
Vol.:(0123456789)1 3

International Journal of Computational Intelligence Systems (2023) 16:17
https://doi.org/10.1007/s44196-023-00202-z

RESEARCH ARTICLE

Compression of Deep‑Learning Models Through Global Weight
Pruning Using Alternating Direction Method of Multipliers

Kichun Lee1 · Sunghun Hwangbo1 · Dongwook Yang1 · Geonseok Lee1

Received: 24 October 2022 / Accepted: 12 February 2023
© The Author(s) 2023

Abstract
Deep learning has shown excellent performance in numerous machine-learning tasks, but one practical obstacle in deep
learning is that the amount of computation and required memory is huge. Model compression, especially in deep learning,
is very useful because it saves memory and reduces storage size while maintaining model performance. Model compression
in a layered network structure aims to reduce the number of edges by pruning weights that are deemed unnecessary during
the calculation. However, existing weight pruning methods perform a layer-by-layer reduction, which requires a predefined
removal-ratio constraint for each layer. Layer-by-layer removal ratios must be structurally specified depending on the task,
causing a sharp increase in the training time due to a large number of tuning parameters. Thus, such a layer-by-layer strategy
is hardly feasible for deep layered models. Our proposed method aims to perform weight pruning in a deep layered network,
while producing similar performance, by setting a global removal ratio for the entire model without prior knowledge of the
structural characteristics. Our experiments with the proposed method show reliable and high-quality performance, obviat-
ing layer-by-layer removal ratios. Furthermore, experiments with increasing layers yield a pattern in the pruned weights
that could provide an insight into the layers’ structural importance. The experiment with the LeNet-5 model using MNIST
data results in a higher compression ratio of 98.8% for the proposed method, outperforming existing pruning algorithms.
In the Resnet-56 experiment, the performance change according to removal ratios of 10–90% is investigated, and a higher
removal ratio is achieved compared to other tested models. We also demonstrate the effectiveness of the proposed method
with YOLOv4, a real-life object-detection model requiring substantial computation.

Keywords Network compression · Weight pruning · Non-convex optimization · Parallel computing

Abbreviations
DL Deep learning
DNN Deep neural network
CNN Convolutional neural network
ADMM Alternating direction method of multipliers

RPP Relaxant probabilistic projection
LGD L0-norm constrained gradient descent

1 Introduction

As data accumulation and storage become easier and more
processing methods are developed, studies related to deep
learning that require a significant amount of computational
power are being actively conducted. Deep learning mod-
els are used in various fields, such as for visual processing
technology that generates useful information by analyzing
images, natural language processing technology that under-
stands and analyzes human language, and speech process-
ing technology that synthesizes or converts human speech.
Deep learning outperforms many existing techniques and
continues to be developed. The superior performance of
deep-learning models is possible because data-processing
speeds driven by GPUs have advanced rapidly. However,

Kichun Lee and Sunghun Hwangbo contributed equally to this
work.

 * Geonseok Lee
 lgs5228@hanyang.ac.kr

 Kichun Lee
 skylee@hanyang.ac.kr

 Sunghun Hwangbo
 thehb01@gmail.com

 Dongwook Yang
 dongwook412@naver.com

1 Department of Industrial Engineering, Hanyang University,
Seongdong-gu, Seoul, South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s44196-023-00202-z&domain=pdf
http://orcid.org/0000-0002-3962-3067

 International Journal of Computational Intelligence Systems (2023) 16:17

1 3

 17 Page 2 of 13

achieving high-quality performance of deep learning leads
to an inherent problem where the number of weights of the
model (i.e., the model size) increases. Because of this prob-
lem, the required memory increases with the model size,
and the training time becomes longer. In addition, it may be
difficult to deploy and apply a trained model on a real-time
basis because the speed deteriorates as the amount of calcu-
lations increase. For example, the YOLOv4 model, which is
known to be the fastest among object-detection techniques,
achieved about 65 FPS (frame per second) in MS COCO
data; however, this was only possible when using an expen-
sive GPU (Tesla V100).

Many approaches have been proposed to select an optimal
or sub-optimal ensemble of traditional ML classifiers [1–4].
Recently, due to the inherent model-size issues in deep
learning, network compression techniques have emerged as
a new and challenging area to alleviate the problem of rap-
idly increasing memory and computational requirements.
In particular, deploying deep neural networks (DNNs) to
devices requiring real-time processing is a very promising
research subject. Model compression aims to save memory,
reduce the storage size of the model, and reduce computa-
tional requirements while taking full advantage of pretrained
models. In the past few years, various model compression
techniques have been in development, taking into account
the tradeoff between the degree of compression and the
accuracy.

According to [5], research into model compression in
DNNs can be classified into four major categories: com-
pact-model methods, tensor decomposition, data quantiza-
tion, and network sparsification. A compact-model technique
aims to create a smaller model itself that achieves acceptable
performance among several candidates. Different from com-
pact-model methods, the three other categories compress a
DNN model by modifying the existing model in training
sessions rather than creating a new model. Tensor decompo-
sition decomposes an existing matrix (or tensor in general)
into a matrix with smaller dimensionality. Data quantization
is a method of compressing a DNN model by reducing the
bit-width of data. Lastly, network sparsification simplifies
the computational graph used for training a DNN model.
Each of these four categories can be combined for better
performance. Sharing a similar spirit to accomplish DNN
model compression, each category has different characteris-
tics in terms of the accuracy preservation degree, compres-
sion degree, structural information, and utilization method.

In particular, weight pruning in network sparsification
aims to obtain sparse weights by removing edges from a
deep-learning network graph. A prior work [6] solves a non-
convex minimization problem using the alternating direction
method of multipliers (ADMM) to maintain performance
while sparsing weights based on existing CNN models, effec-
tively pruning the weight of the model. This method has some

advantages over other methods; for example, it has a higher
compression ratio and can quickly reach a convergence rate
by setting removal ratios. However, since model compression
is generally used for large models, the method is practically
limited in that it has to set removal ratios for each layer to [6]
perform layer-wise pruning. For example, YOLOv4 has about
100 convolution layers, and it takes a substantial amount of
time to experiment with the removal ratio of each layer. Obvi-
ously, the situation worsens for larger models because various
hyperparameters (optimizer, learning rate, epoch, etc.) are used
to find the optimal model and several tuning hyperparameters
are used to prune weights by ADMM.

Our research aims to solve the above mentioned problems.
Specifically, our approach formulates an optimization problem
by applying ADMM to the entire layer instead of using layer-
by-layer pruning. When structurally pruning a large network
model with layer-by-layer and filter-by-filter pruning ratios,
for example, it is difficult to find optimal parameters through a
relatively small number of experiments. In fact, this issue often
becomes a reality because a great number of experiments need
to be conducted to find appropriate removal ratios when apply-
ing this technique to a large-size, real-life DNN model. Our
method is able to easily grasp trends in the pruning degrees
for the layers in a DNN model (e.g., different pruning ratios
for the layers close to the input, those close to the output, and
those for the intermediate layers). As a result, the application
of our method can provide a base policy for pruning ratios in
the layers of a DNN model. According to the findings in [6],
the layers in charge of feature extraction, which are usually
located near the input in tasks dealing with images, must be
pruned at a small removal ratio. Our method prunes a DNN
model without structural removal ratios, and our experiments
show that it effectively prunes a deep layered model with a
global removal ratio.

The structure of this paper is as follows. In Sect. 2, we
briefly provide related studies on weight pruning and prelim-
inaries of ADMM. Section 3 contains a detailed description
of our proposed model. Section 4 compares the proposed
model with a few selected pruning models through experi-
ments, showing that the proposed model has a higher com-
pression ratio. This section also shows the proposed weight
pruning technique applied to YOLOv4, demonstrating the
model’s effectiveness for a large and practical model. Sec-
tion 5 concludes the paper by suggesting future research
directions.

2 Background

2.1 Related Works

Among the categories of neural network model compression,
network sparsification reduces the number of computations

International Journal of Computational Intelligence Systems (2023) 16:17

1 3

Page 3 of 13 17

required and the size of the model by pruning unnecessary
information. Pruning can be divided into weight pruning and
neuron pruning. Weight pruning is a method of reducing the
number of edges in a computational graph (to prune rela-
tively insignificant or redundant weights), and neuron prun-
ing is a method of reducing the number of nodes (to prune
unnecessary nodes). In addition, pruning methods also can
be divided in various ways according to the sparse structure:
element-wise, vector-wise, and block-wise [7]. An element-
wise method, also called unstructured pruning, evaluates the
contribution of each weight element to the entire network.
Removing insignificant connections without assumptions on
the network structures, this method achieves gains in both
the model flexibility and the predictive power. On the other
hand, vector-wise and block-wise methods reveal compact
network structures effectively by eliminating parameter
groups instead of individual weights. Vector-wise meth-
ods [8, 9] estimate the importance of column vectors in the
weight matrix and then prune a fixed set of groups by their
priority. Similarly, block-wise methods [10, 11] divide the
weight matrix into subblocks and consider each of the sub-
blocks as a basic pruning unit. Unfortunately, these struc-
tured sparsity methods often fail to escalate the model accu-
racy due to the excessive loss of information. Our proposed
model corresponds to ADMM-based weight pruning with
an element-wise sparse method.

Most of the element-wise pruning methods in network
sparsification are performed based on heuristic search. A
heuristic-based method does not guarantee that it can effec-
tively maintain the performance, so large performance
decreases may occur. Therefore, in recent years, studies that
perform pruning through optimization rather than heuristic
methods have been preferred. Optimization-based meth-
ods can find less important or redundant information more
effectively than heuristic-based methods, and they can also
obtain higher performance. The proposed method adopts an
optimization-based method to perform pruning while main-
taining the existing performance.

Indeed, weight pruning was inspired by [12] and has been
studied extensively. This work uses a method called optimal
brain damage (OBD), which reduces the size of the model
by removing information with small saliency of the second
derivative of the objective function related to the weight.
The optimal brain surgeon (OBS) method [13] incorporated
weight pruning, which was a new technology that comple-
mented the disadvantages of [12]. Since these two studies,
weight pruning using various other methods has also been
proposed. The study in [14] prunes the weights through
the sensitivity of each layer based on the genetic algo-
rithm, and then performs fine tuning on the pruned model
based on the knowledge distillation framework. Another
study [15] attempts effective weight pruning by solving the
L0-norm constrained optimization problem through relaxant

probabilistic projection (RPP) and L0-norm constrained gra-
dient descent (LGD).

The algorithm proposed in this paper performs weight
pruning based on optimization in an element-wise sparse
structure that eliminates structural settings. Accordingly,
we compare our method with other weight pruning meth-
ods performed on an element-wise structure in this experi-
ment. Deep compression [16] attempts model compression
using three stage pipelines consisting of pruning, trained
quantization, and Huffman coding. In the weight pruning
step, small weights are heuristically pruned and retrained,
and model capacity is reduced by 9 to 13 times. Netpruning
[17] eliminates redundant connections through three steps.
The first step is to train the importance of connections. The
second step removes unnecessary connections, and the third
step finally retrains the network. Synthesizing DNN in the
seed architecture, NeST [18] removes connections that are
considered unnecessary through magnitude values to avoid
duplication. To verify the effectiveness of the proposed
global pruning, we further compare it with other structured
pruning methods. Filter pruning proposed by Li et al. [19]
removed filters with low weight magnitudes to reduce the
redundancy in CNNs. NISP [20] measured the importance
of filters based on their corresponding reconstruction errors
in the next layer. HRank [21] mathematically proved that
filters with lower ranks are less important to accuracy. CNN-
FCF [22] presented an effective CNN compression approach
which performs filter selection and filter learning jointly in
a unified optimization scheme. DCP [23] proposed an itera-
tive greedy algorithm to solve the channel selection prob-
lem considering both reconstruction error and discriminative
power.

ADMM [24], an effective method for solving optimization
problems, is widely used because of its parallel computing
abilities. ADMM, which shows good performance, is often
adopted for composite optimization problems, while gradi-
ent descent methods are mainly used for simple optimization
problems. Noticeably, the optimization problem of the weight
pruning method used in this study cannot be solved by gradient
descent because differentiation is impossible and non-convex
functions are included. Therefore, when using ADMM, we
divided the original problem into two sub-optimization prob-
lems: one can be solved with gradient descent, and the other
can be solved analytically. The study in [6] performs ADMM
by constructing an optimization problem for each layer in
weight pruning. Specifically, this method adds a cardinality
function to the constraint of the optimization problem, and
then performs pruning by setting a removal ratio for each
layer. StructADMM [25] prunes weights for various struc-
ture types, such as filter-wise, shape-wise, and channel-wise
sparsity, and similarly constructs an optimization problem and
solves it through ADMM. We configure our method similarly
to other ADMM-based methods. However, when comparing

 International Journal of Computational Intelligence Systems (2023) 16:17

1 3

 17 Page 4 of 13

it with other methods while adopting a global removal ratio,
we achieve effective sparsity without loss of performance in
a short time.

2.2 Preliminary: ADMM

ADMM is a popular technique used for solving convex optimi-
zation problems in machine learning and deep leaning, mak-
ing possible a large-scale optimization [26]. Recent works
also demonstrate that under certain conditions, the ADMM is
guaranteed to converge for non-convex problems [27]. Specifi-
cally, the ADMM can separate the variables and decompose
the problem into two subproblems. We notice that the loss
function associated with a constraint in this study includes a
non-convex cardinality function to induce the sparsity of the
weights.

Basically, the loss function of DNN consists of a basic loss
f0(x) and a regularizer h(x). ADMM separates the variable, x,
in problem (1) and transforms it into problem (2). After that,
we induce the augmented Lagrangian in (3):

In (3), we update the primal variables x and z and the
Lagrangian multiplier � while performing ADMM iterations,
as shown in (4), (5), and (6):

(1)min
x

f0(x) + h(x),

(2)min
x,z

f0(x) + h(x) s.t. x − z = 0,

(3)L�(x, z, �) = f0(x) + h(z) +
�

2
‖x − z‖2

2
+ �

T (x − z).

(4)x(k+1) = argmin
x

L�(x, z
(k), �(k)),

(5)z(k+1) = argmin
z

L�(x
(k+1), z, �(k)),

(6)�
(k+1) = �

(k) + �(x(k+1) − z(k+1)).

If � is transformed into � =
1

�
� , �

2
‖x − z‖2

2
+ �T (x − z) can be

transformed into �
2
‖x − z + �‖2

2
−

�

2
‖�‖2

2
 . As a result, (4),

(5), and (6) can be changed to (7), (8), and (9):

Finally, the optimal x can be obtained by sequentially solv-
ing the Eqs. (7), (8), and (9).

3 Global Weight Pruning

To solve the shortcomings of the technique described in [6],
the proposed algorithm in this paper performs weight prun-
ing with a global removal ratio, denoted by global weight
pruning, rather than layer-wise removal ratios. Although it
prunes a network without structural information, it runs suf-
ficiently fast, even when applied to a large model. In addi-
tion, layers closer to the network input need to be pruned
less than other layers to maintain input diversity and main-
tain performance. Our experiments show that the proposed
model can automatically prune the first layer less.

3.1 Steps of the Proposed Method

The proposed method proceeds in four steps, as shown in
Fig. 1. First, we train a DNN model to find the weight that
increases the model accuracy, similar to the training of a gen-
eral deep-learning model. In the ADMM step, we decompose
the global weight pruning problem into two subproblems and
solve them iteratively, which is the essence of the proposed
method. The resulting solutions force the value of unnecessary
weights to converge towards zero. In the next pruning step, we
keep the weights with the large magnitudes and set the rest to

(7)x(k+1) = argmin
x

f0(x) +
�

2
‖x − z(k) + �

(k)‖2
2
,

(8)z(k+1) = argmin
z

h(z) +
�

2
‖x(k+1) − z + �

(k)‖2
2
,

(9)�
(k+1) = �

(k) + x(k+1) − z(k+1).

Fig. 1 Steps of the proposed method

International Journal of Computational Intelligence Systems (2023) 16:17

1 3

Page 5 of 13 17

zero. Finally, we fine-tune the remaining non-zero weights to
recover the inference accuracy.

3.2 Formulation of the Proposed Model

In this section, we describe the proposed model in detail math-
ematically. The first step involves a general DNN training step,
and we assume that weights, W , of the pretrained model exist.
The pretrained model possibly includes all machine-learning
tasks through (original) loss functions, such as classification,
regression, object detection, and segmentation.

For the second ADMM step, we first set the original loss
function with an additional regularization term and follow the
sequence described in Sect. 2.2:

where W = {W1,… ,Wl} is the set of vectorized multi-
dimensional tensor weights for layer i and Wi corresponds
to the vector Wi ∈ ℝ

di of the di ∈ ℝ dimension. The vec-
torization of tensor weights can be a concatenation of the
row vectors in the weight matrix between two layers, and
the total number of layers is l. The first term can be thought
of as the cross entropy loss in the case of classification, the
mean-squared error in the case of regression, and some spe-
cific loss function adopted by each algorithm. For example,
the loss function of the YOLOv4 object-detection model
is a combination of the coordinates of a bounding box, the
confidence of whether an object is included or not, and the
class information of an object. The second term pertains to
regularization with the Frobenius norm by default. It is eas-
ily differentiable and represents the squared energy.

To perform weight pruning, we introduce the cardinality
function as a constraint in Eq. (10). Here, cardinality means
the number of non-zero elements. To control the number of
pruned weights in the network, we constrain the number of
non-zero elements in the entire network to be less than a global
parameter, n. The formulation is as follows:

where the number of elements that have not been removed
for all layers is n. As a tuning parameter, n is specified in
advance by the user; for small n, the network will be highly
sparse. One needs to set n carefully to avoid either too sparse
or too dense networks in the results. Inherently, the num-
ber of elements that have not been removed for layer i is
ni , which automatically emerges during pruning. Equation
(10) can be easily solved with gradient descent, but the non-
convex cardinality function in Eq. (11) means the gradient

(10)Loss(W) = origin_loss + �

l�

i=1

‖Wi‖22,

(11)

min
W

Loss(W)

s.t. cardinality(W) <

l∑

i

ni = n,

descent technique cannot guarantee the optimal solution.
Thus, we modify the equation to use ADMM, which can
be applied to non-convex optimization problems as follows:

where h(W) is an indicator function for the cardinality con-
straint as follows:

We separate the variable from Eq. (12) and modify it as
shown in Eq. (14):

Next, the augmented Lagrangian of Eq. (14) is written as
follows:

where � is a penalty parameter indicating the step size. The
scaled Lagrangian � =

�

�
 is a variable expressed to simplify

the equation with the original Lagrangian multiplier � .
Finally, the ADMM equation is rewritten and W , Z , and �
are updated for iteration k:

In the above equations, we obtain W through Eq. (16) and
then find Z through Eq. (17). After that, � can be obtained
simply by gradient ascent through Eq. (18).

The first term of Eq. (16) uses the loss function, which
can be differentiated from the pretrained model. The second
term can also be differentiated. In general, it can be solved
easily by gradient descent as in Eq. (19):

Instead of inner iterations generated by gradient descent,
depending on the form of Loss(⋅) , one can obtain a closed
form solution for updating W (k+1)

i
 . Equation (17) cannot be

solved through gradient descent, so we solve it using projec-
tion, similar to the approach used in [6]:

(12)min
W

Loss(W) + h(W),

(13)h(W) =

{
0, cardinality(W) < n

∞, cardinality(W) ≥ n.

(14)
min
W

Loss(W) + h(Z)

s.t. W = Z.

(15)
L�(W,Z) =Loss(W) + h(Z)

+
�
2
‖W − Z + �‖2F −

�
2
‖�‖2F,

(16)W
(k+1) = argmin

W

Loss(W) +
�

2
‖W − Z

(k) + �
(k)‖2

F
,

(17)Z
(k+1) = argmin

Z

h(Z) +
�

2
‖W(k+1) − Z + �

(k)‖2
F
,

(18)�
(k+1) = �

(k) +W
(k+1) − Z

(k+1).

(19)

W
(k+1)

i
= W

(k)

i
− �(

�Loss(W(k))

�W
(k)

i

+ �(W
(k)

i
− Z

(k)

i
+ �

(k)

i
)).

 International Journal of Computational Intelligence Systems (2023) 16:17

1 3

 17 Page 6 of 13

where C = {Z ∣ cardinality(Z) < n} . Notice that C is non-
convex, and the projection operator Proj

C
(⋅) is not unique.

To make the number of non-zero elements in W(k+1) + �
(k)

less than the number specified by the user (n), we shrink
the elements in W(k+1) + �

(k) zero except for the first n − 1
elements in descending order by absolute value. In addi-
tion, we use the initial value W(0) as the trained weight, the
initial value Z(0) as Proj

C
(W(0)) , and �(0) as a matrix with

all zero elements. Being a good optimization technique in
many applications, ADMM might undergo a great number of
iterations to converge to a final solution when handling non-
convex problems. To alleviate the computational burden,
we mask the zero weights, and then retrain the DNN with
the remaining non-zero weights while freezing the masked
ones to 0. Noticeably, the retraining step allows fast conver-
gence to a desired solution from the good initial point with
only a few parameters to be fine-tuned. In this way, we can
restore the accuracy of the pruned network such that it may

(20)

Z
(k+1) = argmin

Z

h(Z) +

l�

i=1

�

2
‖W (k+1)

i
− Zi + �

(k)

i
‖2
2

= argmin
Z∈C

l�

i=1

�

2
‖W (k+1)

i
− Zi + �

(k)

i
‖2
2
,

= Proj
C
(W(k+1) + �

(k))

achieve performance better than or at least comparable with
the pretrained model.

The proposed global weight pruning automatically seeks
a sparse set of weights without specifying layer-by-layer
removal ratio. Algorithm 1 describes the overall process of
our proposed method which consists of four steps: pretrain-
ing, ADMM iterations, pruning, and retraining. Algorithm 1
takes data as the input and then returns the pruned weight.
The initial value settings of W,Z , and � used in the ADMM
step correspond to lines 4–6. The ADMM step correspond-
ing to Eqs. 16, 17, and 18 proceeds in lines 7–13, and a
sparse matrix can be obtained by performing pruning on W
in line 14. After that, it freezes the zero weight and finally
performs retraining to obtain a final model with sparsity
and comparable performance (lines 15–18). Algorithm 2
describes a function that performs projection, setting all ele-
ments equal to zero except for the first n − 1 largest elements.
The Flatten and Reshape functions flatten, or vectorize, the
input X into a 1D sequence and recover the size of flatten_X
back to the original input size, respectively. The Top_n func-
tion takes a vector as an input and returns the n-th value with
a large value, which corresponds to the threshold of line
6. The projection ends with the process of setting weights
smaller than the calculated threshold to zero (lines 7–9).

International Journal of Computational Intelligence Systems (2023) 16:17

1 3

Page 7 of 13 17

4 Experiments

We conducted experiments with neural networks of vari-
ous sizes and three known models: LeNet-5, Resnet-56, and
YOLOv4. In Sect. 4.1, we observe the effect of the previous-
layer weight and the removal ratio for each layer by train-
ing the proposed model by gradually increasing layers. In
Sect. 4.2, we compare our model with existing element-wise
weight pruning models. In Sect. 4.3, we conduct experiments
with various weight pruning models, such as filter-wise and
channel-wise methods. Finally, Sect. 4.4 provides a real-life
application to YOLOv4, which is a large object-detection
model that actually needs weight pruning. The experiments
are run on TensorFlow 2 using one NVIDIA RTX 3090 GPU

and two RTX 6000. For the sake of simplicity, we denote the
proposed pruning methods as global pruning.

Table 1 Removal ratio for each
layer according to the number
of layers

Number of layers

Layer 2 4 6 8 10

CONV1 76.74 85.24 89.06 77.78 82.64
CONV2 94.43 96.00 97.96 98.20 96.25
CONV3 90.59 95.51 98.15 96.58
CONV4 93.27 94.44 97.31 97.75
CONV5 93.20 96.16 98.34
CONV6 91.61 95.78 95.38
CONV7 94.21 93.94
CONV8 91.85 95.97
CONV9 94.31
CONV10 92.48
DENSE 89.69 89.28 88.33 86.95 86.26
Number of weights (all layers) 539,200 612,928 686,656 760,384 834,112
Number of weights (after pruning) 53,920 61,293 68,666 76,039 83,412
Accuracy (base, %) 98.76 99.05 99.12 99.09 99.21
Accuracy (pruned, %) 98.71 98.80 99.19 98.99 99.03

Table 2 Removal ratio comparisons using different weight pruning
models on LeNet-5

Model Top-1 accu-
racy (base)
(%)

Top-1 accuracy
(pruned) (%)

Removal
ratio (%)

Deep compression [16] 99.2 99.26 92.0
Netpruning [17] 99.2 99.23 91.7
NeST [18] 99.2 99.23 98.65
ADMM pruning [6] 99.2 99.2 98.6
Global pruning 99.43 99.54 98.8

 International Journal of Computational Intelligence Systems (2023) 16:17

1 3

 17 Page 8 of 13

4.1 Convolution Neural Networks with Various
Layers

In this experiment, we construct convolution neural network
models by increasing the number of layers from two to ten to
see if layers close to the input are relatively important among
all the layers of the model. The experiment is conducted

on MNIST data. We also investigate whether the removal
ratios and performance of pruned models evolve according
to the number of layers. Each layer, except the final fully
connected (dense) layer, consists of a convolutional layer
with filter configuration (3, 3, 64) and batch normalization.
We increased the number of layers accordingly, applying
weight pruning to examine the evolution of weight removal
ratios for the layers. For simplicity, we denote the models
as cnn-model k, where k is the total number of layers. In
Table 1, we observe a pattern where the weights of the lay-
ers close to the input are not removed as much compared to
those of the other layers. Specifically, the removal ratios of
the first convolutional layer (CONV1) change from 76.74%
for CNN-model 2 to 89.06% for CNN-model 6. For the fol-
lowing convolutional layers (CONV2 to CONV10), the min-
imum (90.59%) and the maximum (98.34%) removal ratios
are greater than all of the removal ratios of the first convo-
lutional layer (CONV1). In addition, the removal ratios for
the dense layers range from 86.25% to 89.69%, which are not

Table 3 Weight pruning results on LeNet-5

Layer Number of
weights (base)

Number of weights
(after pruning)

Removal ratio

CONV1 500 255 49.0%
CONV2 25,000 1,723 93.1%
DENSE 1 400,000 2,738 99.3%
DENSE 2 5,000 450 91.0%
Total 430,500 5,166 98.8%

Fig. 2 Weight distributions on LeNet-5

International Journal of Computational Intelligence Systems (2023) 16:17

1 3

Page 9 of 13 17

much different from those of CNN-model 2 to CNN-model
10. We also notice that the accuracy of the pruned model is
comparable with that of the original model.

4.2 LeNet‑5

LeNet-5 is an image classification model that uses 28 by 28
images as an input, and it has a structure consisting of two
convolutional layers and two dense layers. The experiment
is conducted on MNIST data.

Before weight pruning, when the comparison models use
LeNet-5, they all show the same performance. The experi-
ment revealed the optimal parameters of the proposed model
to be � = 0.01 and � = 0.004 . Table 2 compares the proposed
model (global pruning) with element-wise weight pruning
models, showing not only that the highest removal ratio
is achieved by the proposed model but also that the high-
est accuracy, being greater than that of the initial model,
is obtained by our model. We performed the proposed
global pruning on the pretrained baseline model, producing
99.43% Top-1 accuracy, which is slightly higher than that
of previous works [6, 16–18]. It is known that CNNs pro-
vide impressive performance on many visual tasks, yet their
architectures are usually over-parameterized. Therefore, we
aim to compress the pretrained models while preserving the
discriminative ability.

In addition, Table 3 shows the removal ratio of each
layer for the optimal model. In the convolutional layer
responsible for feature extraction, it is interesting to

observe that the layer close to the input has a low removal
ratio, indicating the input variables initially possess valu-
able information. This result is consistent with findings of
the previous experiment, where the layers are gradually
added.

After convergence, we visualize the weight distribution
for each layer to confirm the change in the weight distribu-
tion for LeNet-5. In Fig. 2, the left column shows the dis-
tribution from the initial model, the middle column shows
that from the model of the ADMM steps, and the right
column shows that from the model of the retraining steps.
Since 98.8% of the weights are removed, it is clear that
a large number of weights are close to zero in the model
of the ADMM steps. The retraining steps further shrink
the weights to zero. Given the highly compressed model,
it is worthwhile mentioning that the accuracy of the final
pruned model exceeds that of the initial model. This shows
the ability of the proposed model to effectively compress
deep layered networks without sacrificing performance.

4.3 ResNet‑56

In this experiment, we apply weight pruning to ResNet-56
[28] using the CIFAR-10 dataset consisting of 10 classes and
32 by 32 images. ResNet, based on VGGNet [29] stacking
of 3 by 3 convolutional layers, uses a residual block to solve
the problem of improper training when the number of lay-
ers of the model increases. The ResNet model used in the
experiment consists of a total of 56 layers, the number of
parameters is 0.85 M, and the accuracy is 93.07%.

For the ResNet-56 model, we compared the experimental
results of our weight pruning with existing filter or channel
pruning methods [19–23]. Table 4 reports the accuracy and
removal ratio of different models before and after pruning.
Each model shows the accuracy of the base model and the
accuracy after pruning, and NISP [20] shows the difference
in accuracy between the pruned model and the base model.
We conducted an experiment to remove 10% to 90% of the
total weight for the Resnet-56 model. After weight prun-
ing, 10% to 40% removal ratio further increased accuracy.
From 50% to 90%, the accuracy decreased by 0.09%, 0.34%,
0.43%, 1.11%, and 2.29%, respectively, in comparison with
that of the base ResNet-56 model.

All weight pruning models achieved a removal ratio of
less than 50% while maintaining accuracy performance.
The results show that our proposed model maintains the
accuracy performance sufficiently, even at a removal ratio
of 50%. For example, when the removal ratio of HRank is
68.10%, the accuracy is 90.72%. In this case, the perfor-
mance preservation is 97.2% (90.72/93.26). In contrast, the
proposed method produces a performance preservation of
99.5% (92.64/93.07) when the removal ratio is 70%, which

Table 4 Removal ratio comparisons using different weight pruning
models on ResNet-56

Model Top-1 accuracy
(base) (%)

Top-1 accuracy
(pruned) (%)

Removal
ratio (%)

Filter pruning [19] 93.04 93.10 9.40
93.06 13.70

NISP [20] 93.04 93.01 43.61
HRank [21] 93.26 93.17 42.40

90.72 68.10
CNN-FCF [22] 93.14 93.38 43.09

91.92 69.74
DCP [23] 93.80 93.49 49.24
Global pruning 93.07 93.14 10

93.17 20
93.17 30
93.11 40
92.98 50
92.73 60
92.64 70
91.96 80
90.78 90

 International Journal of Computational Intelligence Systems (2023) 16:17

1 3

 17 Page 10 of 13

surpasses HRank. When comparing it with CNN-FCF, simi-
lar results are observed; global pruning achieves better per-
formance preservation, even when the removal ratio is larger.

In addition, Fig. 3 shows the weight removal ratio for
each layer for the Resnet-56 model when the removal ratio
is set to 50%. As in the previous experiment, the removal

ratio of the frontmost layer is the lowest at 11.57%. In addi-
tion, the removal ratio tends to increase as it approaches the
last layer.

Fig. 3 Weight distributions on
LeNet-5

Fig. 4 Application workflow

International Journal of Computational Intelligence Systems (2023) 16:17

1 3

Page 11 of 13 17

4.4 Real‑Life Application

Among deep learning tasks with images and video frames,
object detection and object tracking are very popular.
Research in these areas is being actively conducted. To
show the practicality of this study, we apply weight prun-
ing to YOLOv4 [30], using the COCO dataset and combin-
ing Deepsort [31], which is an object tracking model. In
short, YOLO is a popular object-detection algorithm, pos-
sessing similar performance to Fast R-CNN [32], which has
shown high performance in the object-detection field. It has
recently achieved tremendous speed improvement. While
Fast R-CNN has a speed performance of 0.5 FPS, YOLO has
a speed performance of 45 FPS, enabling real-time object
detection. YOLO is constantly evolving. The fourth version,
YOLOv4, uses a variety of the latest deep learning tech-
niques to improve performance.

The aim is to compress video by removing unnecessary
(i.e., no movement) states from CCTV video data utilizing
YOLOv4 and Deepsort. To determine the unnecessary state
of a certain object, the object tracking model (Deepsort)
uses object information detected by YOLOv4. Afterwards,
it goes through video compression by removing the state of
no movement from the identified movement information.
The entire workflow is depicted in Fig. 4.

As mentioned, YOLO is faster than other object-detection
models, making real-time object detection possible. How-
ever, when used on a device with low computing power, such
as a mobile device, real-time detection is hardly possible due
to the large amount of computation required. In the case of
YOLOv4, approximately 100 convolution layers exist, and
many experiments are needed to structurally set the layer-
by-layer removal ratios. Therefore, when using such a large
model for an object-detection task, it is appropriate to apply
our model.

Fig. 5 Weight distributions on YOLOv4 are shown. The first column
indicates the distribution of the 10th layer located in the beginning
part, the second column is the distribution of the 50th layer located in

the middle part, and the third column is the distribution of the 100th
layer located in the last part

 International Journal of Computational Intelligence Systems (2023) 16:17

1 3

 17 Page 12 of 13

The experimental results are as follows. We find that
a removal ratio of 20%, as a result of weight pruning on
YOLOv4, keep the mAP (mean average precision) of
the base model similar. mAP is measurement of object-
detection performance, and it describes the average of
the area below the graph plotted through precision and
recall for each class. Figure 5 shows the weight distribu-
tion of the representative layers located at the beginning
(conv2d_10), middle (conv2d_50), and end (conv2d_100).
The first row shows the weight distribution from the base
YOLOv4, and the second row shows that from the pruned
model. In the conv2d_10 layer, 164 of 8192 weights,
which is 2%, become zero. In the conv2d_50 layer, 55493
of 589824 weights, which is 9.4%, become zero. In the
conv2d_100 layer, 239034 of 1179648 weights, which is
20.2%, become zero. Therefore, the conv2d_10 layer has
a small ratio of zeros, while the remaining layers have a
larger ratio of weights to zero.

5 Conclusions

In this study, we propose an ADMM-based element-wise
weight pruning method that sets only the removal ratio of
the entire layer during the training process. Weight prun-
ing using traditional ADMM-based optimization methods
requires structurally setting a large number of removal ratios,
such as by using a layer-wise, filter-wise, or channel-wise
method. Therefore, in large models that actually require
weight pruning, it is difficult to find the optimal removal
ratio and the training times can be very large. We prune the
weights simply by using one removal ratio, making only a
small variation to the existing ADMM model. This achieves
similar performance to ADMM-based models but with less
training time.

In the model with convolution neural networks with
various layers, we show that the layer closest to the input
achieves a smaller removal ratio. This means that if we
remove many of those layers, we will lose important infor-
mation. The LeNet-5 experiment achieves higher removal
ratios than element-wise based methods. In the Resnet-56
experiment, which is compared with various weight pruning
methods (e.g., filter and channel-wise methods), a removal
ratio of 50% is achieved. The higher the removal ratio, the
lower the accuracy, which can be selected at the user’s dis-
cretion. In addition, the proposed model is also applied to
a project that used YOLOv4, which is a very large model.
This shows that our proposed technique can be applied to a
large model to provide sufficient weight pruning. However,
as a limitation, the ADMM optimization method does not
guarantee optimum in non-convex problems. However, we
note that this limitation is universal for objective functions
in deep learning. In addition, though we attempted to verify

the improved speed through our model compression, admit-
tedly we were unable to observe speed improvement it due
to the limitations of software and hardware. In the future,
we envision verifying it when a comparison experiment on
speed is possible with software support.

In future research, it is necessary to develop a model
that can achieve a higher compression ratio while reducing
the number of experiments by changing the � value, which
is a very sensitive parameter in our model, to learnable
parameter.

Author Contributions KL designed and supervised the research. SH
performed experiments and wrote the manuscript. DY helped in per-
forming experiments and writing the manuscript. GL reviewed and
edited the manuscript.

Funding This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government(*MSIT)
(No.2018R1A5A7059549), *Ministry of Science and ICT. This work
was also supported by “Human Resources Program in Energy Tech-
nology” of the Korea Institute of Energy Technology Evaluation and
Planning (KETEP), granted financial resource from the Ministry of
Trade, Industry & Energy, Republic of Korea. (No. 20204010600090).

Availability of Data and Materials The datasets are available in the web.
Descriptions are in the text.

Declarations

Conflict of Interest All the authors declare that there is no conflict of
interest.

Ethics Approval and Consent to Participate All the authors agreed with
the content of this paper.

Consent for Publication All the authors reviewed the final manuscript
and approved it for publication.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Brzezinski, D., Stefanowski, J.: Reacting to different types of
concept drift: the accuracy updated ensemble algorithm. IEEE
Transac. Neural Netw. Learn. Syst. 25(1), 81–94 (2013)

http://creativecommons.org/licenses/by/4.0/

International Journal of Computational Intelligence Systems (2023) 16:17

1 3

Page 13 of 13 17

 2. Guo, H., Liu, H., Li, R., Changan, W., Guo, Y., Mingliang, X.:
Margin & diversity based ordering ensemble pruning. Neurocom-
puting 275, 237–246 (2018)

 3. Petchrompo, S., Coit, D.W., Brintrup, A., Wannakrairot, A.,
Parlikad, A.K.: A review of Pareto pruning methods for multi-
objective optimization. Computers Ind. Eng. 19, 108022 (2022)

 4. Goel, K., Batra, S.: Two-level pruning based ensemble with
abstained learners for concept drift in data streams. Expert. Syst.
38(3), e12661 (2021)

 5. Deng, L., Li, G., Han, S., Shi, L., Xie, Y.: Model compression
and hardware acceleration for neural networks: a comprehensive
survey. Proc. IEEE 108(4), 485–532 (2020)

 6. Zhang, T., Ye, S., Zhang, K., Tang, J., Wen, W., Fardad, M., Wang,
Y.: A systematic dnn weight pruning framework using alternating
direction method of multipliers. In: Proceedings of the European
conference on computer vision (ECCV), pp. 184–199. Springer
(2018)

 7. Qingbei, G., Xiao-Jun, W., Josef, K., Zhiquan, F.: Weak sub-
network pruning for strong and efficient neural networks. Neural
Netw. 144, 614–626 (2021)

 8. Zhuliang, Y., Shijie, C., Wencong, X., Chen, Z., Lanshun, N.: Bal-
anced sparsity for efficient dnn inference on gpu. In: Proceedings
of the AAAI conference on artificial intelligence. pp. 5676–5683
(2019)

 9. Maohua, Z., Tao, Z., Zhenyu, G., Yuan, X.: Sparse tensor core:
Algorithm and hardware co-design for vector-wise sparse neural
networks on modern gpus. In: Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pp
359–371 (2019)

 10. Ji, Y., Liang, L., Deng, L., Zhang, Y., Zhang, Y., Xie, Y.: Tetris:
tile-matching the tremendous irregular sparsity. In: Advances in
neural information processing systems, p. 31. MIT Press (2018)

 11. Lin, S., Ji, R., Li, Y., Deng, C., Li, X.: Toward compact convnets
via structure-sparsity regularized filter pruning. IEEE Transac.
Neural Netwo. Learning Syst. 31, 574–588 (2019)

 12. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. In:
Advances in neural information processing systems, p. 2. MIT
Press (1989)

 13. Hassibi, B., Stork, D.G.: Second order derivatives for network
pruning: optimal brain surgeon. Morgan Kaufmann, Rome (1993)

 14. Yiming, H., Siyang, S., Jianquan, L., Xingang, W., Qingyi, G.: A
novel channel pruning method for deep neural network compres-
sion. arXiv preprint arXiv: 1805. 11394, (2018)

 15. Liang, L., Deng, L., Zeng, Y., Xing, H., Ji, Y., Ma, X., Li, G.,
Xie, Y.: Crossbar-aware neural network pruning. IEEE Access 6,
58324–58337 (2018)

 16. Song, H., Huizi, M., William J, D.: Deep compression: compress-
ing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv: 1510. 00149, (2015)

 17. Song, H., Jeff, P., John, T., William J, D.: Learning both weights
and connections for efficient neural networks. arXiv preprint
arXiv: 1506. 02626, (2015)

 18. Dai, X., Yin, H., Jha, N.K.: Nest: a neural network synthesis tool
based on a grow-and-prune paradigm. IEEE Transac. Computers
68(10), 1487–1497 (2019)

 19. Hao, L., Asim, K., Igor, D., Hanan, S., Hans Peter G.: Pruning
filters for efficient convnets. arXiv preprint arXiv: 1608. 08710,
(2016)

 20. Yu, R., Li, A., Chen, C.-F., Lai, J.-H., Morariu, V.I., Han, X.,
Gao, M., Lin, C.-Y., Davis, L.S.: Nisp: pruning networks using
neuron importance score propagation. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp.
9194–9203. IEEE (2018)

 21. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.:
Hrank: filter pruning using high-rank feature map. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1529–1538. IEEE (2020)

 22. Li, T., Wu, B., Yang, Y., Fan, Y., Zhang, Y., Liu, W.: Compressing
convolutional neural networks via factorized convolutional filters.
In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 3977–3986. IEEE (2019)

 23. Zhuangwei, Z., Mingkui, T., Bohan, Z., Jing, L., Yong, G., Qing-
yao, W., Junzhou, H., Jinhui Z.: Discrimination-aware channel
pruning for deep neural networks. arXiv preprint arXiv: 1810.
11809, (2018)

 24. Boyd, S., Parikh, N., Chu, E.: Distributed optimization and statis-
tical learning via the alternating direction method of multipliers.
Now Publishers Inc (2011)

 25. Tianyun, Z., Shaokai, Y., Kaiqi, Z., Xiaolong, M., Ning, L., Lin-
feng. Z., Jian, T., Kaisheng, M., Xue L., Makan F.: et al. Struc-
tadmm: a systematic, high-efficiency framework of structured
weight pruning for dnns. arXiv preprint arXiv: 1807. 11091, (2018)

 26. Chen, T.-A., Yang, D.-N., Chen, M.-S.: AlignQ: alignment quan-
tization with ADMM-based correlation preservation. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 12538–12547. IEEE (2022)

 27. Kumar, C., Rajawat, K.: Network dissensus via distributed
ADMM. IEEE Transac. Signal Process. 68, 2297–2301 (2020)

 28. Kaiming, H., Xiangyu, Z., Shaoqing, R., Jian, S.: Deep residual
learning for image recognition. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 770–778.
IEEE (2016)

 29. Karen, S., Andrew, Z.: Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv: 1409. 1556,
(2014)

 30. Bochkovskiy, A., Wang, C.-Y., Mark Liao, H.-Y.: Yolov4: Opti-
mal speed and accuracy of object detection. arXiv preprint arXiv:
2004. 10934, (2020)

 31. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime
tracking with a deep association metric. In: 2017 IEEE interna-
tional conference on image processing (ICIP), pp. 3645–3649.
IEEE (2017)

 32. Girshick, R.: r-cnn fast. In: Proceedings of the IEEE international
conference on computer vision, pp. 1440–1448. IEEE (2015)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1805.11394
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1608.08710
http://arxiv.org/abs/1810.11809
http://arxiv.org/abs/1810.11809
http://arxiv.org/abs/1807.11091
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934

	Compression of Deep-Learning Models Through Global Weight Pruning Using Alternating Direction Method of Multipliers
	Abstract
	1 Introduction
	2 Background
	2.1 Related Works
	2.2 Preliminary: ADMM

	3 Global Weight Pruning
	3.1 Steps of the Proposed Method
	3.2 Formulation of the Proposed Model

	4 Experiments
	4.1 Convolution Neural Networks with Various Layers
	4.2 LeNet-5
	4.3 ResNet-56
	4.4 Real-Life Application

	5 Conclusions
	References

