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Abstract: This article presents the general solution f: G — V of the following functional equation:
fOO - 4f(x+y) +6f(x +2y) —4f(x +3y) + f(x + 4y) =0, X,y E€G,

where (G, +) is an abelian group and V is a linear space. We also investigate its Hyers-Ulam stability on some
restricted domains. We apply the obtained results to present some asymptotic behaviors of this functional
equation in the framework of normed spaces. Finally, we provide some characterizations of inner product
spaces associated with the mentioned functional equation.
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1 Introduction and preliminaries

The functional equation

n

Z[’?](—l)”’jg(x +/)=0, XxyE€ER, )
j=olJ

where g : R — R, is known as the Fréchet functional equation. For n = 1, the Fréchet functional equation
becomes g(x +y) = g(x). Then, g is a constant function. In the case of n = 2, the Fréchet functional equation
appears as g(x + 2y) + g(x) = 2g(x + y), which is the Jensen functional equation. In [1, Theorem 7.20], the
general solution of (1) was obtained for n = 3 without assuming any regularity condition on g, where g is a
function between two linear spaces. A result from Fréchet [2] states that if a continuous function g: R - R
satisfies (1), then g is a polynomial of degree <n. Johnson [3] proved that a normed linear space X is an inner
product space if and only if, for some integer n > 3,
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n
n .

21D I+ P =0, x.y € X.

j=oJ

It will be interesting to determine the general solutions of (1) without additional assumptions on g. In this

article, we obtain the general solution of (1) for n = 4 without assuming any regularity condition on

g:G — V, where (G, +) is an abelian group and V is a linear space. Indeed, we deal with the following

functional equation:
fOO - 4f(x+y) +6f(x + 2y) —4f (x + 3y) + f(x + 4y) =0, X,y E€G. @

We investigate the Hyers-Ulam stability of (2) on some restricted domains. The obtained results are used to
present some asymptotic behaviors of the functional equation (2) in the framework of normed spaces. We also
provide some characterizations of inner product spaces related to (2).

In 1940, Ulam [4] proposed the following question regarding the stability of homomorphisms between
groups:

Let (G4, *) be a group and let (G, <, d) be a metric group with a metric d. Given & > 0, does there exist a § > 0 such that if a
function f: G, — G, satisfies the inequality d(f(x *y), f(x) & f(¥)) < 6 for all x,y € Gy, then there is a homomorphism
h: Gy —~ Gy, with d(f(x), h(x)) < € for all x € G¢?

One year later, Hyers [5] answered Ulam’s question for the case where G; and G, are assumed to be Banach
spaces. It will also be interesting to study the stability problems of functional equations on restricted domains.
Skof [6] was the first author to study the Hyers-Ulam stability for additive functions on a restricted domain
and applied the result to the study of an asymptotic behavior of additive functions. Jung [7] and Rassias [8]
investigated the Hyers-Ulam stability for additive and quadratic mappings on restricted domains. The bounds
and thus the stability results obtained in [7,8] were improved in [9].
Let us recall that a function f: G — <V, where (G, +) is an abelian group and <V is a linear space, is called

— additive, if f(x +y) =f(x) + f(y) for all x,y € G;
— quadratic, if f(x+y) + f(x —y) =2f(x) + 2f(y) for all x,y € G;
— cubic, if fx+y)+f(2x-y)=2f(x+y)+2f(x-y)+12f(x) for all x,y € G.

For more information on functional equations and the concept of Hyers-Ulam stability and its applications, we
refer the reader to [1,10-21].

2 General solution of (2)
In this section, (G, +) is an abelian group and <V denotes a linear space.

Lemma 2.1. Let f: G — V be a function satisfying

fx=-+2fx+y)-f) -3fHx)=0, xy€gG. ®
Then, fis additive.
Proof. The functional equation (3) gives us f(0) = 0 by letting x = y = 0. Putting x = 0 in (3), we infer that f is
odd. Replacing y by -y in (3), we obtain

fx+ ) +2fx-y)+f) -3fx) =0, xy€g. @

Multiplying (3) by -2 and adding the resultant to (4), we obtain f(x +y) = f(x) + f(y) for all x,y € G. This
completes the proof. O
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Lemma 2.2. Let f: G — V be an odd function satisfying (2) for all x,y € G. Then, the function g: G - V
defined by g(x) = f(2x) - 8f(x) is additive and the function h : G — <V defined by h(x) = f(2x) — 2f(x) is cubic.

Proof. First, we prove g is additive. Since f is odd, replacing x by 3x - y and y by y - x in (2), we have

fBx-y) - 4f(2x) +6f(x +y) - 4f () - fx -3) =0, xy€G. ©)
Also, replacing x by -4x and y by x + y in (2), we have
f(4x) + 4fBx - y) — 6f(2x - 2y) + 4f (x - 3y) + f(4) =0, X,y EG. 6)
Multiplying (5) by -4 and adding the obtained equation to (6), we have
8f(x = 3y) - 6f(2x = 2y) - 24f (x + y) = f(4x) + 16f(2x) + f(4y) + 16f(2y) = 0, @)

for all x,y € G. For x = -y, equation (2) obtains us
f@) =4 @) -5f(), yEG.

So, by considering x = 0 in (2), we obtain

fy) =10f(2y) - 16f(y), YEG. ®
By (8), equation (7) is equivalent to
8f(x = 3y) = 6f(2x = 2y) - 24f (x + y) + 6f(2x) + 16f(x) + 26f(2y) - 16f(y) = 0, )]
for all x,y € G. On the other hand, replacing x by x - 3y in (2), we have
fx=3y) =4f(x - 2p) - 6f(x —y) +4f () - f(x +y), X yE€G. (10)

By (9) and (10), we obtain

32f(x = 2y) - 48f(x —y) = 32f(x +y) - 6f(2x = 2y) + 6f(2x) + 48f (x) + 26f(2y) - 16f(y)
=0, x,yEG.

11

Also, replacing x by x - 2y in (2), we have
fx-2y) =4f(x - y) - 6f(x) + 4f (x +y) - f(x + 2y), X,VEG. (12)
By (11) and (12), we obtain

80f(x —y) — 6f(2x — 2y) + 96f (x + y) — 32f (x + 2y) + 6f(2x) — 144f (x) + 26f(2y) - 16f(y)
=0, x,yegG.

13

Replacing x by 2x and y by 2y in (13) and applying (8), we have
8f(2x + 4y) = 5f(2x = 2y) + 24f (x - y) + 24f (2x + 2y) - 21f (2x) - 24f (x) + 61f(2y) - 104f(y), x,y €G. (14)
Since f is odd, replacing x by x — y and y by x + y in (9) obtains us
8f (2x + 4y) = 6f(2x - 2y) + 26f(2x + 2y) + 16f(x - y) — 16f(x +y) - 24f(2x) + 6f(4y), X,y € G. (15)
By (14), (15), and (8), it is concluded

[f2x = 2y) = 8f (x = )] + 2[f(2x + 2y) - 8f (x + ¥)] = [f(2y) - 8f W] + 3[f(20) - &f ()], X,y €G.
This means

gx-y)+2g(x+y)-g(y) -3gx) =0, xy€G.

So, by Lemma 2.1, the function g is additive.
Now, we show h is a cubic function. By interchanging x and y in (11), we have

=-32f(2x - y) = —-48f(x - y) + 32f(x + y) - 6f(2x - 2y) - 6f(2y) - 48f(y) - 26f(2x) + 16f(x), x,y € G. (16)
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Replacing x by 2x and y by 2y in (16) and multiplying the obtained equation by —%, we obtain

16f(4x - 2y) = 24f (2x - 2y) - 16f(2x + 2y) + 3f (4x - 4y) + 3f(4y) + 24f (2y) + 13f(4x) - &f (2x), x,y € G. (A7)
Replacing y by -y in (16), we have

—32f(2x +y) = -48f(x +y) + 32f (x - y) — 6f(2x + 2y) + 6f (2y) + 48f (y) - 26f(2x0) + 16f(x), X,y €G. (18)
Also replacing y by -y in (17), we obtain

16f (4x + 2y) = 24f (2x + 2y) - 16f(2x - 2y) + 3f(4x + 4y) - 3f(4y) - 24f (2y) + 13f(4x) - 8f(2x), x,yE€ G. (19)
Adding (16), (17), (18), and (19) yields

16f (4x + 2y) + 16f(4x — 2y) — 32f(2x + y) — 32f(2x - y)
= 3f(4x +4y) + 3f(4x — 4y) + 2f(2x + 2y) + 2f(2x - 2y) = 16f(x + y) - 16f(x - y) (20)
+ 26f(4x) - 68f(2x) + 32f (x),

for all x,y € G. So, by (20) and (8), we obtain

[f(4x +2y) = 2f (2x + y)| + [f(4x = 2y) - 2f (2x - y)]
= [2f(2x +29) - 4f (x + Y)] + [2f (2x - 2p) - 4f (x - y)] + [12f(20) - 24f(¥)], X,y EG.

This means
h2x +y) + h(2x - y) = 2[h(x +y) + h(x - y)] + 12h(x), X,y € G.

Therefore, h is a cubic function. O

Lemma 2.3. Let f: G — V be an even function satisfying (2) for all x,y € G. If f(0) = 0, then fis a quadratic
function.

Proof. Since f is even and f(0) = 0, replacing x by -2y in equation (2), we obtain

f&)=40), yeg. @
Replacing x by x — 2y in (2), we have
fO=2y) =4 (x-y) + 6f () —4f(x +y) + f(x +29) =0, X,y E€G. 22)
Since f is even, replacing x by 2y and y by x in (22) and applying (21), we obtain
fx=+6f) +fx+y)=fx-2) +fx+2)), XyE€QG. 23)
Adding (22) and (23), we infer that f(x + y) + f(x - y) = 2f(x) + 2f(y), i.e., f is quadratic. O

Lemma 2.4. Each additive, quadratic, and cubic function satisfies equation (2).

Proof. For the case that a function is additive, the proof is obvious. Let Q : G — V be quadratic. We have

20) +2000) =Qx +y) + Q(x —y), X,y EG. (24)
and also
Q(x +2y) + Qx - 2y) = 20(x) + 8Q(Y), X,YEG. (25)
Multiplying (24) by 4 and adding the resultant to (25), we have
Q(x = 2y) + 6Q(x) + Q(x + 2y) = 4Q(x - y) +4Q(x +y), X,y EG. (26)

Replacing x by x + 2y in (26), we obtain Q that satisfies (2). Now, let C : G — V be cubic. Then, we have
20(x +y) +2C(x -~ y) + 12C(x) = C(2x +y) + C(2x - y), X,y E€G. @7
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It is obvious that C(2x) = 8C(x) for all x € G. Replacing y by 2y in (27), we obtain

C(2x +2y) + C(2x - 2y) = 2C(x + 2y) + 2C(x — 2y) + 12C(x), X,y € G. (28)
Using C(2x) = 8C(x) in (28), we obtain

C(x—-2y)-4C(x-y)+6C(x) —4C(x+y)+C(x+2y) =0, X, yEG. 29
Replacing x by x + 2y in (29), the function C satisfies (2). O
Theorem 2.5. A function f: G — V satisfies (2) if and only if f has the form f=A + Q + C + f(0), where
A, Q,C: G — V are additive, quadratic, and cubic, respectively.
Proof. Let f and f, be the odd and even parts of f, ie.,

f&) _zf(_X)’ £00 = f&) +2f(-X)’

First, we assume that f* satisfies (2). Then, f, and f, fulfill (2). Consider the functions g, h : G - V defined by:
800 = f,(2x) - 8f,(x), h(x) =f,2x) - 2f,(x), x€G.

Then, by Lemma 2.2, g is additive and h is cubic. Moreover, we have

fo) =

XEG.

1
f,00 = £[h(0) - g, x€6.
Also, f, - f(0) is quadratic by Lemma 2.3. Set
A= —%g, Q=f,-f(©), and C= %h.

Hence, f=f +f, =A+Q+ C+ f(0).
Conversely, let f=A + Q + C + f(0). Hence, by Lemma 2.4, f satisfies (2). O

3 Stability of (2) on some restricted domains

In this section, X and ‘W denote linear normed spaces and Y is a Banach space. For convenience, we let
Df(x,y) = f(x) = 4f (x + y) + 6f(x + 2y) = 4f (x + 3y) + f(x + 4y),

where f is a function between two linear spaces.

Theorem 3.1. Take € > 0 and d > 0. Consider an odd function f: X - Y satisfying one of the following
conditions:

IDFxyllse x,y€X:|x+y|>d (30)
IDFOGIl <€ x,y € X - min{|ix]l, |yl}} > d; 3D
IDfOyll <€ xy€X:|xl=d; (32)
IDFOyIl<e  xy€X:|yl>d (33)

Then, there is a unique additive function A : X —» Y such that we have

IIf(2x) = 8f(x) = A(x)|| € 5—(38, X € X. (34)
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Proof. We assume that f is satisfying (30) (we have a similar argument if f satisfies (31), (32), or (33)) . Since f is
odd, replacing x by -3y in (30), we have

IFGy) - 4f@2y) + SfWIl <& |l > d. (35)
Also, by putting x = —4y in (30), we obtain
If(4y) - 4fBy) + 6f(2y) —4f Wl s & |l > d. (36)
Multiplying (35) by 4 and adding the obtained inequality to (36), we conclude
If (4y) - 10f(2y) + 16f W)l < 5e,  [yll = d. 37
So, by considering g(y) = f(2y) - 8f(y) for all y € X, (37) is equivalent to
lg@y) - 28Il < 5¢, |yl = d. (38)
Replacing y by 2"y, n € N U {0}, in (38), and multiplying the reached inequality by 2-*D, we have
1 1 5¢
| grse - g < 25 wisa 69
By (39), for integer numbers n = m > 0, we derive
1 1 < 5¢
H Z8@) - o @) < ¥ o Il > d. (40)
=m

From (40), we can see {Zl—ng(Z"y)}HEN is a Cauchy sequence for all y € Y. So, by the completeness of VY, it is
convergent. Now, the function A : X —» Y with A(x) = limnmzing(znx) is well defined. By (30), we can obtain

llg(x) —4g(x +y) + 6g(x +2y) - 4g(x + 3y) + glx + 4y)|| < 9¢, [Ix +y|| > d. 1

Replacing x and y by 2"x and 2"y in (41) and multiplying the obtained inequality by 2™, and then lettingn — o,
we conclude that A satisfies (2) for all x, y with x + y # 0. It follows from (35) that

llg@y) - 4g2y) + 58Il < %¢, |yl = d. (42)
Because A(0) = 0, (42) yields A(3y) — 4A(2y) + 5A(y) = 0 for all y € X. Since A is an odd function, the last

equation implies
A(x) - 4A(0) + 6A(—x) - 4A(-2x) + A(-3x) =0, x € X.
This means that A satisfies (2) for x + y = 0. Therefore, A satisfies (2) for all x,y € X. So, the mapping

x = A(2x) - 8A(x) is additive by Lemma 2.2. On the other hand, by the definition of A, we obtain
A(2x) = 2A(x). Hence, A is additive. Letting m = 0 and n — « in (40), we have

lgy) = AWl < B¢, |yl = d.
Therefore,

lAQYy - 2¥) - g(y = 20l < 5¢, Iy - 2x|| > d;
1482y - x) — 4AQ2y - X)|| < 20¢, |12y - x|

2 d;
43
4g0x + 49) - 440+ 4| <206, [+ ] > d “
[[A(2x + 5y) — g(2x + 5y)|| < 5¢, ||2x + 5y|| = d.
Replacing x by y - 2x and y by x + y in (41), we obtain
gy — 2x) — 482y - x) + 6gQy) — 4g(x + 4y) + g(2x + 5y)|| < %¢, |2y - X|| > d. (44)

Let y € X and choose x € X such that ||x|| = d + 4||y||. Then,
min{]ly = 2x]1, |12y = x|, Ix + 4yll, [I2x + Sy|[} > d.

Now, it follows from (43) and (44)
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[6g(3y) + A(y - 2x) — 4A(2y - x) - 4A(x + 4y) + A(2x + 5y)|| < 59€. (45)

Since A is additive, (45) yields
llgBy) = AGY)Il < —

Hence, we obtain (34). The uniqueness of A is a simple consequence of (34). O

Theorem 3.2. Assume that an odd function f: X — Y satisfies one of the conditions (30)-(33) for some e > 0 and
d > 0. Then, there is a unique cubic function C : X —» Y such that

I (2x) - 2f(0) - COO| < %e, X € X. (46)

Proof. Let f satisfy (30). As we shown in the proof of Theorem 3.1, f satisfies (37). Then,

Ih2y) - 8h(Y)I| < Se, [yl = d, )

where h(y) = f(2y) - 2f(y). Replacing y by 2"y, n > 0, in (47) and multiplying the resultant inequality by
8 (*D we have

5¢
h(2"ly) - —h(2" S g Iyl = d

“ 8n+1

So, we derive

n

5
<3 Sifl, Wl>d nsmso. 48)

h(vly) - —h(zm

“ 8n+1

From (48), we can infer that { 8,lh(Z”y)}n is a Cauchy sequence for all y € Y/, and then, it is convergent by
completeness of Y. Now, the function C : X — Y given by C(x) = hm,,%os,lh(znx) is well defined. By (30), we
can obtain

|[h(x) — 4h(x +y) + 6h(x + 2y) — 4h(x + 3y) + h(x + 4y)|| < 3¢, |x+Y| = d. (49)

Replacing x and y by 2"x and 2"y in (49) and multiplying the obtained inequality by 8", and then takingn — o,
we conclude that C satisfies (2) for x, y with x + y # 0. It follows from (35) that

IR@3y) - 4h2y) + Sh(Y)|| < 3¢, |yl = d. (50)

Because C(0) = 0, (50) yields C(3y) — 4C(2y) + 5C(y) = 0 for all y € X. Since C is an odd function, the last
equation implies

C(x) - 4C(0) + 6C(—x) - 4C(-2x) + C(-3x) =0, x€EX.

This means that C satisfies (2) for x + y = 0. Therefore, C satisfies (2) for all x, y € X. Since C is odd, we obtain
the map x — C(2x) - 2C(x) is a cubic function by Lemma 2.2. On the other hand, we have C(2x) = 8C(x) by the
definition of C. So C is cubic. Letting m = 0 and n — o« in (48), we obtain

5
[lh(y) = COI| < 76 il = d

Therefore,

5

ICQy = 2x) = h(y = 2x)|| < 76 Iy - 2x|| > d
20
@@y = ) - 4C@y = Ol < e |2y = x> d
(51)
20

[4hx + 4y) = 4C0c+ )< e+ dy) > d

5
llc@x + 5y) = hx + Syl < 76, [2x + Syl > d
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Replacing x by y — 2x and y by x + y in (49), we obtain
||h(y = 2x) = 4h(2y - x) + 6h(3y) — 4h(x + 4y) + h(2x + 5y)|| < 3¢, ||2y - x| = d. (52)
Let y € X and choose x € X such that|[x|| = d + 4|y|. Then,
min{|ly = 2x{, [I2y = x|, [Ix + 4yll, [I2x + 5y|} > d.

Now, it follows from (51) and (52)
|[6h(By) + C(y — 2x) — 4C(2y - x) — 4C(x + 4y) + C(2x + 5y)|| < 7718. (53)
Since C satisfies (2), it follows from (53) that
71
IhGy) = CEIl < &

Hence, we obtain (46). The uniqueness of A is a simple consequence of (46). O

Theorem 3.3. Take € > 0,d > 0 and consider an even function f: X — Y satisfying one of the conditions
(30)—(33). Then, there is a unique quadratic function Q : X - Y, such that

IFOO - 0) - fO)ll < g&, X EX. (54

O |

Proof. Let f satisfy (30). Since f is an even function, replacing x by -2y in (30), we obtain
£
IF(@) - 4fO) + 3Ol < 5. Il > d. (55)

Similarly, replacing x by -3y in (30), we obtain
IfFGBy) - 4f@2y) + 7f(y) - 4O <& |yl >d. (56)
Replacing y by 2"y, n € N U {0}, in (55) and multiplying the resultant inequality by 4D, we have

Then, for integers n > m > 0, we obtain

1 1 3 £
4,,+1f(2n+1y) A2 Wf(o)‘ < gy D= d

1, o 1 < 3 < &
/@Y - @)+ 3 SO < 2 s WIzd (57
=m =m

It follows from (57) that the sequence {%f (2"y)}nen is Cauchy for all y € Y, and then it is convergent by the

completeness of Y. Now, the function Q : X — Y given by Q(x) = limnqm%f (2"x) is well defined. Replacing x
and y by 2"x and 2"y in (30) and multiplying the resultant inequality by 4™, and taking the limit asn tends to «,
we infer that Q satisfies (2) for all x, y € X with x + y # 0. It follows from (56) that Q(3y) — 4Q(2y) + 7Q(y) = 0
for all y € X. Since Q(0) = 0 and Q is an even function, the last equation implies

Q(x) — 4Q(0) + 60(-x) - 4Q(-2x) + Q(-3x) =0, X EX.

This means Q satisfies (2) for x + y = 0. Therefore, Q satisfies (2) for all x, y € X. So, Q is quadratic by Lemma
2.3. Taking m = 0 and n — o in (57), we obtain

IFO) - QM) - fOIl < =, Il >d.

o m

Therefore,
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| o

100y = 2x) - f(y - 20) + f(O)| < Iy - 2x|| > &

6)

2
14f 2y - x) - 4QQ2y - X) - 4 O)l| <S¢, |2y - x| > &;
3 (38)

N

1470x + 49) ~ 400 + ) ~ @)l < ge I+ 4yl > &
10@x + 5y) = f2x + ) + fOll < g 12X + 5] > d.

Replacing x by y — 2x and y by x + y in (30), we obtain
IFQy = 2x) = 4f 2y - x) + 6fQy) — 4f (x + 4y) + f(2x + Sy)l[ < & |12y - X|| > d. (9)
Let y € X and choose x € X such that||x|| = d + 4|y||. Then,
min{|ly = 2], |2y = x|, [|x + 4yll, [I2x + Sy|l} > d.

Now, it follows from (58) and (59)

16fBy) + Qv - 2x) - 4Q(2y — X) — 4Q(x + 4y) + Q(2x + 5y) - 6f(0)]| < 28- (60)
Since Q satisfies (2), it follows from (60) that
@) - 08 - fO)l < g
Hence, we obtain (54). The uniqueness of Q is a simple consequence of (54). d

Theorem 3.4. Take € > 0,d > 0 and consider a function f: X — Y satisfying one of the conditions (30)—(33).
Then, there exist unique additive, quadratic, and cubic functions A, Q, C : X — Y such that

IFCO) - AX) - () - CO0) - FO)|| < %e, X € X. (61)

Proof. We may assume that f satisfies (30). Let f, and f, be the even and odd parts of f.Itis clear that f, and f,
satisfy (30) for all x,y € X with ||x + y|| > d. By Theorems 3.1, 3.2, and 3.3, we have additive, quadratic, and

cubic functions A, o, C : X - Y such that
— 59
IA () = f,(2x) + 8f, ()|l < 5 &
~ 71
15,20 = 2,00 = CRoll < e,

I£.00 - Q) - FO)]I < %e, XEX.
Then,

9
63

< X € X.

1 1.
Hf(x) tgAX) - 2C) - ) - £(0)

So we obtain (61) by letting A(x) = —%Z (x) and C(x) = %E(x) for all x € X. To prove the uniqueness of 4, Q,

and C, let A, Q’,C’: X » Y be additive, quadratic, and cubic functions, respectively, satisfying (61). Let
0=A-A,0=Q-Q,andy = C - C’. We show ¢ = 8 = ¢y = 0. By (61), we have

lleC) + 800 + YOOI < [If ) = A(x) = Q'(x) = C'(X) = f(O)]] + [JA) + QOx) + C(x) + f(0) = fF(X)]
298 (62)
< —

< g,
63

for all x € X. Therefore,
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1
}111210 g”(p(znx) +0(2) + Y2™)|| =0, x € X.

Since ¢, Y, and 6 are additive, quadratic, and cubic, respectively, we have
P(2"x) + 0(2"x) + Y(2"x) = 2"p(x) + 4'0(x) + 8"Y(x),
So (63) obtains ¥(x) = 0 for all x € X, and (62) yields

298
lo(x) + 0()|| < B& X€ X.

Therefore,

1
}115210 EH(p(Z”x) +02)|| =0, x€X.

DE GRUYTER

(63)

(64)

This implies that 8(x) = 0 for all x € X. Hence, by (64), we infer that the additive function ¢ is bounded, and

this yields ¢ = 0.

Remark 3.5. Since

{CY) EXx Xt lx+y|l 22d} S{06y) € X x X = Ix]| + |yl > 2d}
C{y) € X x X - max{||x]], |yll} > d},

O

the aforementioned results remain valid if the condition ||x + y|| = d in (30) is replaced by ||x|| + ||| = d

or max{||x||, |ly|[} > d.

Now, we can prove the following corollary concerning an asymptotic property of the functional equa-

tion (2).

Corollary 3.6. Let f: X —» ‘W be a function. Then, the following statements are equivalent:

@) Timyp+ y)-=Df (%, y) = 0;

) limea,yHme(x,y) =0;

3) LiMMuminga iyg-eLf O, ¥) = 0;
(4) LiMumaxgie), yip-Df (X, ¥) = 0;
(8) limyy-Df (x,y) = 0;

(6) limyyDf (x,y) = 0;

(7) f=A+Q+CH+f(0), where A, Q,C : X - ‘W are additive, quadratic, and cubic, respectively.

Corollary 3.7. Let ¢ : X x X — [0, +=). A function f: X - ‘W satisfies
Df(x,y)=0, x,y€X

if one of the following conditions holds:

@ limgmingu fyj-=@OG Y) =+, HMSUP gy 1y P OO VIIDF OV < 05
@ TiMmaxx) @06 Y) = o0, HMSUPgyqy iy POO NIDS OO < 003
() Ly yjow@(X, y) = +o0,  HMSUP| 4 1y PO IDF O Y| < oo

@) ey oop(X, y) = +oo,  HMSUP), -6 YIDF O Y)I| < oo

(5) limyup(x, y) =+, limsup,,, .00 WD) <

(6) limyy-op(x,y) = +o,  limsupy,, .00 WIDF O Y] < .

Corollary 3.8. Let£ > 0,p < 0, and f: X = Y be a function satisfying

IDFCG YN < e(XP + IvlIP), x,y € X\{o}.

Then, Df(x,y) =0 for all x,y € X.
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Corollary 3.9. Let ¢ 2 0, min{p, q} < 0 and f: X — Y be a function satisfying

IDFCL Y < Pl X,y € X\{0}.
Then, Df(x,y) =0 for all x,y € X.

4 Some characterizations of inner product spaces
Jordan and von Neumann [22] established that in order to a normed linear space X to be an inner product
space, it is necessary and sufficient that the following condition be satisfied:

X+ yIP + llx = yI? = 2lIxIP + 2|ylP, X,y € X. (65)

Some characterizations of inner product spaces could be found in [3,23-26].

Theorem 4.1. Let X # {0} be a normed linear space such that
[IXI[P + 6]|x + 2y[[7 + |Ix + 4y|I" = 4]lx + Y| + 4]lx + 3y|f, x,y € X, (66)

for some real numbers p, q,r, a, € (0, +»). Then, X is an inner product space.

Proof. Letting x = -2y in (66), we obtain

2P| yllP + 2yl = 4lvll® + 4lvIP, y € X. (67)

1

Choosing ||y|| = 1, 2, > % in (67), we obtain

2P + 2 = 8; (68)

4P + 4 = 4(2° + 2P); (69)
2-a 4 1-F = q; (70)
2P+ 27T = a4 4B (71

Let
t=20, s=2, 2%=z 2F=w,
Then by (68), (69) and (70), we obtain
32zw - tszw = 1. (72)
On the other hand, (68), (70), and (71) yield
ts — 8tszw = 8. (73)

By (73) and (72), one obtains ts = 256zw. Then, (72) yields 16zw =1, and so ts = 16. Since ¢t + s = 8 and
2(z + w) =1, we conclude thatt =s=4andz=w = %. Therefore,p=r=a == 2.

Now, letting y = 0 and choosing ||x|| = 2 in (66), one obtains g = 2. Define f: X = R by f(x) = ||x|* Then,
(66) means that f satisfies (2) for all x, y € X, and we conclude f is quadratic by Lemma 2.3. Thus, ||. || fulfills
(65). Hence, X is an inner product space. O

Corollary 4.2. A normed linear space X # {0} is an inner product space if and only if

[IXIP + 6lix + 2yIP + [lx + 4yl = 4llx + Y|P + 4llx + 3y|?,  x,y € X.
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Theorem 4.3. Let X be a normed linear space and ¢ : [0, +) - R be continuous with ¢(0) = 0, ¢(1) # 0 and
satisfy

olIxID + 6a(lx + 2yl + d(lIx + 4yll) = 4¢(llx + yI[) + 49(llx + 3y[)), X,y € X. (74

Then, X is an inner product space.

Proof. Define f: X — R by f(x) = ¢(||x|]). Itis clear that f is even and fulfills (2). By Lemma 2.3, f is quadratic.
Then,

o(rixID = @(lirxi)) = f(rx) = rf (x) = rg(|IxID,

for all nonnegative rational r and all x € X. Choosing x with ||x|| = 1, we obtain ¢(r) = r?¢(1) for all non-
negative rational r. Since ¢ is continuous, we infer that ¢(t) = t?¢(1) for all t > 0. So, (74) becomes

[IXIP + 6llx + 2y]* + [Ix + 4yl = 4flx + y|P* + 4]lx + 3y|P, x,y € X.

Hence, X is an inner product space by Corollary 4.2. O

5 Conclusion

We presented the general solutions of the Fréchet functional equation:
n n )
Z[ .](—D"-fg(x +jp) =0,
j=olJ

for functions g : G — <V in the case of n = 4, where (G, +) is an abelian group and <V is a linear space. We also
investigated its Hyers-Ulam stability on some restricted domains. The obtained results have been used to
present some asymptotic behaviors of this functional equation in the framework of normed spaces. Finally, we
provided some characterizations of inner product spaces associated with the mentioned functional equation.
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