
Complex & Intelligent Systems
https://doi.org/10.1007/s40747-023-00983-y

ORIG INAL ART ICLE

BPLC + NOSO: backpropagation of errors based on latency code with
neurons that only spike once at most

Seong Min Jin1 · Dohun Kim2 · Dong Hyung Yoo1 · Jason Eshraghian3 · Doo Seok Jeong1

Received: 21 October 2022 / Accepted: 22 January 2023
© The Author(s) 2023

Abstract
For mathematical completeness, we propose an error-backpropagation algorithm based on latency code (BPLC) with spiking
neurons conforming to the spike–response model but allowed to spike once at most (NOSOs). BPLC is based on gradients
derived without approximation unlike previous temporal code-based error-backpropagation algorithms. The latency code uses
the spiking latency (period from the first input spike to spiking) as a measure of neuronal activity. To support the latency
code, we introduce a minimum-latency pooling layer that passes the spike of the minimum latency only for a given patch.
We also introduce a symmetric dual threshold for spiking (i) to avoid the dead neuron issue and (ii) to confine a potential
distribution to the range between the symmetric thresholds. Given that the number of spikes (rather than timesteps) is the
major cause of inference delay for digital neuromorphic hardware, NOSONets trained using BPLC likely reduce inference
delay significantly. To identify the feasibility of BPLC+NOSO, we trained CNN-based NOSONets on Fashion-MNIST and
CIFAR-10. The classification accuracy on CIFAR-10 exceeds the state-of-the-art result from an SNN of the same depth and
width by approximately 2%. Additionally, the number of spikes for inference is significantly reduced (by approximately one
order of magnitude), highlighting a significant reduction in inference delay.

Keywords Backpropagation based on latency code · Spiking neural networks · Minimum-latency pooling · Symmetric dual
threshold

Seong Min Jin and Dohun Kim have contributed equally to this work.

B Doo Seok Jeong
dooseokj@hanyang.ac.kr

Seong Min Jin
jin.seongmin0709@gmail.com

Dohun Kim
star007kdh@gmail.com

Dong Hyung Yoo
yoees@hanyang.ac.kr

Jason Eshraghian
jeshragh@ucsc.edu

1 Hanyang University, 222 Wangsimni-ro, Seongdong-gu,
Seoul 04763, Republic of Korea

2 Samsung Advanced Institute of Technology, 130 Samsung-ro,
Yeongtong-gu, Suwon-si 16678, Republic of Korea

3 University of California, Santa Cruz, Engineering Loop,
Santa Cruz 95064, CA, USA

Introduction

Spiking neural networks (SNNs) of layer-wise feedfor-
ward structure can process and convey data forward based
on asynchronous spiking events without forward locking
unlike feedforward deep neural networks (DNNs) [10,32].
When implemented in asynchronous neuromorphic hard-
ware, SNNs are believed to leverage their processing effi-
ciency. Nevertheless, asynchronous neuromorphic hardware
often suffers from traffic congestion due to a large num-
ber of spikes (events) that are routed to their destination
neurons through network-on-chip with limited bandwidth
[9]. In this regard, the number of synaptic operations per
second (SynOPS) is considered as a crucial measure of neu-
romorphic hardware performance, and attempts have been
made to improve this synaptic operation speed to further
accelerate the inference process [8,12,27,28]. Algorithm-
wise approaches to improve the inference speed include the
development of learning algorithms that support the infer-
ence process using fewer spikes.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-00983-y&domain=pdf
http://orcid.org/0000-0001-7954-2213

Complex & Intelligent Systems

Given the limited accessibility to global data in multi-
core neuromorphic hardware, learning algorithms of locality
are favored as on-chip learning algorithms. However, learn-
ing algorithms of locality, e.g., naive Hebb rule [15], spike
timing-dependent plasticity [4], and Ca-signaling model
[21], fail to achieve high performance. Currently, it appears
that the trend is moving toward off-chip learning, allowing
the learner to access large global data within the general
framework of error-backpropagation (backprop). The advan-
tage is such that enriched optimization techniques for DNNs
can readily be applied to SNNs, which significantly improves
the performance of SNNs [10]. Nevertheless, the notable
inconsistency between DNNs and SNNs lies in the fact that
output spikes are non-differentiable unlike activation func-
tions.

As aworkaround, the gradients of spikes are often approx-
imated to heuristic functions, which are popularly referred
to as surrogate gradients [2,11,34,38,44]. Using surrogate
gradients, the gradient values are available disregarding the
presence of events, avoiding the dead neuron issue that hin-
ders the network from learning. To date, various surrogate
gradients have been proposed, e.g., boxcar function [38], arc-
tan function [11], exponential function [34]; these methods
remove the inconsistency between DNNs and SNNs, yield-
ing the state-of-the-art classification accuracy on various
datasets. Despite the technical success, such heuristic sur-
rogate gradient methods lack theoretical completeness given
the lack of theoretical foundations of surrogate gradients.

Spike timing-based backprop (temporal backprop) algo-
rithms can avoid such surrogate gradients because the spike
timing may be differentiable with the membrane potential
using a linear approximation of near-threshold potential evo-
lution [5]. Temporal backprop is generally prone to learning
failure because of limited error-backpropagation paths. This
is because spike timing gradients are available only for the
neurons that spike at a given timestep unlike surrogate gra-
dients. The number of error-backpropagation paths is further
limited by dead neurons, i.e., neurons whose current fan-in
weights are low so that they no longer fire spikes. STDBP, a
temporal backprop algorithm, uses a rectified linear poten-
tial kernel to avoid the dead neuron issue [46]. The rectified
linear kernel causes a monotonous increase in potential upon
receiving an input spike with a positive weight, suggesting
that the neurons eventually fire spikes. TSSL-BP consid-
ers additional error-backprogation paths via spikes from the
same neuron to avoid learning failure due to limited error-
backpropagation paths [48]. The timing gradient is calculated
using the linear approximation by Bohte et al. [5]. Another
temporal backprop algorithm (STiDi-BP) uses a piece-wise
linear kernel to approximate the spike timing gradient to a
simple function, and thus to reduce the computational cost
[25,26].

Because spike timing gradients are available only for the
neurons that spike, generally, the larger the number of spikes,
the richer the error-backpropagation paths. Thus,more spikes
are desired for a better training. However, this causes a
considerable inference delay when implemented in digital
neuromorphic hardware because of its limited synaptic oper-
ation speed. Concerning the desires for

• theoretically seamless applications of temporal backprop
to SNNs,

• workaround for the dead neuron issue,
• fewer spikes for fast inference,

we propose a novel learning algorithm based on the spik-
ing latency code of neurons that only spike once at most
(NOSOs). NOSOs are based on the spike–response model
(SRM) [13] butwith an infinite hard refractoryperiod to avoid
additional spikes. The algorithm is based on the backprop-
agation of errors evaluated using the spiking latency code
(BPLC). The key to BPLC+NOSO is such that, when spik-
ing, spiking latency (rather than spike itself) is themeasure of
the response to a given input, which is differentiable without
approximations unlike [5]. Thus, BPLC+NOSO is mathe-
matically rigorous such that all required gradients are derived
analytically. Other important features of BPLC+NOSO are
as follows.

• The use of NOSOs for both learning and inference min-
imizes the workload on the event-routing circuits in
neuromorphic hardware.

• Tosupport the latency code,NOSONet includesminimum-
latency pooling (MinPool) layers (instead of MaxPool or
AvgPool) that pass the event of the minimum latency only
for a given patch.

• Each NOSO is given two symmetric thresholds (−ϑ and
ϑ) for spiking to confine the potential distribution to the
range between the symmetric thresholds.

• BPLC+NOSO fully supports both folded and unfolded
NOSONets, allowing us to use the automatic differentia-
tion framework [31].

The primary contributions of this study include the fol-
lowing:

• We introduce a novel learning algorithmbased on the spik-
ing latency code (BPLC+NOSO) with full derivations of
the primary gradients without approximations.

• We provide novel and essential methods for BPLC+
NOSO support, such as MinPool layers and symmetric
dual threshold for spiking, which greatly improve accu-
racy and inference efficiency.

• We introduce amethod to quickly calculatewallclock time
for inference on general digital neuromorphic hardware,

123

Complex & Intelligent Systems

which allows a quick estimation of the inference delay for
a given fully trained SNN.

The rest of the paper is organized as follows— Sec-
tion“Related work” briefly overviews previous learning
algorithms based on temporal codes. Section“Preliminaries”
addresses primary techniques employed in BPLC+NOSO.
Section“BPLC with spike response model” is dedicated to
the theoretical foundations ofBPLC+NOSO.Section“Exper-
iments” addresses the performance evaluation of BPLC +
NOSO on Fashion-MNIST and CIFAR-10 and effects of
MinPool and symmetric dual threshold for spiking on learn-
ing efficacy. Section“Discussion” discusses the estimation of
inference time for anSNNmapped onto a general digitalmul-
ticore neuromorphic processor. Finally, Section“Conclusion
and outlook” concludes our study.

Related work

Spike timing gradient approximation: Temporal backprop
algorithms frequently use linear approximated spike timing
gradients proposed by Bohte et al. [5]. The specific form
of the gradient depends on the membrane potential kernel
used. Bohte et al. [5], Comsa et al. [7], and Kim et al. [19]
used an alpha kernel as an approximation of the genuine
SRM kernel, and the corresponding gradients were evalu-
ated using the linear approximation. Zhang et al., employed
a rectified linear kernel to avoid the dead neuron issue [46]
while Mirsadeghi et al., employed a piece-wise linear ker-
nel for simple calculations of the gradient [25,26]. To apply
the linear approximation by Bohte et al. [5], the gradient
of membrane potential at the spike timing should be avail-
able. Integrate-and-fire (IF) neurons do not allow the gradient
value at the spike timing so that Kheradpisheh and Masque-
lier [17] approximated the gradient to be constant at –1. The
same holds for leaky integrate-and-fire (LIF) neurons. Zhang
andLi [48] stated that the linear approximatedwas employed,
but the gradient is not clearly derived.

Label-encoding as spike timings: For SNN with temporal
code, the correct labels are frequently encoded as particu-
lar output spike timings [17,25,26] or the temporal order
of output spikes such as time-to-first-spike (TTFS) code
[30,45,46]. In the TTFS code, the neuron index of the first
output spike indicates the output label.

Workaround for dead neuron: Comsa et al. proposed
temporal backprop with a means to avoid dead neurons
(assigning penalties to the presynaptic weights of each dead
neuron) [7]. Zhang et al. [46] proposed a rectified linear
potential kernel that causes a monotonous increase in poten-
tial upon receiving a spike with positive weight. Thus, the
neuron eventually fire a spike. Zhang and Li [48] proposed

TSSL-BPwith additional backprop paths via the spikes emit-
ted from the same neuron (intra-neuron dependency). The
additional paths avoid the learning failure due to limited
backprop paths by dead neurons. Kim et al. [19] combined
temporal backprop paths with rate-based backprop paths to
compensate for the loss of temporal backprop paths due to
dead neurons.

BPLC+NOSO is clearly distinguished from the previ-
ous temporal backprop algorithms in terms of the primary
perspectives addressed in this section. First, BPLC+NOSO
employs no approximation for gradient evaluation unlike
the previous temporal backprop algorithms including those
reviewed in this section. Therefore, it barely embodies
ambiguity. Second, the proposed spiking latency code is
a novel data encoding scheme, distinguishable from the
previous temporal code schemes. Third, the symmetric
dual threshold for spiking is a novel method to avoid
the dead neuron issue, which is computationally efficient
since it hardly involves high-cost computations. Addition-
ally, BPLC+NOSO is fully compatible with the original
SRM without approximations.

Preliminaries

Latency code

Spiking latency is a period from the first input spike timing
tin and consequent spike timing t̂ as illustrated in Fig. 1a.
In the latency code, NOSONet encodes input data x as the
spiking latency T (L)

lat of the output neurons in the output layer
L.

T (L)
lat = t̂

(L) − t(L)
in = f (L)(t̂

(L−1);w(L−1)), (1)

where t̂
(·)

and t(·)in denote the spike timings of the neurons in
the (·)th layer and their first input spike timings, respectively.
The function f (L) encodes input spikes (from the layer L-

1) at t̂
(L−1)

as spiking latency values T (L)
lat . The larger the

weight w(L−1), the shorter the spiking latency T (L)
lat . This

latency code should be distinguished from the TTFS code
[30,45,46] inwhich the first input spike timings t(L)

in in Eq. (1)
are ignored, so that it considers the output spike timings only.

Minimum-latency pooling

The MinPool layers support the latency code. Consider the
time elapsed since the first input spike, telap = t − tin, for
a given neuron. We consider a spiking latency map in a
given 2D patchDpool at timestep t and feature (spike) map in
the same patch, T lat,Dpool[t] and sDpool [t], respectively. The
latency map T lat,Dpool is initialized to infinite values. Each

123

Complex & Intelligent Systems

Table 1 Acronyms and symbols

Acronyms or Symbols Description

IF Integrate-and-fire

LIF Leaky integrate-and-fire

SRM Spike response model

BPLC Error-backpropagation algorithm based on latency code

NOSO Neurons that only spike once at most

MinPool Minimum-latency pooling

SynOPS Synaptic operations per second

TTFS Time to the first spike

T (L)
lat Spiking latency of output neurons in the output layer L

t̂ (l)i Spike timing of the i th neuron in the lth layer

t (l)in,i First input spike timing for the i th neuron in the lth layer

w
(l)
i j Synaptic weight from the j th neuron in the (l-1)th layer

u(l)
i Membrane potential of the i th neuron in the lth layer

v
(l)
j Membrane potential before weight multiplication of j th neuron in the lth layer

Nn Number of neurons in a network

Nc Number of cores of neuromorphic processor

Tup Time for process of multiplying the current potential by decay factor

Tsop Time for synaptic operations at each timestep

Tinf Inference delay

element in the map is replaced by real spiking latency when
the neuron spikes. Note that the elements once replaced by
real latency values are no longer overwritten because of the
use of NOSOs. At time step t , MinPool outputs one if the
neuron of the smallest spiking latency in the patch fires a
spike, and zero otherwise.

xmin = argminx∈Dpool

{
T lat,Dpool [t]

}
,

MinPool
(Dpool

)
[t] = sxmin [t] , (2)

where sxmin[t] indicates the spike function value for xmin

at timestep t . An example of MinPool
(Dpool

)
[t] (= 1) is

illustrated in Fig. 1b.

NOSOwith dual threshold for spiking

Each NOSO is endowed with a symmetric dual threshold
for spiking (−ϑ and ϑ), and thus a spike is generated if the
membrane potential u satisfies u ≥ ϑ or u ≤ −ϑ . Therefore,
the subthreshold potential u is confined to the range between
−ϑ and ϑ . The restriction on the potential offers the upper
limit of potential variance over the samples in a given batch,
preventing large potential variance over the samples. The
symmetry in the two bounds may offer zero-mean potential
over the samples. Additionally, the restriction on the poten-
tial is expected to avoid dead neurons given that most dead

neurons arise from their potentials largely biased toward the
negative side.

BPLC with spike responsemodel

Spike responsemodel mapped onto computational
graphs

We consider SRM, which is equivalent to the basic leaky
integrate-and-fire (LIF) model with exponentially decaying
synaptic current [13]. But our model is allowed to maximally
spike only once in response to a single input sample by using
an infinite hard refractory period in place of the refractory
kernel. The choice of SRM, rather than simpler models, e.g.,
Stein’s model [35], is to enlarge the mutual information of
spike timing and synaptic weight, which is the key to tem-
poral code.

In SRM, the subthreshold potential of the i th spiking neu-
ron in the lth layer (u(l)

i) is given by

u(l)
i [t] =

∑
j

w
(l)
i j

(
ε ∗ s(l−1)

j

)
[t] sav

(l)
i [t] , (3)

where j denotes the indices of the presynaptic neurons, and
w

(l)
i j denotes the synaptic weight from the j th neuron in

the (l-1)th layer. The spiking-availability function sav
(l)
i is

123

Complex & Intelligent Systems

Fig. 1 a Definition of spiking
latency, b Schematic of the
minimum latency pooling
operation

employed to allow each neuron to spike once at most such
that sav

(l)
i = 1 if the neuron has not spiked before, and

sav
(l)
i = 0 otherwise. The kernel ε is expressed as follows

[13].

ε = τm

τm − τs

(
e−t/τm − e−t/τs

)
� [t] , (4)

where � denotes the Heaviside step function. The potential
and synaptic current time constants are denoted by τm and τs ,
respectively. A spike from the j th neuron in the (l-1)th layer
at t̂ (l−1)

j is denoted by s(l−1)
j . Because the kernel in Eq. (4)

consists of two independent sub-kernels,

ε(·) = τm

τm − τs
e−t/τ(·)� [t] , where (·) ∈ {m, s} , (5)

Eq. (3) can be expressed as

u(l)
i [t] =

(
u(l)
i,m [t] − u(l)

i,s [t]
)
sav

(l)
i [t] ,

u(l)
i,(·) [t] =

∑
j

τmw
(l)
i j

τm − τs
e
−
(
t−t̂ (l−1)

j

)
/τ(·)

�
[
t − t̂ (l−1)

j

]
,

where (·) ∈ {m, s} .

Here, we introduce a new variable v
(l)
j given by

v
(l)
j [t] = v

(l)
j,m [t] − v

(l)
j,s [t] ,

v
(l)
j,(·) [t] = τm

τm − τs
e
−
(
t−t̂ (l−1)

j

)
/τ(·)

�
[
t − t̂ (l−1)

j

]
,

where (·) ∈ {m, s} .

The variables u(l)
i,m and u(l)

i,s are reset to zero when the
neuron fires a spike. The advantage of this method is that
the membrane potential can be evaluated by simply con-
volving input spikes using two independent kernels, which
otherwise needs to solve two sequential differential equa-
tions [20]. After spiking, the spiking-availability function
sav

(l)
i remains constant at zero, hindering additional spike

generation.

All variables are recursively evaluated using the explicit
finite difference method.

v
(l)
j,(·) [t + 1] = v

(l)
j,(·) [t] e

−1/τ(·) + τm

τm − τs
s(l−1)
j [t + 1] ,

where (·) ∈ {m, s} ,

u(l)
i,(·) [t + 1] =

∑
j

w
(l)
i j v

(l)
j,(·) [t + 1] , where (·) ∈ {m, s} ,

u(l)
i [t + 1] =

(
u(l)
i,m [t + 1] − u(l)

i,s [t + 1]
)
sav

(l)
i [t + 1] .

(6)

Equation (6) can be mapped onto a computational graph as
shown in Fig. 2. A layer’s processed data is transmitted along
the forward pass through the use of spikes (s(l)).

Backward pass and gradients

SNNs are typically trained using forward and backward
passes aligned in opposing directions, so that it is unavoid-
able to use surrogate gradients due to non-differentiability of
spikes [29,34,44]. Instead, BPLC+NOSO uses a backward

pass via spike timings t̂
(·)

rather than spikes themselves s(·)
(Fig. 2). This backward pass involves differentiable func-
tions only. The output of NOSONet (with M output NOSOs)
is the spiking latency values of the output NOSOs, T (L)

lat =
{T (L)

lat,i }Mi=1, as given in Eq. (1). The prediction is then made
by reference to the output neuron of the minimum spiking
latency. We use a cross-entropy loss function L(−T (L)

lat , ŷ),
where ŷ denotes a one-hot encoded label vector. The loss is
evaluated at the end of the learning phase, and theweights are
then updated using the gradients assessed when the neurons
spiked.

We calculate the weight’s update�w
(l)
i j using the gradient

descent method as follows.

�w
(l)
i j = −η

∂L
∂ t̂ (l)i

∂ t̂ (l)i

∂u(l)
i

∂u(l)
i

∂w
(l)
i j

[
t̂ (l)i

]

= −η
∂L
∂ t̂ (l)i

∂ t̂ (l)i

∂u(l)
i

v
(l)
j

[
t̂ (l)i

]
. (7)

123

Complex & Intelligent Systems

Fig. 2 Unfolded NOSONet on a
computational graph

The learning rate and loss function are denoted by η and L,
respectively. Equation (7) is equivalent to

�w(l) = −ηdiag
(
e(l)
)
v(l)

[
t̂
(l)
]
, (8)

with the error e(l) given by

e(l) = ∇
t̂
(l)L � t̂

(l)′
,

∇
t̂
(l)L =

[
∂L
∂ t̂ (l)i

, · · · ,
∂L
∂ t̂ (l)N

]T
,

t̂
(l)′ =

[
∂ t̂ (l)1

∂u(l)
1

, · · · ,
∂ t̂ (l)N

∂u(l)
N

]T
, (9)

for N neurons in the lth layer. The symbol � denotes the

Hadamard product. The matrix v(l)[t̂(l)] is given by

v(l)
[
t̂
(l)
]

=

⎡
⎢⎢⎢⎣

v
(l)
1

[
t̂ (l)1

]
. . . v

(l)
M

[
t̂ (l)1

]

...
. . .

...

v
(l)
1

[
t̂ (l)N

]
. . . v

(l)
M

[
t̂ (l)N

]

⎤
⎥⎥⎥⎦ ,

for M neurons in the (l − 1)th layer.
The backward propagation of the error from the lth layer

to the (l − 1)th layer (with M neurons) is given by

e(l−1) =
(
w(l)T � v(l)′

[
t̂
(l)
])

e(l) � t̂
(l−1)′

,

v(l)′
[
t̂
(l)
]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂v
(l)
1

∂ t̂ (l−1)
1

[
t̂ (l)1

]
. . .

∂v
(l)
1

∂ t̂ (l−1)
1

[
t̂ (l)N

]

...
. . .

...

∂v
(l)
M

∂ t̂ (l−1)
M

[
t̂ (l)1

]
. . .

∂v
(l)
M

∂ t̂ (l−1)
M

[
t̂ (l)N

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Equation (10) is derived in Appendix A. Because NOSO

spikes once at most, the elements once written in v(l)[t̂(l)]
and v(l)′ [t̂(l)] are not overwritten. Equation (10) identifies
that BPLC involves the gradients of spike timings rather than
spikes themselves. Therefore, the backward pass differs from
the forward pass.

Two types of gradients are thus required forBPLC+NOSO:
(i) ∂ t̂ (l)i /∂u(l)

i and (ii) ∂v
(l)
j /t̂ (l−1)

j at the spike timing t̂ (l)i .
Fortunately, SRMallows these gradients to be expressed ana-
lytically.

Theorem 1 When an SRM neuron (whose membrane poten-
tial is u(l)

i) spikes at a given time t(= t̂ (l)i), the gradient of

spike timing t̂ (l)i with membrane potential is given by

∂ t̂ (l)i

∂u(l)
i

=
(
u(l)
i,m

[
t̂i
]
/τm − u(l)

i,s

[
t̂i
]
/τs

)−1
. (11)

The proof of Theorem 1 is given in Appendix B. If the
neuron does not spike during a learning phase, the gradient
in Eq. (11) is zero.

Theorem 2 When an SRM neuron receives an input spike at
t̂ (l−1)
j , the gradients of v

(l)
j,m and v

(l)
j,s with respect to t̂ (l−1)

j
are given by

∂v
(l)
j,(·)

∂ t̂ (l−1)
j

[t] = τm

τ(·) (τm − τs)
e
−
(
t−t̂ (l−1)

j

)
/τ(·)

�
[
t − t̂ (l−1)

j

]

= v
(l)
j,(·) [t]
τ(·)

, where (·) ∈ {m, s} . (12)

123

Complex & Intelligent Systems

Table 2 Classification accuracy and the number of spikes used for inference

Method Network Coding Best accuracy Average Accuracy #spikes Nsp

Fashion-MNIST

Ikegawa et al. [16] 16C3-{32C3}*6-{64C3}*5 Rate 89.10 – 7156K

Zhang et al. [46] 16C5-P2-32C5-P2-800-128 Temporal 90.10 – –

Zhang et al. [47] 400-R400 Rate 90.13 90.00±0.14 –

Sun et al. [36] 32C3-P2-32C3-P2-128 Rate 91.56 – 12K (only Conv)

Cheng et al. [6] 32C3-P2-32C3-P2-128 Rate 92.07 – –

Mirsadeghi et al. [25] 20C5-P2-40C5-P2-1000 Temporal 92.80 – –

Zhang and Li. [48] 32C5-P2-64C5-P2-1024 Temporal 92.83 92.69±0.09 –

Zhao et al. [49] 32C5-P2-64C5-P2-1024 Rate 93.45 93.04±0.31 –

BPLC+NOSO 32C5-P2-64C5-P2-600 Latency 92.47 92.44±0.02 14K±0.26K

CIFAR-10

Wu et al. [39] CNN1∗ Rate 85.24 – –

Wu et al. [39] CNN2∗∗ Rate 90.53 – –

Wu et al. [39] CNN2-half-ch Rate 87.80 – 1298K

Zhang and Li. [48] CNN1 Temporal 89.22 – –

Zhang and Li. [48] CNN2 Temporal 91.41 – 308K

Tan et al. [37] CNN1 Modified rate 89.57 – 412K

Tan et al. [37] CNN2 Modified rate 90.13 – 342K

Zhao et al. [49] CNN3∗∗∗ Rate 90.93 – –

Lee et al. [23] ResNet11 Rate 90.95 – 1530K

BPLC+NOSO CNN4∗∗∗∗ Latency 89.77 89.37±0.25 142K±1.86K

∗96C3-256C3-P2-384C3-P2-384C3-256C3-1024-1024
∗∗128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512
∗∗∗128C3-P2-256C3-P2-512C3-P2-1024
∗∗∗∗64C5-128C5-P2-256C5-P2-512C5-256C5-1024-512

The proof of Theorem 2 is also given in Appendix B.
Using Theorem 2, the gradient ∂v

(l)
j /t̂ (l−1)

j is given by

∂v
(l)
j

∂ t̂ (l−1)
j

[
t̂ (l)i

]
= v

(l)
j,m

[
t̂ (l)i

]
/τm − v

(l)
j,s

[
t̂ (l)i

]
/τs . (13)

Likewise, this gradient is also zero if this neuron does not
spike. Both gradients in Eqs. (11) and (13) can simply be
calculated by reading out the four local variables (u(l)

i,m , u
(l)
i,s ,

v
(l)
j,m , v

(l)
j,s) when the neuron spikes.

The above derivations are for folded NOSONet, where
all tensors for each layer are simply overwritten over time
so that the space complexity is independent of the number
of timesteps. We used unfolded NOSONet in the temporal
domain to apply the the automatic differentiation frame-
work [31]. The equivalence between folded and unfolded
NOSONets is proven in Appendix C.

Experiments

Convolutional NOSONet (C-NOSONet) was trained on
Fashion-MNIST [40] andCIFAR-10 [22] usingBPLC+NOSO.
We used the hyperparameters listed in Appendix E unless
otherwise stated.Thehyperparametersweremanually searched.
All experiments were conducted in the Pytorch frame-
work [31] on a GPUworkstation (CPU: Intel Xeon Processor
Gold, GPU: RTX A6000). NOSONet on Fashion-MNIST
was trained using one GPU, whereas NOSONet on CIFAR-
10 using four GPUs.

Classification accuracy and the number of spikes for
inference

We evaluated the classification accuracy on Fashion-
MNIST and CIFAR-10 and the total number of spikes used
for inference Nsp(= ∑

i,t n
(i,t)
sp), where n(i,t)

sp denotes the
number of spikes generated from the layer i at timestep t .

Fashion-MNIST: Fashion-MNIST consists of 70,000 gray-
scale images (each of which 28 × 28 in size) of clothing
categorized as 10 classes [40]. We rescaled each gray-
scale pixel value of an image to the range 0 − 0.3 and

123

Complex & Intelligent Systems

Fig. 3 Active NOSO ratio n(i)
sp

for each layer on a
Fashion-MNIST and b
CIFAR-10 over all timesteps

applied an additivewhiteGaussian noise (zeromean and 0.05
standard deviation). These values were then used as input
currents into input LIF neurons. We trained a C-NOSONet
(32C5-MP2-64C5-MP2-600, where MP denotes MinPool).
The classification accuracy of the C-NOSONet is shown in
Table 2 in comparison with previous works. We also evalu-
ated the total number of spikes Nsp over all hidden+output
NOSOs in the network for each test sample (Table 2). The
results highlight large sparsity of active NOSOs, which
likely reduces the inference latency when implemented in
neuromorphic hardware. This will be discussed in Sec-
tion“Discussion”. Figure 3a shows the ratio of activeNOSOs
to all NOSOs, n(i)

sp (= ∑
t n

(i,t)
sp /C (i)H (i)W (i)), for layer i

over the entire timesteps.

CIFAR-10: CIFAR-10 consists of 60,000 real-world color
images (each of which 3 × 32 × 32 in size) of objects
labeled as 10 classes [22]. All training images were pre-
processed such that each image with zero-padding of size
4 was randomly cropped to 32 × 32, which was followed
by random horizontal flipping. The RGB values of each
pixel were rescaled to the range 0 − 0.3 and then used as
input currents. For learning stability, we linearly increased
the initial learning rate (1E-2) to the plateau learning rate
(5E-2) for the first five epochs (ramp rate: 8E-3/epoch). The
fully trained C-NOSONet (64C5-128C5-MP2-256C5-MP2-
512C5-256C5-1024-512) yields the classification accuracy
and the number of spikes for inference in Table 2. Notably,
our classification accuracy exceeds the result from an SNN
of the same depth and width (CNN2-half-ch) [39] by approx-
imately 2.0%. Additionally, our NOSONet uses much fewer
spikes (only 10.9% of CNN2-half-ch), supporting high-
throughput inference. The layer-wise active NOSO ratio n(i)

sp
over the entire timesteps is plotted in Fig. 3b, highlighting
the high sparsity of spikes.

Minimum-latency pooling versus MaxPool

MinPool supports the latency code by passing the event of
theminimum spiking latency in a given 2D patch. To identify
its effects on learning, we compared NOSONets with Min-
Pool layers and conventional MaxPool layers. Figures 4 and
5 show the comparisons on Fashion-MNIST and CIFAR-10,
respectively. Compared with MaxPool, MinPool yields (i)

Fig. 4 Comparison between MinPool and MaxPool in terms of a vali-
dation accuracy, b training loss, and c layer-wise active NOSO ratio on
Fashion-MNIST

Fig. 5 Comparison between MinPool and MaxPool in terms of a vali-
dation accuracy, b training loss, and c layer-wise active NOSO ratio on
CIFAR-10

the higher classification accuracy as shown in Figs. 4a and
5a and (ii) higher spike sparsity as shown in Figs. 4c and
5c. The accuracy increase despite the decrease in spike num-
ber may imply that MinPool removes unimportant spikes in
classification unlike dropout that randomly removes spikes.

123

Complex & Intelligent Systems

Fig. 6 Mean potential and standard deviation for neurons in each layer of NOSONet a on Fashion-MNIST, b on CIFAR-10. They were evaluated
from potential distribution over samples in a random batch (size: 300 on Fashion-MNIST and 100 on CIFAR-10)

Effect of symmetric dual threshold on potential
distribution

We identified the effect of the dual threshold on poten-
tial distribution over samples in a given batch by train-
ing NOSONet (32C5-MP2-64C5-MP2-600) on Fashion-
MNIST and CIFAR-10 with four different threshold condi-
tions: single threshold 0.05 and 0.1, and dual threshold ±0.1
and±0.15. The results are shown in Fig. 6. The usage of dual
threshold greatly lowers the standard deviation and results in
a mean that is almost zero because it limits the potential
to the range between −ϑ and ϑ . Additionally, the highest
accuracy was attained with the dual threshold ±0.15. The
potential distributions for a single threshold case (0.1) and
dual threshold case (±0.15) on Fashion-MNIST are detailed
in Appendix F.

Discussion

We estimate the inference time for an SNN mapped onto a
general digital multicore neuromorphic processor using the
following assumptions.

Assumption 1: Total Nn neurons in a given SNN are
distributed uniformly over Nc cores of a neuromorphic pro-
cessor, i.e., Nn/Nc neurons per core.

Assumption 2: All Nn/Nc neurons in each core share a
multiplier by time-division multiplexing, so that the current
potential is multiplied by a potential decay factor (e−1/τm)
for one neuron at each cycle.

Assumption 3: Synaptic operations are also executed seri-
ally.

Assumption 4: Neurons in different cores are updated par-
allel.

Each timestep for an SNN with LIF neurons includes two
primary processes: (i) the process of multiplying the current
potential by a decay factor and (ii) synaptic operation (spike
routing to the destination neurons plus the consequent poten-
tial update). Process (i) in a digital neuromorphic processor

is commonly pipelined within a core but executed in parallel
over the Nc cores [20]. Thus, at each timestep, the time for
process (i) for all Nn neurons (Tup) is given by

Tup = (Nn/Nc + a) f −1
clk ,

where a and fclk denote the initialization cycle number and
clock speed, respectively. Although the number of initial-
ization cycles a differs for different processor designs, it is
commonly a few clock cycles. Given the total number of
spikes generated at timestep t (nsp[t]), the time for synaptic
operations at each timestep is given by

Tsop = nsp[t] (SynOPS)−1 .

Given Assumptions, the total time for processes (i) and
(ii) at each timestep is given by Tstep = Tup + Tsop. There-
fore, we have the total time for inference during total Nstep

timesteps, Tinf = ∑
t Tstep[t], as follows.

Tinf = Nstep (Nn/Nc + a) f −1
clk + Nsp (SynOPS)−1 , (14)

where Nsp = ∑
t nsp[t]. The number of neurons in a core

(Nn/Nc) differs for different designs.We assume 1k neurons
in each core [8], a few tens MSynOPS as for [3,12,27], and
100 MHz clock speed. For inference involving Nsp spikes
(∼ 106 as in Table 2) and a Nstep of ∼ 100, Eq. (14) identi-
fies that Tsop is dominant over Tup so that Tinf is dictated by
Tsop. Therefore, it is desired to concern Nsp when developing
learning algorithms.

For SNNs with IF neurons (without leakage), process (i)
is unnecessary so that Tup vanishes. Therefore, Tinf is solely
determined by Nsp.

Conclusion and outlook

We proposed a mathematically rigorous learning algorithm
(BPLC) based on spiking latency code in conjunction with
minimum-latency pooling (MinPool) operations. We over-
come the dead neuron issue using a symmetric dual thresh-

123

Complex & Intelligent Systems

old for spiking, which additionally improves the potential
distribution over samples in a given batch (and thus the clas-
sification accuracy). BPLC-trained NOSONet on CIFAR-10
highlights its high accuracy outperforming the SNN of the
same depth andwidth by approximately 2%withmuch fewer
spikes (only 10.9%). This large reduction in the number of
spikes largely reduces the inference latency of SNNs imple-
mented in digital neuromorphic processors.

Currently, we conceive the following future work to boost
the impact of BPLC+NOSO.

• Scalability confirmation: Although the viability of
BPLC+NOSO was identified, its applicability to deeper
SNNs on more complex datasets should be confirmed.
Such datasets include not only static image datasets like
ImageNet [33] but also event datasets like CIFAR10-
DVS [24] and DVS128 Gesture [1]. Given that the
number of spikes is severely capped, BPLC+NOSO on
event datasets in particular might be challenging.

• Hyperparameter fine-tuning: To further increase the
classification accuracy, the hyperparameters should be
fine-tuned using optimization techniques.

• Weight quantization: BPLC+NOSO is based on full-
precision (32b FP) weights. However, the viability of
BPLC+NOSOwith reduced precisionweights should be
confirmed to improve the efficiency in memory use. This
may need an additional weight-quantization algorithm in
conjunction with BPLC+NOSO like CBP [18].

• Search for newapplicationdomains:Weneed to search
for new applications domains in which BPLC+NOSO
can leverage its low process latency and power when
implemented in neuromorphic hardware. The examples
potentially include intelligent control systems like con-
strained nonlinear systems [41–43].

Author Contributions Conceptualization: Doo Seok Jeong, Dohun
Kim, SeongMin Jin; Methodology: Dohun Kim, SeongMin Jin; Soft-
ware: Doo Seok Jeong, Dohun Kim, SeongMin Jin, DongHyung Yoo;
Investigation: Dohun Kim, SeongMin Jin, Jason Eshraghian; Writing-
original draft: Doo Seok Jeong.

Funding This research was supported by National R&D Program
through the National Research Foundation of Korea (NRF) funded by
Ministry of Science and ICT (2021M3F3A2A01037632 and
2019R1C1C1009810).

Availability of data andmaterials The datasets generated during and/or
analyzed during the current study are available in theGitHub repository,
https://github.com/dooseokjeong/BPLC-NOSO.

Declarations

Conflict of interest The authors have no relevant financial or non-
financial interests to disclose.

Code availability The code is available in theGitHub repository, https://
github.com/dooseokjeong/BPLC-NOSO.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A Derivation of backward propa-
gation of errors

We define

Cτ = τm

τm − τs
,

S j [t] = �
[
t − t̂ (l−1)

j

]
,

E j,(·) [t] = e
−
(
t−t̂ (l−1)

j

)
/τ(·) , where (·) ∈ {m, s} . (A1)

The subthreshold membrane potential of NOSO is

u(l)
i [t] =

∑
j

Cτw
(l)
i j

(
E j,m[t] − E j,s[t]

)
S j [t] sav

(l)
i [t] .

(A2)

Thus, the following equation holds when spiking with a spik-
ing threshold ϑ .

ϑ =
∑
j

Cτw
(l)
i j

(
E j,m

[
t̂ (l)i

]
− E j,s

[
t̂ (l)i

])

×S j

[
t̂ (l)i

]
sav

(l)
i

[
t̂ (l)i

]
. (A3)

For simplicity, we omit the spiking-availability function
sav

(l)
i hereafter. The derivative ∂ t̂ (l)i /∂ t̂ (l−1)

j is acquired by

differentiating Eq. (A3) with respect to t̂ (l−1)
j .

∂ t̂ (l)i

∂ t̂ (l−1)
j

=
Cτw

(l)
i j

(
τ−1
m E j,m

[
t̂ (l)i

]
− τ−1

s E j,s

[
t̂ (l)i

])
S j

[
t̂ (l)i

]

∑
k Cτw

(l)
ik

(
τ−1
m Ek,m

[
t̂ (l)i

]
− τ−1

s Ek,s

[
t̂ (l)i

])
Sk
[
t̂ (l)i

] .

(A4)

123

https://github.com/dooseokjeong/BPLC-NOSO
https://github.com/dooseokjeong/BPLC-NOSO
https://github.com/dooseokjeong/BPLC-NOSO
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Complex & Intelligent Systems

According to Theorem 1, the denominator of the right-

hand side of Eq. (A4) equals
(
∂ t̂ (l)i /∂u(l)

i

)−1
, and thus we

have

∂ t̂ (l)i

∂ t̂ (l−1)
j

= Cτw
(l)
i j

⎛
⎝ E j,m

[
t̂ (l)i

]

τm
−

E j,s

[
t̂ (l)i

]

τs

⎞
⎠ S j

[
t̂ (l)i

] ∂ t̂ (l)i

∂u(l)
i

.

(A5)

Applying a chain rule on the left-hand side of Eq. (A5)
yields the following equation—

∂u(l)
i

∂ t̂ (l−1)
j

= Cτw
(l)
i j

⎛
⎝ E j,m

[
t̂ (l)i

]

τm
−

E j,s

[
t̂ (l)i

]

τs

⎞
⎠ S j

[
t̂ (l)i

]
.

(A6)

Given that

v
(l)
j,(·) [t] = Cτ E j,(·) [t] S j [t] , where (·) ∈ {m, s} , (A7)

Eq. (A6) is re-expressed as

∂u(l)
i

∂ t̂ (l−1)
j

= w
(l)
i j

(
v

(l)
j,m

[
t̂ (l)i

]
/τm − v

(l)
j,s

[
t̂ (l)i

]
/τs

)
. (A8)

According to Theorem 2,

∂v
(l)
j,(·)

∂ t̂ (l−1)
j

[
t̂ (l)i

]
=Cτ

τ(·)
E j,(·)

[
t̂ (l)i

]
S j

[
t̂ (l)i

]
,

where (·) ∈ {m, s} .

Using Eq. (A7) at t = t̂ (l)i , the following equation holds:

τ−1
(·) v

(l)
j,(·)

[
t̂ (l)i

]
= ∂v

(l)
j,(·)/∂ t̂

(l)
j

[
t̂ (l)i

]
, where (·) ∈ {m, s}.

Therefore, Eq. (A8) is re-arranged as

∂u(l)
i

∂ t̂ (l−1)
j

= w
(l)
i j

∂v
(l)
j

∂ t̂ (l)j

[
t̂ (l)i

]
. (A9)

The error for the j th neuron in the (l − 1)th layer e(l−1)
j

is given by

e(l−1)
j = ∂L

∂ t̂ (l−1)
j

∂ t̂ (l−1)
j

∂u(l−1)
j

=
∑
i

(
∂L
∂ t̂ (l)i

∂ t̂ (l)i

∂u(l)
i

)
∂u(l)

i

∂ t̂ (l−1)
j

∂ t̂ (l−1)
j

∂u(l−1)
j

=
∑
i

e(l)
i

∂u(l)
i

∂ t̂ (l−1)
j

∂ t̂ (l−1)
j

∂u(l−1)
j

. (A10)

Plugging Eq. (A9) into Eq. (A10) therefore leads to

e(l−1)
j =

∑
i

e(l)
i w

(l)
i j

∂v
(l)
j

∂ t̂ (l)j

[
t̂ (l)i

] ∂ t̂ (l−1)
j

∂u(l−1)
j

. (A11)

Equation (A11) is expressed as the followingmatrix formula.

e(l−1) =
(
w(l)T � v(l)′

[
t̂
(l)
])

e(l) � t̂
(l−1)′

,

where

v(l)′
[
t̂
(l)
]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂v
(l)
1

∂ t̂ (l−1)
1

[
t̂ (l)1

]
. . .

∂v
(l)
1

∂ t̂ (l−1)
1

[
t̂ (l)N

]

...
. . .

...

∂v
(l)
M

∂ t̂ (l−1)
m

[
t̂ (l)1

]
. . .

∂v
(l)
M

∂ t̂ (l−1)
m

[
t̂ (l)N

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Appendix B Proofs of Theorems

Theorem 1 When an SRM neuron (whose membrane poten-
tial is u(l)

i) spikes at a given time t(= t̂ (l)i), the gradient of

spike timing t̂ (l)i with membrane potential is given by

∂ t̂ (l)i

∂u(l)
i

=
(
u(l)
i,m

[
t̂i
]
/τm − u(l)

i,s

[
t̂i
]
/τs

)−1
.

Proof The update of weight w(l)
i j is calculated using the gra-

dient descent method as follows—

�w
(l)
i j = −η

∂L
∂w

(l)
i j

= −η
∂L
∂ t̂ (l)i

∂ t̂ (l)i

∂w
(l)
i j

= −η
∂L
∂ t̂ (l)i

∂ t̂ (l)i

∂u(l)
i

∂u(l)
i

∂w
(l)
i j

[
t̂ (l)i

]
. (B12)

Regarding that u(l)
i [t] = w

(l)
i j v

(l)
j [t], the gradient ∂u(l)

i /

∂w
(l)
i j [t] equals v

(l)
j [t]. Consequently, we have

�w
(l)
i j = −η

∂L
∂ t̂ (l)i

∂ t̂ (l)i

∂u(l)
i

v
(l)
j

[
t̂ (l)i

]
. (B13)

123

Complex & Intelligent Systems

Differentiating Eq. (A3) with w
(l)
i j yields

∂ϑ

∂w
(l)
i j

= v
(l)
j

[
t̂ (l)i

]
+ ∂u(l)

i

∂t

[
t̂ (l)i

] ∂ t̂ (l)i

∂w
(l)
i j

. (B14)

The left-hand side of Eq. (B14) is zero because the threshold
ϑ is constant. Thus, the following equation holds—

∂ t̂ (l)i

∂w
(l)
i j

= −
(

∂u(l)
i

∂t

[
t̂ (l)i

])−1

v
(l)
j

[
t̂ (l)i

]
. (B15)

Plugging Eq. (B15) into Eq. (B12) yields

�w
(l)
i j = η

∂L
∂ t̂ (l)i

(
∂u(l)

i

∂t

[
t̂ (l)i

])−1

v
(l)
j

[
t̂ (l)i

]
. (B16)

A comparison between Eqs. (B13) and (B16) indicates that
the following equation holds.

∂ t̂ (l)i

∂u(l)
i

= −
(

∂u(l)
i

∂t

[
t̂ (l)i

])−1

. (B17)

The right-hand side of Eq. (B17) is obtained by differentiat-
ing Eq. (A2) with t and evaluating the derivative at the spike
timing t̂ (l)i , which finally leads to

∂ t̂ (l)i

∂u(l)
i

=
(
u(l)
i,m

[
t̂ (l)i

]
/τm − u(l)

i,s

[
t̂ (l)i

]
/τs

)−1
,

where

u(l)
i,(·)

[
t̂ (l)i

]
=
∑
j

Cτw
(l)
i j E j,(·)

[
t̂ (l)i

]
S j

[
t̂ (l)i

]
,

where (·) ∈ {m, s} .

�
Theorem 2 When an SRM neuron receives an input spike at
t̂ (l−1)
j , the gradients of v(l)

j,m and v
(l)
j,s with respect to t̂

(l−1)
j are

given by

∂v
(l)
j,(·)

∂ t̂ (l−1)
j

[t] = Cτ

τ(·)
E j,(·) [t] S j [t] , where (·) ∈ {m, s} .

Proof The variables v
(l)
j,m and v

(l)
j,s are given by

v
(l)
j,(·) [t] = Cτ E j,(·) [t] S j [t] ,where (·) ∈ {m, s} . (B18)

To be precise, theHeaviside step function inEq. (B18) should

be �
[
t − t̂ (l−1)

j − ε
]
with ε → 0+ because v

(l)
j,(·) at t̂

(l−1)
j

is τm/ (τm − τs) rather than τm/ [2 (τm − τs)]. Given this
substitution, differentiating Eq. (B18) with respect to t̂ (l−1)

j
yields

∂v
(l)
j,(·)

∂ t̂ (l−1)
j

[t] = Cτ

τ(·)
E j,(·) [t] S j [t] , where (·) ∈ {m, s} .

�

Theorem 3 Spike-stamp vectors for NOSOs satisfy the fol-
lowing equation:

s(l) [t1] � s(l) [t2] =
{
s(l) [t1] if t1 = t2

0 otherwise.
(B19)

Proof Because NOSOs spike once maximally, for all i ,
s(l)
i [t1] s

(l)
i [t2] = 0 if t1 = t2, and s(l)

i [t1] s
(l)
i [t2] = s(l)

i [t1]
if t1 = t2. Therefore, Eq. (B19) is true.
�

Theorem 4 The weight update for the folded SNN,

�w(l) = −ηdiag
(
e(l)T

)
v(l)

[
t̂
(l)
]
, (B20)

is equivalent to the following equation—

�w(l) = −η

T∑
t=1

(
e(l) [t] � s(l) [t]

)
v(l) [t]T , (B21)

where v(l)[t] is given by v(l)[t] =
[
v

(l)
1 [t], · · · , v

(l)
m [t]

]T
.

Proof The error e(l) is known to be

e(l) =
T∑
t=1

e(l) [t] � s(l) [t] . (B22)

Using Eq. (B22) and a basic property of the Hamadard
product, the matrix diag

(
e(l)T

)
on the right-hand side of

Eq. (B20) is unfolded as

diag
(
e(l)
)

=
T∑
t=1

diag
(
e(l) [t]

)
diag

(
s(l) [t]

)
. (B23)

The matrix v(l)
[
t̂
(l)
]
in Eq. (B20), given by

v(l)
[
t̂
(l)
]

=

⎡
⎢⎢⎢⎣

v
(l)
1

[
t̂ (l)1

]
. . . v

(l)
M

[
t̂ (l)1

]

...
. . .

...

v
(l)
1

[
t̂ (l)1

]
. . . v

(l)
M

[
t̂ (l)N

]

⎤
⎥⎥⎥⎦ ,

123

Complex & Intelligent Systems

is unfolded as

v(l)′
[
t̂
(l)
]

=
T∑

t ′=1

s(l)
[
t ′
]
v(l) [t ′]T . (B24)

Entering Eqs. (B23) and (B24) into Eq. (B20) yields

�w(l) = −η

T∑
t

T∑
t ′

[
diag

(
e(l) [t]

)

diag
(
s(l) [t]

)
s(l)

[
t ′
]
v(l) [t ′]T

]
. (B25)

Note that diag
(
s(l) [t]

)
s(l)

[
t ′
] = s(l) [t] � s(l)

[
t ′
]
, which

is always zero if t = t ′ according to Theorem 3. Therefore,
we have

�w(l) = −η

T∑
t=1

diag
(
e(l) [t]

)
s(l) [t] v(l) [t]T .

= −η

T∑
t=1

(
e(l) [t] � s(l) [t]

)
v(l) [t]T .

�

Theorem 5 The backward propagation of errors

e(l−1) =
(
w(l)T � v(l)′

[
t̂
(l)
])

e(l) � t̂
(l−1)′

(B26)

is unfolded over the timesteps as follows—

e(l−1) =
T∑
t=1

ẽ(l−1)[t],

ẽ(l−1)[t] =
T∑

t ′=t

(
w(l)T ẽ(l)[t ′]

)
� B(l) [t, t ′]

� A(l−1) [t] � s(l−1) [t] ,

B(l) [t, t ′] = Cτ

[
τ−1
m e−(t ′−t)/τm − τ−1

s e−(t ′−t)/τs
]
1.

The all-one vector is denoted by 1 = [1, · · · , 1]T.

Proof The matrix v(l)′
[
t̂
(l)
]
in Eq. (B26),

v(l)′
[
t̂
(l)
]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂v
(l)
1

∂ t̂ (l−1)
1

[
t̂ (l)1

]
. . .

∂v
(l)
1

∂ t̂ (l−1)
1

[
t̂ (l)N

]

...
. . .

...

∂v
(l)
M

∂ t̂ (l−1)
M

[
t̂ (l)1

]
. . .

∂v
(l)
M

∂ t̂ (l−1)
M

[
t̂ (l)N

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

is unfolded as

v(l)′
[
t̂
(l)
]

=
T∑
t=1

C(l) [t] s(l) [t]T . (B27)

C(l) [t] =
[

∂v
(l)
1

∂ t̂ (l−1)
1

[t] , · · · ∂v
(l)
M

∂ t̂ (l−1)
M

[t]

]T
. (B28)

Its elements are given by

∂v
(l)
j

∂ t̂ (l−1)
j

[t] = Cτ

(
E j,m [t]

τm
− E j,s [t]

τs

)
S j [t] . (B29)

Note that the element ∂v
(l)
j /∂ t̂ (l−1)

j [t] is a continuous func-

tion of t
(
≥ t̂ (l−1)

j

)
, and v(l)′

[
t̂
(l)
]
is the read of A(l) [t] at

t̂
(l)

using s(l). Plugging Eqs. (B22) and (B27) into Eq. (B26)
yields

e(l−1) =
T∑

t ′=1

T∑
t=1

[
w(l)T �

(
A(l) [t ′] s(l) [t ′]T

)
e(l) [t]

� s(l) [t]
]

� t̂
(l−1)′

. (B30)

We use a general property of the Hadamard product,

(
w � abT

)
c = [w (b � c)] � a,

where w ∈ R
n×m , a ∈ R

n , b ∈ R
m , and c ∈ R

m . Equa-
tion (B30) is consequently arranged as

e(l−1) =
T∑

t ′=1

T∑
t=1

[
w(l)T

(
e(l) [t] � s(l)

[
t ′
]� s(l) [t]

)

� C(l) [t ′]
]

� t̂
(l−1)′

. (B31)

Using Theorem 3, we have

e(l−1) =
T∑

t ′=1

[
w(l)T

(
e(l) [t ′]� s(l)

[
t ′
])� C(l) [t ′]

]

� t̂
(l−1)′

. (B32)

Considering the following equations—

∂ t̂ (l)i

∂u(l)
i

[t] = A(l)
i [t] δ

[
t − t̂ (l)i

]
,

A(l)
i [t] =

(
u(l)
i,m [t] /τm − u(l)

i,s [t] /τs
)−1

,

123

Complex & Intelligent Systems

The gradient t̂
(l−1)′

on the right-hand side of Eq. (B32) is
unfolded as

t̂
(l−1)′ =

T∑
t=1

A(l−1) [t] � s(l−1) [t] . (B33)

From Eqs. (B32) and (B33), we have

e(l−1) =
T∑
t=1

T∑
t ′=t

[
w(l)T

(
e(l) [t ′]� s(l)

[
t ′
])

� C(l) [t ′]
]

� A(l−1) [t] � s(l−1) [t] . (B34)

Note that the lower limit of the summation over t ′ is set to t
because C(l) [t ′] in this equation becomes zero for any t ′ < t
according to Theorem 2 (see the Heaviside step function). As

such,C(l) [t ′] =
[
∂v

(l)
1 /∂ t̂ (l−1)

1

[
t ′
]
, · · · ∂v

(l)
m /∂ t̂ (l−1)

m
[
t ′
]]T

.

If we leave the presynaptic spike timing t̂ (l−1)
j as a variable

t , the element becomes

∂v
(l)
j

∂ t̂ (l−1)
j

[
t ′
] = Cτ

[
τ−1
m e−(t ′−t)/τm − τ−1

s e−(t ′−t)/τs
]
.

(B35)

As shown in Eq. (B34), the variable t is the time argu-
ment of the presynaptic spike-stamp vector s(l−1), so that
t such that s(l−1)

j [t] = 1 is t (l−1)
j , rendering Eq. (B35)

equal to Eq. (B29). For clearity, we introduce a new vector
B(l)

[
t, t ′

]
whose element is given by Eq. (B35). The product

e(l) [t ′]� s(l)
[
t ′
]
in Eq. (B33) is the error at the timestep t ′,

i.e., ẽ(l−1) [t ′]. Therefore, we eventually have

e(l−1) =
T∑
t=1

ẽ(l−1) [t] , (B36)

where

ẽ(l−1)[t] =
T∑

t1=t

(
w(l)T ẽ(l−1) [t ′]

)

� B(l) [t, t ′]� A(l−1) [t] � s(l−1) [t] , (B37)

�

Appendix C Proof of equivalence between
folded and unfolded NOSONets

NOSONet can be unfolded on a computational graph to use
the the automatic differentiation framework [31]. To begin

with, we define a spike-stamp vector at timestep t (s(l) [t])
such that its element is ‘1’ if the corresponding NOSO spikes
at the timestep, and ‘0’ otherwise.

s(l) [t] =
[
δ
[
t − t̂ (l)1

]
, · · · , δ

[
t − t̂ (l)n

]]T
.

Given that the variables u(l)
i,m and u(l)

i,s are continuous

functions of time t , the gradient ∂ t̂ (l)i /∂u(l)
i in Eq. (11) is

the read-out of
(
u(l)
i,m [t] /τm − u(l)

i,s [t] /τs
)−1

at t̂i . In this

regard, Eq. (11) can be re-expressed as

∂ t̂ (l)i

∂u(l)
i

[t] = A(l)
i [t] δ

[
t − t̂ (l)i

]
,

A(l)
i [t] =

(
u(l)
i,m [t] /τm − u(l)

i,s [t] /τs
)−1

. (C38)

Therefore, the error e(l) in Eq. (9) is re-expressed as the read-
out of the variable e(l) [t] (calculated at every timestep) upon
spiking:

e(l) =
T∑
t=1

e(l) [t] � s(l) [t] ,

e(l) [t] = ∇
t̂
(l)L � A(l) [t] . (C39)

Theorem 4 The weight update for the folded SNN,

�w(l) = −ηdiag
(
e(l)
)
v(l)

[
t̂
(l)
]
,

is equivalent to the following equation.

�w(l) = −η

T∑
t=1

(
e(l) [t] � s(l) [t]

)
v(l) [t]T ,

v(l)[t] =
[
v

(l)
1 [t], . . . , v(l)

M [t]
]T

. (C40)

Theorem 5 Thebackwardpropagation of errors in aggregate

e(l−1) =
(
w(l)T � v(l)′

[
t̂
(l)
])

e(l) � t̂
(l−1)′

is decomposed into timestep-wise errors ẽ(l−1)[t], each of
which is calculated at every timestep, as follows:

e(l−1) =
T∑
t=1

ẽ(l−1)[t],

ẽ(l−1)[t] =
T∑

t ′=t

(
w(l)T ẽ(l) [t ′]

)
� B(l) [t, t ′]

� A(l−1) [t] � s(l−1) [t] ,

123

Complex & Intelligent Systems

B(l) [t, t ′] = Cτ

[
τ−1
m e−(t ′−t)/τm − τ−1

s e−(t ′−t)/τs
]
1.

The all-one vector is denoted by 1 = [1, . . . , 1]T.

Theorems 4 and 5 are proven in Appendix B. Theorem 4
identifies the backward propagation of errors at timestep t ′
toward timestep t through time. Thus, BPLC+NOSO can
be unfolded on a computational graph as shown in Fig. 2,
allowing the automatic differentiation framework to be used
to learn the weights. Note that we rule out the backward
pass from sav(l) [t + 1] to s(l) [t] because it can be ignored
if the learning uses spike function gradients (rather than sur-
rogate gradients) and refractory periods. This is proven in
Appendix D.

AppendixDGradient of the spike-availability
function with respect to a spike from the pre-
vious timestep

Spike-function gradients are non-zero onlywhen the neurons
spike unlike surrogate gradients. The same neuron cannot
spike at the consecutive timesteps in a row because of the
refractory period.Consider the computational graph in Fig. 2.
When the i th neuron in the lth layer is quiet at timestep t+1,
the gradient ∂ t̂ (l)i /∂u(l)

i [t + 1] is zero, so that no gradient

flows to s(l)
i [t] regardless of the presence of the backward

pass.When the neuron is active at timestep t+1 (i.e., quiet at
timestep t), the gradient ∂ t̂ (l)i /∂u(l)

i [t + 1] is non-zero. How-
ever, the gradient at timestep t is zero, so that the presence
or absence of the backward pass does not affect any gradient
flow.

Appendix E Hyperparameters

We used the hyperparameters in Table 3. The input scaling
factor is an upper limit of the scaled pixel value of input
image. We initialized the kernels and weight matrices using
the Xavier uniform initialization method given by

W ∼ U

(
−
√

a

nin + nout
,

√
a

nin + nout

)
,

Table 3 Hyperparameters used

Parameter Value
F-MNIST CIFAR-10

Timestep 1 ms 1 ms

Spiking threshold ϑ ±0.15 mV ± 0.15 mV

Optimizer SGD SGD

Input scaling factor 0.3 0.3

Membrane potential time constant τm 160 ms 165 ms

Synaptic current time constant τs 40 ms 50 ms

Epochs 80 120

Batch size 64 32

Initial learning rate 5E-3 1E-2

Plateau learning rate – 5E-2

Learning rate decay 0.1 0.1

Decay interval 50 epochs 100 epochs

Weight decay rate (L2 regularization) 5E-3 1E-3

Timesteps 100 100

Initialization Xavier
uni-
form
[14]

Xavier
uni-
form
[14]

where a is set to 6. The parameters in NOSONet (32C5-
MP2-64C5-MP2-600) on Fashion-MNIST were initialized
using the Xavier uniform method. We also initialized
NOSONet (64C5-128C5-MP2-256C5-MP2-512C5-256C5-
1024-512) on CIFAR-10 using the Xavier uniform method,
but the weight matrices for the fully connected layers were
initialized using a modified Xavier uniform method with
a = 3 rather than 6.

Appendix F Potential distribution over sam-
ples in a batch

Figures 7 and 8 show potential distributions over samples
in a random batch (batch size: 300) for single threshold and
dual threshold cases, respectively. Note that the distributions
exclude zero potential.

123

Complex & Intelligent Systems

Fig. 7 Potential distribution over samples in a random batch (size: 300) for single threshold NOSOs (ϑ = 0.1)

123

Complex & Intelligent Systems

Fig. 8 Potential distribution over samples in a random batch (size: 300) for dual threshold NOSOs (ϑ = ±0.15)

References

1. AmirA,TabaB,BergD, et al (2017)A lowpower, fully event-based
gesture recognition system. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp 7243–7252.
https://doi.org/10.1109/CVPR.2017.781

2. Bellec G, Salaj D, Subramoney A, et al (2018) Long short-term
memory and learning-to-learn in networks of spiking neurons. In:
Advances in Neural Information Processing Systems, vol 31. Cur-
ran Associates, Inc

3. Benjamin BV, Gao P, McQuinn E et al (2014) Neurogrid: a mixed-
analog-digital multichip system for large-scale neural simulations.
Proc IEEE 102(5):699–716. https://doi.org/10.1109/JPROC.2014.
2313565

4. Bi GQ, Poo MM (1998) Synaptic modifications in cultured hip-
pocampal neurons: Dependence on spike timing, synaptic strength,
and postsynaptic cell type. J Neurosci 18(24):10,464–10,472.
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998

5. Bohte SM, Kok JN, La Poutre H (2002) Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing
48(1–4):17–37. https://doi.org/10.1016/S0925-2312(01)00658-0

6. ChengX,HaoY,Xu J, et al (2020) Lisnn: Improving spiking neural
networks with lateral interactions for robust object recognition. In:
IJCAI, pp 1519–1525. https://doi.org/10.24963/ijcai.2020/211

7. Comsa IM, Potempa K, Versari L, et al (2020) Temporal coding in
spiking neural networks with alpha synaptic function. In: ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp 8529–8533, https://doi.org/
10.1109/icassp40776.2020.9053856

8. Davies M, Srinivasa N, Lin TH et al (2018) Loihi: a neuromorphic
manycore processor with on-chip learning. IEEE Micro 38(1):82–
99. https://doi.org/10.1109/MM.2018.112130359

9. Davies M, Wild A, Orchard G et al (2021) Advancing neuro-
morphic computing with loihi: a survey of results and outlook.
Proc IEEE 109(5):911–934. https://doi.org/10.1109/JPROC.2021.
3067593

10. Eshraghian JK, Ward M, Neftci E et al (2021) Training spiking
neural networks using lessons from deep learning. https://doi.org/
10.48550/ARXIV.2109.12894

11. Fang W, Yu Z, Chen Y et al (2021) Incorporating learnable mem-
brane time constant to enhance learning of spiking neural networks.
In: Proceedings of the IEEE/CVF international conference on com-
puter vision, pp 2661–2671. https://doi.org/10.1109/ICCV48922.
2021.00266

12. Frenkel C, Lefebvre M, Legat JD et al (2018) A 0.086-mm 2

1.27-pj/sop 64k-synapse 256-neuron online-learning digital spik-
ing neuromorphic processor in 28-nm cmos. IEEE Trans Biomed
Circ Syst 13(1):145–158. https://doi.org/10.1109/TBCAS.2018.
2880425

13. Gerstner W, Kistler WM (2002) Spiking neuron models: single
neurons, populations, plasticity. CambridgeUniversity Press, Cam-
bridge

14. Glorot X, Bengio Y (2010) Understanding the difficulty of training
deep feedforward neural networks. In: Proceedings of the thirteenth

123

https://doi.org/10.1109/CVPR.2017.781
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.24963/ijcai.2020/211
https://doi.org/10.1109/icassp40776.2020.9053856
https://doi.org/10.1109/icassp40776.2020.9053856
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.48550/ARXIV.2109.12894
https://doi.org/10.48550/ARXIV.2109.12894
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1109/ICCV48922.2021.00266
https://doi.org/10.1109/TBCAS.2018.2880425
https://doi.org/10.1109/TBCAS.2018.2880425

Complex & Intelligent Systems

international conference on artificial intelligence and statistics, pp
249–256

15. Hebb DO (1949) The organization of behavior. Wiley, New York
16. Si I, Saiin R, Sawada Y et al (2022) Rethinking the role of normal-

ization and residual blocks for spiking neural networks. Sensors
22(8):2876. https://doi.org/10.3390/s22082876

17. Kheradpisheh SR, Masquelier T (2020) Temporal backpropa-
gation for spiking neural networks with one spike per neu-
ron. Int J Neural Syst 30(6):2050,027. https://doi.org/10.1142/
S0129065720500276

18. Kim G, Jeong DS (2021) Cbp: backpropagation with constraint
on weight precision using a pseudo-lagrange multiplier method.
In: Advances in Neural Information Processing Systems, vol 34.
Curran Associates, Inc

19. Kim J, Kim K, Kim JJ (2020a) Unifying activation-and timing-
based learning rules for spiking neural networks. In: Advances in
Neural InformationProcessingSystems, vol 33.CurranAssociates,
Inc

20. Kim J, Kornijcuk V, Ye C et al (2020) Hardware-efficient emula-
tion of leaky integrate-and-firemodel using template-scaling-based
exponential function approximation. IEEE Trans Circ Syst I Regul
Pap 68(1):350–362. https://doi.org/10.1109/TCSI.2020.3027583

21. Kornijcuk V, KimD, KimG et al (2020) Simplified calcium signal-
ing cascade for synaptic plasticity. Neural Netw 123:38–51. https://
doi.org/10.1016/j.neunet.2019.11.022

22. KrizhevskyA (2009) Learningmultiple layers of features from tiny
images https://www.cs.toronto.edu/~kriz/learning-features-2009-
TR.pdf

23. Lee C, Sarwar SS, Panda P et al (2020) Enabling spike-based back-
propagation for training deep neural network architectures. Front
Neurosci 14:119. https://doi.org/10.3389/fnins.2020.00119

24. Li H, Liu H, Ji X et al (2017) Cifar10-dvs: an event-stream dataset
for object classification. Front Neurosci 11:309. https://doi.org/10.
3389/fnins.2017.00309

25. MirsadeghiM, ShalchianM, Kheradpisheh SR, et al (2021a) Spike
time displacement based error backpropagation in convolutional
spiking neural networks. arXiv preprint . https://doi.org/10.48550/
arXiv.2108.13621

26. Mirsadeghi M, Shalchian M, Kheradpisheh SR et al (2021)
Stidi-bp: spike time displacement based error backpropagation
in multilayer spiking neural networks. Neurocomputing 427:131–
140. https://doi.org/10.1016/j.neucom.2020.11.052

27. Moradi S, Qiao N, Stefanini F et al (2018) A scalable mul-
ticore architecture with heterogeneous memory structures for
dynamic neuromorphic asynchronous processors (dynaps). IEEE
Trans Biomed Circuits Syst 12(1):106–122. https://doi.org/10.
1109/TBCAS.2017.2759700

28. Neckar A, Fok S, Benjamin BV et al (2019) Braindrop: a mixed-
signal neuromorphic architecture with a dynamical systems-based
programming model. Proc IEEE 107(1):144–164. https://doi.org/
10.1109/JPROC.2018.2881432

29. Neftci EO, Mostafa H, Zenke F (2019) Surrogate gradient learning
in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal ProcessMag
36(6):51–63. https://doi.org/10.1109/MSP.2019.2931595

30. Park S, Kim S, Na B et al (2020) T2fsnn: Deep spiking neural
networkswith time-to-first-spike coding. In: 2020 57thACM/IEEE
Design Automation Conference (DAC), pp 1–6. https://doi.org/10.
1109/DAC18072.2020.9218689

31. Paszke A, Gross S, Massa F et al (2019) Pytorch: An imperative
style, high-performance deep learning library. In: Advances in neu-
ral information processing systems, vol 32. Curran Associates, Inc

32. Pfeiffer M, Pfeil T (2018) Deep learning with spiking neurons:
opportunities and challenges. Front Neurosci 12:774. https://doi.
org/10.3389/fnins.2018.00774

33. Russakovsky O, Deng J, Su H et al (2015) Imagenet large scale
visual recognition challenge. Int J Comput Vision 115(3):211–252.
https://doi.org/10.1007/s11263-015-0816-y

34. Shrestha SB, Orchard G (2018) Slayer: Spike layer error reas-
signment in time. In: Advances in Neural Information Processing
Systems, vol 31. Curran Associates, Inc

35. Stein RB (1965) A theoretical analysis of neuronal vari-
ability. Biophys J 5(2):173–194. https://doi.org/10.1016/S0006-
3495(65)86709-1

36. Sun C, Chen Q, Fu Y, et al (2022) Deep spiking neural network
with ternary spikes. In: 2022 IEEE Biomedical Circuits and Sys-
tems Conference (BioCAS), pp 251–254. https://doi.org/10.1109/
BioCAS54905.2022.9948581

37. Tan PY,WuCW, Lu JM (2021) An improved stbp for training high-
accuracy and low-spike-count spiking neural networks. In: 2021
Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp 575–580. https://doi.org/10.23919/DATE51398.2021.
9474151

38. Wu Y, Deng L, Li G et al (2018) Spatio-temporal backpropaga-
tion for training high-performance spiking neural networks. Front
Neurosci 12:331. https://doi.org/10.3389/fnins.2018.00331

39. Wu Y, Deng L, Li G, et al (2019) Direct training for spiking neural
networks: Faster, larger, better. In: Proceedings of the AAAI con-
ference on artificial intelligence, pp 1311–1318. https://doi.org/10.
1609/aaai.v33i01.33011311

40. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image
dataset for benchmarkingmachine learning algorithms. https://doi.
org/10.48550/arXiv.1708.07747

41. Yang G (2022) Asymptotic tracking with novel integral robust
schemes for mismatched uncertain nonlinear systems. Int J Robust
Nonlinear Control. https://doi.org/10.1002/rnc.6499

42. Yang G, Yao J (2022) Multilayer neuroadaptive force control of
electro-hydraulic load simulators with uncertainty rejection. Appl
Soft Comput 130(109):672. https://doi.org/10.1016/j.asoc.2022.
109672

43. Yang G, Yao J, Dong Z (2022) Neuroadaptive learning algorithm
for constrained nonlinear systems with disturbance rejection. Int
J Robust Nonlinear Control 32(10):6127–6147. https://doi.org/10.
1002/rnc.6143

44. Zenke F, Ganguli S (2018) Superspike: Supervised learning inmul-
tilayer spiking neural networks. Neural Comput 30(6):1514–1541.
https://doi.org/10.1162/neco_a_01086

45. Zhang L, Zhou S, Zhi T et al (2019) Tdsnn: from deep neural
networks to deep spike neural networkswith temporal-coding. Proc
AAAI Conf Artif Intell 33(1):1319–1326. https://doi.org/10.1609/
aaai.v33i01.33011319

46. Zhang M, Wang J, Wu J et al (2021) Rectified linear postsynap-
tic potential function for backpropagation in deep spiking neural
networks. IEEE Trans Neural Netw Learn Syst 33(5):1947–1958.
https://doi.org/10.1109/TNNLS.2021.3110991

47. Zhang W, Li P (2019) Spike-train level backpropagation for train-
ing deep recurrent spiking neural networks. In: Advances in Neural
Information Processing Systems, vol 32. Curran Associates, Inc

48. Zhang W, Li P (2020) Temporal spike sequence learning via back-
propagation for deep spiking neural networks. In: Advances in
Neural InformationProcessingSystems, vol 33.CurranAssociates,
Inc

49. Zhao D, Zeng Y, Li Y (2022) Backeisnn: a deep spiking neural
network with adaptive self-feedback and balanced excitatory-
inhibitory neurons. Neural Netw 154:68–77. https://doi.org/10.
1016/j.neunet.2022.06.036

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.3390/s22082876
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1109/TCSI.2020.3027583
https://doi.org/10.1016/j.neunet.2019.11.022
https://doi.org/10.1016/j.neunet.2019.11.022
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.3389/fnins.2017.00309
https://doi.org/10.48550/arXiv.2108.13621
https://doi.org/10.48550/arXiv.2108.13621
https://doi.org/10.1016/j.neucom.2020.11.052
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/TBCAS.2017.2759700
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/JPROC.2018.2881432
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.1109/DAC18072.2020.9218689
https://doi.org/10.1109/DAC18072.2020.9218689
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/S0006-3495(65)86709-1
https://doi.org/10.1016/S0006-3495(65)86709-1
https://doi.org/10.1109/BioCAS54905.2022.9948581
https://doi.org/10.1109/BioCAS54905.2022.9948581
https://doi.org/10.23919/DATE51398.2021.9474151
https://doi.org/10.23919/DATE51398.2021.9474151
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.1609/aaai.v33i01.33011311
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1002/rnc.6499
https://doi.org/10.1016/j.asoc.2022.109672
https://doi.org/10.1016/j.asoc.2022.109672
https://doi.org/10.1002/rnc.6143
https://doi.org/10.1002/rnc.6143
https://doi.org/10.1162/neco_a_01086
https://doi.org/10.1609/aaai.v33i01.33011319
https://doi.org/10.1609/aaai.v33i01.33011319
https://doi.org/10.1109/TNNLS.2021.3110991
https://doi.org/10.1016/j.neunet.2022.06.036
https://doi.org/10.1016/j.neunet.2022.06.036

	BPLC + NOSO: backpropagation of errors based on latency code with neurons that only spike once at most
	Abstract
	Introduction
	Related work
	Preliminaries
	Latency code
	Minimum-latency pooling
	NOSO with dual threshold for spiking

	BPLC with spike response model
	Spike response model mapped onto computational graphs
	Backward pass and gradients

	Experiments
	Classification accuracy and the number of spikes for inference
	Minimum-latency pooling versus MaxPool
	Effect of symmetric dual threshold on potential distribution

	Discussion
	Conclusion and outlook
	Appendix A Derivation of backward propagation of errors
	Appendix B Proofs of Theorems
	Appendix C Proof of equivalence between folded and unfolded NOSONets
	Appendix D Gradient of the spike-availability function with respect to a spike from the previous timestep
	Appendix E Hyperparameters
	Appendix F Potential distribution over samples in a batch
	References

