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Abstract: A High Altitude Platform Station (HAPS) can facilitate high-speed data communication
over wide areas using high-power line-of-sight communication; however, it can significantly interfere
with existing systems. Given spectrum sharing with existing systems, the HAPS transmission
power must be adjusted to satisfy the interference requirement for incumbent protection. However,
excessive transmission power reduction can lead to severe degradation of the HAPS coverage. To
solve this problem, we propose a multi-agent Deep Q-learning (DQL)-based transmission power
control algorithm to minimize the outage probability of the HAPS downlink while satisfying the
interference requirement of an interfered system. In addition, a double DQL (DDQL) is developed
to prevent the potential risk of action-value overestimation from the DQL. With a proper state,
reward, and training process, all agents cooperatively learn a power control policy for achieving a
near-optimal solution. The proposed DQL power control algorithm performs equal or close to the
optimal exhaustive search algorithm for varying positions of the interfered system. The proposed
DQL and DDQL power control yields the same performance, which indicates that the actional value
overestimation does not adversely affect the quality of the learned policy.

Keywords: Deep Q-learning (DQL); Double Deep Q-learning (DDQL); dynamic spectrum
sharing; High Altitude Platform Station (HAPS); cellular communications; power control;
interference management

1. Introduction

A High Altitude Platform Station (HAPS) is a network node operating in the strato-
sphere at an altitude of approximately 20 km. The International Telecommunication Union
(ITU) defines a HAPS in Article 1.66A as “A station on an object at an altitude of 20 to
50 km and a specified, nominal, fixed point relative to the Earth”. Various studies have
been performed on HAPS in recent years, and the commercial applications of HAPS have
significantly increased [1]. In addition, the HAPS has potential as a significant component
of wireless network architectures [2]. It is also an essential component of next-generation
wireless networks, with considerable potential as a wireless access platform for future
wireless communication systems [3–5].

Because the HAPS is located at high altitudes ranging from 20 to 50 km, the HAPS-
to-ground propagation generally experiences lower path loss and a higher line-of-sight
probability than typical ground-to-ground propagation. Thus, the HAPS can provide
a high data rate for wide coverage; however, it is likely to interfere with various other
terrestrial services, e.g., fixed, mobile, and radiolocation. The World Radiocommunica-
tion Conference 2019 (WRC-19) adopted a HAPS as the IMT Base Station (HIBS) in the
frequency bands below 2.7 GHz previously identified for IMT by Resolution 247 [6], which
addresses the potential interference of HAPS with an existing service. In such a situation,
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if the existing service is not safe from HAPS interference, the two systems cannot coexist.
Therefore, the HAPS transmitter is requested to reduce its transmission power to satisfy
the interference–to–noise ratio (INR) requirement for protecting the receiver of the existing
service. However, if the HAPS transmission power is excessively reduced, the signal–to–
interference–plus–noise ratio (SINR) of the HAPS downlink decreases; thus, the outage
probability may exceed the desired level. Herein, a HAPS transmission power control
algorithm is proposed that aims to minimize the outage probability of the HAPS downlink
while satisfying the INR requirement for protecting incumbents.

1.1. Related Works

Studies have been performed on improving the performance of HAPS. In [7], resource
allocation for an Orthogonal Frequency Division Multiple Access (OFDMA)-based HAPS
system that uses multicasting in the downlink to maximize the number of user terminals by
maximizing the radio resources was studied. The authors of [8] proposed a wireless channel
allocation algorithm for a HAPS 5G massive multiple-input multiple-output (MIMO)
communication system based on reinforcement learning. Combining Q-learning and
backpropagation neural networks allows the algorithm to learn intelligently for varying
channel load and block conditions. In [9], a criterion for determining the minimum distance
in a mobile user access system was derived, and a channel allocation approach based on
predicted changes in the number of users and the call volume was proposed.

Additionally, spectrum sharing studies on HAPS have been performed. In [10], a
spectrum sharing study was conducted to share a fixed service using a HAPS with other
services in the 31/28-GHz band. Interference mitigation techniques were introduced, e.g.,
increasing the minimum operational elevation angle or improving the antenna radiation
pattern to facilitate sharing with other services. In addition, the possibility of dynamic
channel allocation was analyzed. In [11], sharing between a HAPS and a fixed service in
the 5.8-GHz band was investigated using a coexistence methodology based on a spectrum
emission mask.

In contrast to previous studies in which HAPS communication improvement and spec-
trum sharing were dealt with separately, in the present study, a combination of spectrum
sharing with other systems and HAPS downlink coverage improvement is considered. In
this regard, this study is more advanced than previous HAPS-related studies.

Deep Q-learning (DQL) is a reinforcement learning algorithm that applies deep neural
networks to reinforcement learning to solve complex problems in the real world. DQL
is widely used in various fields, including UAV, drone, and HAPS. In [12], the optimal
UAV-BS trajectory was presented using a DQL for optimal placement of UAVs, and the
author of [13] used a DQL to determine the optimal link between two UAV nodes. In [14],
a DQL is used to find the optimal flight parameters for the collision-free trajectory of the
UAV. In [15], two-hop communication was considered to optimize the drone base station
trajectory and improve network performance, and a DQL was used to solve the joint two-
hop communication scenario. In [16], a DQL was used for multiple-HAPS coordination
for communications area coverage. A Double Deep Q-learning (DDQL) is an algorithm
developed to prevent the overestimation of a DQL and shows better performance than the
DQL in various fields [17].

1.2. Contributions

The contributions of the present study are as follows. (1) For the first time, a multia-
gent DQL was used to improve the HAPS outage performance and solve the problem of
spectrum sharing with existing services. (2) We defined the power control optimization
problem to minimize the outage probability of the HAPS downlink under the interference
constraint for protecting the existing system. The state and reward for the training agent
were designed to consider the objective function and constraints of the optimization prob-
lem. (3) Because the HAPS has a multicell structure, the number of power combinations
increases exponentially as the number of cells (Ncell) and power levels increase linearly.
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Thus, the optimal exhaustive search method requires an impractically long computation
time to solve the multicell power optimization problem. The proposed DQL algorithm
performs comparably to an optimal exhaustive search with a feasible computation time.
(4) Even for varying positions of the interfered system, the proposed DQL produces a
proper power control policy, maintaining stable performance. (5) Comparing the proposed
DQL algorithm with the DDQL algorithm shows no performance degradation due to
overestimation in the proposed DQL. The remainder of this paper is organized as follows.

Section 2 presents the system model, including the system deployment model, HAPS
model, interfered system model, and path loss model. In Section 3, the downlink SINR and
INR are calculated. In Section 4, a DQL-based HAPS power control algorithm is proposed.
Section 5 presents the simulation results, and Section 6 concludes the paper.

2. System Model
2.1. System Deployment Model

HAPS communication networks are assumed to consist of a single HAPS, multi-
ple ground user equipment (UE) devices (referred to as UEs hereinafter), and a ground
interfered receiver. The HAPS, UE, and interfered receiver are distributed in the three-
dimensional Cartesian coordinate system, as shown in Figure 1. The coordinates of the
HAPS antenna and the interfered receiver antenna are (0, 0, hHAPS) and (X, Y, hV), respec-
tively. The NUE UE devices with an antenna height of hUE are uniformly distributed within
the circular HAPS area.

Sensors 2022, 22, 1630 3 of 21 
 

 

increases exponentially as the number of cells (𝑁௖௘௟௟) and power levels increase linearly. 
Thus, the optimal exhaustive search method requires an impractically long computation 
time to solve the multicell power optimization problem. The proposed DQL algorithm 
performs comparably to an optimal exhaustive search with a feasible computation time. 
(4) Even for varying positions of the interfered system, the proposed DQL produces a 
proper power control policy, maintaining stable performance. (5) Comparing the pro-
posed DQL algorithm with the DDQL algorithm shows no performance degradation due 
to overestimation in the proposed DQL. The remainder of this paper is organized as fol-
lows. 

Section 2 presents the system model, including the system deployment model, HAPS 
model, interfered system model, and path loss model. In Section 3, the downlink SINR 
and 𝐼𝑁𝑅 are calculated. In Section 4, a DQL-based HAPS power control algorithm is pro-
posed. Section 5 presents the simulation results, and Section 6 concludes the paper. 

2. System Model 
2.1. System Deployment Model 

HAPS communication networks are assumed to consist of a single HAPS, multiple 
ground user equipment (UE) devices (referred to as UEs hereinafter), and a ground inter-
fered receiver. The HAPS, UE, and interfered receiver are distributed in the three-dimen-
sional Cartesian coordinate system, as shown in Figure 1. The coordinates of the HAPS 
antenna and the interfered receiver antenna are (0, 0, ℎு஺௉ௌ) and (X, Y, ℎ௏), respectively. 
The 𝑁௎ா UE devices with an antenna height of ℎ௎ா are uniformly distributed within the 
circular HAPS area. 

 
Figure 1. System deployment model. 

2.2. HAPS Model 
We modeled the HAPS cell deployment and system parameters with reference to the 

working document for a HAPS coexistence study performed in preparation for WRC-23 
[18]. As shown in Figure 2, a single HAPS serves multiple cells that consist of one 1st layer 
cell denoted as 𝐶𝑒𝑙𝑙_1 and six 2nd layer cells denoted as 𝐶𝑒𝑙𝑙_2 to 𝐶𝑒𝑙𝑙_7. The six cells of 
the 2nd layer are arranged at intervals of 60° in the horizontal direction. Figure 3 presents 
a typical HAPS antenna design for seven-cell structures [4], where seven phased-array 
antennas conduct beamforming toward the ground to form seven cells, as shown in Figure 
2. The 1st layer cell has an antenna tilt of 90°, i.e., perpendicular to the ground; the 2nd 
layer cell has an antenna tilt of 23°. 

Figure 1. System deployment model.

2.2. HAPS Model

We modeled the HAPS cell deployment and system parameters with reference to the
working document for a HAPS coexistence study performed in preparation for WRC-23 [18].
As shown in Figure 2, a single HAPS serves multiple cells that consist of one 1st layer cell
denoted as Cell_1 and six 2nd layer cells denoted as Cell_2 to Cell_7. The six cells of the 2nd
layer are arranged at intervals of 60◦ in the horizontal direction. Figure 3 presents a typical
HAPS antenna design for seven-cell structures [4], where seven phased-array antennas
conduct beamforming toward the ground to form seven cells, as shown in Figure 2. The 1st
layer cell has an antenna tilt of 90◦, i.e., perpendicular to the ground; the 2nd layer cell has
an antenna tilt of 23◦.

The antenna pattern of the HAPS was designed using the antenna gain formula pre-
sented in Recommendation ITU-R M.2101 [19]. The transmitting antenna gain is calculated
as the sum of the gain of a single element and the beamforming gain of a multi-antenna
array. The single element antenna gain is determined by the azimuth angle (φ) and the
elevation angle (θ) between the transmitter and receiver and is calculated as follows:

AE(φ, θ) = GE,max −min{−[AE,H(φ) + AE,v(θ)], Am} , (1)
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where GE,max represents the maximum antenna gain of a single element, AE,H(φ) represents
the horizontal radiation pattern calculated using Equation (2), and AE,v(θ) represents the
vertical radiation pattern calculated using Equation (3).

AE,H(φ) = −min

[
12
(

φ

φ3dB

)2
, Am

]
(2)

Here, φ3dB represents the horizontal 3 dB beamwidth of a single element, and Am
represents the front-to-back ratio.
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AE,V(θ) = −min

[
12
(

θ − 90
θ3dB

)2
, SLAv

]
(3)

Here, θ3dB represents the vertical 3 dB bandwidth of a single element, and SLAv
represents the front-to-back ratio.

The transmitting antenna gain of the HAPS is calculated using the antenna arrange-
ment and spacing, as well as the target beamforming direction. The gain for beam i is
calculated as follows:

AA,Beami(θ, φ) = AE(θ, φ) + 10 log10

(∣∣∣∑NH
m=1 ∑NV

n=1 wi,n,m · vn,m

∣∣∣2), (4)

where NH and NV represent the number of antennas in the horizontal and vertical direc-
tions, respectively. vn,m is the superposition vector that overlaps the beams of the antenna
elements, which is calculated using Equation (5), and wi,n,m is the weight that directs the
antenna element in the beamforming direction, which is calculated using Equation (6).

n = 1, 2, . . . NV ; m = 1, 2, . . . NH

vn,m = exp
(√
−1 · 2π

(
(n− 1) · dV

λ · cos(θ) + (m− 1) · dH
λ · sin(θ) · sin(φ)

)) (5)

Here, dH and dV represent the intervals between the horizontal and vertical antenna
arrays, respectively, and λ represents the wavelength.

wi,n,m = 1√
NH NV

exp
(√
−1

·2π
(
(n− 1) · dV

λ · sin(θi,etilt)− (m− 1) · dH
λ · cos(θi,etilt)

·sin(φi,escan)))

(6)

Here, φi,escan and θi,etilt represent the φ and θ of the main beam direction, respectively.
The 1st layer cell of the HAPS uses a 2 × 2 antenna array, and the 2nd layer cell uses a

4 × 2 antenna array. Figure 4 shows the antenna pattern of the 1st layer cell, and Figure 5
shows the antenna pattern of the 2nd layer cell.
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2.3. Interfered System Model

Various interfered systems, e.g., fixed, mobile, and radiolocation services, can be
considered for the interference scenario involving a HAPS. We adopted a ground IMT base
station (BS) for the interfered system, referring to the potential interference scenario [6].
The antenna pattern of the interfered system was applied by referring to Recommendation
ITU-R F.1336 [20]. The receiving antenna gain is calculated as follows:

G(φ, θ) = G0 + Ghr(xh) + R·Gvr(xv), (7)

where G0 represents the maximum gain in the azimuth plane; Ghr(xh) represents the relative
reference antenna gain in the azimuth plane in the normalized direction of (xh, 0), which is
calculated using Equation (8); and Gvr(xv) represents the relative reference antenna gain
in the elevation plane in the normalized direction of (0, xv), which is calculated using
Equation (9). R represents the horizontal gain compression ratio when the azimuth angle is
shifted from 0◦ to φ, which is calculated using Equation (10).

Ghr(xh) = −12x2
h f or xh ≤ 0.5

Ghr(xh) = −12x(2−kh)
h − λkh f or 0.5 < xh

Ghr(xh) ≥ G180

(8)

Gvr(xv) = −12x2
v f or xv < xk

Gvr(xv) = −15 + 10 log(x−1.5
v + kv) f or xk ≤ xv < 4

Gvr(xv) = −λkv − 3− C log(xv) f or 4 ≤ xv < 90/θ3
Gvr(xv) = G180 f or xv ≥ 90/θ3

(9)

R =
Ghr(xh)− Ghr(180◦/φ3)

Ghr(0)− Ghr(180◦/φ3)
(10)

Here, xh and λkh are given by Equations (11) and (12), respectively; φ3 represents the 3
dB beamwidth in the azimuth plane; and kh is an azimuth pattern adjustment factor based
on the leaked power. The relative minimum gain G180 was calculated using Equation (13).

xh = |φ |/φ3 (11)
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λkh = 3
(

1− 0.5−kh
)

(12)

G180 = −15 + 10 log(1 + 8ka)− 15 log
(

180◦

θ3

)
(13)

Returning to Equation (9), xv is given by Equation (14), and the 3-dB beamwidth in
the elevation plane θ3 is calculated using Equation (15), where G0 represents the maximum
gain in the azimuth plane. In addition, xk is calculated using Equation (16), where kv is an
elevation pattern adjustment factor based on the leaked power. λkv was calculated using
Equation (17), and the attenuation inclination factor C was calculated using Equation (18).
Figure 6 shows the antenna pattern of the interfered system calculated using Equation (7),
which is the pattern for a typical terrestrial BS with a broad beamwidth in the azimuth
plane but a narrow beamwidth in the elevation plane.

xv = |θ |/θ3 (14)

θ3 = 107.6× 10−0.1G0 (15)

xk =
√

1.33− 0.33kv (16)

λkv = 12− C log(4)− 10 log
(

4−1.5 + kv

)
(17)

C =

10 log

( (
180◦

θ3

)1.5
· (4−1.5+kv)

1+8kp

)
log
(

22.5◦
θ3

) (18)
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2.4. Path Loss Model

The path loss model of Recommendation ITU-R P.619 [21] was applied to the working
document for the HAPS coexistence study performed in preparation for WRC-23 [22].
The total path loss that occurs when the HAPS signal reaches the UE and the IMT BS is
expressed as follows:

Lp = FSL + Axp + Ag + Abs, (19)
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where FSL represents the free-space path loss calculated using Equation (20), which occurs
in a straight path from a transmitting antenna to a receiving antenna in a vacuum state, and
Axp is assumed to be 3 dB for depolarization attenuation. Ag represents the attenuation
loss due to atmospheric gases. Abs represents the resistive loss due to the spread of the
antenna beam as the beam spreads attenuation. Ag and Abs were calculated using the
formulae in P.619.

FSL = 92.45 + 20 log( f ·d) (20)

Here, f represents the carrier frequency (in GHz), and d represents the distance (in
km) between the transmitter and receiver.

3. Calculation of Downlink SINR and INR
3.1. Calculation of Downlink SINR

The signal received by the UE from the HAPS transmission for the ith cell (Cell_i) is
calculated as follows:

SCell_i = PCell_i + GCell_i + Gp + Gr,UE − Lp − Lohm, (21)

where PCell_i represents the HAPS transmission power for Cell_i, GCell_i represents the
transmitting antenna gain of Cell_i, Gp represents the polarization gain, Gr,UE represents
the receiving antenna gain, and Lohm represents the ohmic loss. The UE receives signals
from all Ncell cells and considers the remaining signals (except for the strongest Cell j
signal) as interference. Equation (22) is used to calculate the signal and interference, and
the receiver noise is calculated using Equation (23).

j = argmax
i

SCell_i

SHAPS = SCell_j

IHAPS,UE = 10 log(∑Ncell
i = 1
i 6= j

10
SCell_i

10 )

(22)

N = 10 log(k× T × BW) + N f (23)

Here, k and T represent the Boltzmann constant and noise temperature, respectively,
and BW represents the channel bandwidth. N f represents the noise figure. Finally, the
downlink SINR is calculated as follows:

η = 10 log

 10
SHAPS

10

10
IHAPS,UE

10 + 10
N
10

. (24)

3.2. Calculation of INR

The interference power received by the interfered receiver from the HAPS transmitter
servicing Cell i is calculated as follows:

ICell_i = PCell_i + GCell_i + Gp + Gr,V − Lp − Lohm, (25)

where Gr,V represents the antenna gain of the interfered receiver. The aggregated interfer-
ence power at the interfered receiver is calculated as follows:

IHAPS,V = 10 log

(
Ncell

∑
i=1

10
ICell_i

10

)
. (26)

Finally, after converting the aggregated interference into INR form in accordance with
Equation (27) and comparing it with the protection criteria (INRth) of the interfered receiver,
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it is possible to check whether the interfered receiver is protected from the interference of
the HAPS.

INR = IHAPS,V − N (27)

4. DQL-Based HAPS Transmission Power Control Algorithm
4.1. Problem Formulation

To satisfy the INRth of the interfered system, the transmission power of the HAPS
must be reduced. However, as the power of the HAPS is reduced, the η of the UE decreases,
and the outage probability Pout increases. Thus, the objective of this study was to find a
HAPS transmission power set for each cell, i.e., P = {PCell_i|i = 1, · · · , Ncell}, that satisfies
the INRth of the interfered system while minimizing Pout. The optimization problem of the
HAPS transmission power can be formulated as follows:

min
P

Pout =
NUE,o(P)

NUE

s.t. C1 : INR ≤ INRth
C2 : Pmin ≤ PCelli ≤ Pmax ∀i ∈ {1, · · · , Ncell},

(28)

where NUE,o(P) represents the number of UEs that do not satisfy the minimum required
SINR ηo for a given HAPS transmission power set P.

4.2. Proposed Algorithm

To control the HAPS transmission power, it is necessary to independently determine
the power level of each cell. Accordingly, the total number of HAPS transmission power
sets increases exponentially to NNcell

p as the number of selectable powers Np increases
linearly. Although an exhaustive search algorithm can be used to find optimal solutions,
this incurs excessive complexity and a long computation time. To solve this problem, we
propose a DQL-based power optimization algorithm that can find a near-optimal P with
low complexity. In the proposed DQL model, each agent functions as the power controller
of a cell; accordingly, the number of agents is Ncell .

The agent—the subject of learning—learns a deep neural network called Deep Q
Network (DQN) and selects an action using this network. DQL is an improved Q-learning
method. Q-learning is a method for selecting the best action in a specific state through
the Q-table of a state-action pair. As the state–action space grows in Q-learning, creating
a Q-table and finding the best policy become highly complex. In addition, the use of
Q-learning is limited because learning in the Q-table format becomes more complex when
multiple agents are used. In contrast, a DQL is a promising way to solve the curse of
dimensionality by approximating a Q function using a deep neural network instead of a
Q-table. The proposed algorithm uses a method in which each agent learns a policy based
on its observation and action while treating all other agents as part of the environment to
solve the multiple-agent problem.

The basic DQL parameters (state, action, and reward) are presented below. Each agent
learns the policy independently using the training data at each timestep t. The state space
of the mth agent comprises a set of (Ncell − 1) interferences that the agent provides to UEs
located at the centers of other cells and the agent’s interference to the interfered receiver,
which is expressed as

St = {Iv, {IUE_i|i = 1, · · · , Ncell , and i 6= m}}. (29)

Two power sets configure the action space of an agent: A1 = {29, 31, 33, 35, 37} and
A2 = {26, 28, 30, 32, 34} (unit: dBm). The agent of Cell_1 in the 1st layer cell selects an
action from A1, and the agents of the 2nd layer cell select an action from A2. All agent
actions are initialized to the minimum power value to minimize the interference to the
interfered receiver at the beginning of the learning process. The reward is calculated
as follows. First, because the interfered receiver must be safe from HAPS interference,
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an agent receives a fixed rt of −100 (deficient value) for INR > INRth. In contrast, for
INR ≤ INRth, an agent receives rt computed according to the lower 5% downlink SINR of
each cell {η̂i|i = 1, 2, · · · , Ncell} and the required SINR ηo. The reward can be expressed
as

rt =

{
r1, t + r2, t f or INR ≤ INRth

rt = −100 otherwise,
, (30)

where
r1,t = 10·(∑(η̂i − ηo)) f or η̂i ≥ ηo

r2,t = ∑(η̂i + ηo) f or η̂i < ηo.
(31)

Figure 7 shows the structure of the proposed DQL-based HAPS transmission power
control algorithm. Each agent learns its DQN, and one DQN consists of the main network,
target network, and replay memory. The main network estimates the Q-value Q(s, a; w)
corresponding to the state–action pair through a deep neural network with a weight
w. The main network consists of an input layer composed of seven neurons, a hidden
layer consisting of 24 neurons, and an output layer consisting of five neurons. It is a
fully connected network. w is updated every t in the direction that minimizes the loss
function L(w) = E

[(
yj −Q(s, a; w)

)2
]
. The target network calculates the target value

yj = rj + γmax
a′

Q̂(s′, a′; w−), where γ is the discount factor; s′ and a′ denotes the state and

action, respectively, in the next step; and Q̂(s′, a′; w−) is the Q-value estimated through
the target network with weight w−. The agent’s transition tuple (st, at, rt, st+1) is piled in
the replay memory, from which a minibatch (size of 512 tuples) are randomly sampled at
each step. The minibatch data are used to compute the target value yj. In a DQL, learning
is stabilized, and the learning performance is improved through replay memory and a
separate target network [23].
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Algorithm 1 describes the proposed DQL-based HAPS transmission power control
algorithm. For DQN training, N was set as 100,000, and the minibatch size was set as 512.
M was set as 500, and T was set as 10. The Adam optimizer was used to minimize L(w),
and the learning rate and γ were 0.01 and 0.995, respectively. An ε-greedy policy was used
to balance exploration and exploitation; ε was initially set as 1 and was reduced by 0.01 for
every episode.

Algorithm 1. Training Process for the DQL-Based HAPS Power Control Algorithm

1: Initialize the replay memory D to capacity N
2: Initialize the Q-function with random weights w
3: Initialize the target Q̂-function with the same weights: w− = w
4: for episode = 1, M do
5: Initialize action a0 = min

a
A

6: for timestep = 1, T do
7: if t = 1
8: Calculate st via Equations (21) and (25)
9: end if
10: With probability, select a random action at
11: Otherwise, select at = argmax

a
Q(st, a; w)

12: Assign the selected power to the mth cell and compute INR and η

13: Observe the reward rt and st+1
14: Store the experience in (st, at, rt, st+1) in D
15: Sample a random minibatch of experiences from D
16: Set yj = rj + γmax

a′
Q̂
(
s′, a′; w−

)
17: Perform optimization via L(w) and update w
18: Update the target network Q̂ with w− = w every 4 steps
19: end for
20: end for

A DDQL is a reinforcement learning algorithm to improve performance degradation
due to the overestimation of the DQL. Action-value can be overestimated by the maxi-
mization step in line 16 of Algorithm 1. Therefore, the DDQL calculates the target value as

yj = rj + γQ̂

(
s′, argmax

a′
Q(s′, a′; w); w−

)
to eliminate the maximization step. The DDQL-

based HAPS power control algorithm proceeds the same way as Algorithm 1 except for
calculating the target value.

5. Simulation Results
5.1. Simulation Configuration

The simulation was conducted using MATLAB for three positions of the interfered
receiver, and the learning order of the agent was randomly set for each t. Subsequently,
the simulation proceeded according to Algorithm 1. When all M episodes were finished,
the simulation ended, and the set Pc composed of the power selected by each agent was
calculated as the simulation result. Finally, the performance of the simulation was verified
by comparing Pc with the optimal power set P∗ obtained via an exhaustive search algo-
rithm considering all NNcell

p cases. The total elapsed time of the DQL and exhaustive search
was about 7500 s and 21,000 s, respectively. The total elapsed time of the exhaustive search
increased exponentially with the rise of N, but the DQL did not. Therefore, the computa-
tional efficiency of the DQL is more remarkable as the number of cells and power levels
increase. In this simulation, performance comparison with the DDQL was additionally
performed to check performance degradation due to overestimation of the DQL.



Sensors 2022, 22, 1630 12 of 20

We applied the HAPS parameters and interfered system parameters, referring to the
working document for the HAPS coexistence study performed in preparation for WRC-
23 [18,24]. The simulation parameters of the two systems are presented in Tables 1 and 2,
respectively.

Table 1. HAPS system parameters.

Parameter Value

Center frequency ( f ) 2545 MHz

Channel bandwidth (BW ) 20 MHz

Area radius 90 km

Altitude (hHAPS ) 20 km

Number of cells (Ncell ) 7

Antenna pattern Recommendation ITU-R M.2101

Element gain (GE,max ) 8 dBi

Horizontal/vertical 3 dB beamwidth of
single element 65◦ for both H/V

Antenna array configuration
(Row × column)

2 × 2 elements (1st layer cell)
4 × 2 elements (2nd layer cell)

Ohmic losses (Lohm) 2 dB

Antenna tilt 90◦ (1st layer cell)
23◦ (2nd layer cell)

Antenna polarization Linear/±45◦

Number of distributed UEs (NUE ) 1000

UE height 1.5 m

UE antenna gain −3 dBi

Minimum required SINR (ηo ) −10 dB

Table 2. Interfered system (IMT BS) parameters.

Parameter Value

Center frequency ( f ) 2545 MHz

Channel bandwidth (BW ) 20 MHz

Noise figure
(

N f ) 5 dB

Antenna height (hV) 20 m

Antenna tilt 10◦

Antenna pattern

Recommendation ITU-R F.1336 (recommends
3.1)

ka = 0.7
kp = 0.7
kh = 0.7
kv = 0.3

Horizontal 3 dB beamwidth: 65◦

Vertical 3 dB beamwidth is determined from
the horizontal beamwidth equations in

Recommendation ITU-R F.1336.
Vertical beam widths of actual antennas may

also be used when available.



Sensors 2022, 22, 1630 13 of 20

Table 2. Cont.

Parameter Value

Antenna polarization Linear/±45◦

Maximum antenna gain (G0) 16 dBi

Protection criteria ( INRth ) −6 dB

5.2. Numerical Analysis

Figure 8 shows the SINR maps obtained using Pmax = {37, 34, 34, 34, 34, 34, 34}
and Pmin = {29, 26, 26, 26, 26, 26, 26} for all cells, that is, with no power control. We
considered the three positions of the interfered receiver that do not satisfy the INRth of
−6 dB for the use of Pmax. In addition, the three locations were designed considering the
representative interference power, which can accurately reflect the operating characteristics
of the proposed power control algorithm. Interfered receiver 1©was located in the main
beam direction for Cell_3 and received the highest interference from Cell_3. Therefore,
the minimum power use of only Cell_3 satisfied an INRth of −6 dB. Interfered receiver 2©
was placed on the boundary between Cell_3 and Cell_4 and thus received equal (and the
strongest) interference from these two cells. Interfered receiver 3© was located in the main
beam direction for Cell_3, as the interfered receiver. However, the minimum power use of
only Cell_3 could not satisfy the INRth of −6 dB, and at least one other cell had to use less
than the maximum power.
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Table 3 presents the INR and Pout for Pmax and Pmin with varying interfered receiver
locations. The results confirm that the Pout and INR had a tradeoff relationship. The
same Pout is shown regardless of the interference receiver position because of the absence
of power control. Next, we compared the simulation results of the optimal exhaustive
search and the proposed DQL-based power control algorithm for the three positions of the
interfered receiver.
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Table 3. INR and Pout for the interfered receiver locations.

Interfered
Receiver Location (km) INR for Pmax (dB) INR for Pmin (dB) Pout for Pmax (%) Pout for Pmin (%)

1© 100, 0, 0.02 −3.01 −11.01 0 43.7

2© 77.9, 45, 0.02 −4.08 −12.08 0 43.7

3© 65.8, 0, 0.02 1.81 −6.19 0 43.7

5.2.1. Simulation Results for Interfered Receiver 1©
Figure 9 shows the SINR map based on the Pc acquired using the proposed DQL-

based power control algorithm for interfered receiver 1©. Table 4 presents a performance
comparison of the P∗ values obtained via an exhaustive search and Pc and a comparison
of DQL and DDQL results. As shown, Pc was equal to the optimal value P∗, providing
the same Pout and INR performance. Because the interfered receiver was located in the
azimuth main beam direction of Cell_3, the power of Cell_3 significantly affected the
interfered receiver. Even though all other cells used the maximum power, their interference
was negligible. Therefore, all the cells except for Cell_3 used the maximum power for
minimizing Pout, as shown in Table 4.
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Table 4. Performance comparison for interfered receiver 1©.

PCell_1 (dBm) PCell_2 (dBm) PCell_3 (dBm) PCell_4 (dBm) PCell_5 (dBm) PCell_6 (dBm) PCell_7 (dBm) INR (dB) Pout (%)

Optimal 37 34 30 34 34 34 34 –6.93 0.6

DQL 37 34 30 34 34 34 34 –6.93 0.6

DDQL 37 34 30 34 34 34 34 -6.93 0.6

Figure 10 presents the INR and pout for each learning episode. As shown, the INR
and pout converged to the optimal values of the exhaustive search algorithm as the number
of learning episodes increased. The INR started at −11.01 dB, which was the value for the
use of Pmin, as shown in Table 3, and converged to the optimal value of −6.93 dB. Similarly,
pout started at 43.7% and converged to 0.6%. A large variance due to frequent exploration
was observed at the beginning of the learning, but it gradually decreased and converged as
the learning progressed. Figure 11 presents the cumulative and average rewards for each
learning episode. As shown, the reward rapidly increased and then gradually converged at
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approximately 300 episodes, indicating that the proposed DQL training process allowed
the agent to learn the power control algorithm quickly and stably.
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ually converged at approximately 300 episodes, indicating that the proposed DQL train-
ing process allowed the agent to learn the power control algorithm quickly and stably. 

  
(a) (b) 

Figure 10. (a) 𝐼𝑁𝑅 and (b) 𝑝௢௨௧ for each learning episode for interfered receiver ①. 

 
Figure 11. Reward for each learning episode for interfered receiver ①. 

We compared the learning results of the DQL and DDQL. Even when the DDQL is 
used, the results are the same as in Table 4 and Figures 10 and 11, which shows that the 
overestimation of the DQL did not occur. As a result, it was confirmed that performance 

Figure 10. (a) INR and (b) pout for each learning episode for interfered receiver 1©.

Sensors 2022, 22, 1630 15 of 21 
 

 

Table 4. Performance comparison for interfered receiver ①. 

 
𝑷𝑪𝒆𝒍𝒍_𝟏 
(dBm) 

𝑷𝑪𝒆𝒍𝒍_𝟐 
(dBm) 

𝑷𝑪𝒆𝒍𝒍_𝟑 
(dBm) 

𝑷𝑪𝒆𝒍𝒍_𝟒 
(dBm) 

𝑷𝑪𝒆𝒍𝒍_𝟓 
(dBm) 

𝑷𝑪𝒆𝒍𝒍_𝟔 
(dBm) 

𝑷𝑪𝒆𝒍𝒍_𝟕 
(dBm) 

𝑰𝑵𝑹 
(dB) 

𝑷𝒐𝒖𝒕 
(%) 

Optimal  37 34 30 34 34 34 34 –6.93 0.6 
DQL  37 34 30 34 34 34 34 –6.93 0.6 

DDQL 37 34 30 34 34 34 34 -6.93 0.6 

Figure 10 presents the 𝐼𝑁𝑅 and 𝑝௢௨௧ for each learning episode. As shown, the 𝐼𝑁𝑅 
and 𝑝௢௨௧ converged to the optimal values of the exhaustive search algorithm as the num-
ber of learning episodes increased. The 𝐼𝑁𝑅 started at −11.01 dB, which was the value for 
the use of 𝑷௠௜௡, as shown in Table 3, and converged to the optimal value of −6.93 dB. 
Similarly, 𝑝௢௨௧ started at 43.7% and converged to 0.6%. A large variance due to frequent 
exploration was observed at the beginning of the learning, but it gradually decreased and 
converged as the learning progressed. Figure 11 presents the cumulative and average re-
wards for each learning episode. As shown, the reward rapidly increased and then grad-
ually converged at approximately 300 episodes, indicating that the proposed DQL train-
ing process allowed the agent to learn the power control algorithm quickly and stably. 

  
(a) (b) 

Figure 10. (a) 𝐼𝑁𝑅 and (b) 𝑝௢௨௧ for each learning episode for interfered receiver ①. 

 
Figure 11. Reward for each learning episode for interfered receiver ①. 

We compared the learning results of the DQL and DDQL. Even when the DDQL is 
used, the results are the same as in Table 4 and Figures 10 and 11, which shows that the 
overestimation of the DQL did not occur. As a result, it was confirmed that performance 

Figure 11. Reward for each learning episode for interfered receiver 1©.

We compared the learning results of the DQL and DDQL. Even when the DDQL is
used, the results are the same as in Table 4 and Figures 10 and 11, which shows that the
overestimation of the DQL did not occur. As a result, it was confirmed that performance
degradation due to overestimation did not happen, and sufficient learning is possible only
with DQL.

5.2.2. Simulation Results for Interfered Receiver 2©
Figure 12 shows the SINR map based on Pc acquired using the proposed DQL-based

power control algorithm for interfered receiver 2©. Table 5 presents a performance com-
parison of the P∗ values obtained via an exhaustive search and Pc and a comparison of
the DQL and DDQL results. As shown, Pc was equal to the optimal value P∗, providing
the same Pout and INR performance. The interfered receiver was located on the boundary
between Cell_3 and Cell_4 and, thus, received equal (and the strongest) interference from
these two cells. In addition, even though all the cells other than Cell_3 and Cell_4 used the
maximum power, their interference was marginal. Therefore, in the optimal power control,
Cell_3 and Cell_4 reduced the power required to satisfy the INRth, whereas all the other
cells used the maximum power for minimizing Pout, as shown in Table 5.
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Table 5. Performance comparison for interfered receiver 2©.

PCell_1 (dBm) PCell_2 (dBm) PCell_3 (dBm) PCell_4 (dBm) PCell_5 (dBm) PCell_6 (dBm) PCell_7 (dBm) INR (dB) Pout (%)

Optimal 37 34 32 32 34 34 34 −6.08 0.2

DQL 37 34 32 32 34 34 34 −6.08 0.2

DDQL 37 34 32 32 34 34 34 −6.08 0.2

As shown in Figure 13, the INR and pout converged to the optimal values of the
exhaustive search algorithm. Similar to the case of receiver 1©, as the learning progressed,
the INR converged from −12.08 to −6.08 dB, and the pout converged from 43.7% to 0.2%.
Figure 14 shows that the reward gradually converged at approximately 300 episodes,
indicating that the proposed DQL training process allowed the agent to quickly and stably
learn the power control algorithm. We compared the learning results of the DQL and
DDQL. Even when the DDQL was used, the results were the same as in Table 5 and
Figures 13 and 14, verifying that the desired learning is attainable with the DQL only.
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receiver considered in Section 5.2.1 and was more severely affected by 𝐶𝑒𝑙𝑙_3; 𝐼𝑁𝑅௧௛ was 
not satisfied even for the minimum power of 𝐶𝑒𝑙𝑙_3. Thus, the optimal power control 
adjusted the power of 𝐶𝑒𝑙𝑙_2 and 𝐶𝑒𝑙𝑙_4, which caused the second-most interference. Ta-
ble 6 presents a comparison of the 𝑷∗ values obtained using an exhaustive search and 𝑷௖ 
and a comparison of the DQL and DDQL results. Although the 𝑝௢௨௧  of 𝑷௖  was 0.6% 
higher than that of 𝑷∗, it corresponded to the third-smallest value among the 78,125 val-
ues generated by the exhaustive search algorithm. In summary, the proposed power con-
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5.2.3. Simulation Results for Interfered Receiver 3©
Figure 15 shows the SINR map based on Pc obtained using the proposed DQL-based

power control algorithm for interfered receiver 3©. The interfered receiver was located
in the azimuth main lobe direction of Cell_3. It was closer to the HAPS than the receiver
considered in Section 5.2.1 and was more severely affected by Cell_3; INRth was not
satisfied even for the minimum power of Cell_3. Thus, the optimal power control adjusted
the power of Cell_2 and Cell_4, which caused the second-most interference. Table 6
presents a comparison of the P∗ values obtained using an exhaustive search and Pc and a
comparison of the DQL and DDQL results. Although the pout of Pc was 0.6% higher than
that of P∗, it corresponded to the third-smallest value among the 78,125 values generated
by the exhaustive search algorithm. In summary, the proposed power control algorithm
achieved outstanding performance close to the optimal value.

Sensors 2022, 22, 1630 18 of 21 
 

 

 
Figure 15. SINR map based on 𝑷௖ obtained using the proposed DQL-based power control algo-
rithm for interfered receiver ③. 

Table 6. Performance comparison for interfered receiver ③. 

 
𝑷𝑪𝒆𝒍𝒍 𝟏 
(dBm) 

𝑷𝑪𝒆𝒍𝒍 𝟐 
(dBm) 

𝑷𝑪𝒆𝒍𝒍 𝟑 
(dBm) 

𝑷𝑪𝒆𝒍𝒍 𝟒 
(dBm) 

𝑷𝑪𝒆𝒍𝒍 𝟓 
(dBm) 

𝑷𝑪𝒆𝒍𝒍 𝟔 
(dBm) 

𝑷𝑪𝒆𝒍𝒍 𝟕 
(dBm) 

𝑰𝑵𝑹 
(dB) 

𝑷𝒐𝒖𝒕 
(%) 

Optimal  37 34 26 32 34 34 34 −6.02 5.1 
DQL  37 32 26 32 34 34 34 −6.06 5.7 

DDQL 37 32 26 32 34 34 34 −6.06 5.7 

As shown in Figure 16, the 𝐼𝑁𝑅 and 𝑝௢௨௧ converged to the optimal values of the 
exhaustive search algorithm, with slight gaps. Similar to the results presented in Section 
5.2.1, as the learning progressed, the 𝐼𝑁𝑅 converged from −6.19 to −6.06 dB, and the 𝑝௢௨௧ 
converged from 43.7% to 5.7%. Figure 17 shows the cumulative and average rewards for 
each learning episode. The reward exhibited no noticeable improvement until approxi-
mately 130 episodes, after which it rapidly increased and then gradually converged at 
approximately 350 episodes. This is because to satisfy the 𝐼𝑁𝑅௧௛, more agents had to take 
action, and the actions had to be more diverse. Nonetheless, the proposed DQL training 
process allowed the agent to learn the power control algorithm quickly and stably. We 
compared the learning results of the DQL and DDQL. Even when the DDQL was used, 
the results were the same as in Table 6 and Figures 16 and 17, verifying that the desired 
learning is attainable with the DQL only. 

  

Figure 15. SINR map based on Pc obtained using the proposed DQL-based power control algorithm
for interfered receiver 3©.

Table 6. Performance comparison for interfered receiver 3©.

PCell 1(dBm) PCell 2(dBm) PCell 3(dBm) PCell 4 (dBm) PCell 5 (dBm) PCell 6 (dBm) PCell 7 (dBm) INR (dB) Pout (%)

Optimal 37 34 26 32 34 34 34 −6.02 5.1

DQL 37 32 26 32 34 34 34 −6.06 5.7

DDQL 37 32 26 32 34 34 34 −6.06 5.7



Sensors 2022, 22, 1630 18 of 20

As shown in Figure 16, the INR and pout converged to the optimal values of the ex-
haustive search algorithm, with slight gaps. Similar to the results presented in Section 5.2.1,
as the learning progressed, the INR converged from −6.19 to −6.06 dB, and the pout con-
verged from 43.7% to 5.7%. Figure 17 shows the cumulative and average rewards for each
learning episode. The reward exhibited no noticeable improvement until approximately
130 episodes, after which it rapidly increased and then gradually converged at approxi-
mately 350 episodes. This is because to satisfy the INRth, more agents had to take action,
and the actions had to be more diverse. Nonetheless, the proposed DQL training process
allowed the agent to learn the power control algorithm quickly and stably. We compared
the learning results of the DQL and DDQL. Even when the DDQL was used, the results
were the same as in Table 6 and Figures 16 and 17, verifying that the desired learning is
attainable with the DQL only.

Sensors 2022, 22, 1630 19 of 21 
 

 

  
(a) (b) 

Figure 16. (a) 𝐼𝑁𝑅 and (b) 𝑝௢௨௧ for each learning episode for interfered receiver ③. 

 
Figure 17. Reward for each learning episode for interfered receiver ③. 

6. Conclusions 
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cell HAPS communication that involved spectrum sharing with existing services. The pro-
posed algorithm aimed to find a solution to the power control optimization problem for 
minimizing the outage probability of the HAPS downlink under the interference con-
straint to protect existing systems. We compared the solution with the optimal solution 
acquired using the exhaustive search algorithm. The simulation results confirmed that the 
proposed algorithm was comparable to the optimal exhaustive search. 

Future work will include various power levels and expanding to multiple-HAPS 
communication in spectrum sharing with multiple interference systems. Since the increase 
in the power level could reveal a value-based algorithm’s limit, it is preferred to apply the 
policy-based algorithm. Given that multiple-HAPS communication could lead to the non-
stationarity problem of multiagent reinforcement learning, its solution would be worth 
studying. 
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6. Conclusions

This paper proposed a DQL-based transmission power control algorithm for multicell
HAPS communication that involved spectrum sharing with existing services. The pro-
posed algorithm aimed to find a solution to the power control optimization problem for
minimizing the outage probability of the HAPS downlink under the interference constraint
to protect existing systems. We compared the solution with the optimal solution acquired
using the exhaustive search algorithm. The simulation results confirmed that the proposed
algorithm was comparable to the optimal exhaustive search.

Future work will include various power levels and expanding to multiple-HAPS
communication in spectrum sharing with multiple interference systems. Since the increase
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in the power level could reveal a value-based algorithm’s limit, it is preferred to apply
the policy-based algorithm. Given that multiple-HAPS communication could lead to
the non-stationarity problem of multiagent reinforcement learning, its solution would be
worth studying.
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