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Abstract: Recently, research into autonomous driving and traffic safety has been drawing a great
deal of attention. To realize autonomous driving and solve traffic safety problems, wireless
access in vehicular environments (WAVE) technology has been developed, and IEEE 802.11p
defines the physical (PHY) layer and medium access control (MAC) layer in the WAVE standard.
However, the IEEE 802.11p frame structure, which has low pilot density, makes it difficult to predict
the properties of wireless channels in a vehicular environment with high vehicle speeds; thus,
the performance of the system is degraded in realistic vehicular environments. The motivation for
this paper is to improve the channel estimation and tracking performance without changing the IEEE
802.11p frame structure. Therefore, we propose a channel estimation technique that can perform
well over the entire SNR range of values by changing the method of channel estimation accordingly.
The proposed scheme selectively uses two channel estimation schemes, each with outstanding
performance for either high-SNR or low-SNR signals. To implement this, an adaptation algorithm
based on a preamble is proposed. The preamble is a signal known to the transmitter–receiver, so that
the receiver can obtain channel estimates without demapping errors, evaluating performance of the
channel estimation schemes. Simulation results comparing the proposed method to other schemes
demonstrate that the proposed scheme can selectively switch between the two schemes to improve
overall performance.

Keywords: IEEE 802.11p; Preamble; Adaptive Channel Estimation; Intelligent Transportation
Systems; Vehicular Communications

1. Introduction

In recent years, traffic congestion and accidents have become important global issues caused by
road traffic [1]. To deal with these problems, the Cooperative Intelligent Transport System (C-ITS)
is attracting a lot of attention, and the Wireless Access in Vehicular Environments (WAVE) has been
developed and researched to support C-ITS [2–6]. The WAVE system is a radio communication
system that provides standardized services and interfaces to enable vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications [7,8]. In WAVE, the physical (PHY) and medium-access
control (MAC) layers are defined using the IEEE 802.11p and IEEE 802.11p/IEEE 1609.4 standards,
respectively [9,10]. This system has the potential to significantly increase road safety, and it
is also expected to solve many traffic issues. In practical C-ITS applications, the fairness and
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reliability of the communications between vehicles using the WAVE system is very important.
Fairness problems arising from IEEE 802.11p MAC affects the throughput and packet drop rate;
thus, various MAC schemes have been proposed to solve these problems [11]. In terms of reliability,
the accuracy of channel estimation plays a critical role in improving the reliability of communications
in vehicular environments because it generally affects the system performance, including equalization,
demodulation, and decoding performance.

In vehicular environments, wireless channels have a high Doppler shift and large delay
spread [12–14]. As a result, the channel shows time and frequency selective fading characteristics due
to motion and multipath components. The channel variations that occur in vehicular environments
affect the transmitted packet; thus, the channel coefficient can significantly change between the start
and end of the packet. To adapt to these rapid channel variations, IEEE 802.11p PHY was designed
based on IEEE 802.11a PHY [15]. The 802.11p has a bandwidth of 10 MHz which is halved bandwidth
of 802.11a and the carrier frequency is 5.9 GHz, higher than 802.11a. Except for the bandwidth and
carrier frequency, the 802.11p PHY has the same structure as 802.11a; thus, 802.11p uses four pilot
subcarriers in each symbol portion of the packet. However, these pilot subcarriers are insufficient
for tracking the channel variations in vehicular environments [12,13]. This leads to poor system
performance in realistic vehicular environments. Thus, robust and accurate channel estimation is
necessary to obtain excellent communication performance.

1.1. Related Work and its Limitations

From this perspective, various channel estimation techniques have been proposed to enhance
system performance. They are typically divided into two categories, i.e., with and without changing
the IEEE 802.11p standard. With respect to the schemes that change the standard structure [16–21],
because they can supplement the lack of pilots of IEEE 802.11p, outstanding performance can be
obtained compared to approaches that do not modify IEEE 802.11p. However, these methods cause
compatibility and interoperability problems with standard equipment.

Because of the problems mentioned above, the majority of channel estimation schemes do not
change the standard structure [22–30]. In [22], Wiener filter and decision-directed estimation are
employed to minimize the mean squared error (MSE). This scheme requires the characteristics of a
channel that are difficult to obtain in vehicular environments. In [23,24], an adaptive reduced-rank
estimation using subspace selection and an iterative estimation using generalized discrete prolate
spheroidal sequences are proposed, respectively. However, both schemes employ the Wiener filter and
iterative method for channel estimation, resulting in high computational complexity. In [25], a spectral
temporal averaging (STA) method was presented to improve error performance. the STA scheme
performs a moving average of the initial channel estimates in the time and frequency domains so
as to mitigate noise effects and demapping errors. Therefore, the STA scheme performs well at low
signal-to-noise ratio (SNR) regions with strong noise, but an error floor occurs in high-SNR regions.
In [26,27], constructed data pilots (CDPs) and time-domain reliable test frequency domain interpolation
(TRFI) are, respectively, addressed using the correlation characteristics of channels between adjacent
symbols. These schemes obtain excellent performance in high-SNR regions of the signal. However,
in low-SNR regions, the correlation characteristics are very poor due to noise, thus degrading
performance. In [28], a minimum MSE (MMSE) scheme based on a virtual pilot subcarrier was
proposed. In contrast to conventional MMSE which requires prior knowledge of a channel, this scheme
employs virtual pilot subcarriers to obtain a covariance matrix; thus, it is less complex. Although the
MMSE scheme shows good performance in certain cases, it still performs worse than STA in low-SNR
signal regions. To achieve outstanding performance at all SNR levels, two-channel estimation schemes
were developed in [29]. First, a modified CDP (MCDP) was proposed that compensates for poor
performance using a Markov process in the low-SNR region of the CDP. However, MCDP has a higher
error rate than CDP in high-SNR regions; thus, SNR-assisted MCDP (SAMCDP), which selectively
uses MCDP and CDP according to a predefined SNR threshold, has been proposed. Because the SNR



Sensors 2019, 19, 2971 3 of 20

threshold may change depending on the channel environment, an adaptation method based on the
SNR threshold cannot obtain high accuracy. In [30], channel estimation based on self-organization of
frequencies was proposed to mitigate the time-varying channel effects. However, this method requires
decoding and encoding processes that are equal to the number of symbols in a packet for obtaining the
channel estimate, leading to high computational complexity.

1.2. Our Motivation and Contribution

The main motivation for this paper is to obtain a satisfactory performance over the entire range
of SNR levels by improving the channel estimation and tracking performance (without changing
the packet structure), and to comply with the IEEE 802.11p standard. In [31], we have proposed an
adaptive channel estimation scheme that selectively uses two channel estimation schemes to improve
the error performance for the entire SNR range of interest, and have investigated that the channel
estimation performance can be improved by selectively using the better estimation scheme between
schemes STA and MMSE. In this paper, we introduce an enhanced scheme of the adaptive channel
estimation. The main contributions of this paper are given as follows.

• In our previous study [31], the proposed algorithm lacked a clear rationale. Therefore, in this
study, we provide a theoretical analysis of the proposed algorithm. that can verify its validity.

• By using the standard IEEE 802.11p channel model of [32,33], we evaluate the bit error rate (BER)
and packet error rate (PER) of the proposed scheme. By adopting the standard IEEE 802.11p
channel model, it can provide fair and objective performance assessment of the proposed scheme.

• We show that the proposed scheme can selectively use the STA and MMSE or STA and TRFI
channel estimation schemes. This proves that the proposed scheme can be expanded for any
combinations of a channel estimation scheme.

1.3. Paper Overview

Section 2 outlines the IEEE 802.11p and then introduces the channel models considered in
the simulation. Then, the practical channel estimation schemes used by the proposed scheme are
introduced in Section 3. Section 4 presents the adaptation algorithm using the long preamble for
adaptive channel estimation. The error performance of the simulation results for the proposed method
are analyzed with respect to the results of other channel estimation schemes in Section 5. Finally,
Section 6 concludes this paper.

2. IEEE 802.11p Standard and Channel Model

2.1. IEEE 802.11p PHY Layer

Orthogonal frequency division multiplexing (OFDM) is employed in the IEEE 802.11p PHY
layer. The OFDM transmitter sends several parallel data streams through several orthogonal
subcarriers, thereby improving the spectral efficiency and mitigating the severity of multipath
fading. The transmitter and receiver in the OFDM system are shown in Figure 1. In the transmitter,
a convolutional encoder is first utilized for forward error correction. Puncturing can be used to
obtain higher code rate, e.g., 2/3 or 3/4. The coded data is then interleaved to avoid burst errors.
Subsequently, the signal is modulated according to the modulation scheme. After that, a 64-point
inverse fast Fourier transform (IFFT) is performed with 48 data subcarriers, four pilot subcarriers,
and 12 null subcarriers. Finally, the cyclic prefix (CP) and preamble are added. The CP is employed
to prevent inter-symbol and inter-carrier interference, and the preamble is primarily employed for
synchronization and channel estimation.
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Figure 1. Block diagram of transmitter and receiver in OFDM system.

In the receiver, assuming perfect timing and frequency synchronization, the CP is first eliminated
from the received packet. After the signal-to-parallel (S/P) and fast Fourier transform (FFT) blocks,
the preamble and frequency guard band are removed in turn and the channel coefficients are estimated
by two long training symbols. IEEE 802.11p uses a 1-tap equalizer, which compensates for the channel
fading effect by using estimated channel coefficients. The equalized data symbols are then demodulated
according to the modulation scheme. After the decoder and deinterleaver, the demodulated data bits
are converted to sink bits. Table 1 represents the specific system parameters defined in IEEE 802.11p.

Table 1. IEEE 802.11p system parameters.

Parameter Value

Bandwidth 10 MHz
Bit rate 3, 4.5, 6, 9, 12, 18, 24, 27 Mbps

Modulation schemes BPSK, QPSK, 16QAM, 64QAM
Code rate 1/2, 2/3, 3/4

Data subcarriers 48
Pilot subcarriers 4
Total subcarriers 64

FFT period 6.4 µs
CP duration 1.6 µs

Symbol duration 8.0 µs
Subcarrier spacing 0.15625 MHz

The 802.11p PHY layer also defines two types of pilot arrangements, i.e., comb and block types,
for channel estimation, as shown in Figure 2. The comb-type arrangement dedicates four uniformly
distributed pilot subcarriers in each OFDM symbol whereas the block type dedicates all subcarriers as
the pilot except for those dedicated to the null subcarriers. A single OFDM symbol is composed of a
total of 64 subcarriers, numbered −32 to 32; 48 data subcarriers are assigned numbers from −26 to 26,
not including−21,−7, 0, 7, and 21. The pilot subcarriers are allocated to subcarriers−21,−7, 7, and 21.
The remaining indexes, i.e., −32 to −27, 0, and 28 to 31, are used as null subcarriers. IEEE 802.11p uses
a block-comb pilot pattern that combines these two types. As shown in Figure 2, two OFDM symbols
of block type represent long training symbols in the preamble and the remaining OFDM symbols
utilize the comb-type.

In these pilot patterns, the block pilot and comb pilot are suitable for frequency-selective fading
and fast-fading, respectively. However, in vehicular environments, the coherence time is typically
shorter than the packet duration, and the coherence bandwidth is smaller than the four pilot-subcarrier
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spacings [12,13]. Therefore, accurate channel estimation is difficult when only the pilots defined in the
IEEE 802.11p are employed, which degrades performance.

Figure 2. Pilot arrangement of IEEE 802.11p.

2.2. Channel Model in Vehicular Environments

Generally, a mobile radio channel in vehicular environments is a time-varying channel including
multi-path propagation and a large Doppler shift [12–14]. Such a channel can be implemented as a
tapped delay line model (TDL) which is commonly used for implementing the multi-path channel.
The fading of the paths constituting each tap is summed up to obtain Rician or Rayleigh fading, h(t, τ),
which varies with the duration of each tap. The impulse response of small fading with time-frequency
correlation through Doppler and delay spread is represented as follows.

h(t, τ) =
L

∑
l=1

βl(t)δ(τ − τl(t))ej2π fd,l t, (1)

where βl(t), τl(t), and fd,l represent the amplitude, delay, and Doppler shift of the l-th path, respectively.
As the performance of an actual wireless system depends on the state of the channel, it is very important
to analyze the statistical characteristics of the wireless channel; thus, various studies on vehicle to
everything (V2X) channels have been conducted [32–39].

In this study, we use the TDL model proposed in [32,33] to consider the Doppler and delay spread
in realistic vehicular environments. These channel models are classified into six models according
to different scenarios. In the TDL model, each tap has been schematized, including tap power, delay
value, and Doppler spectrum. A concise summary of the proposed six-channel model is provided
in [32]. Of the six models, we consider only two channel models (as shown in Table 2), i.e., V2V
Expressway Oncoming and V2I Urban Canyon, owing to the importance of the real situation in the
six models.
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Table 2. Channel model for simulation.

Scenario
Distance Velocity Doppler Maximum
between Shift Excess

TX & RX (m) (km/h) (Hz) Delay (µs)

V2V Expressway Oncoming 300–400 104 1000–1200 0.3

V2I Urban Canyon 100 32–48 300 0.5

3. Channel Estimation Schemes

In this section, we describe the practical channel estimation schemes that can be selectively used
by the proposed scheme. These channel estimation schemes are compared with the proposed scheme
in Section 5.

3.1. LS Estimation Scheme

The LS scheme performs channel estimation using predefined long training symbol X0(k) in
frequency domain. Since the preamble is composed of two identical long training symbols, the LS
channel estimation is obtained as:

H(0, k) =
Y0(1, k) + Y0(2, k)

2X0(k)
, (2)

where Y0(1, k) and Y0(2, k) are the frequency-domain received symbols at subcarrier k. The channel
estimates obtained by (1) are employed for equalizing all the received symbols in the packet; the channel
variations in vehicular environments are very fast, so channel estimate H(0, k) is not valid over time.
Hence, the LS scheme is difficult to use in vehicular environments.

3.2. STA Estimation Scheme

To track rapidly changing channel variations, the STA scheme continuously updates the channel
estimates. First, the m-th frequency domain received symbol Y(m, k) is divided using the previous
channel estimate H(m− 1, k) as follows:

T̂(m, k) =
Y(m, k)

H(m− 1, k)
, m = 1, · · · , M. (3)

where H(0, k) is equal to (1)
Then, T̂(m, k) is demapped to X̂(m, k) and the demapped symbol is again used to obtain initial

channel estimates Ĥ(m, k) such that,

Ĥ(m, k) =
Y(m, k)
X̂(m, k)

. (4)

Next, to mitigate noise effects and demapping errors in Ĥ(m, k), the moving average of the data
subcarriers in the frequency-domain received symbols is implemented in the frequency and time
domains as

H̃(m, k) =
λ=β

∑
λ=−β

ωλĤ(m, k + λ) (5)

H(m, k) =
(

1− 1
α

)
H(m− 1, k) +

1
α

H̃(m, k), (6)

where ωλ is a set of weighting coefficients defined by 1/(2β + 1), and parameter β and α are the
moving average parameters in frequency and time domains, respectively. These parameters should
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be adaptively varied depending on the channel conditions, but it is very difficult task. Therefore,
STA uses fixed values that show optimal performance, i.e., β = α = 2 [25].

Using the moving average, STA can effectively reduce the demapping errors induced by noise.
However, in high-SNR regions, demapping errors mainly occur due to fading; thus, channel estimation
error is generated by the moving average, thereby, causing an error floor.

3.3. TRFI Estimation Scheme

The TRFI scheme improves performance of the channel estimation by using the fact that adjacent
subcarriers and symbols have high frequency and time correlation properties, respectively. First,
the TRFI computes (1), (2) and (3) above. Channel estimate Ĥ(m, k) is then employed to equalize the
previous received symbol of frequency domain, Y(m− 1, k), as

T̂′(m− 1, k) =
Y(m− 1, k)

Ĥ(m, k)
. (7)

Then, Y(m− 1, k) is equalized by H(m− 1, k), which is previous symbol’s channel estimates.

T̂′′(m− 1, k) =
Y(m− 1, k)
H(m− 1, k)

. (8)

After that, T̂′(m− 1, k) and T̂′′(m− 1, k) are respectively demapped to X̂′(m− 1, k) and X̂′′(m− 1, k)
according to the modulation scheme, for use in the time reliability test.

In the time reliability test, if T̂′(m− 1, k) and T̂′′(m− 1, k) are demapped to the same symbol,
the initial channel estimate Ĥ(m, k) is determined to be the lastest channel estimate. Otherwise,
frequency interpolation is performed using the channel estimates that have passed the time reliability
test to obtain the most recent channel estimates.

The TRFI scheme relies on the precision of the channel estimates that pass the time reliability
test. This scheme performs well in high-SNR regions; however, it cannot exactly track the channel
variations in low-SNR regions, which reduces the accuracy of the channel estimates; thus, the TRFI
scheme perform poorly in low-SNR regions.

3.4. MMSE Estimation Using a Virtual Pilot Subcarrier Scheme

The MMSE is a technique that designates arbitrary virtual pilot subcarriers in
frequency-domain-received symbols and uses them to enhance the accuracy of channel estimation.
The virtual pilots are preliminarily designated data subcarriers, which are uniformly allocated to
maintain the correlation with the subcarriers, i.e., the data and comb pilot subcarriers. The MMSE
scheme employs virtual pilots to obtain channel covariance matrices and performs frequency-domain
channel estimation using them.

In the MMSE scheme, the initial channel estimates of the m-th OFDM symbol obtained by (3) are
first converted into column as

Ĥm = [Ĥ(m,−26), Ĥ(m,−25), Ĥ(m, k)

· · · Ĥ(m, 26)]T , k ∈ Sd, Sp
(9)

where Sd and Sp represents the index set of data and comb pilot subcarriers mentioned Section 2.1,
respectively.

The channel estimates of the comb and virtual pilots are then represented in vector notation

Pm = [Ĥ(m,−21), Ĥ(m,−7), Ĥ(m, k)

· · · Ĥ(m, 21)]T , k ∈ Sp, Svp
(10)
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where Svp denotes index set of virtual pilots. A total of virtual pilot can be changed as 4, 12, or 48 in an
OFDM symbol. The last channel estimate vector is then obtained by

Hm
MMSE = Rm

ĤP

(
Rm

PP + σ2
mI

)−1
Pm, (11)

where Rm
ĤP

and Rm
PP represent the cross-correlation and auto-correlation matrix, respectively.

These matrices are expressed as

Rm
ĤP =

1
m

m

∑
j=1

ĤjPH
j (12)

Rm
PP =

1
m

m

∑
j=1

PjPH
j , (13)

where I denotes the unit matrix of Np × Np. σ2
m is the average noise power of the mth received symbol,

and Np is the total number of comb and virtual pilots in each OFDM symbol.
The MMSE scheme uses these correlation matrices to enhance the channel estimation performance.

In addition, unlike conventional MMSE, prior knowledge of a channel, i.e., the root mean square (RMS)
delay spread and doppler frequency, are not required, and the complexity of the proposed scheme can
hence be reduced. This scheme performs well in certain cases, but it still cannot provide outstanding
performance compared to STA in low-SNR regions.

4. Adaptive Channel Estimation Scheme Based on Preamble

As mentioned above, the number of pilots defined in the IEEE 802.11p is not sufficient to track the
channel variations for high-speed vehicle environments. For this reason, various channel estimation
techniques have been proposed, but satisfactory performance cannot be obtained over the entire
range of SNR levels. Figure 3 shows the BER performance of each channel estimation scheme
obtained by using the IEEE 802.11p link level simulator and by adopting V2I channel model in
urban canyon scenario mentioned in Section 2.2. In Figure 3, STA, MMSE and TRFI have different
SNR region with excellent performance; thus, if a technique that exhibits excellent performance in
the corresponding SNR region can be appropriately used, this leads to a performance improvement.
In addition, STA and MMSE or STA and TRFI create an intersection, which means that two techniques
can be used appropriately based on the intersection. Therefore, in this paper, we propose an adaptive
channel estimation technique to obtain outstanding performance regardless of the level of SNR in
a signal region. The proposed scheme uses one of two channel estimation techniques that exhibit
excellent performance at either high- or low-SNRs.

The adaptive channel estimation scheme chooses the channel estimation technique using a
preamble. The preamble is a known bit sequence to both transmitter and receiver in order to estimate
channel state information (CSI), and the LS technique is widely used in this preamble-based channel
estimation due to its simplicity. LS channel estimate can be obtained as follows:

HLS(k) =
Y(k)
X(k)

= Hp(k) +
Z(k)
X(k)

, (14)

where Hp(k) is the perfect CSI and Z(k) is an additive white gaussian noise (AWGN) with zero mean
and variance σ2

z , i.e., N (0, σ2
z ). Because HLS(k) is still influenced by noise component, Hi(k) can be

obtained by using a candidate channel estimation technique to reduce the noise effect.
To compare the performance of candidate channel estimation schemes, modified MSE is defined as

δ̃i =
1
N

26

∑
k=−26

|HLS(k)− Hi(k)|2 . (15)
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Figure 3. BER performance of QPSK 1/2 in V2I Urban Canyon.

Under the assumption that Hi(k) ≈ Hp(k), modified MSE is approximated as follows:

δ̃i ≈
1
N

26

∑
k=−26

∣∣HLS(k)− Hp(k)
∣∣2 . (16)

The MSE between the LS channel estimate and the perfect CSI is an inversely proportional average
SNR [40]

δLS =
1
N

26

∑
k=−26

(
HLS(k)− Hp(k)

)H (
HLS(k)− Hp(k)

)
=

1
N

26

∑
k=−26

(
Y(k)
X(k)

− Hp(k)
)H (

Y(k)
X(k)

− Hp(k)
)

=
1
N

26

∑
k=−26

(
Z(k)
X(k)

)H (
Z(k)
X(k)

)

=
1
N

26

∑
k=−26

ZH(k)Z(k)
XH(k)X(k)

=
σ2

z
σ2

x

=
1
γ

,

(17)

where γ is average SNR. Therefore, the better channel estimation technique between the candidate
schemes is closer to the perfect CSI, and the modified MSE δ̃i approaches 1/γ. Finally,
adaptation algorithm, ζi is:

ζi =

∣∣∣∣ 1
γ
− δ̃i

∣∣∣∣ . (18)
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The proposed scheme compares the resulting value obtained by performing the adaptation
algorithm on the candidate schemes, and then selects a channel estimation scheme with the smallest
resulting value.

Figure 4 represents the flowchart of the proposed scheme. As shown in Figure 4, the proposed
technique consists of the following five steps. (For ease of technical explanation, specific cases,
i.e., switching between the STA and MMSE schemes or between the STA and TRFI schemes,
are explained by example.)

Figure 4. Flowchart of the proposed scheme.

4.1. LS Estimation

The channel estimate of the long training synbols is first obtained through LS estimation using (1).

4.2. Performing Channel Estimation

In this step, both channel estimation schemes are separately performed on the channel estimate
obtained in the initial step. As mentioned above, this step is described for each specific case.
When switching between STA and MMSE, the methods described in Sections 3.2 and 3.4 are used
as follows:

HSTA(0, k) =
λ=β

∑
λ=−β

ωλH(0, k + λ). (19)
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H0
MMSE = R0

HP

(
R0

PP + σ2
0 I
)−1

P0, (20)

where parameter β is usually set two in order to obtain best performance [25]. For switching between
STA and TRFI, the STA channel estimates are obtained using (18). In the TRFI case, assuming that all
channel estimates have passed the time reliability test, the TRFI channel estimate is set to the that of
the long preamble H(0, k). Hence, the TRFI channel estimate is defined by

HTRFI(0, k) , HLS(0, k)

=
1
2

(
Y(1, k) + Y(2, k)

2X(k)

)
. (21)

This channel estimate is used to calculate the adaptation algorithm, and details are covered in
Section 4.4.

4.3. Estimation of Average SNR

In order to implement the adaptation algorithm, a process for estimating the average SNR is
needed. It is very difficult to obtain reliable SNR values in mobile systems; thus, various SNR
estimation methods have been proposed to address this problem [41–44]. In [44], the preamble is
employed to estimate the average SNR. This technique has the advantages of being applicable to
OFDM-based systems and shows high accuracy [29].

In this paper, we assume that the average SNR estimation is perfect to verify the adaptation
algorithm.

4.4. Calculation of Adaptation Algorithm

To select the best channel estimation technique, the adaptation algorithm is calculated for each
channel estimation technique using the channel estimates and average SNR obtained from the prior
steps. The adaptation algorithm derived above according to each channel estimation is expressed
as follows.

ζSTA =

∣∣∣∣ 1
γ
− δ̃STA

∣∣∣∣ (22)

ζMMSE =

∣∣∣∣ 1
γ
− δ̃MMSE

∣∣∣∣ (23)

ζTRFI =

∣∣∣∣ 1
γ
− δ̃TRFI

∣∣∣∣ . (24)

When switching between STA and MMSE, (21) and (22) are compared, and when switching
between STA and TRFI, (21) and (23) are compared.

4.5. Selection of Channel Estimation

The key of the proposed scheme is to selectively use a channel estimation scheme that minimizes
adaptation algorithm. Therefore, the last step compares the adaptation algorithm of each channel
estimation scheme and determines the channel estimation scheme with the smallest resulting value.
Comparing the STA to MMSE, it is found that the STA is more efficient than the MMSE at attenuating
noise; thus, the STA has a resulting value less than MMSE in low-SNR regions. As a results,
the probability that STA is selected increases in low-SNR signal regions. In contrast, as the SNR
increases, the effects of noise decreases, and the STA causes an error floor because of the degraded
channel estimation accuracy. Therefore, the resulting value of the STA increases as a result of this error
floor in high-SNR regions. This leads to an increase in the probability that the STA is not selected.
However, because MMSE exhibits excellent channel performance in high-SNR regions, they have a
smaller resulting value as the SNR increases than STA, i.e., MMSE have a high probability of being
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selected. Comparing the STA to TRFI, since the channel estimate of TRFI is set to H(0, k), the modified
MSE of TRFI is zero; thus, the adaptation algorithm depends on 1/γ. The STA causes an error floor in
high-SNR regions, but 1/γ decreases as the SNR increases. Therefore, TRFI is selected after the point
where error floor occurs. Figure 5 shows that the channel estimation scheme selected through the last
step is employed to equalize all data symbols in the packet.

Figure 5. The last step of the proposed scheme.

5. Simulation Results

In this section, we present a performance analysis of our proposed scheme. By using the IEEE
802.11p link level simulator, BER and PER simulations have been performed on LS, STA, TRFI, MMSE,
SAMCDP, and two versions of the proposed scheme, i.e., switching between STA and MMSE or
between STA and TRFI. The IEEE 802.11p link-level simulator was designed to comply with the
transmitters and receivers in OFDM systems of IEEE 802.11p (as shown in Figure 1) by using MATLAB.
The simulations are performed by following the system parameters in Table 1 and are conducted on
V2V and V2I channel models in Table 2. The modulation schemes employ QPSK (Figures 6 and 7) and
16QAM (Figures 8 and 9) with a code rate of 1/2 and the packet is composed of 50 OFDM symbols.
The performance of STA depends on the moving average parameters α and β, and that of MMSE
depends on the number of virtual pilots. Therefore, to obtain the maximum performance in the STA
and MMSE, α and β are set to 2 and 48 virtual pilots are used, respectively.
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(a) BER performance

(b) PER performance

Figure 6. Performance analysis of STA, TRFI, MMSE, SAMCDP, and the proposed scheme (V2V
Expressway Oncoming, QPSK 1/2, 50 symbols).
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(a) BER performance

(b) PER performance

Figure 7. Performance analysis of STA, TRFI, MMSE, SAMMCDP, and the proposed scheme (V2I
Urban Canyon, QPSK 1/2, 50 symbols).
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(a) BER performance

(b) PER performance

Figure 8. Performance analysis of STA, TRFI, MMSE, SAMMCDP, and the proposed scheme (V2V
Expressway Oncoming, 16QAM 1/2, 50 symbols).
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(a) BER performance

(b) PER performance

Figure 9. Performance analysis of STA, TRFI, MMSE, SAMMCDP, and the proposed scheme (V2I
Urban Canyon, 16QAM 1/2, 50 symbols).
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Figures 6 and 8 present the BER and PER for STA, TRFI, MMSE, SAMCDP, and the proposed
scheme in the V2V channel environment, whereas Figures 7 and 9 show the BER and PER of these
methods in the V2I channel environment. The left side represents the BER and the right side shows
the PER.

The results for the V2V channel model (Figures 6 and 8) reveal that the STA performs well
in low-SNR regions, but has an error floor in high-SNR regions. In contrast to STA, MMSE and
TRFI performs better only in high-SNR regions. In addition, SAMCDP has lower performance than
the channel estimation schemes which show good performance in the high- or low-SNR regions.
The proposed scheme provides the performance of STA in low-SNR signal regions and the performance
of the corresponding scheme in high-SNR signal regions. Our scheme compared to MMSE, TRFI,
and SAMCDP can achieve a performance advantage of about 3–6 dB at a BER for QPSK of 7 × 10−2

and provide a gain about 2–5 dB at a PER for that of 5 × 10−1. When STA and MMSE are used for
switching, the proposed scheme over TRFI and SAMCDP offers the gain of about 3 dB at a BER of
7 × 10−3 and provide the advantage about 7 dB at a PER of 8 × 10−2. In particular, we can see that
the error flow of STA, which occurred in high-SNR regions, has been solved in the proposed scheme.
In both BER and PER for 16QAM, as with QPSK, the proposed scheme provides the performance of
two different schemes depending on the SNRs, and show the performance improvement compared
to the other schemes. These results show that in both QPSK and 16QAM, this scheme provides the
performance gain over the entire SNR range, as well as the ability to use various channel estimation
schemes through proper adaptation algorithm.

For the V2I channel model, Figures 7 and 9 show that the performance of the channel estimation
scheme behaves similarly to the performance in the V2V channel model. The STA shows good
performance in low-SNR regions, whereas TRFI and MMSE perform very well in the high-SNR regions.
The SAMCDP performs worse than STA in the low-SNR regions and worse than TRFI and MMSE in
the high-SNR regions. The proposed scheme has the performance of the STA in the low-SNR regions
and the performance of the TRFI or MMSE scheme in high-SNR regions. Figure 7a,b shows that the
proposed scheme compared MMSE, TRFI and SAMCDP offers about 4–7 dB gain at a BER of 4 × 10−2

and can achieve about 2–6 dB gain at a PER of about 3 × 10−1, respectively. In case of switching STA
and MMSE, our scheme provides about 6 dB at a BER of 5 × 10−3 and at a PER of 8 × 10−2 compared
to TRFI and SAMCDP. Figure 9 shows that the proposed scheme has the same trend as QPSK in
the BER and PER performances for 16QAM and improves performance over the entire SNRs. These
simulation results verify the fact that the proposed scheme is not affected by the channel environment.

6. Conclusions

In this paper, we reviewed the IEEE 802.11p standard and described the problems of this standard
in time-varying channels. IEEE 802.11p cannot track rapidly changing channel variations because
of a lack of pilots for channel estimation. To overcome the channel estimation problems arising
from this limitation, various channel estimation techniques that do not need to change the standard
have been proposed. However, none of the current channel estimation schemes provide satisfactory
performance over the entire range of SNR levels. Therefore, we have proposed an adaptive channel
estimation scheme that selectively uses one of two channel estimation schemes with good performance
in their corresponding SNR region to obtain outstanding performance over the entire SNR range.
The performance for two channel models has been analyzed, and the simulation results demonstrate
that the proposed scheme can selectively use two channel estimation techniques regardless of the
environment. Nevertheless, the PER of the proposed scheme does not decrease below 10−1 in 16QAM;
thus, we plan to continue our research to increase the performance of high-order modulation.
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