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A B S T R A C T   

Metabolic disorders result from inborn and acquired dysfunction of organs and tissues that are 
responsible for producing energy in the body. These diseases are now among the most prevalent 
maladies in the world. Treatment often requires addressing individual conditions, including 
obesity, diabetes, and liver diseases with a combination of multiple drugs. Accumulating evidence 
shows that the defects or overexpression of some specific genes in the diseased organ cause such 
diseases. Therefore, advanced options are required to control them at the molecular level. In this 
review, we highlight the current approaches of nanotechnologies, especially for delivering 
exogenous nucleic acid nanoparticles to treat metabolic disorders. We also summarize the 
mechanisms of how various nucleic acid nanoparticles have been utilized, the trends, and the 
potential applications of these materials in metabolic disorders. Greater knowledge of nano-
technologies and nucleic acid particles may pave the way to cure these prevalent diseases 
effectively.    
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NO Nitric oxide 
PLGA Poly lactic-co-glycolic acid 
siRNA small interfering RNA 
mRNA messenger RNA 
miRNA microRNA 
ASOs Antisense oligonucleotides 
pDNA plasmid DNA 

1. Introduction 

Metabolic disorders, in which metabolic processes are abnormally disrupted, have become one of the most serious challenges for 
health systems worldwide. The prevalence of metabolic disease has reached the levels of a pandemic [1–3]. The dysregulation of 
glucose, lipids, and energy-producing mitochondria in metabolic disorders contributes to redox imbalance and cellular dysfunction, 
leading to dysfunctional cells and tissues [4]. In mitochondria dysfunction-related diseases such as Leigh syndrome or 
Alpers-Huttenlocher syndrome, the mitochondria fails to produce sufficient energy to support the normal functions of cells and the 
entire body [5,6]. Several health issues are associated with metabolic disorders, such as hypertension, various types of cancer, car-
diovascular diseases, ischemia, and reproductive abnormality [7,8]. The medical cost of treating such diseases in the USA is expected 
to reach $66 billion in 2030 [7]. Productivity loss caused by hospitalization and low life expectancy have been estimated to be $74 
million and $444 million in the USA, respectively [7]. Obesity alone causes 2.8 million deaths per year and roughly 35.8 million 
disability-adjusted life years, according to data from the World Health Organization in 2018 [9,10]. This crisis urgently requires an 
effective and sustainable solution. 

A number of therapeutic options have been suggested to control and prevent metabolic disorders. One of the most effective 
treatments is lifestyle modification for the long term management of body weight and prevention of other metabolic diseases. Yet, it is 
very difficult to achieve and maintain positive lifestyle interventions [11]. Another option, bariatric surgery, is preferred by some 
obese patients with a body mass index (BMI) ≥ 40 kg/m2 or type 2 diabetes (T2D) patients with a BMI ≥ 35 kg/m2 [12]. However, 
massive and rapid weight loss can lead to osteoporosis and malnutrition without actually addressing the root of such diseases [11]. 
Patients with metabolic disorders can receive drug therapy, such as metformin to treat T2D, however, those allergic to drug ingredients 

Fig. 1. Causative factors of metabolic disorders. Risk factors of metabolic syndrome are widely known to be genetics, epigenetics, lifestyle and 
environment. Meanwhile, the pathogenesis of metabolic syndrome still has remained to be fully unexplainable so far but it is considered to be 
associated with inflammation, dyslipidemia, hyperglycemia and hypertension. 
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or have severe renal diseases may be unable to seek benefit of it. Certain conditions such as mitochondrial disorders are even more 
complex due to their considerable influence on all body tissues [13]. As a result, current therapeutic methods for mitochondria 
dysfunction-related conditions such as Parkinson’s, Alzheimer’s, and muscular dystrophy are still in the process of being developed 
and clinically applied [14–18]. 

One of the most promising therapeutic options could be nanotechnology. This high-potential technology has aroused growing 
interest due to its considerable influence on many fields, including biology, chemistry, engineering, and medicine. Nanotechnology 
involves designing and applying materials on the nanometer scale [19]. Nanoparticles exist in the form of small-sized nanospheres [20, 
21] with exceptional structural, mechanical, biological, chemical, and magnetic properties that can be utilized to enhance drug quality 
and drug delivery systems [22,23]. The emergence of nanomedicine is marked by the discovery of the first liposome structure in 1964 
[24]. In 1976, the first nanopolymer drug delivery system was documented [25], and the first targeted liposomes were applied for 
therapeutic purposes [26,27]. In the past decade, nanomedicine has attracted significant research attention [19,28–30]. Nanosensors 
are highly equipped for the rapid and economical diagnosis of infectious diseases such as COVID-19 [28,31]. In treatment, nano-
particles are usually used to carry chemotherapeutic drugs and support the delivery of anticancer drugs [32–34]. For example, 
nano-product-based chemo photodynamic therapy is an effective strategy to induce pyroptosis [30]. Mousazadeh et al. [29] found that 
non-viral nanocarriers associated with cyclodextrin-based carbohydrate polymers were efficient for small interfering RNA (siRNA) 
[35] cancer treatment. 

One of the most promising areas that nanoparticle delivery systems can benefit are nucleic acid (DNA and RNA) therapeutics. There 
has recently been explosive growth in research on nucleic acid nanoparticle-based therapies for the treatment of various diseases [36]. 
Certain nucleic acid nanoparticle-based treatments have been intensively studied and have undergone clinical trials. Some treatments 
have been approved in Europe and the US. For example, Onpattro was recently approved for amyloidosis treatment [37]. For metabolic 
diseases, nanotechnology and especially nucleic acid therapeutics hold great potential due to their high biocompatibility, limited 
toxicity, versatility and precise targeting [36,38,39]. In this review, we focus on recent studies on the mechanisms and potential 
applicability of nanotechnology, especially nucleic acid nanoparticles in treating metabolic disorders and explore future opportunities 
for better treatment and management of diseases. 

2. Nanotechnology for metabolic disorders 

Individuals with metabolic disorders account for up to 20–30% of the world’s population [40]. Metabolic disorders could be an 
outcome of several conditions, such as insulin resistance, obesity, dyslipidemia, and cardiovascular disease (Fig. 1). Drugs for hy-
poglycemia, blood pressure, and other indicators such as neutral fat are used to treat these diseases. The downside of these treatments 
is that some side effects cause bloating in patients and reduce their ability to tolerate drugs [41]. Nanotechnology is a promising 
method due to its superior biological distribution, stability, and ability to increase solubilty of natural compounds [33] (Fig. 2). 

The cause of diabetes is predominantly due to disregulated secretion or activity of insulin [42]. Diabetes could fall into two cat-
egories: Type I (cellular dysfunction leading to insulin deficiency-insulin dependence) and type II (without insulin sensitivity) [43]. 
The most widely used drug to treat T2D is metformin [44]. Thymoquinone found in Nigella Sativa (Lamiaceae family) is effective against 
diabetes and respiratory diseases, especially coronary artery disease [45]. These activities of thymoquinone has been proven in vivo 
and in vitro, but has so far not qualified for clinical trials. Using the nanoprecipitation method, Rani et al. created polymeric nano-
capsules of thymoquinone and metformin in 2018 and used the formulation on diabetic rats for 21 consecutive days . The results of the 
study showed that in mice with T2D, the administration of the nanocapsules had a better hypoglycemic effect than biologically active 
thymoquinone alone [46]. 

Fig. 2. The applications of various kind of nanotechnologies for treating the metabolic disorders.  
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This study facilitated further evaluation of anti-hyperglycemic activity in vivo. Diabetes has many severe consequences for patients, 
and one of the most serious consequences is amputation, accounting for 15% of cases. The leading cause of amputation is wounds and 
foot ulcers caused by diabetes. Nanotechnology is now being applied to diabetes with the advantage of allowing for control of the 
distribution of stable and specific bioactive compounds at a designated site by preparing hydrogels with silver nanoparticle created 
Querceti (QCT-AgNPs) for treating diabetic and burn wounds. With this method, the performance and surface morphology could be 
enhanced. In vivo results showed that QCT-AgNP hydrogel enhanced epithelial regeneration when treating diabetic wounds [47]. In 
addition, some other applications have been found to be effective in treatment or prevention, such as nano delivery systems of 
phytocompounds [48]. 

Obesity is currently the most common disease in the world and is also the cause of many diseases related to metabolic disorders. 
Treatment of obesity through nanosystems, specifically by using Salacia chinensis-containing gold nanoparticles (SC-AuNPs) has been 
applied to evaluate related parameters in obese mice. Once SC-AuNPs are formed, they are further processed using different techniques 
to optimize their efficiency. In one study, mice showed a reduction in body weight, leptin index, and fat. In addition, this treatment 
increased high-density lipoprotein and activated protein kinase [49]. The enhanced digestion of the thermogenic energy of white 
adipose tissue is one of the methods used to correct imbalances in energy metabolism and specific problems related to excess body 
weight. Despite the advantages gained by this method, there are still certain limitations. To mitigate these limitations, Zu et al. [50] 
researched the application of resveratrol-loaded nanoparticles to form ligands (L-Rnano). The results of L-Rnano injections in obese 
mice reduced fat intake by up to 40% in addition to reduced injection status and increased glucose hemostasis. Studies on nir fluo-
rescent dye loaded in the ursolic acid self-assembly nano-drug, nano lipo, have been conducted and applied to nanotechnologies for 
obesity [51]. 

Dyslipidemia is a metabolic disorder that occurs due to abnormal changes in the composition of lipids such as triglycerides, 
cholesterol, low-density lipoprotein, and high-density lipoprotein [52]. Current medications for dyslipidemia include atorvastatin, 
pravastatin, lovastatin, and simvastatin. However, these drugs can cause side effects such as myalgia, rhabdomyolysis, and many 
others [53–55]. Studies and applications related to nano-curcumin [56], nano-TiO(2) [54], and ginger-extracted nanoparticles (GDNP) 
[57] have also been carried out to evaluate nanotechnology in the treatment and diagnosis of dyslipidemia. 

A reduction in nitric oxide production (NO) increases the development of cardiovascular risk factors such as increased cholesterol 
and hypertension. This is the first step of atherosclerosis. Gold and silica nanoparticles have been used to improve the enhanced 
production of NO. Applying a 17-βe loaded CREKA peptide-modified nanoemulsion system reduces plasma lipid levels and inflam-
mation. Transporting drugs via liposome is effective in preventing platelet capacitors and thrombosis. This method is effective for 
commonly used blood solubility drugs with new nano therapy to select the congestion locations through mechanical activation [58]. 
Other studies on nanotechnology such as poly lactic-co-glycolic acid (PLGA), iron oxide nanoparticles (IOs), nanoscale gold particles 
(AuNPs), carbon nanotube fibers (CNTF), and graphene oxide (GO) have been implemented to determine the application of nano-
technology for cardiovascular disease [59]. 

The evidence has demonstrated that nanotechnology has great potential applications in managing and improving metabolic dis-
orders. In addition, nanotechnology has provided a progressive foundation for developing new nanomaterials to improve the accuracy, 
convenience, and safety of the diagnosis and treatment of patients [60]. 

3. Nucleic acid nanoparticles for metabolic disorders 

Nanotechnology is a versatile tool for multidisciplinary research fields and various therapeutic purposes. In particular, nucleic acid- 
mediated nanomaterial technology provides exclusive control over size, shape, time, anisotropy, and mechanics. It can transfect 
different types of cells and tissues without any toxic effect, diminish induced immune response, and penetrate most biological barriers 
[61]. Metabolic skeletal disorders occur due to inflammation and impaired bone formation, and they remain a key clinical challenge. 
Early therapeutic strategies (antiosteoclastogenic therapy and proosteoblastogenic therapy) were not very effective in treating 
metabolic skeletal disorders such as osteoporosis [62]. In the pathogenesis of osteoporosis, complex molecular networks of bone and 
immune factors are responsible. To treat such complex diseases, combined therapeutics are required rather than monotherapy [63]. In 
the treatment of metabolic skeletal disorders, microRNA-based gene therapy offers numerous therapeutic advantages. Recently, Li 
et al. [64] performed in vitro and in vivo studies for metabolic skeletal disorders and used salicylic acid-based nanomedicine with 
self-immunomodulatory activity to enable microRNA therapy. In vitro studies showed that miR-21@PSA-NP with low toxicity could 
effectively realize the intracellular delivery of miR-21. However, in osteoporotic mice, the outcomes showed that 
miR-21@PSA-NP-DSS6 enhanced bone accumulation, prolonged blood circulation time, and greatly enhanced the effectiveness of 
miR-21-based bone anabolic therapy. 

Other metabolic disorders, such as liver fibrosis, is one of the leading causes of liver-related morbidity and mortality. Currently, 
there is no US Food and Drug Administration (FDA)-approved antifibrotic therapy available. To treat liver fibrosis, polymeric nano-
particles have been used. Nanoformulation containing ketal cross-linked nano hydrogel and Cy5-labelled anti-col1a1 (collagen type I 
alpha 1) siRNA was administered and significantly inhibited fibrosis [65]. Superparamagnetic iron oxide (SPIO)-loaded nanoplex 
T-PBP@miRNA/SPIO (T-miRNA/S) was utilized. The T-PBP micelle competently transported the miRNA-29b and miRNA-122 to the 
hepatic stellate cells (HSC), and it significantly downregulated the expression of liver fibrosis-related genes, including α-smooth muscle 
actin, collagen type I alpha 1, and tissue inhibitor of metalloproteinase 1. The study suggests that combination therapy with 
miRNA-29b and 122 could be effective in improving liver function and reducing hepatic fibrosis. A more comprehensive and similar 
approach should be used for other metabolic disorders. 

Nucleic acid-based therapy holds great potential for the treatment of some metabolic diseases. However, this approach has suffered 
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from the least amount of clinical success due to challenges with the delivery method [61,66]. In the last few years, many 
state-of-the-art nanotechnological techniques have been typically implemented: Nanotechnology is used to deliver certain therapeutic 
nucleic acids (TNAs) (TNAs with nanoparticle formulation) using carriers such as ASN ODN (ASN = anti-sense; ODN = oligodeox-
yribonucleotide), catalytic oligos (DNAzyme - RNAzyme), TFOs (triplex-forming oligonucleotides), IMOs (immunomodulatory oli-
gonucleotides) or for programming and folding nucleic acids into different geometries (Nano-TNA) [67], and some are under 
development. Typically, the application of nucleic acid nano drugs for phase II/III clinical trials for the purpose of cell reprogramming 
are being developed [68]. Among these methods, the exosome delivery system is preferred due to its effective cell communication. Due 
to various concerns, there is a need to advance this approach due to its unique properties, such as low immunity, innate stability and 
high rates of tissue/cell penetration [69,70]. 

Furthermore, compared to traditional drug formulations, synthetic nanoparticle-based drug delivery systems are costly and have 
higher immunotoxicity effects. However, such problems can be avoided by using plant-derived nanoparticles [71]. Recently, Kumar 
et al. [72] utilized ginger-derived nanoparticles (GDNPs) in theranostics, which have tissue-specific targeting properties as well as 
greater stability in the gastrointestinal system in addition to presenting colon-targeted delivery and high intestinal epithelium 
permeability. In their work, miR-375 or antisense-miR375 was filled into nanoparticles made from lipids extracted from GDNP. In vivo 
GDNPs were used in mice, and it was demonstrated that GDNPs can help protect mice from alcohol-induced liver damage [73] and 
inflammatory bowel disease [74]. They also presented high anti-inflammatory efficacy in mouse models of colitis [75] and in a mouse 
model of high fat diet (HFD)-induced type 2 diabetes mellitus (T2DM) [72]. Understanding deregulated microRNAs could be an 
innovative approach to tackling many metabolic disorders. The combination of different miRNAs could lead the way to more effective 
personalized treatments. 

Fig. 3. Mechanism of nucleic acid nanoparticle delivery in the treatment of metabolic disorders. Nucleic acid nanoparticles, including 
lipoplex/ exosome, polyplex, and peptide-based particles, could protect and enhance the retention time of therapeutic nucleic acids in the body after 
administration, and efficiently deliver them to target cells. In these cells, nanoparticles undergo cellular internalization via various pathways 
(membrane fusion, passive and active endocytosis, and membrane destabilization), and subsequent endosomal escape to release nucleic acids via 
membrane fusion, sponge & umbrella effects, and membrane destabilization. Exogenous DNA materials further reach and enter nuclear by active 
and passive pathways. The detailed mechanisms of each therapeutic nucleic acid in cells can be seen in the previous review [66]. 
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4. Mechanisms of nanotechnology and nucleic acid nanoparticles for metabolic disorders 

Nanotechnologies have been extensively applied in the management and treatment of metabolic disorders. Nanotechnologies 
include using nano-sized drugs and drug depots to enhance retention in the body and target diseased sites, thereby improving the 
therapeutic efficacy of drugs while reducing their side effects [76,77]. In oral delivery systems, nanoparticles have been used to protect 
drugs from pH and enzyme degradation in the gastrointestinal tract, to improve contact and residence time in the intestinal epithelium, 
and to escape first-pass metabolism in the liver via lymphatic uptake [78]. Polymeric nanoparticles (e.g., PLGA) are frequently utilized 
to prolong drug release time, possibly reducing the dosing frequency [79,80]. Lipid-based nanoparticles, including liposomes and 
exosomes, are cell-friendly and easily up taken by cells, which improves drug delivery efficiencies [81]. In addition, PEGylation 
(surface functionalization with polyethylene glycol) of nanoparticles reduces the immunogenicity and phagocytosis and enables 
prolonging their systemic circulation time [78,82–84]. In advanced nanotechnologies, nanoparticles are functionalized with bioactive 
targeting moieties (e.g., N-acetylgalactosamine (GalNAc), antibodies), aiming to actively target diseased sites with higher efficiencies 
than traditional approaches [85–88]. 

Nucleic acid therapeutics mainly involve the use of messenger RNA (mRNA), siRNA, microRNA (miRNA), antisense oligonucle-
otides (ASOs), and plasmid DNA (pDNA) [35,66]. Many of them are extremely unstable and immunogenic, hampering the application 
of nucleic acid therapy. Using nanotechnologies, various nanoscale nucleic acid therapeutics have been developed to treat metabolic 
disorders. These particles protect nucleic acids from premature enzymatic degradation and immune responses, as well as facilitate 
their uptake into the target host tissues/cells. In the cells, they undergo cytosolic degradation to release DNAs/RNAs to promote (in 
DNA and mRNA delivery) or inhibit (in siRNA and miRNA delivery) encoded protein production. 

The physicochemical properties of carriers govern their internalization, intracellular process, and release of delivered nucleic acids 
(Fig. 3) [89]. Lipoplexes and exosomes contain unique synthetic or natural lipid molecule carriers and can internalize the cells via both 
direct cell membrane fusion and endocytosis [90], whereas polymeric particles mostly utilize endocytosis [89]. The functional mol-
ecules on nanoparticles determine the internalization pathways; for example, clathrin-mediated endocytosis by transferrin conjugation 
and caveolar-mediated endocytosis by folic acid conjugation [91]. Some peptides, which can insert and destabilize cell membranes, 
have been utilized to deliver therapeutic nucleic acids in metabolic disorders [92]. After cellular internalization, nanoparticles are 
located in the endosome-lysosome system and the mechanisms by which they undergo the endosomal escape process under prompt pH 
drop by the lysosome and determine the efficiency of gene therapy. In lipoplex, nucleic acids can be released via the fusion of lipid 
carriers with the endosome membrane and the swelling of the endosome due to increased osmotic pressure by the sponge effect of 
pH-sensitive lipids (i.e., DOSPA) [93,94]. Polymeric particles, containing positive-charged polymers, escape from the 
endosome-lysosome system via the sponge effect and umbrella effect (the expansion/protonation of polymers at low pH) [95,96]. 
Peptide-functionalized nanoparticles exhibit an endosomal escape via various mechanisms, including the sponge effect, fusogenic 
effect, and membrane destabilization. In the next step, functional nucleic acids need to be released from the carriers and target 
cytoplasmic machinery to achieve their effect. Destabilization of the nucleic acid-carrier can be via the membrane fusion process in 

Fig. 4. The potentials and challenges of nanotechnology.  
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lipoplex formulation, or via anionic exchange of nucleic acids in polymeric particles [89]. In the case of DNA delivery, active nuclear 
trafficking through microtubules occurs with nuclear entry through passive and active pathways [89]. In summary, the transfection 
efficiency of exogenous nucleic acids is affected by the types and characteristics of carriers via modulating the specific mechanisms of 
how nucleic acids are protected and processed until they resemble cytoplasmic machinery for protein translation. 

5. The potential applications of nanotechnology and nucleic acid nanoparticles for metabolic disorders 

The current treatment of metabolic disorders is challenging due to its pathophysiological complexity [97]. This review article has 
attempted to address the question of potential applications in nanotechnologies and nucleic acid nanoparticles for combating meta-
bolic disorders. The potential application of nanotechnologies mainly comes from developing and optimizing nanomaterials [98,99], 
in which nature-based nanoparticle materials have also been seen as promising applications in the future. These have many advan-
tages, such as high biocompatibility, limiting the possibility of toxicity and side effects [100]. In addition, the use of natural nano-
materials minimizes the possibility of accidental exposure compared to artificial materials [101]. This has proven to be a new research 
direction that has attracted scientists is the development of biological nanomaterials. The advantages include high biocompatibility 
and less toxicity than chemically synthesized nanomaterials [102]. Therefore, the use of drugs containing biological nanomaterials has 
been evaluated as future therapies in the treatment of metabolic disorders. Fig. 4 depicts the potentials and challenges of 
nanotechnology. 

Nucleic acid therapy is rapidly emerging and has been considered as one of the most promising areas in metabolic disorder 
treatment. The main advantage of nucleic acid drugs lies in precisely targeting the desired tissues and cells and then releasing the 
therapeutic proteins or biological substances at that site . Another advantage is its versatility. New drugs can be easily created or 
existing ones improved just by changing the nucleotide sequence of the target gene [103]. Interestingly, this advantage can be har-
nessed due to the advancement of gene sequencing technology. Thus, this therapy has great applicability if scientists fully exploit its 
potential, especially personalized drug development in metabolic disorder treatment. Moreover, nucleic acid therapy works by many 
different mechanisms, and the transmission efficiency of exogenous nucleic acids is affected by the characteristics of the carrier [104]. 
Some nanocarriers have been evaluated as having high application potential based on their superior properties such as metal-based 
nanoparticles [105] and extracellular vesicle nanoparticles [103]. Thus, having greater insight into the potential carriers of this 
therapy is essential. 

Although the application of nanotechnology, especially nucleic acid therapy, is gradually gaining momentum, many challenges 
remain. The explosion of nanotechnology has led to widespread discussions about the safety and potential health risks. Some evidence 
has shown that nanoparticles can easily enter the body through respiration, skin contact, or digestion [106]. Thereafter, the nano-
particles are fully capable of moving through the blood-brain barrier due to their high mobility. Moreover, nanoparticles can disrupt 
some of the body’s physiological processes and trigger an inflammatory response [58]. On the other hand, information on the 
physicochemical properties of nanoscale systems in metabolic disorders as well as the expected toxicity remains unclear. In particular, 
production costs are another obstacle [107]. To this day, no nano drugs for metabolic disorders have been licensed. Nanodrugs have 
been used most successfully in cancer treatment [108]. Therefore, the application of nanotechnology to metabolic disorders can refer 
to cancer treatment strategies because there are some similar pathological features between them [51]. In the long run, further studies 
are necessary to fully leverage the potential of this technology in the diagnosis and treatment of metabolic disorders in humans. 

6. Conclusions and future remarks 

Metabolic disorders are now the major clinical challenge of global health. Common metabolic syndromes include obesity, insulin 
resistance, atherosclerosis, and systemic blood pressure disorders. They involve the inborn and acquired dysfunction of organs and 
tissues that are responsible for producing energy for the body. Nanotechnology has been seen as a potential application in biomedicine, 
especially to defeat metabolic syndrome and related disorders. The evidence for its application in metabolic disorders has been mostly 
based on interventions in animal models. Diabetes mellitus seems to be the disease that has benefited the most from this technology 
with applications in glucose measurement and drug delivery. In particular, nucleic acid therapeutics have been a promising area which 
nanotechnology can benefit. The success of this therapy depends mainly on the characteristics of carriers, via modulating the specific 
mechanisms of how nucleic acids are protected and processed until they resemble cytoplasmic machinery for protein translation. Given 
the versatility of nucleic acid therapy, research into personalized drug development is a potential direction. Although this therapy has 
received special attention in recent times, the safety remains challenging. Nanoparticles can easily enter the body through respiration, 
skin contact, or digestion. In addition, it can also be toxic or affect the physiological functions of the body. Furthermore, the production 
cost is another obstacle. In the long run, further studies are integral to fully leverage the potential of this technology. In summary, this 
review helped shed light on current approaches and the future potential of nanotechnology and nucleic acid therapy in metabolic 
disorders. We hope that this knowledge will be useful for navigating potential applications in the treatment of these common diseases 
and contribute to a better quality of global health in the future. 
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