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Abstract
In this paper, we study local regularity properties of minimizers of nonlocal
variational functionals with variable exponents and weak solutions to the cor-
responding Euler–Lagrange equations. We show that weak solutions are locally
bounded when the variable exponent 𝑝 is only assumed to be continuous and
bounded. Furthermore, we prove that boundedweak solutions are locallyHölder
continuous under some additional assumptions on 𝑝. On the one hand, the class
of admissible exponents is assumed to satisfy a log-Hölder–type condition inside
the domain, which is essential even in the case of local equations. On the other
hand, since we are concerned with nonlocal problems, we need an additional
assumption on 𝑝 outside the domain.
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1 INTRODUCTION

The aim of this paper is to study the regularity theory for minimizers of the nonlocal variational functional

(𝑢) = ∫
ℝ𝑛 ∫ℝ𝑛

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)
𝑝(𝑥, 𝑦)|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥 (1.1)

and for weak solutions to the corresponding Euler–Lagrange equation, where 𝑛 ∈ ℕ, 𝑠 ∈ (0, 1), and 𝑝 ∶ ℝ𝑛 × ℝ𝑛 → ℝ is
a continuous function such that

𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥) (1.2)

and

1 < inf
𝑥,𝑦∈ℝ𝑛

𝑝(𝑥, 𝑦) ≤ sup
𝑥,𝑦∈ℝ𝑛

𝑝(𝑥, 𝑦) < +∞. (1.3)
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2 CHAKER and KIM

This functional is a nonlocal analog of a local variational functional

loc(𝑢) = ∫
Ω

1

𝑝(𝑥)
|𝐷𝑢(𝑥)|𝑝(𝑥) d𝑥, (1.4)

whereΩ is a bounded domain inℝ𝑛 and 𝑝 ∶ Ω → ℝ is a measurable function such that 1 < inf𝑥∈Ω 𝑝(𝑥) ≤ sup𝑥∈Ω 𝑝(𝑥) <

+∞. The functional in (1.4) was first considered by Zhikov [51, 52]. The regularity properties for minimizers of (1.4) or
more general local variational functionals have been established in several works. See, for instance, [2, 3, 5, 17, 20, 21, 32,
34, 37, 38, 46–48, 53, 54] and the references therein.
A function 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) is said to be aminimizer of  in Ω if

(𝑢) ≤ (𝑢 + 𝜑)

for any measurable function 𝜑 ∶ ℝ𝑛 → ℝ supported inside Ω. See Section 2.2 for the definition of the function space
𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛). It is standard to show that minimizers of  in Ω are weak solutions to the Euler–Lagrange equation

(−Δ)𝑠
𝑝(⋅,⋅)

𝑢 = 0 (1.5)

in Ω, where (−Δ)𝑠
𝑝(⋅,⋅)

is the fractional 𝑝(⋅, ⋅)-Laplacian defined by

(−Δ)𝑠
𝑝(⋅,⋅)

𝑢(𝑥) = P.V.∫
ℝ𝑛

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦, 𝑥 ∈ ℝ𝑛.

See Section 3 for the precise definition of weak solution.
Before we formulate the assumptions on 𝑝 and the main results of this paper, let us recall the regularity results for

local variational functionals and the corresponding local operators. It is known [34] that minimizers of (1.4) in Ω and
weak solutions to the corresponding Euler–Lagrange equation −Δ𝑝(⋅)𝑢 = 0 in Ω are locally bounded in Ω, provided that
𝑝 ∶ Ω → ℝ is continuous on Ω. Moreover, if the modulus of continuity 𝜔 of 𝑝 satisfies

lim sup
𝑅→0

𝜔(𝑅) log

(
1

𝑅

)
< +∞, (1.6)

then the minimizers and weak solutions are locally Hölder continuous. The log-Hölder continuity (1.6) is sharp in the
sense that regularity properties such as Hölder continuity and even higher integrability fail to hold if the condition (1.6)
is violated (see [54]). Moreover, it is proved [54] that the functional (1.4) exhibits the Lavrentiev phenomenon if and only
if the condition (1.6) is dropped. Furthermore, the singular part of the measure representation of relaxed integrals with
variable exponent disappears if and only if (1.6) holds (see [1]).
The log-Hölder–type condition (1.6) is equivalent to the condition that there exists a constant 𝐿 > 0 such that

𝑅𝑝−(𝐵𝑅(𝑥0))−𝑝+(𝐵𝑅(𝑥0)) ≤ 𝐿 for all 𝐵𝑅(𝑥0) ⊂ Ω,

where

𝑝+(𝐸) ∶= sup
𝑥∈𝐸

𝑝(𝑥) and 𝑝−(𝐸) ∶= inf
𝑥∈𝐸

𝑝(𝑥),

see [29]. It is natural to expect that a similar condition on 𝑝 is required to obtain Hölder regularity results for the nonlocal
variational functional (1.1) and the nonlocal equation (1.5). We introduce the following condition on 𝑝.

Definition 1.1. We say that a function 𝑝 ∶ ℝ𝑛 × ℝ𝑛 → ℝ satisfies the condition (P1) in Ω if there exists a constant 𝐿 > 0

such that

𝑅𝑝−(𝐵×𝐵)−𝑝+(𝐵×𝐵) ≤ 𝐿 for all 𝐵 = 𝐵𝑅(𝑥0) ⊂ Ω, (P1)
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CHAKER and KIM 3

where

𝑝+(𝐸 × 𝐹) = sup
𝑥∈𝐸,𝑦∈𝐹

𝑝(𝑥, 𝑦) and 𝑝−(𝐸 × 𝐹) = inf
𝑥∈𝐸,𝑦∈𝐹

𝑝(𝑥, 𝑦).

Since we are concerned with nonlocal problems, we also need the information of 𝑝 outside the domain.

Definition 1.2. We say that a function 𝑝 ∶ ℝ𝑛 × ℝ𝑛 → ℝ satisfies the condition (P2) in Ω if

𝑝+(𝐵 × 𝐵
𝑐) ≤ 𝑝+(𝐵 × 𝐵) and 𝑝−(𝐵 × 𝐵

𝑐) ≤ 𝑝−(𝐵 × 𝐵) for all 𝐵 = 𝐵𝑅(𝑥0) ⊂ Ω. (P2)

Let us make some comments on the conditions (P1) and (P2).

Remark 1.3.

(i) Note that condition (P1) does not imply that𝑝 is log-Hölder continuous as a 2𝑛-variable function, since𝐵 × 𝐵 in (P1) is
not a ball with respect to the Euclidean metric inℝ2𝑛. The condition (P1) is actually weaker than the log-Hölder con-
tinuity of 𝑝. Let us first prove that the log-Hölder continuity of 𝑝 implies (P1). If 𝑝 is log-Hölder continuous, that is,

|𝑝(𝑥1, 𝑦1) − 𝑝(𝑥2, 𝑦2)| ≤ 𝐶

− log
√|𝑥1 − 𝑥2|2 + |𝑦1 − 𝑦2|2

for all (𝑥1, 𝑦1), (𝑥2, 𝑦2) ∈ Ω × Ωwith
√|𝑥1 − 𝑥2|2 + |𝑦1 − 𝑦2|2 ≤ 1∕2, then

|𝑝−(𝐵 × 𝐵) − 𝑝+(𝐵 × 𝐵)| ≤ 𝐶

− log(2
√
2𝑅)

for any 𝐵 = 𝐵𝑅(𝑥0) ⊂ Ωwith 𝑅 ≤ 1∕8. Thus,

𝑅𝑝−(𝐵×𝐵)−𝑝+(𝐵×𝐵) ≤ 𝑅𝐶∕ log(2
√
2𝑅) = exp

(
𝐶

log 𝑅

log(2
√
2𝑅)

)
≤ 𝑒2𝐶.

If 𝑅 > 1∕8, then 𝑅𝑝−(𝐵×𝐵)−𝑝+(𝐵×𝐵) ≤ 8𝑝+(𝐵×𝐵)−𝑝−(𝐵×𝐵) ≤ 8‖𝑝‖∞ . Therefore, (P1) is proved for any 𝑅 > 0.
Let us next provide an example of 𝑝 that is not log-Hölder continuous, but satisfies the condition (P1). The example

will be given in ℝ × ℝ, but it can be easily extended to ℝ𝑛 × ℝ𝑛. Let 𝜔 be a modulus of continuity that is smooth,
bounded, concave, increasing, and satisfies

lim
𝑅→0

1

− log 𝑅

1

𝜔(𝑅)
= 0. (1.7)

Define𝑝(𝑥, 𝑦) = |𝑥|𝜔(|𝑦|), then𝑝 is clearly not log-Hölder continuous by (1.7). To show that𝑝 satisfies (P1) in (−1, 1),
let 𝑥, 𝑦 ∈ 𝐵 ∶= (𝑥0 − 𝑅, 𝑥0 + 𝑅) with 𝑅 < 1. Then,

𝑝+ ∶= 𝑝+(𝐵 × 𝐵) = (|𝑥0| + 𝑅)𝜔(|𝑥0| + 𝑅) and

𝑝− ∶= 𝑝−(𝐵 × 𝐵) =

⎧⎪⎨⎪⎩
0 if |𝑥0| < 𝑅,

(𝑥0 − 𝑅)𝜔(𝑥0 − 𝑅) if 𝑥0 ≥ 𝑅,

(𝑥0 + 𝑅)𝜔(𝑥0 + 𝑅) if 𝑥0 ≤ −𝑅.

When |𝑥0| < 𝑅, we have

𝑅𝑝−−𝑝+ = 𝑅−(|𝑥0|+𝑅)𝜔(|𝑥0|+𝑅) ≤ 𝑅−2𝑅𝜔(2𝑅) ≤ 𝑅−2‖𝜔‖∞𝑅 ≤ 2‖𝜔‖∞.
If 𝑥0 ≥ 𝑅, then by the mean value theorem,

𝑝+ − 𝑝− = 2𝑅𝑓′(𝑥∗)
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4 CHAKER and KIM

F IGURE 1 Visualization of an example.

for some 𝑥∗ ∈ 𝐵, where 𝑓(𝑡) = 𝑡𝜔(𝑡). Since 𝑓 is concave and bounded, we have 𝑓′(𝑡) = 𝜔(𝑡) + 𝑡𝜔′(𝑡) ≤ 2𝜔(𝑡) ≤
2‖𝜔‖∞. Thus,

𝑅𝑝−−𝑝+ ≤ 𝑅−2𝑅𝑓
′(𝑥∗) ≤ 𝑅−4‖𝜔‖∞𝑅 ≤ 4‖𝜔‖∞.

The case 𝑥0 ≤ −𝑅 can be treated in the same way. Therefore, 𝑝 satisfies (P1) in (−1, 1).
For an explicit example of such 𝑝, one can consider a modulus of continuity 𝜔 that behaves like 1∕ log(− log 𝑅) or

log(log(1∕𝑅))∕(− log 𝑅) near zero.
(ii) Let us provide a nontrivial example of a function 𝑝 ∶ ℝ𝑛 × ℝ𝑛 → ℝ satisfying (P1) and (P2) in 𝐵1. Let 𝜔 be given by

𝜔(𝑟) =

⎧⎪⎨⎪⎩
3 −

1

log(1∕𝑟)
if 𝑟 < 1

𝑒
,

𝜔0(𝑟) if 𝑟 ≥ 1

𝑒
,

where 𝜔0 is any nonincreasing function such that 𝜔0(1∕𝑒) = 2 and lim𝑟→∞ 𝜔0(𝑟) > 1, and define 𝑝 ∶ ℝ𝑛 × ℝ𝑛 → ℝ

by 𝑝(𝑥, 𝑦) = 𝜔(|𝑥 − 𝑦|) (see Figure 1). Then, 𝑝 satisfies (P1) because 𝑝 is log-Hölder continuous as a 2𝑛-variable
function. Moreover, for any 𝐵 = 𝐵𝑅(𝑥0) ⊂ 𝐵1, we have

𝑝+(𝐵 × 𝐵
𝑐) = 3 = 𝑝+(𝐵 × 𝐵) and 𝑝−(𝐵 × 𝐵

𝑐) = 2 ≤ 𝜔(2𝑅) = 𝑝−(𝐵 × 𝐵).

Therefore, 𝑝 also satisfies (P2).
(iii) The conditions (P1) and (P2) do not restrict 𝑝 onΩ𝑐 × Ω𝑐. In fact, for the local regularity results, we do not need any

information about 𝑝 on Ω𝑐 × Ω𝑐 except for the global bound (1.3). This is because the double integral over Ω𝑐 × Ω𝑐

vanishes whenever we use a cutoff function.

Let us now present the main results of this paper. The first result is the local boundedness of weak solutions to (1.5).
Throughout the paper, we always assume that 𝑝 ∶ ℝ𝑛 × ℝ𝑛 → ℝ is a continuous function satisfying (1.2) and (1.3). Note
that the following theorem does not require the conditions (P1) and (P2).

Theorem 1.4. LetΩ be a bounded domain inℝ𝑛. If 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) satisfies

sup
𝑥∈Ω∫

ℝ𝑛

𝑢+(𝑦)
𝑝(𝑥,𝑦)−1

1 + |𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 < +∞ (1.8)
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CHAKER and KIM 5

and is a weak subsolution to (1.5) in Ω, then 𝑢 is locally bounded from above in Ω. Furthermore, for each 𝑥0 ∈ Ω with
𝑝(𝑥0, 𝑥0) ≤ 𝑛∕𝑠, there is a radius 𝑅 ∈ (0, 1) such that 𝐵𝑅 = 𝐵𝑅(𝑥0) ⊂ Ω, 𝑝+ < 𝑝∗− ∶=

𝑛𝑝−

𝑛−𝜎𝑝−
, and

sup
𝐵𝑅∕2

𝑢 ≤ 𝐶

(
∫
𝐵𝑅

𝑢
𝑝+
+ (𝑥) d𝑥

) 1

𝑝+

+

(
sup
𝑥∈𝐵𝑅

∫
ℝ𝑛⧵𝐵𝑅∕2

𝑢+(𝑦)
𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦

)1∕(𝑝+−1)

+ 1 (1.9)

for any 𝜎 ∈ (0, 𝑠) and 𝑞 ∈ (max{𝑝+,
𝑛

𝑛−𝜎
}, 𝑝∗−), where 𝑝± = 𝑝±(𝐵𝑅 × 𝐵𝑅). The constant 𝐶 depends on 𝑛, 𝑠, 𝜎, 𝑝+(𝐵𝑅 × ℝ𝑛),

𝑝−(𝐵𝑅 × 𝐵𝑅), 𝑞, and 𝑅.

Remark 1.5. If 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) is a weak supersolution to (1.5) in Ω satisfying (1.8) with 𝑢+ replaced by 𝑢−, then 𝑢 is
locally bounded from below in Ω and (1.9) holds with 𝑢 replaced by −𝑢.

As a consequence of Theorem 1.4, we know that every minimizer of (1.1) inΩ is locally bounded inΩ since it is a weak
solution to (1.5) in Ω.
The strategy for the proof of Theorem 1.4 is to develop the De Giorgi theory for the nonlocal functional  with vari-

able exponent. This approach for nonlocal functionals with constant exponent has been studied extensively in the last
few years. See, for instance, [18, 33, 36, 41, 42] for the case 𝑝 = 2, and [16, 22, 26, 27, 45] for 𝑝 > 1. For a deeper discus-
sion on fractional De Giorgi classes and their applications for the regularity of nonlocal problems, we refer the reader to
[23] and the references therein. Analogously, we obtain the Caccioppoli-type estimate that contains terms with variable
exponents, and then use the De Giorgi iteration technique to establish Theorem 1.4. Due to the variable exponent in the
Caccioppoli-type estimate, an additional difficulty arises in the De Giorgi iteration that does not occur in the case of the
constant exponent. That is, different exponents involving 𝑝+ and 𝑝− come into play in the iteration. Thus, the supremum
of 𝑢 is controlled by a maximum of two 𝐿𝑝+ -norms of 𝑢 with different powers, and the nonlocal tail term having the
variable exponent.
Let us mention that local boundedness of weak solutions to more general problems involving subcritical nonlinearity

has been recently settled by Ho and Kim [39]. However, their result requires an additional log-Hölder–type assumption
on 𝑝 to cover the subcritical nonlinearity with a variable exponent. For Equation (1.5), this type of additional regularity
on 𝑝 is not necessary.
The second main result is the Hölder continuity of bounded weak solutions to (1.5).

Theorem 1.6. Let Ω be a bounded domain in ℝ𝑛. Assume that 𝑝 satisfies (P1) and (P2) in Ω. If 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) is a weak
solution to (1.5) inΩ satisfying (1.8), then 𝑢 is locally Hölder continuous inΩ. Furthermore, for each 𝑥0 ∈ Ωwith 𝑝(𝑥0, 𝑥0) ≤
𝑛∕𝑠, there exists 𝑅 ∈ (0, 1) such that 𝐵𝑅 = 𝐵𝑅(𝑥0) ⋐ Ω and 𝑝+(𝐵𝑅 × 𝐵𝑅) < 𝑝∗−(𝐵𝑅 × 𝐵𝑅), and

[𝑢]𝐶𝛼(𝐵𝑅∕2)
≤ 𝐶‖𝑢‖𝐿∞(𝐵𝑅) + 𝑅𝑠 + 1 +

(
𝑅𝑠𝑝+({𝑥0}×𝐵

𝑐
𝑅
) sup
𝑥∈𝐵3𝑅∕4

∫
ℝ𝑛⧵𝐵𝑅

|𝑢(𝑦)|𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦
) 1

𝑝+({𝑥0}×𝐵
𝑐
𝑅
)−1

(1.10)

for any 𝜎 ∈ (0, 𝑠), where the constants 𝛼 and 𝐶 depend on 𝑛, 𝑠, 𝜎, 𝑝+(Ω × ℝ𝑛), 𝑝−(Ω × ℝ𝑛), 𝑅, and 𝐿.

The Hölder estimate for the fractional 𝑝-Laplacian–type equations was first established by Di Castro–Kuusi–Palatucci
[27]. Theorem 1.6 generalizes their result to the case of variable exponents.
Theorem 1.6 follows from the so-called growth lemma (Lemma 5.2), which provides the control of oscillation of super-

solutions. In order to prove the growth lemma, we need two ingredients: an improved Caccioppoli-type estimate and a
fractional De Giorgi isoperimetric-type inequality. When 𝑝 is constant, the Caccioppoli-type estimate was first established
in [27] and improved in [22] (see also [18]). TheCaccioppoli-type estimatewe establish to prove Theorem 1.4 is an improved
version. Our Caccioppoli-type estimate not only makes it possible to use the fractional De Giorgi isoperimetric-type
inequality as in [22], but also takes variable exponents into account.
The proof of Theorem 1.6 is significantly different in the De Giorgi iteration from the one for the case of the constant

exponent. As in the proof of Theorem 1.4, we also encounter different exponents involving 𝑝+ and 𝑝− in the De Giorgi iter-
ation. However, thismismatch of exponents causes amore serious problemwhenwe investigate themodulus of continuity
of weak solutions. We will see that the assumption (P1) on 𝑝 solves this problem.
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6 CHAKER and KIM

Another difference is that the variable exponent in the nonlocal tail term affects the iteration as well. This difficulty does
not exist in the local variational problems with variable exponent as well as the nonlocal problemwith constant exponent.
The variable exponent in mixed regions, which appears in the nonlocal tail, interacts with the variable exponent in local
terms. With this regard, the assumption (P2) on 𝑝 is required.
After finishing our work, we have learned from [49] that similar results to ours can be obtained by using a different

iteration method. By introducing a nonstandard nonlocal tail term, which involves 𝐿∞-norm of 𝑢 inside, he was able to
obtain the Hölder estimate without assuming (P2) on 𝑝. However, in order to get a standard nonlocal tail term in the
Hölder estimates as in (1.10), it is inevitable to impose an additional assumption on 𝑝 in mixed regions.
The authors wish to thank Moritz Kassmann from Bielefeld University for stimulating discussions.

1.1 Outline

The paper is organized as follows. In Section 2, we recall the variable exponents Lebesgue spaces, fractional Sobolev spaces
with variable exponents, and fractional Sobolev embedding theorems. Section 3 is devoted to the proof of the improved
Caccioppoli-type estimate with variable exponent, which will be used in the proofs of local boundedness and Hölder
regularity for weak solutions. In Section 4, we prove Theorem 1.4, which provides a quantitative local estimate on the
supremum of weak subsolutions. Finally, we prove Theorem 1.6 in Section 5 by establishing a growth lemma. This is
proved by using the improved Caccioppoli-type estimate and the isoperimetric-type inequality.

2 PRELIMINARIES

In this section, we briefly review the variable exponent Lebesgue spaces and fractional Sobolev spaces with variable
exponents. Furthermore, we recall the fractional Sobolev embedding theorems for the constant exponent case.

2.1 Variable exponents Lebesgue spaces

Let Ω ⊂ ℝ𝑛 be an open set and let 𝑝 ∶ Ω → ℝ be a measurable function satisfying

1 < inf
𝑥∈Ω

𝑝(𝑥) ≤ sup
𝑥∈Ω

𝑝(𝑥) < +∞.

We define the variable exponent Lebesgue spaces

𝐿𝑝(⋅)(Ω) =
{
𝑢 ∶ Ω → ℝmeasurable ∶ 𝜚𝐿𝑝(⋅)(Ω)(𝑢∕𝜆) < +∞ for some 𝜆 > 0

}
endowed with the norm

‖𝑢‖𝐿𝑝(⋅)(Ω) = inf
{
𝜆 > 0 ∶ 𝜚𝐿𝑝(⋅)(Ω)(𝑢∕𝜆) ≤ 1

}
,

where

𝜚𝐿𝑝(⋅)(Ω)(𝑢) = ∫
Ω

|𝑢(𝑥)|𝑝(𝑥) d𝑥.
It is well known that 𝐿𝑝(⋅)(Ω) is a Banach space, see [31, 35, 44] for instance. Let us collect some useful inequalities for
later use.

Lemma 2.1. [35, Theorem 1.3] Let 𝑢 ∈ 𝐿𝑝(⋅)(Ω) and 𝑝± = 𝑝±(Ω), then

(i) ‖𝑢‖𝐿𝑝(⋅)(Ω) > 1 (= 1; < 1) if and only if 𝜚𝐿𝑝(⋅)(Ω) > 1 (= 1; < 1);
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CHAKER and KIM 7

(ii) if ‖𝑢‖𝐿𝑝(⋅)(Ω) ≥ 1, then ‖𝑢‖𝑝−
𝐿𝑝(⋅)(Ω)

≤ 𝜚𝐿𝑝(⋅)(Ω)(𝑢) ≤ ‖𝑢‖𝑝+𝐿𝑝(⋅)(Ω);
(iii) if ‖𝑢‖𝐿𝑝(⋅)(Ω) ≤ 1, then ‖𝑢‖𝑝+

𝐿𝑝(⋅)(Ω)
≤ 𝜚𝐿𝑝(⋅)(Ω)(𝑢) ≤ ‖𝑢‖𝑝−𝐿𝑝(⋅)(Ω).

Lemma 2.2. [44, Theorem 2.1] For every 𝑢 ∈ 𝐿𝑝(⋅)(Ω) and 𝑣 ∈ 𝐿𝑝
′(⋅)(Ω), it holds that

∫
Ω

|𝑢(𝑥)𝑣(𝑥)| d𝑥 ≤ 2‖𝑢‖𝐿𝑝(⋅)(Ω)‖𝑣‖𝐿𝑝′(⋅)(Ω),
where 1∕𝑝(𝑥) + 1∕𝑝′(𝑥) = 1.

See [24, 31, 35, 44] for more properties of the variable exponent Lebesgue spaces.

2.2 Fractional Sobolev spaces with variable exponents

The fractional Sobolev spaces with variable exponents were first introduced recently by Kaufmann, Rossi, and Vidal
[43], and have been studied in different contexts. See [4, 6–15, 19, 25, 39, 40, 50, 55] and references therein. Note that the
Triebel–Lizorkin spaces with variable smoothness and integrability have been introduced in [30], which are isomorphic
to𝑊𝑘,𝑝(⋅)(ℝ𝑛) if 𝑘 ∈ ℕ ∪ {0}, respectively, the variable exponent Bessel potential space 𝛼,𝑝(⋅)(ℝ𝑛) for 𝛼 > 0 under suit-
able assumptions on 𝑝. In the scope of this paper, we will focus on the fractional Sobolev spaces with variable exponents
introduced in [43].
In this section, letΩ be a bounded Lipschitz domain inℝ𝑛 orΩ = ℝ𝑛. Let 𝑝 ∈ 𝐶(Ω × Ω) be such that 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥)

and

1 < 𝑝−(Ω × Ω) ≤ 𝑝+(Ω × Ω) < +∞,

and define �̄�(𝑥) = 𝑝(𝑥, 𝑥). For 𝑠 ∈ (0, 1), the fractional Sobolev space with variable exponents is defined as

𝑊𝑠,𝑝(⋅,⋅)(Ω) ∶=
{
𝑢 ∈ 𝐿�̄�(⋅)(Ω) ∶ 𝜚𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢∕𝜆) < +∞ for some 𝜆 > 0

}
,

where

𝜚𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢) = ∫
Ω
∫
Ω

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥.

We define a seminorm

[𝑢]𝑊𝑠,𝑝(⋅,⋅)(Ω) = inf
{
𝜆 > 0 ∶ 𝜚𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢∕𝜆) ≤ 1

}
.

It is well known [43] that𝑊𝑠,𝑝(⋅,⋅)(Ω) is a Banach space with the norm

‖𝑢‖𝑊𝑠,𝑝(⋅,⋅)(Ω) = ‖𝑢‖𝐿�̄�(⋅)(Ω) + [𝑢]𝑊𝑠,𝑝(⋅,⋅)(Ω).

Let us also define

�̃�𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢) = 𝜚𝐿�̄�(⋅)(Ω)(𝑢) + 𝜚𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢)

and a norm

|𝑢|𝑊𝑠,𝑝(⋅,⋅)(Ω) = inf
{
𝜆 > 0 ∶ �̃�𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢∕𝜆) ≤ 1

}
.

Then, it is clear that two norms ‖𝑢‖𝑊𝑠,𝑝(⋅,⋅)(Ω) and |𝑢|𝑊𝑠,𝑝(⋅,⋅)(Ω) are comparable, see [39]. It is also easy to obtain the following
lemma from the definitions of the norms.
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8 CHAKER and KIM

Lemma 2.3. Let 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(Ω) and 𝑝± = 𝑝±(Ω × Ω), then

(i) if [𝑢]𝑊𝑠,𝑝(⋅,⋅)(Ω) ≥ 1, then [𝑢]𝑝−
𝑊𝑠,𝑝(⋅,⋅)(Ω)

≤ 𝜚𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢) ≤ [𝑢]
𝑝+

𝑊𝑠,𝑝(⋅,⋅)(Ω)
;

(ii) if [𝑢]𝑊𝑠,𝑝(⋅,⋅)(Ω) ≤ 1, then [𝑢]𝑝+
𝑊𝑠,𝑝(⋅,⋅)(Ω)

≤ 𝜚𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢) ≤ [𝑢]
𝑝−

𝑊𝑠,𝑝(⋅,⋅)(Ω)
;

(iii) if |𝑢|𝑊𝑠,𝑝(⋅,⋅)(Ω) ≥ 1, then |𝑢|𝑝−
𝑊𝑠,𝑝(⋅,⋅)(Ω)

≤ �̃�𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢) ≤ |𝑢|𝑝+𝑊𝑠,𝑝(⋅,⋅)(Ω)
;

(iv) if |𝑢|𝑊𝑠,𝑝(⋅,⋅)(Ω) ≤ 1, then |𝑢|𝑝+
𝑊𝑠,𝑝(⋅,⋅)(Ω)

≤ �̃�𝑊𝑠,𝑝(⋅,⋅)(Ω)(𝑢) ≤ |𝑢|𝑝−𝑊𝑠,𝑝(⋅,⋅)(Ω)
.

Recently, the fractional Sobolev embeddingswith variable exponents have been studied in [39, 40, 43].However, the frac-
tional Sobolev embeddings with constant exponents are sufficient for the local regularity theory with variable exponents.
Let us recall the following embedding theorems for constant exponent fractional Sobolev spaces.

Theorem 2.4. [28, Theorem 6.7] Let Ω ⊂ ℝ𝑛 be a bounded Lipschitz domain. Let 𝑠 ∈ (0, 1) and 𝑝 ∈ [1, 𝑛∕𝑠). Then, there
exists a constant 𝐶 = 𝐶(𝑛, 𝑠, 𝑝,Ω) > 0 such that, for any 𝑢 ∈ 𝑊𝑠,𝑝(Ω), we have

‖𝑢‖𝐿𝑞(Ω) ≤ 𝐶‖𝑢‖𝑊𝑠,𝑝(Ω)

for any 𝑞 ∈ [1, 𝑛𝑝∕(𝑛 − 𝑠𝑝)].

Theorem 2.5. [22, Corollary 4.9] Let 𝑠 ∈ (0, 1), 𝑝 ∈ [1, 𝑛∕𝑠), and 𝑅 > 0. Let 𝑢 ∈ 𝑊
𝑠,𝑝

0
(𝐵𝑅) and suppose that 𝑢 = 0 on a set

Ω0 ⊂ 𝐵𝑅 with |Ω0| ≥ 𝛾|𝐵𝑅| for some 𝛾 ∈ (0, 1]. Then,

‖𝑢‖
𝐿

𝑛𝑝
𝑛−𝑠𝑝 (𝐵𝑅)

≤ 𝐶[𝑢]𝑊𝑠,𝑝(𝐵𝑅)

for some 𝐶 = 𝐶(𝑛, 𝑠, 𝑝, 𝛾) > 0.

Theorem 2.6. [28, Theorem 8.2] Let Ω ⊂ ℝ𝑛 be a bounded Lipschitz domain. Let 𝑠 ∈ (0, 1) and 𝑝 > 𝑛∕𝑠. Then there exists
a constant 𝐶 = 𝐶(𝑛, 𝑠, 𝑝,Ω) > 0 such that, for any 𝑢 ∈ 𝐿𝑝(Ω), we have

‖𝑢‖
𝐶𝛼(Ω)

≤ 𝐶‖𝑢‖𝑊𝑠,𝑝(Ω),

where 𝛼 = (𝑠𝑝 − 𝑛)∕𝑝.

3 CACCIOPPOLI-TYPE ESTIMATE

This section is devoted to the Caccioppoli-type estimate for weak subsolutions and supersolutions to (1.5). Let us first
provide the definitions of weak subsolutions and supersolutions.

Definition 3.1. A function 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) is a weak subsolution (weak supersolution, respectively) to (1.5) in Ω if

∫
ℝ𝑛 ∫ℝ𝑛

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))(𝜑(𝑥) − 𝜑(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥 ≤ 0 (≥ 0, respectively)

for every nonnegative 𝜑 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) such that 𝜑 = 0 a.e. outside Ω. A function 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) is a weak solution to
(1.5) in Ω if it is a weak subsolution and supersolution.

The Caccioppoli-type estimate is a key ingredient for the local regularity results. This type of estimate has been estab-
lished by many authors (see, for instance, [16, 22, 27, 45]) for the case of the fractional 𝑝-Laplacian with a constant
𝑝 > 1. The main difference between Caccioppoli-type estimates for the local and nonlocal operators is that the esti-
mate for the nonlocal operator involves a nonlocal tail term. Moreover, in [22], Cozzi improved the estimate to take an
isoperimetric-type inequality into account. In this section,we generalizeCozzi’s estimate to the fractional𝑝(⋅, ⋅)-Laplacian.
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CHAKER and KIM 9

Theorem 3.2. Let Ω ⊂ ℝ𝑛 be a bounded domain. Let 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) be a weak subsolution to (1.5) in Ω. Then, for any
𝐵𝑟(𝑥0) ⋐ 𝐵𝑅(𝑥0) ⊂ Ω and any 𝑘 ∈ ℝ,

𝜚𝑊𝑠,𝑝(⋅,⋅)(𝐵𝑟(𝑥0))
(𝑤+) + ∫

𝐵𝑟(𝑥0)

𝑤+(𝑥)∫
𝐵𝑅(𝑥0)

𝑤−(𝑦)
𝑝(𝑥,𝑦)−1|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥

≤ 𝐶 ∫
𝐵𝑅(𝑥0)

∫
𝐵𝑅(𝑥0)

||||𝑤+(𝑥)

𝑅 − 𝑟

||||
𝑝(𝑥,𝑦)

d𝑦 d𝑥|𝑥 − 𝑦|𝑛−(1−𝑠)𝑝(𝑥,𝑦)
+ 𝐶

⎛⎜⎜⎜⎝ sup
𝑥∈𝐵𝑅+𝑟

2

(𝑥0)
∫
ℝ𝑛⧵𝐵𝑅(𝑥0)

𝑤+(𝑦)
𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦)

(
2𝑅

𝑅 − 𝑟

)𝑛+𝑠𝑝(𝑥,𝑦)
d𝑦

⎞⎟⎟⎟⎠∫𝐵𝑅(𝑥0) 𝑤+(𝑥) d𝑥,

(3.1)

where 𝑤± ∶= (𝑢 − 𝑘)±. The constant 𝐶 depends only on 𝑝±(𝐵𝑅(𝑥0) × 𝐵𝑅(𝑥0)).

Remark 3.3. If 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) is a weak supersolution to (1.5) inΩ, then (3.1) holds with𝑤+ and𝑤− replaced by𝑤− and
𝑤+, respectively.

In order to prove Theorem 3.2, we need an algebraic inequality. Recall that, in the case of 𝑝(⋅)-Laplacian with 1 < 𝑝− ≤
𝑝(𝑥) ≤ 𝑝+ < ∞, the inequalities

|𝐷𝑤|𝑝(𝑥)−2𝐷𝑤 ⋅ 𝐷(𝑤𝜂𝑝+) ≥ |𝐷𝑤|𝑝(𝑥)𝜂𝑝+ − 𝑝+|𝐷𝑤|𝑝(𝑥)−1𝜂𝑝+−1𝑤|𝐷𝜂|
≥ |𝐷𝑤|𝑝(𝑥)𝜂𝑝+ − 1

2
|𝐷𝑤|𝑝(𝑥)𝜂(𝑝+−1) 𝑝(𝑥)

𝑝(𝑥)−1 − 𝐶𝑤𝑝(𝑥)|𝐷𝜂|𝑝(𝑥)
≥ 1

2
|𝐷𝑤|𝑝(𝑥)𝜂𝑝+ − 𝐶𝑤𝑝(𝑥)|𝐷𝜂|𝑝(𝑥)

(3.2)

for some 𝐶 > 0, play a crucial role for establishing Caccioppoli-type estimates (see, e.g., [34]). The following lemma is a
discrete version of (3.2).

Lemma 3.4. Let 𝑎, 𝑏 ≥ 0, 𝜏1, 𝜏2 ∈ [0, 1], and 1 < 𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝+ < ∞. Then,

|𝑎 − 𝑏|𝑝(𝑥,𝑦)−2(𝑎 − 𝑏)
(
𝑎𝜏

𝑝+
1

− 𝑏𝜏
𝑝+
2

) ≥ 1

2
|𝑎 − 𝑏|𝑝(𝑥,𝑦)(max{𝜏1, 𝜏2})𝑝+ − 𝐶(max{𝑎, 𝑏})𝑝(𝑥,𝑦)|𝜏1 − 𝜏2|𝑝(𝑥,𝑦), (3.3)

for some 𝐶 = 𝐶(𝑝+, 𝑝−) > 0.

Proof. Since

(𝑎 − 𝑏)
(
𝑎𝜏

𝑝+
1

− 𝑏𝜏
𝑝+
2

) ≥ (𝑎 − 𝑏)2𝜏
𝑝+
1

− 𝑏|𝑎 − 𝑏||𝜏𝑝+
1

− 𝜏
𝑝+
2
| and

(𝑎 − 𝑏)
(
𝑎𝜏

𝑝+
1

− 𝑏𝜏
𝑝+
2

) ≥ (𝑎 − 𝑏)2𝜏
𝑝+
2

− 𝑎|𝑎 − 𝑏||𝜏𝑝+
1

− 𝜏
𝑝+
2
|,

we have

(𝑎 − 𝑏)
(
𝑎𝜏

𝑝+
1

− 𝑏𝜏
𝑝+
2

) ≥ (𝑎 − 𝑏)2(max{𝜏1, 𝜏2})
𝑝+ − max{𝑎, 𝑏}|𝑎 − 𝑏||𝜏𝑝+

1
− 𝜏

𝑝+
2
|. (3.4)

By convexity of the function 𝑓(𝜏) = 𝜏𝑝+ ,

|𝜏𝑝+
1

− 𝜏
𝑝+
2
| ≤ max{𝑓′(𝜏1), 𝑓

′(𝜏2)}|𝜏1 − 𝜏2| ≤ 𝑝+|𝜏1 − 𝜏2|(max{𝜏1, 𝜏2})𝑝+−1. (3.5)
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10 CHAKER and KIM

Thus, it follows from (3.4), (3.5), and Young’s inequality that

|𝑎 − 𝑏|𝑝(𝑥,𝑦)−2(𝑎 − 𝑏)
(
𝑎𝜏

𝑝+
1

− 𝑏𝜏
𝑝+
2

)
≥ |𝑎 − 𝑏|𝑝(𝑥,𝑦)(max{𝜏1, 𝜏2})𝑝+ − 𝑝+

𝑝(𝑥, 𝑦) − 1

𝑝(𝑥, 𝑦)
𝜀

𝑝(𝑥,𝑦)

𝑝(𝑥,𝑦)−1 |𝑎 − 𝑏|𝑝(𝑥,𝑦)(max{𝜏1, 𝜏2})(𝑝+−1) 𝑝(𝑥,𝑦)

𝑝(𝑥,𝑦)−1

−
𝑝+

𝑝(𝑥, 𝑦)
𝜀−𝑝(𝑥,𝑦)(max{𝑎, 𝑏})𝑝(𝑥,𝑦)|𝜏1 − 𝜏2|𝑝(𝑥,𝑦)

≥ (1 − 𝑝+𝜀
𝑝+∕(𝑝+−1)

)|𝑎 − 𝑏|𝑝(𝑥,𝑦)(max{𝜏1, 𝜏2})𝑝+ − 𝑝+
𝑝−

𝜀−𝑝+(max{𝑎, 𝑏})𝑝(𝑥,𝑦)|𝜏1 − 𝜏2|𝑝(𝑥,𝑦).
Taking 𝜀 = (1∕(2𝑝+))

(𝑝+−1)∕𝑝+ , we obtain (3.3) with 𝐶 =
𝑝+

𝑝−
(2𝑝+)

𝑝+−1. □

Proof of Theorem 3.2. In this proof, every ball is centered at 𝑥0. Let 𝜂 be a cut-off function satisfying 𝜂 ∈ [0, 1], supp𝜂 ⊂
𝐵𝑅+𝑟

2

⊂ 𝐵𝑅, 𝜂 ≡ 1 in 𝐵𝑟, and |𝐷𝜂| ≤ 4∕(𝑅 − 𝑟). Let 𝑝± = 𝑝±(𝐵𝑅 × 𝐵𝑅). We first assume that 𝑢 ∈ 𝐿∞(𝐵2𝑅), then 𝜑(𝑥) =

𝑤+(𝑥)𝜂(𝑥)
𝑝+ ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) by [49, Lemma 4.1]. Applying the definition of weak subsolutions with the test function 𝜑,

we have

0 ≥ ∫
𝐵𝑅

∫
𝐵𝑅

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))(𝜑(𝑥) − 𝜑(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥

+ 2∫
𝐵𝑅

∫
ℝ𝑛⧵𝐵𝑅

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))𝑤+(𝑥)𝜂(𝑥)
𝑝+|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥 =∶ 𝐼1 + 𝐼2.

(3.6)

It is easy to see that

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))(𝜑(𝑥) − 𝜑(𝑦))

≥ |𝑤+(𝑥) − 𝑤+(𝑦)|𝑝(𝑥,𝑦)−2(𝑤+(𝑥) − 𝑤+(𝑦))(𝑤+(𝑥)𝜂(𝑥)
𝑝+ − 𝑤+(𝑦)𝜂(𝑦)

𝑝+),
(3.7)

as in the proof of [27, Lemma 1.4]. Moreover, by Lemma 3.4 with 𝑎 = 𝑤+(𝑥), 𝑏 = 𝑤+(𝑦), 𝜏1 = 𝜂(𝑥), and 𝜏2 = 𝜂(𝑦), we
obtain

|𝑤+(𝑥) − 𝑤+(𝑦)|𝑝(𝑥,𝑦)−2(𝑤+(𝑥) − 𝑤+(𝑦))(𝑤+(𝑥)𝜂(𝑥)
𝑝+ − 𝑤+(𝑦)𝜂(𝑦)

𝑝+)

≥ 1

2
|𝑤+(𝑥) − 𝑤+(𝑦)|𝑝(𝑥,𝑦)(max{𝜂(𝑥), 𝜂(𝑦)})𝑝+ − 𝐶(max{𝑤+(𝑥), 𝑤+(𝑦)})

𝑝(𝑥,𝑦)|𝜂(𝑥) − 𝜂(𝑦)|𝑝(𝑥,𝑦) (3.8)

for all 𝑥, 𝑦 ∈ 𝐵𝑅, where 𝐶 = 𝐶(𝑝+, 𝑝−) > 0. On the other hand, it is obvious that

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))(𝜑(𝑥) − 𝜑(𝑦)) = 0 (3.9)

when 𝑢(𝑥), 𝑢(𝑦) ≤ 𝑘. Furthermore, if 𝑢(𝑥) > 𝑘 and 𝑢(𝑦) ≤ 𝑘, then

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))(𝜑(𝑥) − 𝜑(𝑦)) ≥ 𝑐
(
(𝑤+(𝑥) − 𝑤+(𝑦))

𝑝(𝑥,𝑦) + 𝑤+(𝑥)𝑤−(𝑦)
𝑝(𝑥,𝑦)−1

)
𝜂𝑝+(𝑥) (3.10)

by a similar argument as in [22, Proposition 8.5], where 𝑐 = 2𝑝−−2 ∧ 1. Therefore, combining (3.7)–(3.10) and using the
symmetry of 𝑝(𝑥, 𝑦), we estimate 𝐼1 by
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CHAKER and KIM 11

𝐼1 =

(
∫
𝐴+
𝑘,𝑅

∫
𝐴+
𝑘,𝑅

+2∫
𝐴+
𝑘,𝑅

∫
𝐵𝑅⧵𝐴

+
𝑘,𝑅

)|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))(𝜑(𝑥) − 𝜑(𝑦))|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥

≥ 𝑐 ∫
𝐵𝑟
∫
𝐵𝑟

|𝑤+(𝑥) − 𝑤+(𝑦)|𝑝(𝑥,𝑦)|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥 + 2𝑐 ∫
𝐵𝑟

𝑤+(𝑥)∫
𝐵𝑅

𝑤−(𝑦)
𝑝(𝑥,𝑦)−1|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥

−𝐶 ∫
𝐵𝑅

∫
𝐵𝑅

𝑤+(𝑥)
𝑝(𝑥,𝑦)|𝜂(𝑥) − 𝜂(𝑦)|𝑝(𝑥,𝑦)|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥, (3.11)

where 𝐴+
𝑘,𝑅

= 𝐵𝑅 ∩ {𝑢 > 𝑘}.
For 𝐼2, we use the inequalities

|𝑢(𝑥) − 𝑢(𝑦)|𝑝(𝑥,𝑦)−2(𝑢(𝑥) − 𝑢(𝑦))𝑤+(𝑥) ≥ −(𝑢(𝑦) − 𝑢(𝑥))
𝑝(𝑥,𝑦)−1
+ 𝑤+(𝑥) ≥ −𝑤+(𝑦)

𝑝(𝑥,𝑦)−1𝑤+(𝑥)

and

|𝑦 − 𝑥0||𝑥 − 𝑦| ≤ 1 +
|𝑥 − 𝑥0||𝑥 − 𝑦| ≤ 1 +

𝑅 + 𝑟

𝑅 − 𝑟
=

2𝑅

𝑅 − 𝑟
, 𝑥 ∈ 𝐵𝑅+𝑟

2

, 𝑦 ∈ ℝ𝑛 ⧵ 𝐵𝑅,

to obtain

𝐼2 ≥ −2∫
𝐵𝑅

∫
ℝ𝑛⧵𝐵𝑅

𝑤+(𝑦)
𝑝(𝑥,𝑦)−1𝑤+(𝑥)𝜂(𝑥)

𝑝+|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥

≥ −2

(
sup

𝑥∈supp 𝜂 ∫ℝ𝑛⧵𝐵𝑅

𝑤+(𝑦)
𝑝(𝑥,𝑦)−1|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦

)
∫
𝐵𝑅

𝑤+(𝑥)𝜂(𝑥)
𝑝+ d𝑥

≥ −2

⎛⎜⎜⎝ sup
𝑥∈𝐵𝑅+𝑟

2

∫
ℝ𝑛⧵𝐵𝑅

𝑤+(𝑦)
𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦)

(
2𝑅

𝑅 − 𝑟

)𝑛+𝑠𝑝(𝑥,𝑦)
d𝑦

⎞⎟⎟⎠∫𝐵𝑅 𝑤+(𝑥) d𝑥.

(3.12)

Therefore, (3.1) follows from (3.6), (3.11), (3.12), and |𝐷𝜂| ≤ 4∕(𝑅 − 𝑟).
The general case 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) follows by using a test function 𝜑(𝑥) = (min{𝑢,𝑀} − 𝑘)+𝜂(𝑥)

𝑝+ instead of 𝜑(𝑥) =
𝑤+(𝑥)𝜂(𝑥)

𝑝+ and then taking a limit𝑀 →∞ in the resulting inequality. □

4 LOCAL BOUNDEDNESS

In this section, we prove Theorem 1.4. The idea of the proof of the local boundedness is to fix a point 𝑥0 ∈ Ω and find
a small ball 𝐵𝑅∕2(𝑥0) ⊂ Ω on which 𝑢 is bounded. We do not only prove the local boundedness of weak subsolutions in
𝐵𝑅∕2(𝑥0) but also provide a quantitative estimate of their supremum. The proof of Theorem 1.4 is based on the De Giorgi
iteration technique.
The Caccioppoli-type inequality and the fractional Sobolev inequality are crucial tools for the De Giorgi iteration. One

canmake use of the fractional Sobolev inequality with variable exponent developed in [39], but it requires the assumption
𝑝+(𝐵𝑅(𝑥0) × 𝐵𝑅(𝑥0)) < 𝑛∕𝑠, which is stronger than the assumption made in Theorem 1.4, namely, 𝑝(𝑥0, 𝑥0) ≤ 𝑛∕𝑠. Thus,
we will use the fractional Sobolev inequality with a constant exponent (Theorem 2.4).
For local variational problems, we have the continuous embedding 𝑊1,𝑝(⋅)(Ω) ↪ 𝑊1,𝑝−(Ω) by a simple inequality

∫ |𝐷𝑢|𝑝− d𝑥 ≤ ∫ (|𝐷𝑢|𝑝(𝑥) + 1) d𝑥. However, a similar continuous embedding 𝑊𝑠,𝑝(⋅,⋅)(Ω) ↪ 𝑊𝑠,𝑝−(Ω) is not available.
Instead, we prove the following lemma, which shows a continuous embedding into a larger space with smaller orders of
differentiability 𝜎 < 𝑠 and integrability 𝑞 < 𝑝−. This lemma is a generalization of [22, Lemma 4.6].
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12 CHAKER and KIM

Lemma 4.1. Let Ω′ ⊂ Ω ⊂ ℝ𝑛 be two bounded measurable sets with 𝑑 ∶= diam(Ω) ≤ 1. Let 1 ≤ 𝑞 < 𝑝− ≤ 𝑝(𝑥, 𝑦) ≤ 𝑝+
and 0 < 𝜎 < 𝑠 < 1, where 𝑝± = 𝑝±(Ω × Ω), then𝑊𝑠,𝑝(⋅,⋅)(Ω) ↪ 𝑊𝜎,𝑞(Ω). In particular, for any 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(Ω),

(
∫
Ω
∫
Ω′

|𝑢(𝑥) − 𝑢(𝑦)|𝑞|𝑥 − 𝑦|𝑛+𝜎𝑞 d𝑦 d𝑥

)1∕𝑞
≤ 𝐶max

⎧⎪⎨⎪⎩
(|Ω′|𝑑(𝑠−𝜎) 𝑝+𝑞

𝑝+−𝑞

) 𝑝+−𝑞

𝑝+𝑞

,

(|Ω′|𝑑(𝑠−𝜎) 𝑝+𝑞

𝑝+−𝑞

) 𝑝−−𝑞

𝑝−𝑞

⎫⎪⎬⎪⎭[𝑢]𝑊𝑠,𝑝(⋅,⋅)(Ω),

where 𝐶 = 𝐶(𝑛, 𝑠, 𝜎, 𝑝+, 𝑝−, 𝑞) > 0.

Proof. We define

𝑈(𝑥, 𝑦) ∶=
|𝑢(𝑥) − 𝑢(𝑦)|𝑞|𝑥 − 𝑦|𝑛+𝜎𝑞 ,

then

𝑈(𝑥, 𝑦) =
|𝑢(𝑥) − 𝑢(𝑦)|𝑞

|𝑥 − 𝑦|(𝑛+𝑠𝑝(𝑥,𝑦)) 𝑞

𝑝(𝑥,𝑦)

1

|𝑥 − 𝑦|𝑛 𝑝(𝑥,𝑦)−𝑞

𝑝(𝑥,𝑦)
−(𝑠−𝜎)𝑞

=∶ 𝑉(𝑥, 𝑦)𝑊(𝑥, 𝑦).

Thus, by Lemma 2.2, we obtain

∫
Ω
∫
Ω′

|𝑢(𝑥) − 𝑢(𝑦)|𝑞|𝑥 − 𝑦|𝑛+𝜎𝑞 d𝑦 d𝑥 = ‖𝑈‖𝐿1(Ω×Ω′) ≤ 2‖𝑉‖
𝐿

𝑝(⋅,⋅)
𝑞 (Ω×Ω′)

‖𝑊‖
𝐿

𝑝(⋅,⋅)
𝑝(⋅,⋅)−𝑞 (Ω×Ω′)

= 2[𝑢]
𝑞

𝑊𝑠,𝑝(⋅,⋅)(Ω)
‖𝑊‖

𝐿

𝑝(⋅,⋅)
𝑝(⋅,⋅)−𝑞 (Ω×Ω′)

.

Using Lemma 2.1, we have

‖𝑊‖
𝐿

𝑝(⋅,⋅)
𝑝(⋅,⋅)−𝑞 (Ω×Ω′)

≤ max

{
𝜚
𝐿

𝑝(⋅,⋅)
𝑝(⋅,⋅)−𝑞 (Ω×Ω′)

(𝑊)
𝑝+−𝑞

𝑝+ , 𝜚
𝐿

𝑝(⋅,⋅)
𝑝(⋅,⋅)−𝑞 (Ω×Ω′)

(𝑊)
𝑝−−𝑞

𝑝−

}
.

Since 𝑑 ≤ 1,

𝜚
𝐿

𝑝(⋅,⋅)
𝑝(⋅,⋅)−𝑞 (Ω×Ω′)

(𝑊) = ∫
Ω′ ∫Ω

|𝑥 − 𝑦|(𝑠−𝜎) 𝑝(𝑥,𝑦)𝑞

𝑝(𝑥,𝑦)−𝑞|𝑥 − 𝑦|𝑛 d𝑦 d𝑥

≤ ∫
Ω′ ∫Ω

|𝑥 − 𝑦|(𝑠−𝜎) 𝑝+𝑞

𝑝+−𝑞|𝑥 − 𝑦|𝑛 d𝑦 d𝑥

≤ 𝑝+ − 𝑞

(𝑠 − 𝜎)𝑝+𝑞
|𝕊𝑛−1||Ω′|𝑑(𝑠−𝜎) 𝑝+𝑞

𝑝+−𝑞 .

Therefore, combining the previous estimates finishes the proof. □

As mentioned before, we will prove Theorem 1.4 by using the De Giorgi iteration technique. For this purpose, we need
the following lemma.

Lemma 4.2. Suppose that a sequence {𝑌𝑗}∞𝑗=0 of nonnegative numbers satisfies the recursion relation

𝑌𝑗+1 ≤ 𝐶𝑏𝑗 max
{
𝑌
1+𝛽1
𝑗

, 𝑌
1+𝛽2
𝑗

, … , 𝑌
1+𝛽𝑁
𝑗

}
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CHAKER and KIM 13

for some constants 𝐶 ≥ 1, 𝑏 > 1,𝑁 ∈ ℕ, and 𝛽1 ≥ 𝛽2 ≥ ⋯ ≥ 𝛽𝑁 > 0. If

𝑌0 ≤ 𝐶
−

1

𝛽𝑁 𝑏
−

1

𝛽2
𝑁 , (4.1)

then

𝑌𝑗 ≤ 𝐶
−

1

𝛽𝑁 𝑏
−

1

𝛽2
𝑁

−
𝑗

𝛽𝑁 for all 𝑗 ≥ 0, (4.2)

and, consequently, 𝑌𝑗 → 0 as 𝑗 → ∞.

Proof. Since 𝑌0 ≤ 1, one can easily prove by induction that

𝑌𝑗 ≤ 𝐶
(1+𝛽𝑁)𝑗−1

𝛽𝑁 𝑏

(1+𝛽𝑁)𝑗−1

𝛽2
𝑁

−
𝑗

𝛽𝑁 𝑌
(1+𝛽𝑁)

𝑗

0
≤ 1, for all 𝑗 ≥ 0,

under the assumption (4.1). This yields (4.2). □

We are now in a position to prove Theorem 1.4 by using Theorem 3.2, Lemma 4.1, and Lemma 4.2.

Proof of Theorem 1.4. Suppose that 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) is a weak subsolution to (1.5) in Ω satisfying (1.8). Let us fix 𝑥0 ∈ Ω.
We distinguish two different cases.
If 𝑝(𝑥0, 𝑥0) > 𝑛∕𝑠, then the fact that 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(Ω) implies that 𝑢 is bounded in a neighborhood of 𝑥0. Indeed, by the

continuity of 𝑝, we can take 𝑅 > 0 such that 𝐵𝑅(𝑥0) ⊂ Ω and

𝑝− ∶= 𝑝−(𝐵𝑅(𝑥0) × 𝐵𝑅(𝑥0)) >
𝑛

𝜎

for 𝜎 ∈ (0, 𝑠) sufficiently close to 𝑠. Let 𝑞 ∈ (𝑛∕𝜎, 𝑝−), then by Theorem 2.6,

‖𝑢‖
𝐶𝛼(𝐵𝑅(𝑥0))

≤ ‖𝑢‖𝑊𝜎,𝑞(𝐵𝑅(𝑥0))
.

Moreover, by Lemma 4.1 and Lemma 2.2, we obtain

‖𝑢‖𝑊𝜎,𝑞(𝐵𝑅(𝑥0))
≤ 𝐶‖𝑢‖𝑊𝑠,𝑝(⋅,⋅)(𝐵𝑅(𝑥0))

< +∞.

Therefore,

‖𝑢‖𝐿∞(𝐵𝑅(𝑥0)) ≤ ‖𝑢‖𝐶𝛼(𝐵𝑅(𝑥0)) < +∞.

It remains to study the case 𝑝(𝑥0, 𝑥0) ≤ 𝑛∕𝑠. By the continuity of 𝑝, we can take 𝑅 ∈ (0, 1∕2) sufficiently small such that
𝐵𝑅(𝑥0) ⊂ Ω and

𝑝+ < 𝑝∗− ∶=
𝑛𝑝−

𝑛 − 𝜎𝑝−
, (4.3)

where 𝑝± = 𝑝±(𝐵𝑅(𝑥0) × 𝐵𝑅(𝑥0)). Note that 𝜎𝑝− < 𝑠𝑝− ≤ 𝑛.
We fix 𝑘 ∈ ℝ and �̃� ∈ ℝ+. In order to use the De Giorgi iteration, we set for each 𝑗 ∈ ℕ ∪ {0}

𝑟𝑗 =
1

2
(1 + 2−𝑗)𝑅, 𝑟𝑗 =

𝑟𝑗 + 𝑟𝑗+1

2
, 𝑘𝑗 = 𝑘 + (1 − 2−𝑗)�̃�, and �̃�𝑗 =

𝑘𝑗+1 + 𝑘𝑗

2
,
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14 CHAKER and KIM

and define

𝑤𝑗 = (𝑢 − 𝑘𝑗)+ and �̃�𝑗 = (𝑢 − �̃�𝑗)+.

For simplicity, we write 𝐵𝑗 = 𝐵(𝑥0, 𝑟𝑗) and �̃�𝑗 = 𝐵(𝑥0, 𝑟𝑗).
By (4.3), we can choose a constant 𝑞 such that

max
{
𝑝+,

𝑛

𝑛 − 𝜎

}
< 𝑞 < 𝑝∗−. (4.4)

Then, 𝑞 = 𝑡∗ =
𝑛𝑡

𝑛−𝜎𝑡
for some 1 < 𝑡 < 𝑝− ≤ 𝑛∕𝜎. By applying Theorem 2.4 to �̃�𝑗 in �̃�𝑗 , we have

‖�̃�𝑗‖𝐿𝑞(�̃�𝑗) ≤ 𝐶‖�̃�𝑗‖𝑊𝜎,𝑡(�̃�𝑗)

for some 𝐶 > 0 depending on 𝑟𝑗 . Since 𝑟𝑗 ∈ [𝑅∕2, 𝑅], we may assume that 𝐶 depends on 𝑅, but not on 𝑗, with a possibly
larger constant 𝐶. Since the quantities 𝑛, 𝑠, 𝜎, 𝑝+(𝐵𝑅 × ℝ𝑛), 𝑝−(𝐵𝑅 × 𝐵𝑅), 𝑞, and 𝑅 are not important for the iteration, we
will absorb these quantities into constants 𝐶. Moreover, using Lemma 4.1 and Lemma 2.2, we have

‖�̃�𝑗‖𝑊𝜎,𝑡(�̃�𝑗)
≤ 𝐶‖�̃�𝑗‖𝑊𝑠,𝑝(⋅,⋅)(�̃�𝑗)

for some 𝐶 = 𝐶(𝑛, 𝑠, 𝜎, 𝑝+, 𝑝−, 𝑞, 𝑅) > 0. By Lemma 2.3,

‖�̃�𝑗‖𝑊𝑠,𝑝(⋅,⋅)(�̃�𝑗)
≤ 2|�̃�𝑗|𝑊𝑠,𝑝(⋅,⋅)(�̃�𝑗)

≤ 2max
{
�̃�𝑊𝑠,𝑝(⋅,⋅)(�̃�𝑗)

(�̃�𝑗)
1∕𝑝−, �̃�𝑊𝑠,𝑝(⋅,⋅)(�̃�𝑗)

(�̃�𝑗)
1∕𝑝+

}
. (4.5)

We set 𝐴+
ℎ,𝑟

= 𝐵𝑟 ∩ {𝑢 > ℎ} and

𝑌𝑗 = ∫
𝐵𝑗

𝑤
𝑝+
𝑗
(𝑥) d𝑥,

and estimate �̃�𝑊𝑠,𝑝(⋅,⋅)(�̃�𝑗)
(�̃�𝑗) in terms of 𝑗 and 𝑌𝑗 .

By Theorem 3.2, we have

�̃�𝑊𝑠,𝑝(⋅,⋅)(�̃�𝑗)
(�̃�𝑗) ≤ 𝐶2𝑗𝑝+ ∫

𝐵𝑗
∫
𝐵𝑗

�̃�𝑗(𝑥)
𝑝(𝑥,𝑦)

|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) |𝑥 − 𝑦|𝑝(𝑥,𝑦) d𝑦 d𝑥
+ 𝐶

⎛⎜⎜⎝ sup
𝑥∈𝐵(𝑥0,

1

2
(𝑟𝑗+𝑟𝑗))

∫
ℝ𝑛⧵𝐵𝑗

�̃�𝑗(𝑦)
𝑝(𝑥,𝑦)−1

|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦)
(

4𝑟𝑗

𝑟𝑗 − 𝑟𝑗+1

)𝑛+𝑠𝑝(𝑥,𝑦)
d𝑦

⎞⎟⎟⎠∫𝐵𝑗 �̃�𝑗(𝑥) d𝑥

+ ∫
�̃�𝑗

�̃�
�̄�(𝑥)

𝑗
(𝑥) d𝑥

=∶ 𝐼1 + 𝐼2 + 𝐼3.

Since �̃�𝑗 = 0 on 𝐵𝑗 ⧵ 𝐴+

�̃�𝑗,𝑟𝑗
, �̃�𝑗 ≤ 𝑤𝑗 , and 𝑅 < 1∕2, we estimate 𝐼1 as follows:

𝐼1 ≤ 𝐶2𝑗𝑝+ ∫
𝐴+
�̃�𝑗 ,𝑟𝑗

∫
𝐵𝑗

(𝑤𝑗(𝑥)
𝑝+ + 1)

|𝑥 − 𝑦|(1−𝑠)𝑝−|𝑥 − 𝑦|𝑛 d𝑦 d𝑥 ≤ 𝐶2𝑗𝑝+
⎛⎜⎜⎝∫𝐴+�̃�𝑗 ,𝑟𝑗 𝑤𝑗(𝑥)

𝑝+ d𝑥 + |𝐴+
�̃�𝑗,𝑟𝑗
|⎞⎟⎟⎠ ≤ 𝐶2𝑗𝑝+

(
𝑌𝑗 + |𝐴+

�̃�𝑗,𝑟𝑗
|).
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CHAKER and KIM 15

Similarly, 𝐼3 is estimated as

𝐼3 ≤ 𝐶

(
𝑌𝑗 + |𝐴+

�̃�𝑗,𝑟𝑗
|).

For 𝐼2, we use 𝑝(𝑥, 𝑦) ≤ 𝑝+(𝐵𝑅 × ℝ
𝑛) and (�̃�𝑗 − 𝑘𝑗)

𝑝+−1�̃�𝑗 ≤ 𝑤
𝑝+
𝑗
. Then,

𝐼2 ≤ 𝐶2𝑗(𝑛+𝑠𝑝+(𝐵𝑅×ℝ
𝑛))

(
sup
𝑥∈𝐵𝑅

∫
ℝ𝑛⧵𝐵𝑅∕2

�̃�𝑗(𝑦)
𝑝(𝑥,𝑦)−1

|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦
)
∫
𝐵𝑗

𝑤
𝑝+
𝑗
(𝑥)

(�̃�𝑗 − 𝑘𝑗)
𝑝+−1

d𝑥

≤ 𝐶2𝑗(𝑛+𝑠𝑝+(𝐵𝑅×ℝ
𝑛))

(
sup
𝑥∈𝐵𝑅

∫
ℝ𝑛⧵𝐵𝑅∕2

𝑤0(𝑦)
𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦

)(
2𝑗+2

�̃�

)𝑝+−1
∫
𝐴+
𝑘𝑗,𝑟𝑗

𝑤
𝑝+
𝑗
d𝑥

≤ 𝐶2𝑗(𝑛+2𝑝+(𝐵𝑅×ℝ
𝑛)) 𝑇

�̃�𝑝+−1
𝑌𝑗,

where

𝑇 = sup
𝑥∈𝐵𝑅

∫
ℝ𝑛⧵𝐵𝑅∕2

𝑢+(𝑦)
𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦.

Combining the estimates above and using

|𝐴+

�̃�𝑗,𝑟𝑗
| ≤ 1

(�̃�𝑗 − 𝑘𝑗)
𝑝+ ∫

𝐴�̃�𝑗 ,𝑟𝑗

𝑤
𝑝+
𝑗
d𝑥 ≤ 𝐶

(
2𝑗

�̃�

)𝑝+
𝑌𝑗,

yield that

�̃�𝑊𝑠,𝑝(⋅,⋅)(�̃�𝑗)
(�̃�𝑗) ≤ 𝐶2𝑗(𝑛+2𝑝+(𝐵𝑅×ℝ

𝑛)−1)

(
1 +

1

�̃�𝑝+
+

𝑇

�̃�𝑝+−1

)
𝑌𝑗.

Assuming

�̃� ≥ 𝑇1∕(𝑝+−1) + 1, (4.6)

we arrive at

�̃�𝑊𝑠,𝑝(⋅,⋅)(�̃�𝑗)
(�̃�𝑗) ≤ 𝐶2𝑗(𝑛+2𝑝+(𝐵𝑅×ℝ

𝑛))𝑌𝑗. (4.7)

On the other hand, recalling that (4.4) holds, we have �̃�𝑞

𝑗
≥ (𝑘𝑗+1 − �̃�𝑗)

𝑞−𝑝+𝑤
𝑝+
𝑗+1

, and hence

‖�̃�𝑗‖𝑞𝐿𝑞(�̃�𝑗) ≥ ‖�̃�𝑗‖𝑞𝐿𝑞(𝐵𝑗+1) ≥ 𝑐(2−𝑗�̃�)𝑞−𝑝+𝑌𝑗+1. (4.8)

Therefore, from (4.5), (4.7), and (4.8), we deduce

𝑌𝑗+1 ≤ 𝐶�̃�𝑝+−𝑞𝑏𝑗 max
{
𝑌
1+𝛽1
𝑗

, 𝑌
1+𝛽2
𝑗

}
,

where 𝛽1 = 𝑞∕𝑝− − 1 > 0, 𝛽2 = 𝑞∕𝑝+ − 1 > 0, 𝑏 = 2𝑞−𝑝++(𝑛+2𝑝+(𝐵𝑅×ℝ
𝑛))𝑞∕𝑝− , and 𝐶 > 0 is a constant depending only on

𝑛, 𝑠, 𝜎, 𝑝+, 𝑝−, 𝑞, and 𝑅.
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16 CHAKER and KIM

By Lemma 4.2, if

𝑌0 ≤ (𝐶�̃�𝑝+−𝑞)
−

1

𝛽2 𝑏
−

1

𝛽2
2 , (4.9)

then 𝑌𝑗 → 0 as 𝑗 → ∞. Thus, if we take

�̃� ≥
(
𝐶

1

𝛽2 𝑏

1

𝛽2
2 𝑌0

) 1

𝑝+

, (4.10)

then (4.9) is satisfied, and hence

sup
𝐵𝑅∕2

𝑢 ≤ 𝑘 + �̃�.

Note that the choice

�̃� =

(
𝐶

1

𝛽2 𝑏

1

𝛽2
2

) 1

𝑝+
(
∫
𝐵𝑅

𝑤
𝑝+
0
(𝑥) d𝑥

) 1

𝑝+

+ 𝑇1∕(𝑝+−1) + 1

is in accordance with (4.6) and (4.10). The constant 𝐶0 depends on 𝑛, 𝑠, 𝜎, 𝑝+(𝐵𝑅 × ℝ𝑛), 𝑝−(𝐵𝑅 × 𝐵𝑅), 𝑞, and 𝑅. We finish
the proof by choosing 𝑘 = 0. □

5 HÖLDER ESTIMATE

This section is devoted to the proof of the local Hölder regularity of weak solutions to (1.5). In this part of the paper, the
assumptions (P1) and (P2) on 𝑝 take an important role for our analysis. The key step in establishing the local Hölder
regularity is a growth lemma, see Lemma 5.2. We start with an auxiliary result that is needed in the proof of the growth
lemma.

Lemma 5.1. Let 𝐵𝑅 = 𝐵𝑅(𝑥0) ⊂ ℝ𝑛 with 𝑅 ∈ (0, 1). Let 𝐻 > 0, 𝛿 ∈ (0, 1∕8] and 0 < 𝜎 < 𝑠 < 1. Assume that 𝑝 satisfies
(P1) and (P2) in 𝐵𝑅,𝐻𝑝+−𝑝− ≤ 2, and 𝑝+ < 𝑝∗−, where 𝑝± = 𝑝±(𝐵𝑅 × 𝐵𝑅) and 𝑝∗− =

𝑛𝑝−

𝑛−𝜎𝑝−
. Let 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) be a weak

supersolution to (1.5) in 𝐵𝑅 such that

0 ≤ 𝑢 ≤ 2𝐻 in 𝐵𝑅 and |𝐵𝑅∕2 ∩ {𝑢 ≥ 𝐻}| ≥ 𝛾|𝐵𝑅∕2| (5.1)

for some 𝛾 ∈ (0, 1). Assume 𝑅𝑠 ≤ 𝛿𝐻 and

sup
𝑥∈𝐵3𝑅∕4

∫
ℝ𝑛⧵𝐵𝑅

𝑢−(𝑦)
𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 ≤ 𝑅−𝑠𝑝+(𝛿𝐻)𝑝+−1 + 𝑅−𝑠𝑝−(𝛿𝐻)𝑝−−1. (5.2)

Let 1 ≤ 𝑞 < 𝑝−. Then, there is a constant 𝐶 = 𝐶(𝑛, 𝑠, 𝜎, 𝑝+(𝐵𝑅 × ℝ
𝑛), 𝑝−(𝐵𝑅 × ℝ

𝑛), 𝑞, 𝐿) > 0 such that for any 𝓁 ∈

[2𝛿𝐻,𝐻],

[(𝑢 − 𝓁)−]
𝑞

𝑊𝜎,𝑞(𝐵𝑅∕2)
≤ 𝐶𝓁𝑞𝑅−𝜎𝑞 max

{|𝐴−
𝓁,𝑅
|, |𝐴−

𝓁,𝑅
|1+ 𝑞

𝑝−
−

𝑞

𝑝+ , |𝐴−
𝓁,𝑅
|1+ 𝑞

𝑝+
−

𝑞

𝑝−

}
,

where 𝐴−
𝓁,𝑅

= 𝐵𝑅 ∩ {𝑢 < 𝓁}.
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CHAKER and KIM 17

Proof. Let 𝓁 ∈ [2𝛿𝐻,𝐻]. The idea of the proof is to estimate [(𝑢 − 𝓁)−]
𝑞

𝑊𝜎,𝑞(𝐵𝑅∕2)
using Lemma 4.1 and then applying the

Caccioppoli-type inequality to estimate 𝜚𝑊𝑠,𝑝(⋅,⋅)(𝐵𝑅∕2)
((𝑢 − 𝓁)−). In the following, 𝐶 > 0 denotes a constant depending on

𝑛, 𝑠, 𝜎, 𝑝+(𝐵𝑅 × ℝ𝑛), 𝑝−(𝐵𝑅 × ℝ𝑛), 𝑞, and 𝐿 whose exact value is not important and might change from line to line.
Let 𝑟 = 𝑅∕2. First, by Lemma 4.1,

[(𝑢 − 𝓁)−]
𝑞

𝑊𝜎,𝑞(𝐵𝑟)
≤ 𝐶 ∫

𝐵𝑟
∫
𝐵𝑟

|(𝑢(𝑥) − 𝓁)− − (𝑢(𝑦) − 𝓁)−|𝑞|𝑥 − 𝑦|𝑛+𝜎𝑞 d𝑥 d𝑦

≤ 𝐶 ∫
𝐴−
𝓁,𝑟

∫
𝐵𝑟

|(𝑢(𝑥) − 𝓁)− − (𝑢(𝑦) − 𝓁)−|𝑞|𝑥 − 𝑦|𝑛+𝜎𝑞 d𝑥 d𝑦

≤ 𝐶max

⎧⎪⎨⎪⎩
(|𝐴−

𝓁,𝑟
|𝑅(𝑠−𝜎) 𝑝+𝑞

𝑝+−𝑞

) 𝑝+−𝑞

𝑝+

,

(|𝐴−
𝓁,𝑟
|𝑅(𝑠−𝜎) 𝑝+𝑞

𝑝+−𝑞

) 𝑝−−𝑞

𝑝−

⎫⎪⎬⎪⎭[(𝑢 − 𝓁)−]
𝑞

𝑊𝑠,𝑝(⋅,⋅)(𝐵𝑟)

≤ 𝐶max

{|𝐴−
𝓁,𝑟
| 𝑝+−𝑞𝑝+ 𝑅𝑞(𝑠−𝜎), |𝐴−

𝓁,𝑟
| 𝑝−−𝑞𝑝− 𝑅

(𝑠−𝜎)
𝑝+𝑞(𝑝−−𝑞)

(𝑝+−𝑞)𝑝−

}

×max

{(
𝜚𝑊𝑠,𝑝(⋅,⋅)(𝐵𝑟)

((𝑢 − 𝓁)−)
) 𝑞

𝑝+ ,
(
𝜚𝑊𝑠,𝑝(⋅,⋅)(𝐵𝑟)

((𝑢 − 𝓁)−)
) 𝑞

𝑝−

}
.

By Theorem 3.2, we can estimate 𝜚𝑊𝑠,𝑝(⋅,⋅)(𝐵𝑟)
((𝑢 − 𝓁)−) as follows:

𝜚𝑊𝑠,𝑝(⋅,⋅)(𝐵𝑟)
((𝑢 − 𝓁)−) + ∫

𝐵𝑟

(𝑢 − 𝓁)−(𝑥)∫
𝐵𝑟

(𝑢(𝑦) − 𝓁)
𝑝(𝑥,𝑦)−1
+|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥

≤ 𝐶 ∫
𝐵𝑅

∫
𝐵𝑅

|||| (𝑢(𝑥) − 𝓁)−
𝑅 − 𝑟

||||
𝑝(𝑥,𝑦)

d𝑦 d𝑥|𝑥 − 𝑦|𝑛−(1−𝑠)𝑝(𝑥,𝑦)
+ 𝐶

⎛⎜⎜⎝ sup
𝑥∈𝐵𝑅+𝑟

2

∫
ℝ𝑛⧵𝐵𝑅

(𝑢(𝑦) − 𝓁)
𝑝(𝑥,𝑦)−1
−|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦)

(
2𝑅

𝑅 − 𝑟

)𝑛+𝑠𝑝(𝑥,𝑦)
d𝑦

⎞⎟⎟⎠∫𝐵𝑅(𝑢(𝑥) − 𝓁)− d𝑥

=∶ 𝐼1 + 𝐼2.

First, we consider 𝐼1. By the nonnegativity of 𝑢 in 𝐵𝑅,

𝐼1 = 𝐶 ∫
𝐴−
𝓁,𝑅

∫
𝐵𝑅

|||| (𝑢(𝑥) − 𝓁)−
𝑅 − 𝑟

||||
𝑝(𝑥,𝑦)

d𝑦 d𝑥|𝑥 − 𝑦|𝑛−(1−𝑠)𝑝(𝑥,𝑦)
≤ 𝐶|𝐴−

𝓁,𝑅
|(|||| 𝓁

𝑅 − 𝑟

||||
𝑝+

+
|||| 𝓁

𝑅 − 𝑟

||||
𝑝−
)(

𝑅(1−𝑠)𝑝+ + 𝑅(1−𝑠)𝑝−
)

≤ 𝐶|𝐴−
𝓁,𝑅
|(𝑅−𝑠𝑝+𝓁𝑝+ + 𝑅−𝑠𝑝−𝓁𝑝−),

where we used (P1) in the last inequality. Next, we study 𝐼2. Note that by the assumption 𝑅𝑠 ≤ 𝛿𝐻 ≤ 𝓁 and (P2), we have

𝑅−𝑠𝑝±(𝐵𝑅×𝐵
𝑐
𝑅
)𝓁𝑝±(𝐵𝑅×𝐵

𝑐
𝑅
) ≤ 𝑅−𝑠𝑝±𝓁𝑝±. (5.3)
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18 CHAKER and KIM

Using the nonnegativity of 𝑢 in 𝐵𝑅, the tail estimate (5.2), and (5.3):

𝐼2 ≤ 𝐶 sup
𝑥∈𝐵𝑅+𝑟

2

∫
ℝ𝑛⧵𝐵𝑅

(𝑢(𝑦) − 𝓁)
𝑝(𝑥,𝑦)−1
−|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 ∫

𝐵𝑅

(𝑢(𝑥) − 𝓁)− d𝑥

≤ 𝐶 sup
𝑥∈𝐵𝑅+𝑟

2

(
∫
ℝ𝑛⧵𝐵𝑅

𝑢(𝑦)
𝑝(𝑥,𝑦)−1
−|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 + ∫

ℝ𝑛⧵𝐵𝑅

(
𝓁|𝑦 − 𝑥0|𝑠

)𝑝(𝑥,𝑦)
𝓁−1|𝑦 − 𝑥0|𝑛 d𝑦

)
𝓁|𝐴−

𝓁,𝑅
|

≤ 𝐶𝓁|𝐴−
𝓁,𝑅
|(𝑅−𝑠𝑝+(𝛿𝐻)𝑝+−1 + 𝑅−𝑠𝑝−(𝛿𝐻)𝑝−−1 + 𝓁𝑝+(𝐵𝑅×𝐵

𝑐
𝑅
)−1𝑅−𝑠𝑝+(𝐵𝑅×𝐵

𝑐
𝑅
) + 𝓁𝑝−(𝐵𝑅×𝐵

𝑐
𝑅
)−1𝑅−𝑠𝑝−(𝐵𝑅×𝐵

𝑐
𝑅
)
)

≤ 𝐶|𝐴−
𝓁,𝑅
|(𝑅−𝑠𝑝+𝓁𝑝+ + 𝑅−𝑠𝑝−𝓁𝑝−).

Hence, since 𝑅 < 1,

𝜚𝑊𝑠,𝑝(⋅,⋅)(𝐵𝑅∕2)
((𝑢 − 𝓁)−) + ∫

𝐵𝑟

(𝑢 − 𝓁)−(𝑥)∫
𝐵𝑟

(𝑢(𝑦) − 𝓁)
𝑝(𝑥,𝑦)−1
+|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥 ≤ 𝐶|𝐴−

𝓁,𝑅
|(𝑅−𝑠𝑝+𝓁𝑝+ + 𝑅−𝑠𝑝−𝓁𝑝−)

≤ 𝐶|𝐴−
𝓁,𝑅
|𝑅−𝑠𝑝+(𝓁𝑝+ + 𝓁𝑝−).

(5.4)

Combining the previous estimates, we get

𝑅𝜎𝑞[(𝑢 − 𝓁)−]
𝑞

𝑊𝜎,𝑞(𝐵𝑅∕2)
≤ 𝐶𝑅𝜎𝑞 max

{|𝐴−
𝓁,𝑟
| 𝑝+−𝑞𝑝+ 𝑅𝑞(𝑠−𝜎), |𝐴−

𝓁,𝑟
| 𝑝−−𝑞𝑝− 𝑅

(𝑠−𝜎)
𝑝+𝑞(𝑝−−𝑞)

(𝑝+−𝑞)𝑝−

}
×max

{(|𝐴−
𝓁,𝑅
|𝑅−𝑠𝑝+(𝓁𝑝+ + 𝓁𝑝−)

)𝑞∕𝑝+
,
(|𝐴−

𝓁,𝑅
|𝑅−𝑠𝑝+(𝓁𝑝+ + 𝓁𝑝−)

)𝑞∕𝑝−}
=∶ 𝐶𝑅𝜎𝑞 max{Υ1, Υ2}max{Φ1, Φ2}.

We need to check the four possible cases for that inequality. Before doing that, note that since 𝓁 ∈ [2𝛿𝐻,𝐻] and 𝑅𝑠 ≤ 𝛿𝐻,
there is a constant 𝐶 > 0 such that

1 + 𝓁𝑝−−𝑝+ ≤ 1 + 𝑅𝑠(𝑝−−𝑝+) ≤ 1 + 𝐿𝑠 ≤ 𝐶, (5.5)

where we used (P1).
Case 1: We have by (5.5),

𝑅𝜎𝑞Υ1Φ1 = |𝐴−
𝓁,𝑅
|(𝓁𝑝+ + 𝓁𝑝−)

𝑞

𝑝+ ≤ 𝐶|𝐴−
𝓁,𝑅
|𝓁𝑞.

Case 2: By 𝓁 ∈ [2𝛿𝐻,𝐻] and the assumptions 𝐻𝑝+−𝑝− ≤ 2 and (P1), we get

𝑅𝜎𝑞Υ1Φ2 = |𝐴−
𝓁,𝑅
|1+ 𝑞

𝑝−
−

𝑞

𝑝+ 𝑅
𝑠𝑞

𝑝−
(𝑝−−𝑝+)

(𝓁𝑝+ + 𝓁𝑝−)
𝑞

𝑝− ≤ 𝐶|𝐴−
𝓁,𝑅
|1+ 𝑞

𝑝−
−

𝑞

𝑝+ 𝓁𝑞.

Case 3: Using (5.5) together with (P1), we get

𝑅𝜎𝑞Υ2Φ1 = |𝐴−
𝓁,𝑅
|1− 𝑞

𝑝−
+

𝑞

𝑝+ 𝑅
(𝑠−𝜎)

𝑞2(𝑝−−𝑝+)

(𝑝+−𝑞)𝑝− (𝓁𝑝+ + 𝓁𝑝−)
𝑞

𝑝+ ≤ 𝐶|𝐴−
𝓁,𝑅
|1− 𝑞

𝑝−
+

𝑞

𝑝+ 𝓁𝑞.

Case 4: By𝐻𝑝+−𝑝− ≤ 2, and (P1), we get

𝑅𝜎𝑞Υ2Φ2 = |𝐴−
𝓁,𝑅
|𝑅 (𝑠𝑝+−𝜎𝑞)𝑞

𝑝−(𝑝+−𝑞)
(𝑝−−𝑝+)

(𝓁𝑝+ + 𝓁𝑝−)
𝑞

𝑝− ≤ 𝐶|𝐴−
𝓁,𝑅
|𝓁𝑞.

Combining the estimates from the previous four cases proves the assertion of the lemma. □
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CHAKER and KIM 19

We are now in a position to prove the growth lemma. It is themain ingredient for the proof of the local Hölder regularity
estimate.

Lemma 5.2. Let 𝐵𝑅 = 𝐵𝑅(𝑥0) ⊂ ℝ𝑛 with 𝑅 ∈ (0, 1). Let 𝐻 > 0, and 0 < 𝜎 < 𝑠 < 1. Assume that 𝑝 satisfies (P1) and (P2)
in 𝐵𝑅,𝐻𝑝+−𝑝− ≤ 2, and 𝑝+ < 𝑝∗−, where 𝑝± = 𝑝±(𝐵𝑅 × 𝐵𝑅) and 𝑝∗− =

𝑛𝑝−

𝑛−𝜎𝑝−
. Let 𝑢 ∈ 𝑊𝑠,𝑝(⋅,⋅)(ℝ𝑛) be a weak supersolution

to (1.5) in 𝐵𝑅 such that (5.1) is satisfied for some 𝛾 ∈ (0, 1). Then, there exists 𝛿 ∈ (0, 1∕8], such that, if 𝑅𝑠 ≤ 𝛿𝐻 and (5.2) is
satisfied, then

𝑢 ≥ 𝛿𝐻 in 𝐵𝑅∕4. (5.6)

The constant 𝛿 depends on 𝑛, 𝑠, 𝜎, 𝑝+(𝐵𝑅 × ℝ𝑛), 𝑝−(𝐵𝑅 × ℝ𝑛), and 𝐿.

Proof. The proof follows the ideas of [22, Proof of Lemma 6.3]. Let 0 < 𝛿 < 1∕8 and 0 < 𝜏 ≤ 2−𝑛−1 to be specified later. We
first suppose

|𝐵𝑅∕2 ∩ {𝑢 < 2𝛿𝐻}| ≤ 𝜏|𝐵𝑅∕2| (5.7)

and prove the assertion of the lemma under this additional assumption. Afterwards we prove that this precondition (5.7)
is indeed a consequence of the given assumptions of the lemma.
Weuse𝐶 > 0 for a constant depending on𝑛, 𝑠,𝜎,𝑝+(𝐵𝑅 × ℝ𝑛),𝑝−(𝐵𝑅 × ℝ𝑛), 𝑞, and𝐿whose exact value is not important

and that might change from line to line.
The idea to prove the assertion of the lemma is by iteration and the use of Lemma 4.2. For this purpose, we need to

establish some auxiliary results. Let 𝛿𝐻 ≤ ℎ < 𝑘 ≤ 2𝛿𝐻 and 𝑅

4
≤ 𝜌 < 𝑟 ≤ 𝑅

2
. Note that by (5.7),

|𝐵𝜌 ∩ {(𝑢 − 𝑘)− = 0}| = |𝐵𝜌 ⧵ {𝑢 < 𝑘}| ≥ |𝐵𝜌| − |𝐵𝑅∕2 ∩ {𝑢 < 2𝛿𝐻}|
≥ |𝐵𝜌| − 𝜏|𝐵𝑅∕2| = (1 − 𝜏

(
𝑅∕2

𝜌

)𝑛)|𝐵𝜌| ≥ (1 − 2𝑛𝜏)|𝐵𝜌| ≥ 1

2
|𝐵𝜌|. (5.8)

Using (5.8), Theorem 2.5, and Lemma 5.1, we have

(𝑘 − ℎ)|𝐴−
ℎ,𝜌
| 𝑛−𝜎𝑛 ≤

⎛⎜⎜⎝∫𝐴−ℎ,𝜌 (𝑘 − 𝑢(𝑥))
𝑛

𝑛−𝜎 d𝑥

⎞⎟⎟⎠
𝑛−𝜎

𝑛

≤
(
∫
𝐵𝜌

(𝑢(𝑥) − 𝑘)

𝑛

𝑛−𝜎
− d𝑥

) 𝑛−𝜎

𝑛

≤ 𝐶 ∫
𝐵𝜌

∫
𝐵𝜌

|(𝑢(𝑥) − 𝑘)− − (𝑢(𝑦) − 𝑘)−||𝑥 − 𝑦|𝑛+𝜎 d𝑥 d𝑦

≤ 𝐶𝑘𝑟−𝜎 max

{|𝐴−
𝑘,𝑟
|, |𝐴−

𝑘,𝑟
|1+ 1

𝑝−
−

1

𝑝+ , |𝐴−
𝑘,𝑟
|1+ 1

𝑝+
−

1

𝑝−

}
,

(5.9)

where 𝐴−
𝑘,𝑟

= 𝐵𝑟 ∩ {𝑢 < 𝑟}. In the proceeding, we use (5.9) to prove the assertion of the lemma by iteration. We define for
𝑗 ∈ ℕ ∪ {0}

𝑟𝑗 =
1

4
(1 + 2−𝑗)𝑅, 𝑘𝑗 = (1 + 2−𝑗)𝛿𝐻, and 𝑦𝑗 =

|𝐴−
𝑘𝑗,𝑟𝑗
||𝐵𝑟𝑗 | .

Then, 𝑟𝑗 ∈ (
1

4
𝑅,

1

2
𝑅] and 𝑘𝑗 ∈ (𝛿𝐻, 2𝛿𝐻]. Choosing 𝑘 = 𝑘𝑗 , ℎ = 𝑘𝑗+1, 𝜌 = 𝑟𝑗+1, and 𝑟 = 𝑟𝑗 , we get from (5.9)

𝛿𝐻

2𝑗+1

(
𝑦𝑗+1|𝐵𝑟𝑗+1 |) 𝑛−𝜎

𝑛 ≤ 𝐶(𝛿𝐻)𝑟−𝜎
𝑗

max

{
𝑟𝑛
𝑗
𝑦𝑗, (𝑟

𝑛
𝑗
𝑦𝑗)

1+
𝑝+−𝑝−

𝑝+𝑝− , (𝑟𝑛
𝑗
𝑦𝑗)

1+
𝑝−−𝑝+

𝑝+𝑝−

}
,
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20 CHAKER and KIM

which leads to

𝑦𝑗+1 ≤ 𝐶

(
2𝑗𝑟−𝑛

𝑗
max

{
𝑟𝑛
𝑗
𝑦𝑗, (𝑟

𝑛
𝑗
𝑦𝑗)

1+
𝑝+−𝑝−

𝑝+𝑝− , (𝑟𝑛
𝑗
𝑦𝑗)

1+
𝑝−−𝑝+

𝑝+𝑝−

}) 𝑛

𝑛−𝜎

. (5.10)

If we prove that there are 𝛽1, 𝛽2, 𝛽3 > 0 such that

𝑦𝑗+1 ≤ 𝐶2
𝑛

𝑛−𝜎
𝑗
max

{
𝑦
1+𝛽1
𝑗

, 𝑦
1+𝛽2
𝑗

, 𝑦
1+𝛽3
𝑗

}
(5.11)

and 𝑦0 is sufficiently small, then we can apply Lemma 4.2, which would prove (5.6). We have three cases for themaximum
in (5.10):
Case 1: In the first case, we have

𝑦𝑗+1 ≤ 𝐶2
𝑛

𝑛−𝜎
𝑗
𝑦

𝑛

𝑛−𝜎

𝑗
.

Since 𝑛

𝑛−𝜎
> 1, this proves the assertion in the first case.

Case 2: In the second case, using 𝑟𝑗 ≤ 1 and the fact that its exponent is positive,

𝑦𝑗+1 ≤ 𝐶2
𝑛

𝑛−𝜎
𝑗
𝑟

𝑝+−𝑝−

𝑝+𝑝−

𝑛

𝑛−𝜎

𝑗
𝑦

𝑛

𝑛−𝜎
+
𝑝+−𝑝−

𝑝+𝑝−

𝑛

𝑛−𝜎

𝑗
≤ 𝐶2

𝑛

𝑛−𝜎
𝑗
𝑦

𝑛

𝑛−𝜎
+
𝑝+−𝑝−

𝑝+𝑝−

𝑛

𝑛−𝜎

𝑗
.

Since 𝑛

𝑛−𝜎
+

𝑝+−𝑝−

𝑝+𝑝−

𝑛

𝑛−𝜎
>

𝑛

𝑛−𝜎
> 1, we have proven the assertion in the second case.

Case 3: In the third case, using (P1), we have

𝑦𝑗+1 ≤ 𝐶2
𝑛

𝑛−𝜎
𝑗
𝑟

𝑛

(𝑛−𝜎)𝑝+𝑝−
(𝑝−−𝑝+)

𝑗
𝑦

𝑛

𝑛−𝜎

(
1+

1

𝑝+
−

1

𝑝−

)
𝑗

≤ 𝐶2
𝑛

𝑛−𝜎
𝑗
𝑦

𝑛

𝑛−𝜎

(
1+

1

𝑝+
−

1

𝑝−

)
𝑗

.

Note that by assumption 𝑝+ < 𝑝∗−, where 𝑝∗− =
𝑛𝑝−

𝑛−𝜎𝑝−
, which is equivalent to

𝑝+ < 𝑝∗− ⟺
𝜎

𝑛
>

1

𝑝−
−

1

𝑝+
⟺

𝑛

𝑛 − 𝜎

(
1 +

1

𝑝+
−

1

𝑝−

)
> 1.

This completes the proof in this case.
Hence, we have shown (5.11). Note that by (5.7)

𝑦0 =

|𝐴−

2𝛿𝐻,
𝑅

2

|
|𝐵𝑅

2

| ≤ 𝜏.

Choosing 𝜏 sufficiently small, allows us to apply Lemma 4.2, which yields 𝑦𝑗 → 0 as 𝑗 → ∞ and proves (5.6).
In the remainder of the proof, we show (5.7). We prove this assertion by contradiction. Hence, suppose that (5.7) is not

true, that is,

|𝐵𝑅∕2 ∩ {𝑢 < 2𝛿𝐻}| > 𝜏|𝐵𝑅∕2|. (5.12)

We split the proof into two cases for 𝑠 ∈ (0, 1). First, when 𝑠 is sufficiently large, we prove the assertion using an
isoperimetric-type inequality by Cozzi [22, Proposition 5.1]. Second, in the case of small 𝑠, the assertion follows by a
direct calculation.
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CHAKER and KIM 21

Let 𝑠 be the constant coming from the isoperimetric-type inequality [22, Proposition 5.1] (applied for the constant
exponent case 𝑞 and for 𝜎) and let 𝑠 ∈ [𝑠, 1). For given 𝛿, there is a unique𝑚 ∈ ℕ such that

2−𝑚−1 ≤ 𝛿 < 2−𝑚.

We define for 𝑖 = 0, … ,𝑚 − 1, 𝑘𝑖 = 2−𝑖𝐻. Note that by definition 𝑘𝑖 ∈ (2𝛿𝐻,𝐻]. In the following, we check the conditions
to apply [22, Proposition 5.1]. By (5.1) and (5.12), we get

|𝐵𝑅∕2 ∩ {(𝑢 − 𝑘𝑖−1)− ≤ 2−𝑖𝐻}| = |𝐵𝑅∕2 ∩ {𝑢 ≥ 𝑘𝑖}| ≥ |𝐵𝑅∕2 ∩ {𝑢 ≥ 𝐻}| ≥ 𝛾|𝐵𝑅∕2|
and

|𝐵𝑅∕2 ∩ {(𝑢 − 𝑘𝑖−1)− ≥ 3 ⋅ 2−𝑖−1𝐻}| = |𝐵𝑅∕2 ∩ {𝑢 ≤ 𝑘𝑖+1}| ≥ |𝐵𝑅∕2 ∩ {𝑢 < 2𝛿𝐻}| ≥ 𝜏|𝐵𝑅∕2|
for 𝑖 = 1, … ,𝑚 − 2. In order to apply [22, Proposition 5.1], it remains to prove that there is a constant 𝐶 > 0 such that

‖(𝑢 − 𝑘𝑖−1)−‖𝑞𝐿𝑞(𝐵𝑅∕2) + 𝑅𝜎𝑞[(𝑢 − 𝑘𝑖−1)−]
𝑞

𝑊𝜎,𝑞(𝐵𝑅∕2)
≤ 𝐶(𝑘𝑖 − 𝑘𝑖+1)

𝑞𝑅𝑛. (5.13)

Using the nonnegativity of 𝑢 in 𝐵𝑅, we get

‖(𝑢 − 𝑘𝑖−1)−‖𝑞𝐿𝑞(𝐵𝑅∕2) ≤ 𝐶𝑘
𝑞

𝑖−1
𝑅𝑛.

Combining this estimate together with Lemma 5.1 for 𝓁 = 𝑘𝑖−1,

‖(𝑢 − 𝑘𝑖−1)−‖𝑞𝐿𝑞(𝐵𝑅∕2) + 𝑅𝜎𝑞[(𝑢 − 𝑘𝑖−1)−]
𝑞

𝑊𝜎,𝑞(𝐵𝑅∕2)
≤ 𝐶𝑘

𝑞

𝑖−1
max

{|𝐴−
𝑘𝑖−1,𝑅

|, |𝐴−
𝑘𝑖−1,𝑅

|1+ 𝑞

𝑝−
−

𝑞

𝑝+ , |𝐴−
𝑘𝑖−1,𝑅

|1+ 𝑞

𝑝+
−

𝑞

𝑝−

}
≤ 𝐶(𝑘𝑖 − 𝑘𝑖+1)

𝑞𝑅𝑛

(5.14)

for some constant 𝐶 = 𝐶(𝑛, 𝑠, 𝜎, 𝑝+(𝐵𝑅 × ℝ
𝑛), 𝑝−(𝐵𝑅 × ℝ

𝑛), 𝑞, 𝐿) > 0, where we used (P1) in the last inequality. This
proves (5.13) and therefore, we can apply [22, Proposition 5.1] with ℎ = 𝑘𝑖−1 − 𝑘𝑖 , 𝑘 = 𝑘𝑖−1 − 𝑘𝑖+1, and the function
(𝑢 − 𝑘𝑖−1)−, that yields

(𝑘𝑖 − 𝑘𝑖+1)
[|𝐵𝑅∕2 ∩ {𝑢 ≥ 𝑘𝑖}||𝐵𝑅∕2 ∩ {𝑢 ≤ 𝑘𝑖+1}|] 𝑛−1𝑛
≤ 𝐶𝑅𝑛−2+𝜎[(𝑢 − 𝑘𝑖−1)−]𝑊𝜎,𝑞(𝐵𝑅∕2)

|||𝐵𝑅∕2 ∩ {𝑘𝑖+1 < 𝑢 ≤ 𝑘𝑖}
||| 𝑞−1𝑞 .

(5.15)

In the following, we show that this inequality leads to a contradiction. On the one hand, the left-hand side can be estimated
with (5.1) by

(𝑘𝑖 − 𝑘𝑖+1)
[|𝐵𝑅∕2 ∩ {𝑢 ≥ 𝑘𝑖}||𝐵𝑅∕2 ∩ {𝑢 ≤ 𝑘𝑖+1}|] 𝑛−1𝑛 ≥ 𝐶𝑘𝑖+1

[
𝑅𝑛|𝐵𝑅∕2 ∩ {𝑢 < 2𝛿𝐻}|] 𝑛−1𝑛 .

On the other hand, we can estimate the right-hand side, using (5.14), by

𝑅𝑛−2+𝜎[(𝑢 − 𝑘𝑖−1)−]𝑊𝜎,𝑞(𝐵𝑅∕2)
|||𝐵𝑅∕2 ∩ {𝑘𝑖+1 < 𝑢 ≤ 𝑘𝑖}

||| 𝑞−1𝑞 ≤ 𝐶𝑅
𝑛−2+

𝑛

𝑞 𝑘𝑖+1
|||𝐵𝑅∕2 ∩ {𝑘𝑖+1 < 𝑢 ≤ 𝑘𝑖}

||| 𝑞−1𝑞 .

Hence, we get from (5.15)

|𝐵𝑅∕2 ∩ {𝑢 < 2𝛿𝐻}| 𝑞(𝑛−1)(𝑞−1)𝑛 ≤ 𝐶𝑅
𝑛−𝑞

𝑞−1 |||𝐵𝑅∕2 ∩ {𝑘𝑖+1 < 𝑢 ≤ 𝑘𝑖}
|||.
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22 CHAKER and KIM

Summing up this inequality over 𝑖 = 1, … ,𝑚 − 2 gives us

(𝑚 − 2)
[|𝐵𝑅∕2 ∩ {𝑢 < 2𝛿𝐻}|] 𝑞(𝑛−1)(𝑞−1)𝑛 ≤ 𝐶𝑅

𝑛−𝑞

𝑞−1 |||𝐵𝑅∕2||| = 𝐶𝑅
𝑞(𝑛−1)

𝑞−1 ,

which leads to

|𝐵𝑅∕2 ∩ {𝑢 < 2𝛿𝐻}| ≤ 𝐶𝑅𝑛𝑚
−
𝑛(𝑞−1)

(𝑛−1)𝑞 ≤ 𝐶|𝐵𝑅∕2|| log 𝛿|−𝑛(𝑞−1)

(𝑛−1)𝑞 .

Estimating the left-hand side by (5.12), we get

| log 𝛿|−𝑛(𝑞−1)

(𝑛−1)𝑞 ≥ 𝐶.

Hence, choosing 𝛿 sufficiently small results in a contradiction and finishes the proof for the case 𝑠 ∈ [𝑠, 1).
Now let 𝑠 ∈ (0, 𝑠). In this case, we get by (5.4), (5.1), and (5.12)

((4𝛿𝐻)𝑝+ + (4𝛿𝐻)𝑝−)𝑅𝑛−𝑠𝑝+ ≥ 𝐶 ∫
𝐵𝑅∕2

∫
𝐵𝑅∕2

(𝑢(𝑥) − 4𝛿𝐻)
𝑝(𝑥,𝑦)−1
+ (𝑢(𝑦) − 4𝛿𝐻)−|𝑥 − 𝑦|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 d𝑥

≥ 𝐶

𝑅𝑛+𝑠𝑝− ∫
𝐵𝑅∕2∩{𝑢≥𝐻}

(𝑢(𝑥) − 4𝛿𝐻)𝑝(𝑥,𝑦)−1 d𝑥 ∫
𝐵𝑅∕2∩{𝑢<2𝛿𝐻}

(4𝛿𝐻 − 𝑢(𝑦))d𝑦

≥ 𝐶

𝑅𝑛+𝑠𝑝−
|𝐵𝑅∕2 ∩ {𝑢 ≥ 𝐻}|min{(𝐻

2

)𝑝+−1
,

(
𝐻

2

)𝑝−−1}
2𝛿𝐻|𝐵𝑅∕2 ∩ {𝑢 < 2𝛿𝐻}|

≥ 𝐶𝑅𝑛−𝑠𝑝−𝛿min {𝐻𝑝+,𝐻𝑝−}.

Hence, since by 𝑅𝑠𝑝−−𝑠𝑝+ ≤ 𝐿𝑠 by (P1), we get

((4𝛿𝐻)𝑝+ + (4𝛿𝐻)𝑝−) ≥ 𝐶𝛿min {𝐻𝑝+,𝐻𝑝−}.

Choosing 𝛿 sufficiently small leads to a contradiction in this inequality and finishes the proof of the lemma. □

We would like to emphasize that we made use of Lemma 4.1 in the foregoing proof. For this reason, we were able to
prove the growth lemma without using the Sobolev inequality for variable exponents. It was sufficient to make use the
fractional Sobolev inequality for constant exponents.

Proof of Theorem 1.6. Let 𝑥0 ∈ ℝ𝑛. If 𝑝(𝑥0, 𝑥0) > 𝑛∕𝑠, then we can find 𝑅 > 0 and 𝛼 ∈ (0, 1) such that 𝐵𝑅(𝑥0) ⋐ Ω and
𝑢 ∈ 𝐶𝛼(𝐵𝑅(𝑥0)) as in the proof of Theorem 1.4. Thus, let us assume 𝑝(𝑥0, 𝑥0) ≤ 𝑛∕𝑠 in the rest of the proof. In this case,
for given 𝜎 ∈ (0, 𝑠), we can find 𝑅 ∈ (0, 1) such that 𝐵𝑅(𝑥0) ⋐ Ω and 𝑝+(𝐵𝑅(𝑥0) × 𝐵𝑅(𝑥0)) < 𝑝∗−(𝐵𝑅(𝑥0) × 𝐵𝑅(𝑥0)), where
𝑝∗−(𝐵𝑅(𝑥0) × 𝐵𝑅(𝑥0)) =

𝑛𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0))

𝑛−𝜎𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0))
. By Theorem 1.4, 𝑢 ∈ 𝐿∞(𝐵𝑅(𝑥0)).

Let 𝛿 ∈ (0, 1) be the constant from Lemma 5.2 and let

0 < 𝛼 < min

{
𝑠, log4

(
2

2 − 𝛿

)
,

𝑠𝑝+(Ω × ℝ𝑛)

2(𝑝+(Ω × ℝ𝑛) − 1)

}
(5.16)

be chosen such that the following is satisfied:

∫
∞

1

((4𝑡)𝛼 − 1)𝑝+(Ω×ℝ
𝑛)−1

𝑡1+𝑠𝑝+(Ω×ℝ
𝑛)

d𝑡 + ∫
∞

1

((4𝑡)𝛼 − 1)𝑝−(Ω×ℝ
𝑛)−1

𝑡1+𝑠𝑝−(Ω×ℝ𝑛)
d𝑡 ≤ 𝛿𝑝+(Ω×ℝ

𝑛)−1

2𝑝+(Ω×ℝ
𝑛)𝑛𝜔𝑛

, (5.17)
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CHAKER and KIM 23

where 𝜔𝑛 denotes the volume the 𝑛-dimensional Euclidean unit ball. We define 𝑗0 ∈ ℕ to be the smallest natural number
satisfying

𝑗0 ≥ max

⎧⎪⎨⎪⎩
𝑠𝑝+({𝑥0} × 𝐵

𝑐
𝑅
)

2

||||||log4
(
𝛿𝑝+({𝑥0}×𝐵

𝑐
𝑅
)−1

2𝐶0

)||||||,
𝑠𝑝−(Ω × ℝ𝑛)

2

|||||log4
(
𝛿𝑝−(Ω×ℝ

𝑛)−1

2𝐶0

)|||||,
| log4( 𝛿2 )|
𝑠 − 𝛼

⎫⎪⎬⎪⎭, (5.18)

where 𝐶0 ∶= max{1, 2𝑝+(Ω×ℝ
𝑛)}
(

𝑛𝜔𝑛

𝑠𝑝−(Ω×ℝ𝑛)
+ 1
)
.

In the following, we show that there is a nonincreasing sequence (𝑀𝑗) and a nondecreasing sequence (𝑚𝑗) in ℝ, such
that for all 𝑗 ∈ ℕ ∪ {0}

𝑚𝑗 ≤ 𝑢 ≤ 𝑀𝑗 in 𝐵4−𝑗𝑅(𝑥0) and 𝑀𝑗 −𝑚𝑗 = 𝑍4−𝛼𝑗, (5.19)

where

𝑍 ∶= 2 ⋅ 4𝛼𝑗0‖𝑢‖𝐿∞(𝐵𝑅(𝑥0)) + 𝑅𝑠 + 1 +

(
𝑅𝑠𝑝+({𝑥0}×𝐵𝑅(𝑥0)

𝑐) sup
𝑥∈𝐵3𝑅∕4(𝑥0)

∫
ℝ𝑛⧵𝐵𝑅(𝑥0)

|𝑢(𝑦)|𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦
) 1

𝑝+({𝑥0}×𝐵𝑅(𝑥0)
𝑐)−1

.

For 𝑗 ∈ {0, … , 𝑗0}, we define𝑀𝑗 ∶= 4−𝛼𝑗𝑍∕2 and𝑚𝑗 ∶= −4−𝛼𝑗𝑍∕2. Then, (5.19) is clearly satisfied for all 𝑗 ∈ {0, … , 𝑗0}. It
remains to prove the assertion (5.19) for 𝑗 > 𝑗0. The proof of the assertion follows by induction. Let us fix 𝑗 ≥ 𝑗0 and assume
that (5.19) is true for all 𝑖 ∈ {0, … , 𝑗}. We now construct the elements 𝑚𝑗+1 and 𝑀𝑗+1 of the sequences. We distinguish
between two cases.
First, we assume

|||||𝐵4−𝑗𝑅

2

(𝑥0) ∩

{
𝑢 ≥ 𝑚𝑗 +

𝑀𝑗 − 𝑚𝑗

2

}||||| ≥ 1

2

|||||𝐵4−𝑗𝑅

2

(𝑥0)
|||||. (5.20)

In this case, we define 𝑣 ∶= 𝑢 −𝑚𝑗 , 𝐻 ∶=
𝑀𝑗−𝑚𝑗

2
, and 𝑅 ∶= 4−𝑗𝑅. The main idea for constructing 𝑚𝑗+1 and 𝑀𝑗+1 is to

apply Lemma 5.2 for the function 𝑣 and the radius 𝑅. Hence, we need to verify the requirements of the lemma. Note that
by assumption we have 0 ≤ 𝑣 ≤ 2𝐻 in 𝐵𝑅(𝑥0) and |𝐵𝑅∕2(𝑥0) ∩ {𝑣 ≥ 𝐻} | ≥ 1

2
|𝐵𝑅∕2(𝑥0)|. It remains to prove 𝑅𝑠 ≤ 𝛿𝐻 and

(5.2). First we show 𝑅𝑠 ≤ 𝛿𝐻. Note that 2𝐻 = 𝑀𝑗 − 𝑚𝑗 = 𝑍4−𝛼𝑗 ≥ 𝑅𝑠4−𝛼𝑗 . Since 𝑗 ≥ 𝑗0, we can use (5.18), which leads to

𝑅𝑠 = 4−𝑗𝑠𝑅𝑠 ≤ 4𝑗(𝛼−𝑠)2𝐻 ≤ 𝛿𝐻.

It remains to prove (5.2). We split ℝ𝑛 ⧵ 𝐵𝑅(𝑥0) as follows:

ℝ𝑛 ⧵ 𝐵𝑅(𝑥0) = (ℝ𝑛 ⧵ 𝐵𝑅(𝑥0)) ∪

(
𝑗−1⋃
𝑙=0

𝐵4−𝑙𝑅(𝑥0) ⧵ 𝐵4−(𝑙+1)𝑅(𝑥0)

)
.

If 𝑥 ∈ 𝐵4−𝑙𝑅(𝑥0) ⧵ 𝐵4−(𝑙+1)𝑅(𝑥0), then |𝑥 − 𝑥0| ≥ 4−𝑙−1𝑅 and therefore

𝑣(𝑥) = 𝑢(𝑥) − 𝑚𝑗 ≥ 𝑚𝑙 −𝑀𝑙 + 2𝐻 = 2𝐻(−4(−𝑙+𝑗)𝛼 + 1) ≥ −2𝐻

((
4|𝑥 − 𝑥0|

𝑅

)𝛼
− 1

)
.

On the other hand, if 𝑥 ∈ ℝ𝑛 ⧵ 𝐵𝑅(𝑥0), we have 𝑣(𝑥) ≥ −|𝑢(𝑥)| − 𝑍∕2. Nowwe are in a position to finalize the verification
of (5.2). By the previous estimates on 𝑣 in ℝ𝑛 ⧵ 𝐵𝑅(𝑥0), we have
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24 CHAKER and KIM

sup
𝑥∈𝐵3𝑅∕4(𝑥0)

∫
ℝ𝑛⧵𝐵𝑅(𝑥0)

𝑣−(𝑦)
𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦 ≤ sup

𝑥∈𝐵3𝑅∕4(𝑥0)
∫
ℝ𝑛⧵𝐵𝑅(𝑥0)

(
2𝐻

((
4|𝑦−𝑥0|

𝑅

)𝛼
− 1

))𝑝(𝑥,𝑦)−1
|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦

+ max{1, 2𝑝+(𝐵𝑅(𝑥0)×ℝ
𝑛)−1} sup

𝑥∈𝐵3𝑅∕4(𝑥0)
∫
ℝ𝑛⧵𝐵𝑅(𝑥0)

|𝑢(𝑦)|𝑝(𝑥,𝑦)−1 + 𝑍𝑝(𝑥,𝑦)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝(𝑥,𝑦) d𝑦

=∶ 𝐽1 + 𝐽2.

First note, that we can estimate 𝐽1 as follows:

𝐽1 ≤ ∫
ℝ𝑛⧵𝐵𝑅(𝑥0)

(
2𝐻

((
4|𝑦−𝑥0|

𝑅

)𝛼
− 1

))𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)𝑐)−1
|𝑦 − 𝑥0|𝑛+𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)𝑐) d𝑦 + ∫

ℝ𝑛⧵𝐵𝑅(𝑥0)

(
2𝐻

((
4|𝑦−𝑥0|

𝑅

)𝛼
− 1

))𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)𝑐)−1
|𝑦 − 𝑥0|𝑛+𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)𝑐) d𝑦

= 𝑛𝜔𝑛(2𝐻)
𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐) ∫

∞

1

((4𝑡)𝛼 − 1)𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)−1

𝑡1+𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)

d𝑡

+ 𝑛𝜔𝑛(2𝐻)
𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐) ∫

∞

1

((4𝑡)𝛼 − 1)𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)−1

𝑡1+𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)

d𝑡.

Using 𝑝−(Ω × ℝ𝑛) ≤ 𝑝±(𝐵𝑅(𝑥0) × 𝐵𝑅(𝑥0)
𝑐) ≤ 𝑝+(Ω × ℝ𝑛) and (5.17), we get

∫
∞

1

((4𝑡)𝛼 − 1)𝑝±(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)−1

𝑡1+𝑠𝑝±(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)

d𝑡 ≤ ∫
∞

1

((4𝑡)𝛼 − 1)𝑝+(Ω×ℝ
𝑛)−1

𝑡1+𝑠𝑝+(Ω×ℝ
𝑛)

d𝑡 + ∫
∞

1

((4𝑡)𝛼 − 1)𝑝−(Ω×ℝ
𝑛)−1

𝑡1+𝑠𝑝−(Ω×ℝ𝑛)
d𝑡 ≤ 𝛿𝑝+(Ω×ℝ

𝑛)−1

2𝑝+(Ω×ℝ
𝑛)𝑛𝜔𝑛

.

Combing the previous two estimates, we arrive at

𝐽1 ≤ 1

2
𝐻𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)𝛿𝑝+(Ω×ℝ

𝑛)−1 +
1

2
𝐻𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)𝛿𝑝+(Ω×ℝ

𝑛)−1

≤ 1

2
(𝛿𝐻)𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐) +

1

2
(𝛿𝐻)𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)

≤ 1

2
(𝛿𝐻)𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0))−1𝑅−𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)) +

1

2
(𝛿𝐻)𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0))−1𝑅−𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)).

In the last inequality, we used that by (P2) and 𝑅𝑠 ≤ 𝛿𝐻,

𝑅−𝑠𝑝±(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)(𝛿𝐻)𝑝±(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐) ≤ 𝑅−𝑠𝑝±(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0))(𝛿𝐻)𝑝±(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)).

Next, we estimate 𝐽2 as follows:

𝐽2 ≤ max{1, 2𝑝+(Ω×ℝ
𝑛)−1}𝑅−𝑠𝑝+({𝑥0}×𝐵𝑅(𝑥0)

𝑐)𝑍𝑝+({𝑥0}×𝐵𝑅(𝑥0)
𝑐)−1

+max{1, 2𝑝+(Ω×ℝ
𝑛)−1}∫

ℝ𝑛⧵𝐵𝑅(𝑥0)

(
𝑍𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)𝑐) + 𝑍𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)−1|𝑦 − 𝑥0|𝑛+𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)𝑐)

)
d𝑦

≤ 𝐶0𝑅
−𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)𝑍𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)−1 + 𝐶0𝑅

−𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)𝑍𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1

= 𝐶0(4
𝑗𝑅)−𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)(4𝛼𝑗2𝐻)𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)−1 + 𝐶0(4

𝑗𝑅)−𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)(4𝛼𝑗2𝐻)𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1

≤ 𝐶04
−𝑠𝑝+(𝐵𝑅

(𝑥0)×𝐵𝑅
(𝑥0)

𝑐)

2
𝑗0𝐻𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)

+𝐶04
−𝑠𝑝−(𝐵𝑅

(𝑥0)×𝐵𝑅
(𝑥0)

𝑐)

2
𝑗0𝐻𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)
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≤ 1

2
(𝛿𝐻)𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐) +

1

2
(𝛿𝐻)𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)

𝑐)−1𝑅−𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)
𝑐)

≤ 1

2
(𝛿𝐻)𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0))−1𝑅−𝑠𝑝+(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)) +

1

2
(𝛿𝐻)𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0))−1𝑅−𝑠𝑝−(𝐵𝑅(𝑥0)×𝐵𝑅(𝑥0)), (5.21)

where we used the definition of 𝑍, (P2), (5.16), and (5.18). Note that the constant 𝐶0 comes from (5.18). Combining the
estimates of 𝐽1 and 𝐽2, proves (5.2).
Hence, we can apply Lemma 5.2, which leads to

𝑢 ≥ 𝑚𝑗 + 𝛿𝐻 = 𝑚𝑗 + 𝛿
𝑀𝑗 − 𝑚𝑗

2
= 𝑚𝑗 +

𝛿4−𝛼𝑗𝑍

2
> 𝑚𝑗 + 4−𝛼𝑗(1 − 4−𝛼)𝑍 in 𝐵𝑅∕4(𝑥0),

where we used (5.16) in the last inequality. Hence, choosing 𝑀𝑗+1 = 𝑀𝑗 and 𝑚𝑗+1 = 𝑚𝑗 + 4−𝛼𝑗(1 − 4−𝛼)𝑍 proves (5.19)
for the case (5.20).
In the second case |||||𝐵4−𝑗𝑅

2

(𝑥0) ∩

{
𝑢 ≥ 𝑚𝑗 +

𝑀𝑗 − 𝑚𝑗

2

}||||| < 1

2

|||||𝐵4−𝑗𝑅

2

(𝑥0)
|||||,

we can proceed similarly and consider the function 𝑣 ∶= 𝑀𝑗 − 𝑢. In this case, we can choose themembers of the sequences
to be of the form 𝑀𝑗+1 = 𝑀𝑗 − 4−𝛼𝑗(1 − 4−𝛼)𝑍 and 𝑚𝑗+1 = 𝑚𝑗 . This completes the construction of the sequences (𝑀𝑗)

and (𝑚𝑗) and completes the proof of (5.19). Now the local Hölder regularity follows in a standard way. □
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