
SoftwareX 22 (2023) 101390

D

r
o
I

b
(

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

SST v1.0.0with C API: Pluggable security solution for the Internet of
Things
Dongha Kim, Yeongbin Jo, Taekyung Kim, Hokeun Kim ∗

epartment of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, South Korea

a r t i c l e i n f o

Article history:
Received 2 January 2023
Received in revised form 18 April 2023
Accepted 18 April 2023

Dataset link: https://github.com/iotauth/iot
auth

Keywords:
Security
Internet of Things
API
Usability
Authorization
Distributed systems
Embedded systems

a b s t r a c t

The Internet of things (IoT) integrates heterogeneous computing devices, allowing each node to
communicate with one another. However, the connected ‘‘things’’ raise security challenges that need
protection for IoT devices from network-based attacks. As an integrated solution, Secure Swarm Toolkit
(SST) provides authorization infrastructure that addresses the security requirements of IoT devices. The
pre-release version of SST primarily provided the Node.js and JavaScript-based API for programming
IoT nodes (network entities) using the SST’s infrastructure. This new release introduces easy-to-use C
API functions, making SST more usable on bare-metal platforms such as embedded microcontrollers
without middleware, including operating systems. In this paper, we release the first official version
(v1.0.0) of SST and propose a new set of C API as a pluggable security solution for the IoT. Our new
C API is easy to use and supports resource-constrained IoT systems such as bare-metal embedded
computers where middleware or operating systems are unavailable. For evaluation, we present an
example IoT system using SST in practical IoT environments with WiFi-connected embedded devices,
providing essential security processes, authentication, and authorization, of IoT devices with a minimal
execution-time overhead of less than 10% and linear communication overhead, compared to the system
without any security. Thanks to the proposed C API, we expect SST to be applied to existing IoT
software platforms more easily.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.0.0 (Initial official release)
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00005
Code Ocean compute capsule –
Legal Code License BSD-2-Clause License
Code versioning system used git
Software code languages, tools, and services used Java, C, JavaScript, Node.js
Compilation requirements, operating environments & dependencies OpenSSL 3.0 or above, Java 11 or above, Linux, OS X
If available Link to developer documentation/manual https://github.com/iotauth/iotauth#readme
Support email for questions Please use the ‘‘Issues’’ in our GitHub repositories. jakio@hanyang.ac.kr,

hokeun@hanyang.ac.kr

1. Introduction

The number of network-connected devices is increasing
apidly, expected to reach 30 billion by 2030 [1], largely because
f the embedded or cyber–physical systems connected to the
nternet, forming the Internet of Things (IoT). The connectivity of

∗ Corresponding author.
E-mail addresses: jakio@hanyang.ac.kr (Dongha Kim),

aack7700@hanyang.ac.kr (Yeongbin Jo), rlaxorud0331@hanyang.ac.kr
Taekyung Kim), hokeun@hanyang.ac.kr (Hokeun Kim).

the IoT raises security challenges due to the necessity to protect
IoT networks from attacks [2]. The major security challenges in
an IoT environment include authorization, authentication, ver-
ification, system configuration, information storage, and man-
agement [3]. However, security in the IoT has key differences
from conventional computer networks, such as heterogeneity and
resource constraints. In this article, we introduce Secure Swarm
Toolkit (SST)with its new application programming interface (API)
in C language as a pluggable and usable Security Solution for
Things.
https://doi.org/10.1016/j.softx.2023.101390
2352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101390
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101390&domain=pdf
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00005
https://github.com/iotauth/iotauth#readme
mailto:jakio@hanyang.ac.kr
mailto:hokeun@hanyang.ac.kr
mailto:jakio@hanyang.ac.kr
mailto:baack7700@hanyang.ac.kr
mailto:rlaxorud0331@hanyang.ac.kr
mailto:hokeun@hanyang.ac.kr
https://doi.org/10.1016/j.softx.2023.101390
http://creativecommons.org/licenses/by/4.0/


Dongha Kim, Yeongbin Jo, Taekyung Kim et al. SoftwareX 22 (2023) 101390

[
s
a
t
f
i
l

l
d
s
r
w
c

M
l
b
p
c
b
u
d
a
k
t
a

S
m
I
t
e
a
a

2

b
r
c
i
A
p
r
f

t
s
s
e
s
t
s

c
A
w
o
a
u

Secure Swarm Toolkit (SST) was first introduced by Kim et al.
4] with its main component called Auth [5]. SST is an open-
ource toolkit for building an authorization infrastructure that
ddresses various security needs for IoT devices. The local authen-
ication and authorization software entity, Auth, is responsible
or the management and distribution of cryptography keys for
ts registered entities. Auth is written in Java, a memory-safe
anguage.

For programming IoT entities as IoT services, clients, pub-
ishers, and subscribers, the pre-release version of SST provided
evelopers with API in JavaScript using Node.js and actor-based
oftware API components called Accessors [6]. However, JavaScript
equires underlying runtime systems, such as JavaScript engines,
hich may not be available in every embedded device or micro-
ontroller with resource constraints.

otivation. The usability of SST’s pre-release API used to be
imited. Many IoT developers or users prefer the C language for
uilding IoT applications because of the C language’s portability,
latform independence, and lightweight requirements for pro-
essing power and memory. This will allow even systems with
are-metal devices, such as Arduino, to use SST. SST can also be
sed in fog computing, which serves as an enabler for IoT edge
evices [7] and cloud-based IoT solutions such as Microsoft Azure
nd Amazon Web Services (AWS) IoT uses software development
its (SDK) in C language. Balliu and Sabelfeld [8] also emphasize
he importance of securing the programming environments of IoT
pplications.

ignificance. This paper introduces the C API of SST for program-
ing secure IoT services. The new high-level C API enables the

oT system designers without security experts to set configura-
ions, request session keys from the Auth using cryptography,
stablish communication channels between clients and servers,
nd send/receive messages via secure channels. We demonstrate
pplications of SST in real-life IoT environments in Section 4.

. Software description

In SST, the management and distribution of keys are processed
y Auth, a locally centralized and globally decentralized autho-
ization entity [9]. As a local center of authorization, Auth assigns
ryptographic session keys to the registered entities involved
n the communication. To distribute the authorization overhead,
uths are globally decentralized, and a single Auth acts as a local
oint of authorization. When entities registered to other Auths
equest for communication, the Auths interact with each other
or the exchange of session keys.

Another advantage of Auth is that Auth enables authoriza-
ion even with intermittent connectivity and resource constraints
uch as energy, memory, and processing power. The distributed
ession keys have time limits of validity, so cached keys allow the
ntities not to be connected to the Auth consistently. Auth also
upports various network protocols and cryptographic schemes
o scale with heterogeneous IoT devices, including resource con-
traints.
We will introduce a C API of an entity of SST, which can

onnect to Auth for automated key distribution and management.
ctual users who need security when communicating messages
ith each device can easily apply the libraries without knowledge
f the SST protocol. To implement the standard cryptography
nd key management mechanisms, we internally use the most
p-to-date version (version 3.0) of the OpenSSL library.1

Table 1
Terms and components of SST.
Term Brief meaning

Auth Local entity for authorization of IoT entities
(IoT) Entity Any client–server model device
Distribution Key Asymmetric or symmetric key which encrypts session key
Session Key Symmetric key which encrypts entity’s messages

2.1. Software architecture

Components. Fig. 1 depicts how an Auth distributes cryptographic
keys and how entities communicate with the given keys. An
entity can be either a server providing IoT services or a client
using the IoT services. Example IoT services include tempera-
ture sensors and thermostats for a smart home application. A
session key is a symmetric cryptographic key that encrypts and
decrypts the messages between the entity clients and servers.
A distribution key is another type of symmetric cryptographic
key that encrypts session keys, protecting symmetric keys from
potential attackers. The distribution key can be used more than
once for encrypting newly issued session keys to minimize the
overhead of issuing new distribution keys. Table 1 summarizes
the components of SST.

Detailed process. We detail the step-by-step authorization pro-
cess shown in Fig. 1. In step (0), the Auth encrypts a session
key using the distribution keys of the client and the server,
respectively. In steps (1) and (2), the Auth sends the encrypted
session keys to the client and server after authenticating them
using a three-way handshake with random nonces. Through steps
(3) and (4), the entities decrypt the session key with their own
distribution keys. In step (5), the client and server authenticate
each other using the session key and a three-way handshake with
random nonces. Finally, a secure channel is established, and in
steps (6) and (7), entities begin secure communication encrypted
by the session key.

2.2. Software functionalities

The C API consists of five processes: Initialization, Session
Key Request, Entity Connection Request, Entity Communica-
tion, and Memory Control. These processes are illustrated in
Fig. 2(a).

To authorize secure communication between entities, the first
step is to initialize SST by loading configurations. An example of
the configuration file is shown in Fig. 2(b). The configuration file
includes the entity’s information, including the name, purpose,
the number of keys to request, the path of the asymmetric keys,
the registered Auth’s IP address and port number for session
key request, and the IP address and port number of the server
to connect. The init_SST() function only needs the path of the
configuration file for input and initializes SST settings.

For session key requests, the get_session_key() requests session
keys to the Auth. The user can request multiple session keys to
the Auth for communication with different entities establishing
different communication sessions. The struct session_key_list_t
caches the received session keys from the Auth. The maximum
number of session keys defaults to 10 but can be changed by
users. A flexible number of keys save memory and prevent ex-
cessive key requests.

With the received key list, the client can request the server
for connection with secure_connect_to_server(). As a point to note,
the API user can choose the key to be used in each session.

1 https://www.openssl.org/blog/blog/2021/09/07/OpenSSL3.Final/
2

https://www.openssl.org/blog/blog/2021/09/07/OpenSSL3.Final/


Dongha Kim, Yeongbin Jo, Taekyung Kim et al. SoftwareX 22 (2023) 101390
Fig. 1. Authorization of a secure connection between IoT client and server by Auth in SST.

Fig. 2. (a) Five processes and each process’s functions of SST’s C API. API functions and data structures are denoted by ‘+’ and ‘-’ symbols, respectively. (b) Example
configuration file (.config) of an IoT entity.

This is for the API user to flexibly use the library to control the
client connecting to multiple servers. The server entity can listen

to client connection requests with server_secure_comm_setup().
A 3-way challenge-response handshake is performed to prove
3



Dongha Kim, Yeongbin Jo, Taekyung Kim et al. SoftwareX 22 (2023) 101390

t
s
d
f
s

i
c
s
r
r
t
l
m
s

f
p

3

s
u
r

3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

21
22
23

24
25
26
27
28
29

l

S
t
r
r
c
s
t
h
o
m

he ownership of the session key. During the handshake, the
erver checks the cached session key list, and when the server
oes not have the matching session key ID that the client used
or communication, it automatically requests the corresponding
ession key from the auth.
The secure session (channel) context between the entities

s defined as a structure SST_session_ctx_t. Using this session
ontext, entities can receive and send messages with the mes-
ages encrypted and decrypted with the same session key. The
eceive_thread() is executed through the standard pthread, and the
eceived messages are processed on another thread. This is for
he comfort of the user, not to consider the blocking function. A
ow-level API receive_message() enables users to control threads
anually. The validity of the session key is checked whenever the
ession key is used during message send and receive.
Users can easily free memory used by the SST by using

ree_SST_ctx_t() and free_session_key_list_t() functions, preventing
otential memory leaks.

. Illustrative example

This section presents an illustrative example of the client–
erver model using SST and the proposed C API. In this section, we
se an entity client (IoT client) and an entity server (IoT server)
egistered with a single Auth.

.1. Entity client

// entity_client.c
#include "c_api.h"

int main(int argc, char *argv[]) {
// Read configuration file path from command line.
char *config_path = argv[1];

// Initialize SST by reading the configuration file.
SST_ctx_t *ctx = init_SST(config_path);

// Request get_session_key() from the configurations.
session_key_list_t *s_key_list = get_session_key(ctx, NULL);

// Establish secure session by connecting with the server.
SST_session_ctx_t *session_ctx = secure_connect_to_server
(&s_key_list->s_key[0], ctx);

// Create a thread to receive messages.
pthread_t thread;
pthread_create(&thread, NULL, &receive_thread, (void

*)session_ctx);

// Send messages through the established secure channel.
send_secure_message("Hello server", strlen("Hello server"),

session_ctx);
pthread_join(thread, NULL);

// Free memory SST used.
free(session_ctx); free_session_key_list_t(s_key_list);
free_SST_ctx(ctx);

}

Listing 1: Example IoT client program using SST’s C API

Listing 1 shows an example C code of an entity client estab-
ishing a secure channel with an entity server using SST.

The first step is a call to init_SST() in line 9. As explained in
ection 2.2, we initialize the SST setup by passing the configura-
ion file’s path as a command-line argument. The next step is to
equest session keys to the Auth. At line 12, the get_session_key()
equests session keys to the Auth with an input of the loaded
onfiguration. At line 16, the function secure_connect_to_server()
ends a handshake request to the server listening for connec-
ion and establishes secure channels processing the three-way
andshake. It returns a struct SST_session_ctx_t, a context struct
f the secure channel. Now the client entity is ready to com-
unicate with the server entity. In line 20 receive_thread is

passed through a function pointer, running the message receiving
process in another thread. Messages can be sent in the main

thread with send_secure_message. After finishing communication
sessions, free_SST_ctx_t() and free_session_key_list_t() function in
line 28 frees the assigned memory.

3.2. Entity server

1 #include "c_api.h"
2
3 int main(int argc, char *argv[]) {
4 int serv_sock, clnt_sock;
5 // ... Setup server sockets.
6 clnt_sock = accept(serv_sock, (struct sockaddr *)&clnt_addr,

&clnt_addr_size);
7
8 // Initialize SST by reading the configuration file.
9 char *config_path = argv[1];

10 SST_ctx_t *ctx = init_SST(config_path);
11
12 // Initialize a empty session_key_list.
13 INIT_SESSION_KEY_LIST(s_key_list);
14 // Listen for client connection request.
15 SST_session_ctx_t *session_ctx =

server_secure_comm_setup(ctx, clnt_sock, &s_key_list);
16
17 // Create a thread to receive messages.
18 pthread_t thread;
19 pthread_create(&thread, NULL, &receive_thread, (void

*)session_ctx);
20
21 // Send messages through the established secure channel.
22 send_secure_message("Hello client", strlen("Hello client"),

session_ctx);
23
24 // Close sockets and free used memory.
25 close(clnt_sock); close(serv_sock);
26 free(session_ctx); free_session_key_list_t
27 (s_key_list); free_SST_ctx(ctx);
28 }

Listing 2: Example IoT server program using SST’s C API

For the entity server, the macro INIT_SESSION_KEY_LIST() in
line 13 of Listing 2 initializes an empty list of session keys, ses-
sion_key_list_t. The empty session_key_list_t is the input of the
function server_secure_comm_setup(), which is the server API to
listen for client connection requests and returns
SST_session_ctx_t. In this case, as the server does not cache any
session keys, the server will send get_session_key() to the Auth.
The Auth will return the session key with the requested session
key ID, and the empty session_key_list_t will be filled with the
returned session key. The server will finish the handshake with
the client, and a secure channel between the client and server will
be built. This process is fully automated, and the API user only
needs to manage the network socket. Fig. 3 shows a flowchart of
the C API functions.

4. Evaluation

4.1. Experiments

To show the effect and performance of SST and its C API, we
compare two IoT systems with a client and a server, (1) one
system secured by SST and (2) the other system without any
security guarantees.

Each IoT node (both client and server) used in experiments
runs on Raspberry Pi 4 RAM 8 GB Model B, and the local Auth runs
on MacBook Pro (2022, MacBook Pro 16, RAM 16 GB, M1 Pro). The
IoT nodes and the Auth are connected via WiFi in the same local
network. The client and server send and receive messages of 12
bytes (representative IoT sensor data of 32-bit integer and 64-bit
double) to each other, varying the number of messages sent. In
the system secured by SST, the client requests three session keys
from the Auth for each authorization.
4



Dongha Kim, Yeongbin Jo, Taekyung Kim et al. SoftwareX 22 (2023) 101390

1

4

t
f
s
i
o
d
T
h

5
o
c
w
c
w
t
a

4

b

Fig. 3. Flowchart of the C API client–server model.

Fig. 4. Comparison of total execution time between a system using SST vs. a system not using SST (No Security). (a) Execution time in milliseconds when sending
00, 400, 700, and 1000 messages. (b) Relative overhead of SST in terms of execution time compared to No Security.

.2. Computation overhead

As shown in Fig. 4(a), the execution time differences between
he two systems decrease as the number of messages increases
rom 100 to 1000. This is more clearly shown in Fig. 4(b), which
hows the additional execution time overhead of the system us-
ng SST compared to the system with no security. As the number
f messages increases, the relative overhead on the client side
ecreases from 25.9% (100 messages) to 6.7% (1000 messages).
his is due to the session key request for authorization only
appening for the initial secure connection setup.
The client’s relative overhead drops more dramatically from

3.1% (100 messages) to 8.4% (1000 messages) as the number
f messages increases. This is because, in these experiments, the
lient requests three session keys for the initial authorization,
hile the server requests only one specific session key used for
ommunication with the client. By caching multiple session keys,
hen the session key is expired, the client can communicate with
he multiple servers without having to be authorized by Auth
gain, reducing the overhead.

.3. Communication overhead

The communication overhead is measured by the number of

secure channel and send encrypted messages. We measure this
using WireShark [10], including the TCP/IP header, which is 66-
byte long in our environments. Table 2 and Fig. 5 show the com-
munication overhead of using SST. When requesting three keys
(following our experimental configurations in Section 4.1), the
total overhead of the initial setup is 1998 bytes. These overheads
are minimal and essential for cryptographic operations, including
AES-CBC cipher’s initialization vectors [11], and HMACs [12]. As a
reference, TLS [13], a standard communication security protocol,
also requires an extra 2–10 KB for the handshake for setting up a
secure channel [14].

The relative impact of Auth–Entity handshake overhead de-
creases as we reuse the distribution key (e.g., the distribution key
is still valid), as shown in Table 2. When the session key expires,
the distribution key can be reused (i.e., no need to request a
new distribution key), and the session key distribution overhead
decreases by 52 percent from 1998 bytes to 1097 bytes.

Fig. 5(a) illustrates the total number of bytes of all messages
sent over the network when secured by SST (red line) and when
exposed in plain text (blue line), respectively. Fig. 5(b) shows the
relative overhead of SST with the ratio of the number of bytes
when secured by SST to the number of bytes when exposed in
plain text in percentage. Our observation is that the overhead
of SST converges to 200% as the number of messages increases,
ytes sent over the network, including the messages to make a rendering the overhead linear to the volume of the messages.

5



Dongha Kim, Yeongbin Jo, Taekyung Kim et al. SoftwareX 22 (2023) 101390

t
g
l
r
p
s
n
l
d
w
h

a

Fig. 5. Comparison of total length of network messages between a system using SST vs. a system not using SST (No Security). (a) Total length of network messages
when sending 20 to 200 messages. (b) Relative overhead of SST in terms of network messages compared to No Security. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Communication overhead of SST.

MSG TYPE Bytes

Auth–Entity
Handshake

WITHOUT
DIST_KEY

AUTH_HELLO 80

SESSION_KEY_REQ_IN_PUB_ENC 581

SESSION_KEY_RESP_WITH_DIST_KEY

1 Key 757

2 Keys 837

3 Keys 901

WITH
DIST_KEY

AUTH_HELLO 80

SESSION_KEY_REQ 192

SESSION_KEY_RESP

1 Key 245

2 Keys 325

3 Keys 389

Server–Client
HandShake

SKEY_HANDSHAKE_1 140

SKEY_HANDSHAKE_2 148

SKEY_HANDSHAKE_3 148

Server–Client
Message

SECURE_COMM_MSG (12 bytes) 148

5. Impact and future work

SST and its C API provide a security solution for highly dis-
ributed systems, possibly with sporadic connectivity and hetero-
eneous environments. IoT systems that require different security
evels may use SST to satisfy heterogeneous devices with various
esource limits. For example, in smart farms, data from battery-
owered sensors may not need high-level security, so minimum
ecurity protocols may be applied to save energy. However, sig-
als from the user to climate control systems must have a higher
evel of security to prevent attacks. SST can be adopted in various
omains, such as smart grids [15], smart transportation [16],
aste management, smart homes [17], smart cities [18], smart
ealthcare [19] etc.
SST can also be used in open-source distributed systems such

s Lingua Franca (LF)2 and ROS2,3 which lack security. Lingua
Franca (LF) is a polyglot coordination language for concurrent and
time-sensitive applications [20], with a main component called
reactors. However, in distributed executions called federations,
the nodes communicate without any security using the runtime

2 https://lf-lang.org/
3 https://github.com/ros2

infrastructure (RTI), which is implemented in C. SST can be de-
ployed for security solutions for Lingua Franca without significant
modifications of the original code.

In ROS2, the security is not applied by default; thus, it may
have vulnerabilities exposing node communications to the man-
in-the-middle (MITM) attack. In this case, the attacker is able to
relay and modify data between the nodes compromising con-
fidentiality and integrity [21]. ROS2 uses a publish–subscribe
model for communication between nodes, and SST also provides
the same method, including the secrecy of data.

GlusterFS4 is a decentralized file system implemented in C,
designed to provide scalable, high-performance storage [22]. We
can apply SST to GlusterFS for securing communication between
storage nodes, using Auths as localized authorization centers
between GlusterFS volumes.

As illustrated by the three examples above, SST can be readily
customized as a security solution for open-source software with
limited resources, such as embedded computers. Our first official
version of SST can address the problems of many research or
open-source software programs ending up not being used as
commercial products due to the lack of security. By using SST,
those software systems can be more widely used for general and

4 https://www.gluster.org/
6

https://lf-lang.org/
https://github.com/ros2
https://www.gluster.org/


Dongha Kim, Yeongbin Jo, Taekyung Kim et al. SoftwareX 22 (2023) 101390

c
a

6

t
r
s
V
e
k
a
f
W
I
s
a
m
p
a

D

r
i
N

D

/

A

o
(
r

R

ommercial users who are more concerned about their security
nd privacy.

. Conclusions

In this paper, we present the first official release of SST with
he new C API for programming secure IoT entities. With our
elease, SST provides a locally centralized, globally distributed
ecurity solution for IoT devices and highly distributed systems.
ersion 1.0.0 of SST with the C API provides a user-friendly
nvironment for programmers to easily utilize without significant
nowledge of computer and network security. SST’s authorization
nd authentication readily build secure communication channels
or servers, clients, publishers, and subscribers in IoT networks.
e report experimental results with SST deployed on practical

oT environments. The results show that we can support essential
ecurity guarantees with less than 10% of computation overhead
nd communication overhead that is linear to the number of
essages, making SST highly scalable. In future work, we plan to
rovide a more diverse set of cryptography, security standards,
nd network communication methods.

eclaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing
nterests: Hokeun Kim reports financial support was provided by
ational Research Foundation of Korea.

ata availability

We have shared the link to our code/data in the article (https:
/github.com/iotauth/iotauth).

cknowledgments

This work was supported by the National Research Foundation
f Korea (NRF) grants funded by the Korea government (MSIT)
No. NRF-2022R1F1A1065201). This work was supported by the
esearch fund of Hanyang University (HY-202100000002902).

eferences

[1] Vailshery LS. Number of Internet of Things (IoT) connected devices world-
wide from 2019 to 2021, with forecasts from 2022 to 2030. 2022, https:
//www.statista.com/statistics/1183457/iot-connected-devices-worldwide/.

[2] Schiller E, Aidoo A, Fuhrer J, Stahl J, Ziörjen M, Stiller B. Landscape of IoT
security. Comp Sci Rev 2022;44:100467.

[3] Jing Q, Vasilakos AV, Wan J, Lu J, Qiu D. Security of the Internet of Things:
Perspectives and challenges. Wirel Netw 2014;20(8):2481–501.

[4] Kim H, Kang E, Lee EA, Broman D. A toolkit for construction of authoriza-
tion service infrastructure for the Internet of Things. In: Proceedings of
the second international conference on Internet-of-Things design and im-
plementation. New York, NY, USA: Association for Computing Machinery;
2017, p. 147–58. http://dx.doi.org/10.1145/3054977.3054980.

[5] Kim H, Wasicek A, Mehne B, Lee EA. A secure network architecture for
the internet of things based on local authorization entities. In: 2016 IEEE
4th international conference on future Internet of Things and cloud. IEEE;
2016, p. 114–22.

[6] Brooks C, Jerad C, Kim H, Lee EA, Lohstroh M, Nouvelletz V, et
al. A component architecture for the Internet of Things. Proc IEEE
2018;106(9):1527–42.

[7] Al-Qerem A, Alauthman M, Almomani A, Gupta BB. IoT transaction pro-
cessing through cooperative concurrency control on fog–cloud computing
environment. Soft Comput 2020;24:5695–711.

[8] Balliu M, Bastys I, Sabelfeld A. Securing IoT apps. IEEE Secur Priv
2019;17(5):22–9.

[9] Kim H, Lee EA. Authentication and authorization for the Internet of Things.
IT Prof 2017;19(5):27–33.

[10] Orebaugh A, Ramirez G, Beale J. Wireshark & ethereal network protocol
analyzer toolkit. Elsevier; 2006.

[11] Vaidehi M, Rabi BJ. Design and analysis of AES-CBC mode for high security
applications. In: Second international conference on current trends in
engineering and technology. IEEE; 2014, p. 499–502.

[12] Krawczyk H, Bellare M, Canetti R. HMAC: Keyed-hashing for message
authentication. Tech. rep., 1997.

[13] Dierks T, Rescorla E. The transport layer security (TLS) protocol version
1.2. Tech. rep., 2008.

[14] Hussein A, Elhajj IH, Chehab A, Kayssi A. Securing diameter: Compar-
ing TLS, DTLS, and IPSec. In: 2016 IEEE international multidisciplinary
conference on engineering technology. IEEE; 2016, p. 1–8.

[15] Nafees MN, Saxena N, Cardenas A, Grijalva S, Burnap P. Smart grid cyber-
physical situational awareness of complex operational technology attacks:
A review. ACM Comput Surv 2023;55(10):1–36.

[16] Saarika P, Sandhya K, Sudha T. Smart transportation system using IoT.
In: 2017 international conference on smart technologies for smart nation.
IEEE; 2017, p. 1104–7.

[17] Stojkoska BLR, Trivodaliev KV. A review of Internet of Things for smart
home: Challenges and solutions. J Clean Prod 2017;140:1454–64.

[18] Al-Turjman F, Zahmatkesh H, Shahroze R. An overview of security and
privacy in smart cities’ IoT communications. Trans Emerg Telecommun
Technol 2022;33(3):e3677.

[19] Hossain MS, Muhammad G. Cloud-assisted industrial internet of
things (IIoT)–enabled framework for health monitoring. Comput Netw
2016;101:192–202.

[20] Lohstroh M, Romeo ÍÍ, Goens A, Derler P, Castrillon J, Lee EA, et al. Reactors:
A deterministic model for composable reactive systems. In: International
workshop on design, modeling, and evaluation of cyber physical systems,
workshop on embedded systems and cyber-physical systems education.
Springer; 2020, p. 59–85.

[21] Teixeira RR, Maurell IP, Drews PL. Security on ROS: analyzing and exploit-
ing vulnerabilities of ROS-based systems. In: 2020 Latin American Robotics
Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and 2020
workshop on robotics in education. IEEE; 2020, p. 1–6.

[22] Davies A, Orsaria A. Scale out with GlusterFS. Linux J 2013;2013(235):1.
7

https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://github.com/iotauth/iotauth
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb2
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb2
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb2
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb3
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb3
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb3
http://dx.doi.org/10.1145/3054977.3054980
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb5
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb5
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb5
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb5
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb5
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb5
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb5
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb6
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb6
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb6
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb6
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb6
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb7
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb7
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb7
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb7
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb7
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb8
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb8
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb8
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb9
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb9
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb9
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb10
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb10
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb10
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb11
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb11
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb11
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb11
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb11
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb12
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb12
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb12
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb13
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb13
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb13
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb14
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb14
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb14
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb14
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb14
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb15
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb15
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb15
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb15
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb15
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb16
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb16
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb16
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb16
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb16
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb17
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb17
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb17
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb18
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb18
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb18
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb18
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb18
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb19
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb19
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb19
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb19
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb19
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb20
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb20
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb20
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb20
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb20
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb20
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb20
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb20
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb20
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb21
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb21
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb21
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb21
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb21
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb21
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb21
http://refhub.elsevier.com/S2352-7110(23)00086-9/sb22

	SST v1.0.0 with C API: Pluggable security solution for the Internet of Things
	Introduction
	Software description
	Software Architecture
	Software Functionalities

	Illustrative Example
	Entity client
	Entity server

	Evaluation
	Experiments
	Computation Overhead
	Communication Overhead

	Impact and Future Work
	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References


