were produced using the Ostwald-ripening-assisted self-
assembly method[26,27] (see Figure S1, Supporting Information).
We utilized inert metals, i.e., gold and indium-tin-oxide, as the

top and bottom electrodes, respectively, for the ion injection con-
fined at the interfacial Ag particles. A poly(vinyl cinnamate) poly-
mer medium was used as an insulating layer for the stable ECM
of the organic memristor.[3,18] Note that the top Au electrode was
deposited at room temperature (27 °C) to avoid the formation of
an Ag–Au alloy.[27–29] Figure 1c shows the electrical properties
of Device 1. The device was first initialized using the electro-
forming process (see Figure S2, Supporting Information),[30,31]

and the current–voltage (I–V) curves were investigated at four
different compliance current (CC) values (10−8, 10−7, 10−6, and
10−5 A) in an ambient condition (with a relative humidity (RH)
of 30%, at 27 °C). In all the CC conditions, the device exhib-
ited volatile threshold-switching characteristics, and at CC = 10−5

A, the switching current level was saturated to a value (≈3.8 ×
10−6 A) lower than the CC value, which indicates self-compliance
current characteristics. This implies that the introduction of Ag
nanoparticles for restricted ion injection effectively suppresses
CF growth and induces volatile memory characteristics. In ad-
dition, the device was stably operated, irrespective of the voltage
polarity, owing to the formation of Ag nanoparticles at both the
top and bottom interfaces (see Figure S3, Supporting Informa-
tion). The device also showed the same behaviors in harsh envi-
ronments (with RH of 50%, at 60 °C), as shown in Figure S4 (Sup-
porting Information). Note that the chemical durability of the
organic device can be highly improved through the passivation
process.[32] We confirmed the electrical characteristics of Device
1 by measuring the threshold-switching voltages (Vth) and hold-
ing voltages (Vhold) of the device for 50 cycles at each CC value.
The Vth value did not change with CC, and only small fluctua-
tions were observed in the switching-voltage distributions dur-
ing repeated cycles (see Figure S5, Supporting Information). In
typical ECM devices, the Vth value for resistive switching is not
dependent on the CC when the CF is not completely formed.[33]

In addition, CF is grown in a random fashion, which can lead to
variations in the switching voltages during the repeated resistive
switching operations of the device.[26,34] Figure 1d shows the dis-
persion of Vhold under different CC conditions. As the CC value
used to adjust the ion injection increased, the CF stability was
improved, and Vhold, which maintains the CF structure, was re-
duced. This means that the control of the metal-ion injection is di-
rectly related to the CF stability in organic memristors. It should
be noted that, in the device with the Ag nanoparticles (Device
1), the operating voltages (threshold and holding voltages) were
increased with increasing polymer thickness (see Figure S6, Sup-
porting Information), which is consistent with the typical organic
ECM devices.[35] Additionally, we investigated the cell-to-cell uni-
formity of the device, as shown in Figure S7 (Supporting Infor-
mation). The spatial variation values, the ratio of the standard
deviation to the average value of the postive and negative thresh-
old switching voltages, were ≈0.12 and 0.13 respectively, which
are similar to the typical ECM memristors.[26,34] Reliable pulse
operation is essential for utilizing a volatile organic memristor
as a diffusive device in practical neural networks.[36] As shown in
Figure 1e, we tested the volatile resistive-switching performance
of Device 1 in pulse mode. Voltage pulses of 1.4 and 0.7 V were
used to read the low- and high-resistance states of the device, re-
spectively, and the width of each pulse was 100 μs. The device
exhibited reliable switching behavior for 3 × 103 cycles, and a
threshold switching ratio of ≈107 was sustained.
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Figure 1. Concepts of flexible neural networks for combinatorial optimization and electrical properties of the organic memristor with limited ion injection.
a) A schematic of the organic memristor-based artificial synapse and complex neural networks for combinatorial optimization. b) A photograph of the
developed flexible diffusive memristor with the metal nanoparticles at the interfaces (Device 1). The inset image presents the device configuration.
c) Current–voltage features of the device. d) Distributions of the holding voltages of the device measured for the sequential cycles at the compliance
currents of 10−8, 10−7, 10−6, and 10−5 A. e) The volatile resistive switching performances of the device measured under the repeated pulses (3000
cycles). The voltage pulses of 1.4 and 0.7 V were used for reading the low- and high-resistance states, respectively.
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Figure 2. Operating principles and mechanical flexibility of the organic diffusive memristor. a) A schematic presenting lateral-type devices for analyzing
the conduction mechanism of the organic memristor with restricted ion injection. The inset image shows the device structure investigated by the field-
emission scanning electron microscope (FE-SEM) (scale bar, 100 μm). b) The conductive nanofilament growth in lateral-type memristors with different
thicknesses for the active electrode (10 nm, 20 nm, and 40 nm). The active region of each device was investigated utilizing the FE-SEM (scale bar,
100 nm). c) The ln(I/V2) versus 1/V curves of the vertical-type organic memristor with interfacial Ag nanoparticles (Device 1). The graphs were replotted
from Figure 1c, which was measured at the positive switching regions. d) A schematic of the operating principle of Device 1. e) Repeated volatile resistive
switching behaviors of Device 1 under the positive and negative bending states. f) Mechanical endurance characteristics of Device 1.

We now discuss the operating principle of an organic mem-
ristor consisting of interfacial Ag nanoparticles. Three different
organic memristors with a lateral configuration were prepared
(see Figure 2a) to explore the dynamics of CF growth at the re-
stricted ion injection, and the electrical characteristics of the de-
vices were investigated. Ag and Au were used as the active and

inert electrodes of the devices, respectively, and the ion injection
in each device was simply set through the active electrode thick-
ness (10, 20, and 40 nm). Note that in the ECM memristor, less
ion injection is achieved during the writing process as the ac-
tive electrode thickness decreases,[37] and the electrode thickness
can cause degradation of the CF stability, if the gap between the
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electrodes is significantly high.[27] All the devices showed resis-
tive switching behavior under voltage-sweep measurements (see
Figure S8, Supporting Information). However, nonvolatile mem-
ory characteristics were achieved only in the device with a 40-
nm thick Ag electrode, which means that the density of the ion
injection governs the memory volatility in the organic memris-
tors. We analyzed the conduction mechanism of the devices to
estimate the CF structure in each device (see Figure S9, Sup-
porting Information) in the low-resistance state. Charge trans-
port was achieved for the nonvolatile memristor with a 40-nm
thick Ag film via ohmic conduction, which is indicative of the
complete formation of the CF. In contrast, a negative linear de-
pendence of ln(I/V2) on 1/V was clearly observed for devices
with volatile memory characteristics, which indicates a tunnel-
ing mechanism.[38] The tunneling-barrier width evaluated by the
absolute slope value[39] was reduced with a decrease in the ion-
injection density. This means that the current flow for volatile de-
vices in the low-resistance state (LRS) is dominated by the incom-
pletely formed CF, and the thickness of the unstable CF can be ef-
fectively tuned by the density of the metal-ion injection. We then
directly investigated the CF growth in lateral-type memristors us-
ing a field-emission scanning electron microscope, as shown in
Figure 2b. As the active electrode for the metal-ion injection be-
came thicker, a more stable CF was formed after the writing pro-
cess. The CF grew completely when the 40-nm thick electrode
was used, which is consistent with the conduction mechanisms
for the devices, as confirmed in Figure S9 (Supporting Infor-
mation). Additionally, only small metal islands were investigated
for the device with a 20-nm thick Ag film, which indicates a CF
rupture. It should be noted that in ECM memristors, the self-
dissolution phenomenon for the CF is promoted when the CF is
incompletely formed.[18]

We analyzed the conduction mechanism of the vertical-type
organic memristor with interfacial Ag nanoparticles (Device 1)
by replotting the ln(I/V2)–1/V curves from the positive switch-
ing regions in Figure 1c. In Device 1, the current flow at the LRS
followed the tunneling conduction of the unstable CF, and the
CF thickness represented by the tunnel-barrier width was effec-
tively controlled by the CC value. These results are accordance
with those of the lateral-type memristors with the incomplete CF
(the devices consisting of the 20- or 40-nm thick Ag electrode).
Figure 2d shows the operating principle of the organic memris-
tor. In the device with Ag nanoparticles, the CF was formed in-
completely after the writing process, owing to the limited ion in-
jection, and the charges were transported along the unstable CF.
Moreover, the immature CF was disrupted by the self-diffusion of
the metal atoms when the electric stimulus was removed, which
resulted in the volatile memory characteristics of the device. Two
devices with different Ag-nanoparticle distributions (Devices 2
and 3) were additionally fabricated (see Figure S10, Supporting
Information) to further study the relationship between the ion-
injection density and memory volatility in the vertical-type device.
As shown in Figure S11 (Supporting Information), the size and
density of the metal particles were adjusted to tune the metal-
ion injection in the devices. In these devices, the volatile memory
characteristics evaluated by the Vhold value were observed to be ef-
fectively controlled by the density of the ion injection (see Figure
S12, Supporting Information). This implies that the Ag-particle

distribution in Device 1 can be used as a diffusive parameter of
the CF to achieve an organic diffusive memristor.

The mechanical flexibility of the device is an essential fea-
ture for the development of the synaptic components of wear-
able neural networks.[40] We tested the mechanical flexibility
of the vertical-type organic memristor that consists of interfa-
cial Ag nanoparticles (Device 1), as shown in Figure 2d,e, and
Figure S13 (Supporting Information). Under successive bend-
ing stresses, the organic memristor exhibited stable threshold
resistive-switching behavior without any degradation in its con-
ductance, regardless of a bending radius. In addition, the de-
vice operated stably when subjected to 600 cycles of mechanical
stress, thereby exhibiting high mechanical endurance.

We evaluate the capability of Device 1 as an organic diffusive
memristor for mimicking the STP of a biological synapse by in-
vestigating the dynamic responses of the device under electric
stimuli (see Figure 3a). Figure 3b presents the transient current
values of the device for a voltage pulse. A 3-ms voltage pulse of
2 V and a DC bias of 0.1 V were used as an electric stimulus and
reading voltage, respectively. When the pulse was applied to the
device, the conductance was switched to the LRS from the high-
resistance state (HRS), and it was relaxed back to the HRS as
the pulse was removed, thereby indicating the volatile memory
characteristics of the device. The relaxation behavior of the de-
vice followed an exponential decay function, which is consistent
with the STP characteristics of the synapses[41,42] (see Figure 3c).
Developing an effective strategy to match the time windows of
synaptic devices with other neuromorphic components with di-
verse operating frequencies is important for practical neuromor-
phic systems.[25,43] In our device, the relaxation parameter 𝜏 in
the exponential fitting function was effectively tuned by the dis-
tributions of the Ag nanoparticles for ion injection (see Figure 3c;
Figure S14, Supporting Information), which implies that the pro-
posed device structure and metal particles can be utilized for de-
veloping artificial synapses with diverse time windows. To con-
firm the computational capability of Device 1, its transient re-
sponses to successive electric stimuli were measured, as shown
in Figure 3d. Two types of consecutive pulses with different time
interval (tinterval) values (1 and 0.1 ms) were applied to the device.
The amplitude and width of each pulse were 2 V and 1 ms, respec-
tively. In both measurements, the excitatory post-synaptic current
(EPSC), which is the peak current, increased with an increase
in the pulse number, and the EPSC at the last pulse was higher
in the case with the shorter tinterval. This result is analogous to
paired-pulse facilitation (PPF), which is a critical STP property in
synapses.[44,45] This suggests that the growth and diffusion of im-
mature CFs in the device resemble the dynamics of calcium ions
in biological systems. Figure 3e shows the PPF index according
to tinterval between electric stimuli. Two consecutive voltage pulses
with the same conditions as those of the pulse in Figure 3d were
used, and the index value was defined as the ratio between the
EPSC values of the first and second pulses. The PPF index in-
creased from 1.29 to 6.42 when tinterval was varied from 1 ms to 5
μs. Moreover, the relaxation time required for switching back to
the HRS in the device also changed from 32 to 218 μs, based on
the interval value. This indicates the STP characteristics of the de-
vice (see Figure 3e).[44,45] As tinterval between the stimuli increased,
the instability of the CF is enhanced owing to the longer time
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Figure 3. Short-term plasticity (STP) replicated in the organic memristor with interfacial Ag nanoparticles (Device 1). a) A concept image for STP
demonstrated in the device. b) A transient response of Device 1 under a 2-V voltage. c) The relaxation of the conductance of Device 1 is analyzed in
Figure 3b. The experimental result was fitted using an exponential decay function. d) Paired-pulse facilitation (PPF) of Device 1 by two sequential 2-V
voltage pulses with a width of 1 ms. e) PPF index and relaxation time as a function of the time interval between the two sequential voltage pulses.

required for the lateral diffusion of the CF, which results in a
lower PPF index and a shorter relaxation time in the device. Based
on the short-term memory features demonstrated in Figure 3,
Device 1 can be considered a diffusive memristor, which is ideal
for demonstrating the bio-realistic STP in flexible neural net-
works.

We realized a flexible artificial synapse with complete synaptic
plasticity by adjusting the metal-ion injection in organic memris-
tors, as shown in Figure 4a. The developed artificial synapse com-
prised two parts with different ion injections (memory and com-
putation) to achieve STP and LTP independently. For the compu-
tation part, the ion injection was restricted by inserting interfacial
metal nanoparticles instead of an active electrode, as in Device 1.
In contrast, a typical memristor structure for nonvolatile mem-
ory characteristics (see Figure S15, Supporting Information) was
utilized for the memory part. To initialize the device, we per-
formed the electroforming process[30,31] (see Figure S16, Support-
ing Information). Figure 4b shows the I–V characteristics of the
synapse with and without mechanical bending stress. Because
the resistance at the HRS of the computation part is larger than
that of the memory part, volatile and nonvolatile resistive switch-
ing phenomena were achieved sequentially, and the nonvolatile
resistance state of the device was governed by the conductance
of the memory part in the device. The device operated stably as a
reversible memory device with selective characteristics. It should
be noted that a diffusive memristor with volatile memory prop-
erties can be used as a selector for memory systems with a high
integration density by matching the operating voltage and cur-
rent levels of the device with that of a memory cell.[33,46] During

the repeated 50 cycles that consisted of voltage sweeps for writing
and erasing, the nonvolatile conductance of the device was stably
switched from the HRS (or the LRS) to the LRS (or the HRS) (see
Figure S17a, Supporting Information). A reading voltage pulse
of 1.2 V with a width of 100 μs was used. To confirm the con-
ductance state of the memory part in our flexible synapse, it is
necessary to use a reading voltage that is higher than the thresh-
old value (0.8 V) for the transient CF growth in the computational
part. The temporal fluctuations, defined as the ratio of the stan-
dard deviation to the average value of the writing and erasing
voltages, were ≈0.11 and 0.14, respectively, which are comparable
with those of conventional ECM memristors.[12,47,48] Additionally,
eight different synapse cells prepared on a flexible substrate ex-
hibited similar switching voltages (see Figure S17b, Supporting
Information). Note that the cell-to-cell uniformity and reliability
of ECM memristors can be effectively enhanced by localizing CF
growth.[18,49]

We performed retention and cycle tests to specifically evalu-
ate the electrical and mechanical durability performance of the
synapse (see Figure 4c–e). In the retention test, repeated positive
and negative bending deformations with a radius (rb) of 5 mm
were applied to the device for 4× 103 s, as shown in Figure 4c. Our
device exhibited stable nonvolatile memory states and selective
characteristics for 104 s, regardless of the tensile and compres-
sive stresses. The current on/off ratio at a reading voltage (Vread)
of 1.2 V was ≈104. Moreover, the selectivity, defined as the ratio
of the current value at Vread = 1.2 V to that at Vread/2 = 0.6 V, was
≈106 in the device, which is considerably superior to the other
synaptic cells with selective behaviors.[30,50–53] Note that when a
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Figure 4. A flexible artificial synapse with spike-dependent learning capabilities. a) A photograph of a developed flexible artificial synapse with spike-
dependent learning capabilities. The inset image illustrates the operating principle of the device. b) Current–voltage properties of the device measured
with and without the bending stress. The bending radius (rb) for the mechanical stress was 5 mm. c) The retention performance of the device under
a flat state and mechanical bending stresses with rb = 5 mm. The resistance state in the labels refers to that of the memory part in the synapse. d)
Mechanical and e) electrical endurance characteristics of the device. The resistance state in the labels refers to that of the memory part in the synapse.
f) The calculated read margin of the synapse cell at the floating scheme. A sensing resistor of 3 MΩ and a reading voltage of 1.2 V were used. g) Spike-
rate-dependent plasticity of the device. h) The device connected with the two pulse sources acting as neurons to implement spike-timing-dependent
plasticity (STDP). i) The electric stimuli for pre- and post-synaptic spikes in STDP. j) STDP of the device.

voltage of Vread/2 = 0.6 V, which is not high enough to induce
the transient CF growth in the computation part, is applied to
the device, the current flow is suppressed regardless of the re-
sistance state of the memory part. A bending cycle test was then
performed to confirm the mechanical durability of the device, as
shown in Figure 4d. Each cycle consisted of positive and negative
bending stresses with rb = 5 mm. For 103 cycles, the memory and
selective performances of the device were stably maintained with-
out any degradation, thereby indicating its strong potential as a
component for practical wearable systems. In addition, the de-
vices showed high mechanical durability at the bending stresses
with different values (20, 10, and 5 mm) of rb (see Figure S18,
Supporting Information). Figure 4e presents the electrical en-
durance performance of the device, which was measured via a
cycle test composed of repeated voltage sweeps. Our synapse ex-

hibited reversible switching characteristics and reliable selective
performance over 500 cycles, which is comparable to those of in-
organic memristors for practical applications.[27,54]

The development of highly integrated data-storage systems
based on memristors requires memory cells with selective char-
acteristics for suppressing sneak current paths in crossbar-
structured arrays.[50–53] We conducted a numerical analysis to es-
timate the potential of the developed synapse as a memory com-
ponent in complex systems (see Figure S19, Supporting Informa-
tion). As shown in Figure 4f, the crossbar array consisting of our
artificial synapses possessed an integration density larger than
360 Gbit in the floating scheme, which is considered to be an
outstanding performance compared to previous studies.[12,55] An-
other essential feature of synapse devices for practical memory
applications is stable pulse operation.[56] The resistive switching
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characteristics of the synapse under pulse conditions were inves-
tigated, as shown in Figure S20 (Supporting Information). For
the switching processes (writing and erasing), voltage pulses of
5 V and -3 V were applied to the device, respectively. The conduc-
tance of the device changed stably in the pulse mode, and selec-
tive behavior was clearly observed. The writing and erasing times
of the device were ≈44 and 23 μs, respectively. Note that in ECM
memristors, the switching times for CF growth and rupture can
be simply decreased by optimizing the voltage amplitude.[57,58]

We now discuss the spike-dependent learning capability of
our synapse to realize bio-realistic neural networks. History-
dependent learning rules in the human brain, spike-rate-
dependent plasticity (SRDP), and spike-timing-dependent plas-
ticity (STDP) have been demonstrated in developed synapses. In
the developed device, the interaction between the memory and
computation parts induces a spike-dependent switching opera-
tion (see Figure S21, Supporting Information). When electric
stimuli are applied to the device sequentially, the first stimula-
tion focuses on the computation part with a relatively high resis-
tance at the initial state, which leads to the growth of an unsta-
ble CF for the STP. However, the distribution of the next pulse
at each part is governed by tinterval. Specifically, when a shorter
value of tinterval is used, the time required for the CF diffusion
decreases in the computation part, which results in a higher con-
ductance in the computation part and relatively larger voltage in
the memory part under the second pulse. This synaptic cell with
the history-dependent learning capability leads to the simple and
efficient operating scheme of the hardware neural networks, be-
cause it can be trained without complex engineering of the input
signal pulses. Note that, in the systems consisting of the typical
memristors, the complex processes including the pulse overlap
are externally required in the learning processes.[25,43] Figure 4g
shows the SRDP features that were measured using the device.
The device was stimulated by two pulses of 4 V with a width of
1 ms, and the tinterval value between the pulses was adjusted from
1 ms to 5 μs. The SRDP gain, which is defined as the ratio of
the varied conductance value to the initial value, was increased
from 4.0 to 181.4 as tinterval decreased. STDP is a critical prop-
erty of biological systems in controlling synaptic connections, in
which the synaptic weight is potentiated (or depressed) accord-
ing to the time difference (Δt) between the pre- and post-synaptic
spikes.[59] We applied pre- and post-synaptic spikes to the device
to measure the STDP characteristics of the developed synapse
(see Figure 4h). Simple electric stimuli, similar to those of bio-
logical systems, were utilized as synaptic spikes (see Figure 4i).
As shown in Figure 4j, our device stably reflected STDP. Poten-
tiation and depression of the device conductance were achieved
selectively, depending on the temporal sequence of the spikes,
and the STDP gain estimated by the ratio of the conductance
change to the initial conductance was effectively controlled by
Δt. This indicates that the developed device can act as a synaptic
cell for achieving hardware-based spiking neural networks with
a high energy efficiency. Moreover, hormone-based homeostatic
plasticity was easily replicated in the device during the reading
process by engineering the input pulse (see Figure S22, Support-
ing Information). In our synapse, the computation part based on
Device 1 possesses relatively low conductance at the HRS and
LRS compared to the memory part; thus, the current level in
the reading process is dominated by the computation part with

short-term memory features. To mimic homeostatic plasticity in
the device, we utilized a reading pulse comprising two regions:
the first region induces the transient memory effect, and the sec-
ond region reads the synaptic conductance. When we apply the
reading pulse to the device, the resistance of the computation
part can be transiently reduced by the first region of the reading
pulse, and it leads to the decaying current level for the second re-
gion of the reading pulse. Although the current fluctuations were
slightly observed due to the accuracy limits of the pulse mea-
suring system,[25,36] a transient increase in the conductance of
the device, which is analogous to homeostatic plasticity,[11,60] was
successfully controlled by the amplitude of the first region of the
reading stimulus. In the hardware neural networks, homeostatic
plasticity in the synaptic cell can be utilized for delicate signal
processing to solve the complex problems with high accuracy.[11]

Based on the superior synaptic characteristics and the high inte-
gration density, compared to the other devices[61–64] (see Table S1,
Supporting Information), it can be considered that our developed
flexible artificial synapse is highly promising for smart wearable
electronics.

Using the developed artificial synapse with bio-realistic synap-
tic plasticity (STP, LTP, and homeostatic plasticity), we con-
structed hardware neural networks for combinatorial optimiza-
tion, as shown in Figure 5a. The graph max-cut problem is a well-
known nonpolynomial hard problem that can be solved through
combinatorial optimization.[65–67] The max-cut problem is gener-
ally used for optimizing complex circuit designs, and its aim is
to identify a line that cuts the largest number of edges linking
two different nodes in a graph composed of several nodes. The
Hopfield neural network (HNN),[11,68] a recurrent neural network
consisting of neurons (detailed information in Note S1, Support-
ing Information), was developed using a 6 × 6 array of synapses
to solve the max-cut problem composed of six nodes. Initially,
the cutting line for partitioning the graph was set randomly (see
Figure 5b), and the values of “1” or “-1” were selectively matched
to the nodes according to the regions defined by the line. All
the bit and word lines of the synapse array for the HNN were
matched to the nodes, and the synaptic cells of the array were
trained by the SRDP-based learning process (see Figure S23, Sup-
porting Information). As shown in Figure 5c, following the HNN
rules, we performed successive iteration processes to update the
six node values. In the iteration process for each target node, all
bit lines were set to 0 V, and the word lines for the nodes that
were not connected to the target node were grounded. By con-
trast, we applied voltage pulses to the word lines corresponding
to the nodes linked to the target. When the node value was “1” (or
“−1”), a voltage pulse of 1.0 V (or −1.0 V) was biased to the word
line. The current level of the bit line matched to the target node
was checked to update the node value. In the case that the current
of the bit line that was matched to the target was higher than the
threshold value of 0 A, the target node value was set to “1”. Con-
trarily, the node value was modified as “−1” when the bit line
current was lower than 0 A. After the optimization processes, the
values of nodes 1, 3, and 5 were “1,” and those of the other nodes
were “−1”. For solving the problem, our system consumed ≈75.3
fJ, which is highly superior to other systems.[69] We estimated the
Hopfield energy values of all scenarios for the max-cut problem
consisting of six nodes to confirm the validity of our optimized
solution, as shown in Figure 5d. In combinatorial optimization
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Figure 5. Hardware neural networks based on the developed synapse for combinatorial optimization. a) A schematic of the crossbar arrays of the
developed artificial synapse. The inset shows a microscopic image of the fabricated synapse arrays (scale bar, 500 μm). b) Hopfield neural network
developed for solving the max-cut problem composed of six nodes. c) Iteration processes for combinatorial optimization of the max-cut problem. d)
Hopfield energy values of all the scenarios for the max-cut problem. Inset images present the optimized solutions for the max-cut problem. e) Complex
graphs consisting of the large number of nodes and complex topologies. f) The Hopfield energy of the neural network systems used to solve the max-cut
problem composed of 100 nodes, based on the synaptic noise conditions.

based on the HNN, the system energy converged to the mini-
mized value while achieving optimization. Our solution identi-
fied the minimum energy among the scenarios, thereby indicat-
ing a valid optimization for the max-cut problem. This means
that the neural networks based on our synapse possess a strong
potential for solving nonpolynomial hard problems with high en-
ergy efficiency.

We specifically confirm the potential of the developed synapse
arrays for complex combinatorial optimization by performing
numerical simulations to achieve a globally optimum solution for

more complex graph-cut problems. A benchmark of the max-cut
problem,[60] which consisted of large graphs with nodes ranging
from 60 to 100, was utilized in the analysis, and the HNN for
combinatorial optimization was constructed using the developed
synapse arrays. The synaptic weight of the cell was estimated
from the experimental results, as shown in Figure 4. It is well
known that the energy landscape of complex graphs (Figure 5e),
which consists of a large number of nodes and complex topolo-
gies, contains multiple local optima.[11,62] Therefore, strategies
to move away from local optima, such as simulated annealing

Adv. Sci. 2023, 2300659 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2300659 (9 of 12)
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or perturbation, are required for complex cases. To resolve this
problem, we added synaptic noise based on the homeostatic plas-
ticity during the optimization phase. The exponentially decaying
noise represented in our synaptic device was utilized, and the
noise amplitude of the device was approximately one-hundredth
of the original signal (see Figure S24, Supporting Information).
As shown in the simulation results (see Figure 5f), an appropri-
ate level of noise added to the synaptic weights is crucial for find-
ing the global optimum in the complex max-cut problem with
100 nodes. Specifically, the HNN that comprises the developed
synapse with time-decaying noise exhibits a robust and efficient
optimization performance. This indicates that our synapse arrays
with bio-realistic synaptic plasticity are suitable for complex com-
binatorial optimizations.

3. Conclusion

In conclusion, we implemented flexible neural networks with
bio-realistic synaptic plasticity to solve nonpolynomial hard prob-
lems. We demonstrated that the metal-ion density controlled by
interfacial Ag nanoparticles acts as a diffusive parameter of the
CF in organic memristors. In these devices, volatile memory
characteristics that are analogous to STP were achieved via re-
stricted ion injection and the resultant immature CF growth. In
addition, the time window for the STP of the device was effec-
tively tuned by the distribution of Ag particles. This concept of
replicating STP in the organic memristors may be extended to
the systems consisting of other polymer films and active metal
particles. We developed a flexible artificial synapse with complete
synaptic plasticity, including STP, LTP, and homeostatic plas-
ticity, by spatially controlling metal-ion injection in the organic
memristor. The developed synapse was composed of two parts
with different ion injections to replicate STP and LTP indepen-
dently. In the computation part with deficient ion injection, an
immature CF was formed based on the electric stimuli, which
resulted in STP characteristics. However, for the memory part
with sufficient ion injection, conductance was governed by ma-
ture CF growth, which led to LTP features. Moreover, hormone-
based homeostatic plasticity, which is required for achieving
hardware-based combinatorial optimization, was simply repli-
cated in the device by engineering the reading-signal pulse. Our
flexible synapse exhibited spike-dependent learning capabilities,
including SRDP and STDP, under simple electric stimuli, similar
to those of biological systems. Furthermore, the crossbar arrays of
the synapse exhibited a high potential for constructing complex
neural networks, which are ideal for combinatorial optimization.
This promising strategy for developing flexible neural networks
that are suitable for solving nonpolynomial hard problems is an
essential building block for realizing a new paradigm of wearable
smart electronics associated with artificial intelligent systems.

4. Experimental Section
The geometric profiles of the devices were measured using a surface

profiler (DektakXT-A, Bruker). The electrical features of the devices were
investigated using a semiconductor parameter analyzer (4200-SCS, Keith-
ley) combined with an ultrafast I–V module (4225-PMU, Keithley). A scan-
ning voltage was applied to the top electrode (Au) to measure the elec-
trical performance of the organic memristors, and the bottom electrode

(ITO) was grounded. A field-emission scanning electron microscope (S-
4800, Hitachi) was used to analyze the configuration and CF growth in
lateral-type memristors.

To fabricate a flexible memristor with interfacial Ag nanoparticles (De-
vice 1), an ITO-patterned polyethylene naphthalate (PEN) substrate was
cleaned successively via ultrasonication in acetone, isopropyl alcohol, and
deionized water for 30 min. A 0.5-nm Ag film was thermally deposited on
the substrate at 0.1 Å s−1 under 10−6 Torr to produce Ag nanoparticles at
the bottom interface. The particles were then baked at 140 °C for 1 h to
induce Ostwald ripening. As an insulating medium, poly(vinyl cinnamate)
(PVCi) dissolved in cyclopentanone in 5 wt.% was spin-coated on the sub-
strate with Ag particles at a rate of 3000 rpm for 30 s. Then, the polymer
layer was baked at 130 °C for 2 h to remove any residual solvent. The thick-
ness of the polymer medium was ≈280 nm. The same process used for the
bottom interface was used to form Ag nanoparticles at the top interface.
For the top electrode, a 50-nm thick gold film was thermally evaporated at
2 Å s−1 under 10−6 Torr. The lateral dimensions of the device were 500 μm
× 500 μm.

To prepare lateral-type organic memristors, a glass substrate was suc-
cessively cleaned via ultrasonication in acetone, isopropyl alcohol, and
deionized water for 30 min. As an insulator, the PVCi solution, the same
as for Device 1, was spin-coated on the substrate at a rate of 3000 rpm
for 30 s, and the polymer film was annealed at 130 °C for 2 h to remove
any residual solvent. A 50-nm-thick Au film was deposited on the substrate
via thermal evaporation at 1 Å s−1 under 10–6 Torr for the inert electrode.
The inert electrode was then patterned using a fluoropolymer (EGC-1700,
3M) via typical softlithography and a wet-etching process using an etchant
(TFA, Transene) for Au. As the active electrode, a 10 nm (or 20 and 40 nm)
Ag film was thermally deposited on the fluoropolymer-patterned substrate
at 1 Å s−1 under 10–6 Torr. The active electrode was patterned using a lift-
off process to remove the fluoropolymer. The width of each electrode and
the gap between the electrodes were ≈200 μm and 450 nm, respectively.

To fabricate the flexible artificial synapse, an organic memristor with
interfacial Ag nanoparticles was first produced as the computation part,
and a typical organic memristor was prepared on the computation part for
the memory part. The PEN substrate with ITO patterns was sequentially
cleaned via ultrasonication in acetone, isopropyl alcohol, and deionized
water for 30 min. Ag nanoparticles at the bottom interface of the memory
part were formed on the substrate by thermally depositing an Ag film with
a thickness of 0.5 nm at 0.1 Å s−1 under 10–6 Torr. The Ag particles were
baked at 140 °C for 1 h to promote Ostwald ripening. A PVCi film with a
280-nm thickness was prepared as the polymer medium over the substrate
by spin-coating it with PVCi dissolved in 5 wt.% cyclopentanone at a rate
of 3000 rpm for 30 s. The polymer film was annealed at 130 °C for 2 h to
remove any residual solvents. The same process used for the Ag particles
at the bottom interface was utilized to produce those at the top interface.
A 50-nm Au film was thermally deposited on the polymer medium with the
Ag particles at the rate of 2.0 Å s−1 under 10−6 Torr as the top electrode
of the computation part and the bottom electrode of the memory part. To
prepare the insulating medium for the memory part, PVCi dissolved in 5
wt.% cyclopentanone was spin-coated on the Au layer at a rate of 2000 rpm
for 30 s. Then, the polymer layer was baked at 130 °C for 2 h to remove
any residual solvent. The thickness of the polymer medium was ≈320 nm.
For the top electrode of the memory part, a 50-nm Ag film was thermally
evaporated on the polymer film at a rate of 0.8 Å s−1 under 10−6 Torr. The
lateral dimensions of the synapses were 500 × 500 μm.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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