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Abstract
Deep learning has shown excellent performance in numerous machine-learning tasks, but one practical obstacle in deep 
learning is that the amount of computation and required memory is huge. Model compression, especially in deep learning, 
is very useful because it saves memory and reduces storage size while maintaining model performance. Model compression 
in a layered network structure aims to reduce the number of edges by pruning weights that are deemed unnecessary during 
the calculation. However, existing weight pruning methods perform a layer-by-layer reduction, which requires a predefined 
removal-ratio constraint for each layer. Layer-by-layer removal ratios must be structurally specified depending on the task, 
causing a sharp increase in the training time due to a large number of tuning parameters. Thus, such a layer-by-layer strategy 
is hardly feasible for deep layered models. Our proposed method aims to perform weight pruning in a deep layered network, 
while producing similar performance, by setting a global removal ratio for the entire model without prior knowledge of the 
structural characteristics. Our experiments with the proposed method show reliable and high-quality performance, obviat-
ing layer-by-layer removal ratios. Furthermore, experiments with increasing layers yield a pattern in the pruned weights 
that could provide an insight into the layers’ structural importance. The experiment with the LeNet-5 model using MNIST 
data results in a higher compression ratio of 98.8% for the proposed method, outperforming existing pruning algorithms. 
In the Resnet-56 experiment, the performance change according to removal ratios of 10–90% is investigated, and a higher 
removal ratio is achieved compared to other tested models. We also demonstrate the effectiveness of the proposed method 
with YOLOv4, a real-life object-detection model requiring substantial computation.

Keywords Network compression · Weight pruning · Non-convex optimization · Parallel computing

Abbreviations
DL  Deep learning
DNN  Deep neural network
CNN  Convolutional neural network
ADMM  Alternating direction method of multipliers

RPP  Relaxant probabilistic projection
LGD  L0-norm constrained gradient descent

1 Introduction

As data accumulation and storage become easier and more 
processing methods are developed, studies related to deep 
learning that require a significant amount of computational 
power are being actively conducted. Deep learning mod-
els are used in various fields, such as for visual processing 
technology that generates useful information by analyzing 
images, natural language processing technology that under-
stands and analyzes human language, and speech process-
ing technology that synthesizes or converts human speech. 
Deep learning outperforms many existing techniques and 
continues to be developed. The superior performance of 
deep-learning models is possible because data-processing 
speeds driven by GPUs have advanced rapidly. However, 
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achieving high-quality performance of deep learning leads 
to an inherent problem where the number of weights of the 
model (i.e., the model size) increases. Because of this prob-
lem, the required memory increases with the model size, 
and the training time becomes longer. In addition, it may be 
difficult to deploy and apply a trained model on a real-time 
basis because the speed deteriorates as the amount of calcu-
lations increase. For example, the YOLOv4 model, which is 
known to be the fastest among object-detection techniques, 
achieved about 65 FPS (frame per second) in MS COCO 
data; however, this was only possible when using an expen-
sive GPU (Tesla V100).

Many approaches have been proposed to select an optimal 
or sub-optimal ensemble of traditional ML classifiers [1–4]. 
Recently, due to the inherent model-size issues in deep 
learning, network compression techniques have emerged as 
a new and challenging area to alleviate the problem of rap-
idly increasing memory and computational requirements. 
In particular, deploying deep neural networks (DNNs) to 
devices requiring real-time processing is a very promising 
research subject. Model compression aims to save memory, 
reduce the storage size of the model, and reduce computa-
tional requirements while taking full advantage of pretrained 
models. In the past few years, various model compression 
techniques have been in development, taking into account 
the tradeoff between the degree of compression and the 
accuracy.

According to [5], research into model compression in 
DNNs can be classified into four major categories: com-
pact-model methods, tensor decomposition, data quantiza-
tion, and network sparsification. A compact-model technique 
aims to create a smaller model itself that achieves acceptable 
performance among several candidates. Different from com-
pact-model methods, the three other categories compress a 
DNN model by modifying the existing model in training 
sessions rather than creating a new model. Tensor decompo-
sition decomposes an existing matrix (or tensor in general) 
into a matrix with smaller dimensionality. Data quantization 
is a method of compressing a DNN model by reducing the 
bit-width of data. Lastly, network sparsification simplifies 
the computational graph used for training a DNN model. 
Each of these four categories can be combined for better 
performance. Sharing a similar spirit to accomplish DNN 
model compression, each category has different characteris-
tics in terms of the accuracy preservation degree, compres-
sion degree, structural information, and utilization method.

In particular, weight pruning in network sparsification 
aims to obtain sparse weights by removing edges from a 
deep-learning network graph. A prior work [6] solves a non-
convex minimization problem using the alternating direction 
method of multipliers (ADMM) to maintain performance 
while sparsing weights based on existing CNN models, effec-
tively pruning the weight of the model. This method has some 

advantages over other methods; for example, it has a higher 
compression ratio and can quickly reach a convergence rate 
by setting removal ratios. However, since model compression 
is generally used for large models, the method is practically 
limited in that it has to set removal ratios for each layer to [6] 
perform layer-wise pruning. For example, YOLOv4 has about 
100 convolution layers, and it takes a substantial amount of 
time to experiment with the removal ratio of each layer. Obvi-
ously, the situation worsens for larger models because various 
hyperparameters (optimizer, learning rate, epoch, etc.) are used 
to find the optimal model and several tuning hyperparameters 
are used to prune weights by ADMM.

Our research aims to solve the above mentioned problems. 
Specifically, our approach formulates an optimization problem 
by applying ADMM to the entire layer instead of using layer-
by-layer pruning. When structurally pruning a large network 
model with layer-by-layer and filter-by-filter pruning ratios, 
for example, it is difficult to find optimal parameters through a 
relatively small number of experiments. In fact, this issue often 
becomes a reality because a great number of experiments need 
to be conducted to find appropriate removal ratios when apply-
ing this technique to a large-size, real-life DNN model. Our 
method is able to easily grasp trends in the pruning degrees 
for the layers in a DNN model (e.g., different pruning ratios 
for the layers close to the input, those close to the output, and 
those for the intermediate layers). As a result, the application 
of our method can provide a base policy for pruning ratios in 
the layers of a DNN model. According to the findings in [6], 
the layers in charge of feature extraction, which are usually 
located near the input in tasks dealing with images, must be 
pruned at a small removal ratio. Our method prunes a DNN 
model without structural removal ratios, and our experiments 
show that it effectively prunes a deep layered model with a 
global removal ratio.

The structure of this paper is as follows. In Sect. 2, we 
briefly provide related studies on weight pruning and prelim-
inaries of ADMM. Section 3 contains a detailed description 
of our proposed model. Section 4 compares the proposed 
model with a few selected pruning models through experi-
ments, showing that the proposed model has a higher com-
pression ratio. This section also shows the proposed weight 
pruning technique applied to YOLOv4, demonstrating the 
model’s effectiveness for a large and practical model. Sec-
tion 5 concludes the paper by suggesting future research 
directions.

2  Background

2.1  Related Works

Among the categories of neural network model compression, 
network sparsification reduces the number of computations 
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required and the size of the model by pruning unnecessary 
information. Pruning can be divided into weight pruning and 
neuron pruning. Weight pruning is a method of reducing the 
number of edges in a computational graph (to prune rela-
tively insignificant or redundant weights), and neuron prun-
ing is a method of reducing the number of nodes (to prune 
unnecessary nodes). In addition, pruning methods also can 
be divided in various ways according to the sparse structure: 
element-wise, vector-wise, and block-wise [7]. An element-
wise method, also called unstructured pruning, evaluates the 
contribution of each weight element to the entire network. 
Removing insignificant connections without assumptions on 
the network structures, this method achieves gains in both 
the model flexibility and the predictive power. On the other 
hand, vector-wise and block-wise methods reveal compact 
network structures effectively by eliminating parameter 
groups instead of individual weights. Vector-wise meth-
ods [8, 9] estimate the importance of column vectors in the 
weight matrix and then prune a fixed set of groups by their 
priority. Similarly, block-wise methods [10, 11] divide the 
weight matrix into subblocks and consider each of the sub-
blocks as a basic pruning unit. Unfortunately, these struc-
tured sparsity methods often fail to escalate the model accu-
racy due to the excessive loss of information. Our proposed 
model corresponds to ADMM-based weight pruning with 
an element-wise sparse method.

Most of the element-wise pruning methods in network 
sparsification are performed based on heuristic search. A 
heuristic-based method does not guarantee that it can effec-
tively maintain the performance, so large performance 
decreases may occur. Therefore, in recent years, studies that 
perform pruning through optimization rather than heuristic 
methods have been preferred. Optimization-based meth-
ods can find less important or redundant information more 
effectively than heuristic-based methods, and they can also 
obtain higher performance. The proposed method adopts an 
optimization-based method to perform pruning while main-
taining the existing performance.

Indeed, weight pruning was inspired by [12] and has been 
studied extensively. This work uses a method called optimal 
brain damage (OBD), which reduces the size of the model 
by removing information with small saliency of the second 
derivative of the objective function related to the weight. 
The optimal brain surgeon (OBS) method [13] incorporated 
weight pruning, which was a new technology that comple-
mented the disadvantages of [12]. Since these two studies, 
weight pruning using various other methods has also been 
proposed. The study in [14] prunes the weights through 
the sensitivity of each layer based on the genetic algo-
rithm, and then performs fine tuning on the pruned model 
based on the knowledge distillation framework. Another 
study [15] attempts effective weight pruning by solving the 
L0-norm constrained optimization problem through relaxant 

probabilistic projection (RPP) and L0-norm constrained gra-
dient descent (LGD).

The algorithm proposed in this paper performs weight 
pruning based on optimization in an element-wise sparse 
structure that eliminates structural settings. Accordingly, 
we compare our method with other weight pruning meth-
ods performed on an element-wise structure in this experi-
ment. Deep compression [16] attempts model compression 
using three stage pipelines consisting of pruning, trained 
quantization, and Huffman coding. In the weight pruning 
step, small weights are heuristically pruned and retrained, 
and model capacity is reduced by 9 to 13 times. Netpruning 
[17] eliminates redundant connections through three steps. 
The first step is to train the importance of connections. The 
second step removes unnecessary connections, and the third 
step finally retrains the network. Synthesizing DNN in the 
seed architecture, NeST [18] removes connections that are 
considered unnecessary through magnitude values to avoid 
duplication. To verify the effectiveness of the proposed 
global pruning, we further compare it with other structured 
pruning methods. Filter pruning proposed by Li et al. [19] 
removed filters with low weight magnitudes to reduce the 
redundancy in CNNs. NISP [20] measured the importance 
of filters based on their corresponding reconstruction errors 
in the next layer. HRank [21] mathematically proved that 
filters with lower ranks are less important to accuracy. CNN-
FCF [22] presented an effective CNN compression approach 
which performs filter selection and filter learning jointly in 
a unified optimization scheme. DCP [23] proposed an itera-
tive greedy algorithm to solve the channel selection prob-
lem considering both reconstruction error and discriminative 
power.

ADMM [24], an effective method for solving optimization 
problems, is widely used because of its parallel computing 
abilities. ADMM, which shows good performance, is often 
adopted for composite optimization problems, while gradi-
ent descent methods are mainly used for simple optimization 
problems. Noticeably, the optimization problem of the weight 
pruning method used in this study cannot be solved by gradient 
descent because differentiation is impossible and non-convex 
functions are included. Therefore, when using ADMM, we 
divided the original problem into two sub-optimization prob-
lems: one can be solved with gradient descent, and the other 
can be solved analytically. The study in [6] performs ADMM 
by constructing an optimization problem for each layer in 
weight pruning. Specifically, this method adds a cardinality 
function to the constraint of the optimization problem, and 
then performs pruning by setting a removal ratio for each 
layer. StructADMM [25] prunes weights for various struc-
ture types, such as filter-wise, shape-wise, and channel-wise 
sparsity, and similarly constructs an optimization problem and 
solves it through ADMM. We configure our method similarly 
to other ADMM-based methods. However, when comparing 
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it with other methods while adopting a global removal ratio, 
we achieve effective sparsity without loss of performance in 
a short time.

2.2  Preliminary: ADMM

ADMM is a popular technique used for solving convex optimi-
zation problems in machine learning and deep leaning, mak-
ing possible a large-scale optimization [26]. Recent works 
also demonstrate that under certain conditions, the ADMM is 
guaranteed to converge for non-convex problems [27]. Specifi-
cally, the ADMM can separate the variables and decompose 
the problem into two subproblems. We notice that the loss 
function associated with a constraint in this study includes a 
non-convex cardinality function to induce the sparsity of the 
weights.

Basically, the loss function of DNN consists of a basic loss 
f0(x) and a regularizer h(x). ADMM separates the variable, x, 
in problem (1) and transforms it into problem (2). After that, 
we induce the augmented Lagrangian in (3):

In (3), we update the primal variables x and z and the 
Lagrangian multiplier � while performing ADMM iterations, 
as shown in (4), (5), and (6):

(1)min
x

f0(x) + h(x),

(2)min
x,z

f0(x) + h(x) s.t. x − z = 0,

(3)L�(x, z, �) = f0(x) + h(z) +
�

2
‖x − z‖2

2
+ �

T (x − z).

(4)x(k+1) = argmin
x

L�(x, z
(k), �(k)),

(5)z(k+1) = argmin
z

L�(x
(k+1), z, �(k)),

(6)�
(k+1) = �

(k) + �(x(k+1) − z(k+1)).

If � is transformed into � =
1

�
� , �

2
‖x − z‖2

2
+ �T (x − z) can be 

transformed into �
2
‖x − z + �‖2

2
−

�

2
‖�‖2

2
 . As a result, (4), 

(5), and (6) can be changed to (7), (8), and (9):

Finally, the optimal x can be obtained by sequentially solv-
ing the Eqs. (7), (8), and (9).

3  Global Weight Pruning

To solve the shortcomings of the technique described in [6], 
the proposed algorithm in this paper performs weight prun-
ing with a global removal ratio, denoted by global weight 
pruning, rather than layer-wise removal ratios. Although it 
prunes a network without structural information, it runs suf-
ficiently fast, even when applied to a large model. In addi-
tion, layers closer to the network input need to be pruned 
less than other layers to maintain input diversity and main-
tain performance. Our experiments show that the proposed 
model can automatically prune the first layer less.

3.1  Steps of the Proposed Method

The proposed method proceeds in four steps, as shown in 
Fig. 1. First, we train a DNN model to find the weight that 
increases the model accuracy, similar to the training of a gen-
eral deep-learning model. In the ADMM step, we decompose 
the global weight pruning problem into two subproblems and 
solve them iteratively, which is the essence of the proposed 
method. The resulting solutions force the value of unnecessary 
weights to converge towards zero. In the next pruning step, we 
keep the weights with the large magnitudes and set the rest to 

(7)x(k+1) = argmin
x

f0(x) +
�

2
‖x − z(k) + �

(k)‖2
2
,

(8)z(k+1) = argmin
z

h(z) +
�

2
‖x(k+1) − z + �

(k)‖2
2
,

(9)�
(k+1) = �

(k) + x(k+1) − z(k+1).

Fig. 1  Steps of the proposed method
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zero. Finally, we fine-tune the remaining non-zero weights to 
recover the inference accuracy.

3.2  Formulation of the Proposed Model

In this section, we describe the proposed model in detail math-
ematically. The first step involves a general DNN training step, 
and we assume that weights, W , of the pretrained model exist. 
The pretrained model possibly includes all machine-learning 
tasks through (original) loss functions, such as classification, 
regression, object detection, and segmentation.

For the second ADMM step, we first set the original loss 
function with an additional regularization term and follow the 
sequence described in Sect. 2.2:

where W = {W1,… ,Wl} is the set of vectorized multi-
dimensional tensor weights for layer i and Wi corresponds 
to the vector Wi ∈ ℝ

di of the di ∈ ℝ dimension. The vec-
torization of tensor weights can be a concatenation of the 
row vectors in the weight matrix between two layers, and 
the total number of layers is l. The first term can be thought 
of as the cross entropy loss in the case of classification, the 
mean-squared error in the case of regression, and some spe-
cific loss function adopted by each algorithm. For example, 
the loss function of the YOLOv4 object-detection model 
is a combination of the coordinates of a bounding box, the 
confidence of whether an object is included or not, and the 
class information of an object. The second term pertains to 
regularization with the Frobenius norm by default. It is eas-
ily differentiable and represents the squared energy.

To perform weight pruning, we introduce the cardinality 
function as a constraint in Eq. (10). Here, cardinality means 
the number of non-zero elements. To control the number of 
pruned weights in the network, we constrain the number of 
non-zero elements in the entire network to be less than a global 
parameter, n. The formulation is as follows:

where the number of elements that have not been removed 
for all layers is n. As a tuning parameter, n is specified in 
advance by the user; for small n, the network will be highly 
sparse. One needs to set n carefully to avoid either too sparse 
or too dense networks in the results. Inherently, the num-
ber of elements that have not been removed for layer i is 
ni , which automatically emerges during pruning. Equation 
(10) can be easily solved with gradient descent, but the non-
convex cardinality function in Eq. (11) means the gradient 

(10)Loss(W) = origin_loss + �

l�

i=1

‖Wi‖22,

(11)

min
W

Loss(W)

s.t. cardinality(W) <

l∑

i

ni = n,

descent technique cannot guarantee the optimal solution. 
Thus, we modify the equation to use ADMM, which can 
be applied to non-convex optimization problems as follows:

where h(W) is an indicator function for the cardinality con-
straint as follows:

We separate the variable from Eq. (12) and modify it as 
shown in Eq. (14):

Next, the augmented Lagrangian of Eq. (14) is written as 
follows:

where � is a penalty parameter indicating the step size. The 
scaled Lagrangian � =

�

�
 is a variable expressed to simplify 

the equation with the original Lagrangian multiplier � . 
Finally, the ADMM equation is rewritten and W , Z , and � 
are updated for iteration k:

In the above equations, we obtain W through Eq. (16) and 
then find Z through Eq. (17). After that, � can be obtained 
simply by gradient ascent through Eq. (18).

The first term of Eq. (16) uses the loss function, which 
can be differentiated from the pretrained model. The second 
term can also be differentiated. In general, it can be solved 
easily by gradient descent as in Eq. (19):

Instead of inner iterations generated by gradient descent, 
depending on the form of Loss(⋅) , one can obtain a closed 
form solution for updating W (k+1)

i
 . Equation (17) cannot be 

solved through gradient descent, so we solve it using projec-
tion, similar to the approach used in [6]:

(12)min
W

Loss(W) + h(W),

(13)h(W) =

{
0, cardinality(W) < n

∞, cardinality(W) ≥ n.

(14)
min
W

Loss(W) + h(Z)

s.t. W = Z.

(15)
L�(W,Z) =Loss(W) + h(Z)

+
�
2
‖W − Z + �‖2F −

�
2
‖�‖2F,

(16)W
(k+1) = argmin

W

Loss(W) +
�

2
‖W − Z

(k) + �
(k)‖2

F
,

(17)Z
(k+1) = argmin

Z

h(Z) +
�

2
‖W(k+1) − Z + �

(k)‖2
F
,

(18)�
(k+1) = �

(k) +W
(k+1) − Z

(k+1).

(19)

W
(k+1)

i
= W

(k)

i
− �(

�Loss(W(k))

�W
(k)

i

+ �(W
(k)

i
− Z

(k)

i
+ �

(k)

i
)).
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where C = {Z ∣ cardinality(Z) < n} . Notice that C is non-
convex, and the projection operator Proj

C
(⋅) is not unique. 

To make the number of non-zero elements in W(k+1) + �
(k) 

less than the number specified by the user (n), we shrink 
the elements in W(k+1) + �

(k) zero except for the first n − 1 
elements in descending order by absolute value. In addi-
tion, we use the initial value W(0) as the trained weight, the 
initial value Z(0) as Proj

C
(W(0)) , and �(0) as a matrix with 

all zero elements. Being a good optimization technique in 
many applications, ADMM might undergo a great number of 
iterations to converge to a final solution when handling non-
convex problems. To alleviate the computational burden, 
we mask the zero weights, and then retrain the DNN with 
the remaining non-zero weights while freezing the masked 
ones to 0. Noticeably, the retraining step allows fast conver-
gence to a desired solution from the good initial point with 
only a few parameters to be fine-tuned. In this way, we can 
restore the accuracy of the pruned network such that it may 

(20)

Z
(k+1) = argmin

Z

h(Z) +

l�

i=1

�

2
‖W (k+1)

i
− Zi + �

(k)

i
‖2
2

= argmin
Z∈C

l�

i=1

�

2
‖W (k+1)

i
− Zi + �

(k)

i
‖2
2
,

= Proj
C
(W(k+1) + �

(k))

achieve performance better than or at least comparable with 
the pretrained model.

The proposed global weight pruning automatically seeks 
a sparse set of weights without specifying layer-by-layer 
removal ratio. Algorithm 1 describes the overall process of 
our proposed method which consists of four steps: pretrain-
ing, ADMM iterations, pruning, and retraining. Algorithm 1 
takes data as the input and then returns the pruned weight. 
The initial value settings of W,Z , and � used in the ADMM 
step correspond to lines 4–6. The ADMM step correspond-
ing to Eqs. 16, 17, and 18 proceeds in lines 7–13, and a 
sparse matrix can be obtained by performing pruning on W 
in line 14. After that, it freezes the zero weight and finally 
performs retraining to obtain a final model with sparsity 
and comparable performance (lines 15–18). Algorithm 2 
describes a function that performs projection, setting all ele-
ments equal to zero except for the first n − 1 largest elements. 
The Flatten and Reshape functions flatten, or vectorize, the 
input X into a 1D sequence and recover the size of flatten_X 
back to the original input size, respectively. The Top_n func-
tion takes a vector as an input and returns the n-th value with 
a large value, which corresponds to the threshold of line 
6. The projection ends with the process of setting weights 
smaller than the calculated threshold to zero (lines 7–9).
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4  Experiments

We conducted experiments with neural networks of vari-
ous sizes and three known models: LeNet-5, Resnet-56, and 
YOLOv4. In Sect. 4.1, we observe the effect of the previous-
layer weight and the removal ratio for each layer by train-
ing the proposed model by gradually increasing layers. In 
Sect. 4.2, we compare our model with existing element-wise 
weight pruning models. In Sect. 4.3, we conduct experiments 
with various weight pruning models, such as filter-wise and 
channel-wise methods. Finally, Sect. 4.4 provides a real-life 
application to YOLOv4, which is a large object-detection 
model that actually needs weight pruning. The experiments 
are run on TensorFlow 2 using one NVIDIA RTX 3090 GPU 

and two RTX 6000. For the sake of simplicity, we denote the 
proposed pruning methods as global pruning.

Table 1  Removal ratio for each 
layer according to the number 
of layers

Number of layers

Layer 2 4 6 8 10

CONV1 76.74 85.24 89.06 77.78 82.64
CONV2 94.43 96.00 97.96 98.20 96.25
CONV3 90.59 95.51 98.15 96.58
CONV4 93.27 94.44 97.31 97.75
CONV5 93.20 96.16 98.34
CONV6 91.61 95.78 95.38
CONV7 94.21 93.94
CONV8 91.85 95.97
CONV9 94.31
CONV10 92.48
DENSE 89.69 89.28 88.33 86.95 86.26
Number of weights (all layers) 539,200 612,928 686,656 760,384 834,112
Number of weights (after pruning) 53,920 61,293 68,666 76,039 83,412
Accuracy (base, %) 98.76 99.05 99.12 99.09 99.21
Accuracy (pruned, %) 98.71 98.80 99.19 98.99 99.03

Table 2  Removal ratio comparisons using different weight pruning 
models on LeNet-5

Model Top-1 accu-
racy (base) 
(%)

Top-1 accuracy 
(pruned) (%)

Removal 
ratio (%)

Deep compression [16] 99.2 99.26 92.0
Netpruning [17] 99.2 99.23 91.7
NeST [18] 99.2 99.23 98.65
ADMM pruning [6] 99.2 99.2 98.6
Global pruning 99.43 99.54 98.8
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4.1  Convolution Neural Networks with Various 
Layers

In this experiment, we construct convolution neural network 
models by increasing the number of layers from two to ten to 
see if layers close to the input are relatively important among 
all the layers of the model. The experiment is conducted 

on MNIST data. We also investigate whether the removal 
ratios and performance of pruned models evolve according 
to the number of layers. Each layer, except the final fully 
connected (dense) layer, consists of a convolutional layer 
with filter configuration (3, 3, 64) and batch normalization. 
We increased the number of layers accordingly, applying 
weight pruning to examine the evolution of weight removal 
ratios for the layers. For simplicity, we denote the models 
as cnn-model k, where k is the total number of layers. In 
Table 1, we observe a pattern where the weights of the lay-
ers close to the input are not removed as much compared to 
those of the other layers. Specifically, the removal ratios of 
the first convolutional layer (CONV1) change from 76.74% 
for CNN-model 2 to 89.06% for CNN-model 6. For the fol-
lowing convolutional layers (CONV2 to CONV10), the min-
imum (90.59%) and the maximum (98.34%) removal ratios 
are greater than all of the removal ratios of the first convo-
lutional layer (CONV1). In addition, the removal ratios for 
the dense layers range from 86.25% to 89.69%, which are not 

Table 3  Weight pruning results on LeNet-5

Layer Number of 
weights (base)

Number of weights 
(after pruning)

Removal ratio

CONV1 500 255 49.0%
CONV2 25,000 1,723 93.1%
DENSE 1 400,000 2,738 99.3%
DENSE 2 5,000 450 91.0%
Total 430,500 5,166 98.8%

Fig. 2  Weight distributions on LeNet-5
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much different from those of CNN-model 2 to CNN-model 
10. We also notice that the accuracy of the pruned model is 
comparable with that of the original model.

4.2  LeNet‑5

LeNet-5 is an image classification model that uses 28 by 28 
images as an input, and it has a structure consisting of two 
convolutional layers and two dense layers. The experiment 
is conducted on MNIST data.

Before weight pruning, when the comparison models use 
LeNet-5, they all show the same performance. The experi-
ment revealed the optimal parameters of the proposed model 
to be � = 0.01 and � = 0.004 . Table 2 compares the proposed 
model (global pruning) with element-wise weight pruning 
models, showing not only that the highest removal ratio 
is achieved by the proposed model but also that the high-
est accuracy, being greater than that of the initial model, 
is obtained by our model. We performed the proposed 
global pruning on the pretrained baseline model, producing 
99.43% Top-1 accuracy, which is slightly higher than that 
of previous works [6, 16–18]. It is known that CNNs pro-
vide impressive performance on many visual tasks, yet their 
architectures are usually over-parameterized. Therefore, we 
aim to compress the pretrained models while preserving the 
discriminative ability.

In addition, Table 3 shows the removal ratio of each 
layer for the optimal model. In the convolutional layer 
responsible for feature extraction, it is interesting to 

observe that the layer close to the input has a low removal 
ratio, indicating the input variables initially possess valu-
able information. This result is consistent with findings of 
the previous experiment, where the layers are gradually 
added.

After convergence, we visualize the weight distribution 
for each layer to confirm the change in the weight distribu-
tion for LeNet-5. In Fig. 2, the left column shows the dis-
tribution from the initial model, the middle column shows 
that from the model of the ADMM steps, and the right 
column shows that from the model of the retraining steps. 
Since 98.8% of the weights are removed, it is clear that 
a large number of weights are close to zero in the model 
of the ADMM steps. The retraining steps further shrink 
the weights to zero. Given the highly compressed model, 
it is worthwhile mentioning that the accuracy of the final 
pruned model exceeds that of the initial model. This shows 
the ability of the proposed model to effectively compress 
deep layered networks without sacrificing performance.

4.3  ResNet‑56

In this experiment, we apply weight pruning to ResNet-56 
[28] using the CIFAR-10 dataset consisting of 10 classes and 
32 by 32 images. ResNet, based on VGGNet [29] stacking 
of 3 by 3 convolutional layers, uses a residual block to solve 
the problem of improper training when the number of lay-
ers of the model increases. The ResNet model used in the 
experiment consists of a total of 56 layers, the number of 
parameters is 0.85 M, and the accuracy is 93.07%.

For the ResNet-56 model, we compared the experimental 
results of our weight pruning with existing filter or channel 
pruning methods [19–23]. Table 4 reports the accuracy and 
removal ratio of different models before and after pruning. 
Each model shows the accuracy of the base model and the 
accuracy after pruning, and NISP [20] shows the difference 
in accuracy between the pruned model and the base model. 
We conducted an experiment to remove 10% to 90% of the 
total weight for the Resnet-56 model. After weight prun-
ing, 10% to 40% removal ratio further increased accuracy. 
From 50% to 90%, the accuracy decreased by 0.09%, 0.34%, 
0.43%, 1.11%, and 2.29%, respectively, in comparison with 
that of the base ResNet-56 model.

All weight pruning models achieved a removal ratio of 
less than 50% while maintaining accuracy performance. 
The results show that our proposed model maintains the 
accuracy performance sufficiently, even at a removal ratio 
of 50%. For example, when the removal ratio of HRank is 
68.10%, the accuracy is 90.72%. In this case, the perfor-
mance preservation is 97.2% (90.72/93.26). In contrast, the 
proposed method produces a performance preservation of 
99.5% (92.64/93.07) when the removal ratio is 70%, which 

Table 4  Removal ratio comparisons using different weight pruning 
models on ResNet-56

Model Top-1 accuracy 
(base) (%)

Top-1 accuracy 
(pruned) (%)

Removal 
ratio (%)

Filter pruning [19] 93.04 93.10 9.40
93.06 13.70

NISP [20] 93.04 93.01 43.61
HRank [21] 93.26 93.17 42.40

90.72 68.10
CNN-FCF [22] 93.14 93.38 43.09

91.92 69.74
DCP [23] 93.80 93.49 49.24
Global pruning 93.07 93.14 10

93.17 20
93.17 30
93.11 40
92.98 50
92.73 60
92.64 70
91.96 80
90.78 90
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surpasses HRank. When comparing it with CNN-FCF, simi-
lar results are observed; global pruning achieves better per-
formance preservation, even when the removal ratio is larger.

In addition, Fig. 3 shows the weight removal ratio for 
each layer for the Resnet-56 model when the removal ratio 
is set to 50%. As in the previous experiment, the removal 

ratio of the frontmost layer is the lowest at 11.57%. In addi-
tion, the removal ratio tends to increase as it approaches the 
last layer.

Fig. 3  Weight distributions on 
LeNet-5

Fig. 4  Application workflow
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4.4  Real‑Life Application

Among deep learning tasks with images and video frames, 
object detection and object tracking are very popular. 
Research in these areas is being actively conducted. To 
show the practicality of this study, we apply weight prun-
ing to YOLOv4 [30], using the COCO dataset and combin-
ing Deepsort [31], which is an object tracking model. In 
short, YOLO is a popular object-detection algorithm, pos-
sessing similar performance to Fast R-CNN [32], which has 
shown high performance in the object-detection field. It has 
recently achieved tremendous speed improvement. While 
Fast R-CNN has a speed performance of 0.5 FPS, YOLO has 
a speed performance of 45 FPS, enabling real-time object 
detection. YOLO is constantly evolving. The fourth version, 
YOLOv4, uses a variety of the latest deep learning tech-
niques to improve performance.

The aim is to compress video by removing unnecessary 
(i.e., no movement) states from CCTV video data utilizing 
YOLOv4 and Deepsort. To determine the unnecessary state 
of a certain object, the object tracking model (Deepsort) 
uses object information detected by YOLOv4. Afterwards, 
it goes through video compression by removing the state of 
no movement from the identified movement information. 
The entire workflow is depicted in Fig. 4.

As mentioned, YOLO is faster than other object-detection 
models, making real-time object detection possible. How-
ever, when used on a device with low computing power, such 
as a mobile device, real-time detection is hardly possible due 
to the large amount of computation required. In the case of 
YOLOv4, approximately 100 convolution layers exist, and 
many experiments are needed to structurally set the layer-
by-layer removal ratios. Therefore, when using such a large 
model for an object-detection task, it is appropriate to apply 
our model.

Fig. 5  Weight distributions on YOLOv4 are shown. The first column 
indicates the distribution of the 10th layer located in the beginning 
part, the second column is the distribution of the 50th layer located in 

the middle part, and the third column is the distribution of the 100th 
layer located in the last part
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The experimental results are as follows. We find that 
a removal ratio of 20%, as a result of weight pruning on 
YOLOv4, keep the mAP (mean average precision) of 
the base model similar. mAP is measurement of object-
detection performance, and it describes the average of 
the area below the graph plotted through precision and 
recall for each class. Figure 5 shows the weight distribu-
tion of the representative layers located at the beginning 
(conv2d_10), middle (conv2d_50), and end (conv2d_100). 
The first row shows the weight distribution from the base 
YOLOv4, and the second row shows that from the pruned 
model. In the conv2d_10 layer, 164 of 8192 weights, 
which is 2%, become zero. In the conv2d_50 layer, 55493 
of 589824 weights, which is 9.4%, become zero. In the 
conv2d_100 layer, 239034 of 1179648 weights, which is 
20.2%, become zero. Therefore, the conv2d_10 layer has 
a small ratio of zeros, while the remaining layers have a 
larger ratio of weights to zero.

5  Conclusions

In this study, we propose an ADMM-based element-wise 
weight pruning method that sets only the removal ratio of 
the entire layer during the training process. Weight prun-
ing using traditional ADMM-based optimization methods 
requires structurally setting a large number of removal ratios, 
such as by using a layer-wise, filter-wise, or channel-wise 
method. Therefore, in large models that actually require 
weight pruning, it is difficult to find the optimal removal 
ratio and the training times can be very large. We prune the 
weights simply by using one removal ratio, making only a 
small variation to the existing ADMM model. This achieves 
similar performance to ADMM-based models but with less 
training time.

In the model with convolution neural networks with 
various layers, we show that the layer closest to the input 
achieves a smaller removal ratio. This means that if we 
remove many of those layers, we will lose important infor-
mation. The LeNet-5 experiment achieves higher removal 
ratios than element-wise based methods. In the Resnet-56 
experiment, which is compared with various weight pruning 
methods (e.g., filter and channel-wise methods), a removal 
ratio of 50% is achieved. The higher the removal ratio, the 
lower the accuracy, which can be selected at the user’s dis-
cretion. In addition, the proposed model is also applied to 
a project that used YOLOv4, which is a very large model. 
This shows that our proposed technique can be applied to a 
large model to provide sufficient weight pruning. However, 
as a limitation, the ADMM optimization method does not 
guarantee optimum in non-convex problems. However, we 
note that this limitation is universal for objective functions 
in deep learning. In addition, though we attempted to verify 

the improved speed through our model compression, admit-
tedly we were unable to observe speed improvement it due 
to the limitations of software and hardware. In the future, 
we envision verifying it when a comparison experiment on 
speed is possible with software support.

In future research, it is necessary to develop a model 
that can achieve a higher compression ratio while reducing 
the number of experiments by changing the � value, which 
is a very sensitive parameter in our model, to learnable 
parameter.
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