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A B S T R A C T   

Triboelectric nanogenerators (TENGs) as energy harvesters have been extensively investigated due to their 
ability to convert mechanical energy to electricity through the effective coupling of triboelectrification and 
electrostatic induction. Herein, we introduce polydimethylsiloxane (PDMS)-based TENG prepared using ZnSnO3 
(ZTO) nanostructure on surface-modified carbon nanotubes (SMCs), which shows high power density suitable to 
different types of practical applications in energy harvesting and self-power system. TENG with 0.3 wt% ZTO- 
SMC exhibits an output voltage of 665.63 V and a current density of 137.08 mA m− 2, corresponding to im-
provements of 295% and 453%, respectively, with those of a pristine PDMS-based TENG. The peak power density 
of the TENG is 10.57 W m− 2 at a load resistance of 7 MΩ. The formation mechanism of ZTO on the SMCs (ZTO- 
SMC) and its effect on the TENG performance are demonstrated using density functional theory calculations. It is 
demonstrated that the enhanced output performance of the PDMS-based TENG using the ZTO-SMC is attributed 
to the synergetic effect of the enhanced dielectric constant, press-induced polarization, and effective frictional 
area in the triboelectric layer. This work gives a scientific and technical understanding of not only the formation 
of heterostructure through interface nanoengineering but also the development of polymer-based TENGs with 
enhanced triboelectric performance for use in energy harvesting and self-powered systems.   

1. Introduction 

Wireless and wearable electronic devices for the Internet of Things 
(IoT) technology have rapidly developed and is gradually integrating 
into our daily life [1,2]. Recent technological progress in energy har-
vesting systems is prospective to fully replace battery-driven wireless 
devices, thereby achieving self-powered devices for IoT [3–6]. Energy 
harvesting is eco-friendly technology to generate electricity from ubiq-
uitous mechanical energy via triboelectric [7,8], piezoelectric [9,10], 
pyroelectric [11,12], and electromagnetic conversion [13,14]. Among 
them, triboelectric nanogenerators (TENGs) are considered promising 
power sources due to their high energy efficiency, reliability, and 

cost-effectiveness [15–25]. It is believed that the energy conversion ef-
ficiency of the TENGs depends on the coupling of the triboelectrification 
with electrostatic induction, related to surface charge density and 
charge transportation [26–29]. Thus, it is important to achieve higher 
surface charge density and more effective charge transfer for improving 
the performance of the TENGs, and thus, a unique design strategy for the 
triboelectric layer is needed [30–33]. 

Polydimethylsiloxane (PDMS) with high electronegativity, flexi-
bility, and biocompatibility has been widely utilized as a cathode ma-
terial in TENGs, however, exhibiting low output and conversion 
efficiency impeding their use in practical energy harvesting systems 
[34]. One of the strategies to enhance the performance of the 
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PDMS-based TENGs is the incorporation of ferroelectric additives (e.g., 
ZnO, BaTiO3, SrTiO3, ZnSnO3 (ZTO)) into the PDMS layer, which can 
enhance the dielectric permittivity of the triboelectric layer [35–40]. 
Besides, compared with dielectric fillers, carbon materials are reported 
to have higher dielectric constant through polarization by charges 
bound on the triboelectric layer [41–43]. For example, typical CNTs 
serve as capacitive structures to store electric energy through polariza-
tion [44]. It is reported that co-additives with ferroelectric and 
carbon-based materials in the triboelectric layer can be a good strategy 
to achieve further high output performance of the TENGs [45–48]. 
However, there are several limitations to applying the co-additives to 
the PDMS-based triboelectric layer, resulting in reduced TENG perfor-
mance. For instance, an excessive number of ferroelectrics obstruct the 
charge transfer to reduce the TENG performance [49]. Alternately, 
percolation phenomena induced by cross-linking of excessive 
carbon-based materials can generate a current leak, reducing the surface 
charge density induced by triboelectricity [50,51]. Therefore, it is 
required to develop a unique methodology for co-filler with a homo-
geneous distribution of both ferroelectrics and carbon-based materials 
within the PDMS layer, enhancing the output performance of the TENG 
device. To achieve this goal, we developed pulsed laser ablation (PLA) 
technique for the functionalization of carbon nanotubes, 
surface-modified carbon nanotubes (SMCs), which act as an additive in 
the PDMS layer to enhance the performance of the TENGs. We suggested 
that the functional groups present on the SMC with optimized conditions 
could inhibit aggregation and/or cross-linking of CNTs, thereby 
improving the output performance of TENGs [52]. In addition to that, 
we modified the methodology to develop the unique co-additive 
composed of ferroelectric ZTO nano hemisphere on SMCs (ZTO-SMC) 
for piezoelectric nanogenerator (PENG) suitable to high-power energy 
harvesting [39]. It is noted that both functionalization of the carbon 
nanotubes and laser-assisted synthesis for the formation of nano ferro-
electrics occurs during one-pot processing. We suggested that PLA is a 
suitable methodology to not only enhance dielectric properties but also 
promote dispersion of the additives within polymer-based matrices such 
as PDMS, and Polyvinylidene fluoride (PVDF). However, the underlying 
mechanism behind the formation of the effective co-additives is still 
lacking, and thus the origin of the enhanced output performance of the 
nanogenerators remains unclear. 

Herein, we report the formation mechanism of the co-additives, ZTO- 
SMC, and the origin of the enhanced TENG output performance using 
combined experimental and computational methods. Density functional 
theory (DFT) calculation is carried out to demonstrate the formation 
mechanism of the ZTO-SMC, and experimental verification follows to 
achieve the highest TENG performance. A novel interface engineering 
strategy for the ZTO-SMC as effective co-additives in the PDMS-based 
triboelectric layer was selected to significantly enhance the output 
performance of TENGs. Experiments indicate that optimized ZTO-SMC 
TENG shows the highest output voltage (665.63 V), current (137.08 
mA m− 2), and power density (10.57 W m− 2), which simultaneously 
power 488 commercial light emitting diode (LED) bulbs connected in 
series. 

2. Experimental 

2.1. Fabrication of ZTO-SMC 

ZTO on surface-modified carbon nanotubes (denoted as ZTO-SMC) 
was prepared via the Pulsed laser ablation (PLA) process. In detail, 
multi-walled CNTs (0.5 g, Hanwha Chem), zinc nitrate hexahydrate (Zn 
(NO3)2⋅6H2O, 2.0 g, Sigma Aldrich), and Sn(II) 2-ethylhexanoate (Sn 
(Oct)2), 2.0 g, Alfa Aesar) powders were dissolved in high-purity ethanol 
(500 mL). Subsequently, the prepared solution was placed in a vial and 
ablated using a 10 Hz pulsed laser beam for 1 h (355 nm, third harmonic, 
and 10 ns pulse width) from a Q-switch ND:YAG laser system at room 
temperature and in ambient air. The laser beam was focused on a spot 

with an area of ~2 mm2 with an ablation energy of 100 mJ. Finally, 
ZTO-SMC was obtained through filtering and drying processes. 

2.2. Computational details 

DFT calculations were performed using the generalized gradient 
approximation (GGA) with Perdew–Burke–Ernzerhof (PBE) parameter-
ization and Quantum espresso (QE) from Materials Square (Web-based 
DFT calculation platform). For graphene, we performed calculations 
using a 3 × 5 × 1 supercell (60 atoms). We used 2 × 2 × 2 k-point grids 
and a 60 Ry energy cutoff for the wave function, which ensured elec-
tronic and ionic convergence. The convergence criteria of the structural 
relaxation and electronic self-consistency for energy and forces set were 
chosen as 10− 8 Ry and 0.000038 Ry/Bohr, respectively. In this setup, the 
calculated C–C bond length was 0.142 nm, which is in excellent agree-
ment with the experimental value of 0.142 nm [53]. The calculated 
angle between the nearest neighboring atoms is 120◦. For the bulk 
orthorhombic perovskite of ZTO, we used 6 × 6 × 4 k-point grids and a 
50 Ry energy cutoff for the wave function, which ensured electronic and 
ionic convergence. The convergence criteria of the structural relaxation 
and electronic self-consistency for energy and forces set were chosen as 
10− 8 Ry and 0.000038 Ry/Bohr, respectively. In this setup, the calcu-
lated lattice parameters of a, b, and c were 0.5357 nm, 0.5363 nm, and 
0.7919 nm, respectively, which is in close agreement with the other 
calculated values of 0.5381 nm, 0.5408 nm, and 0.7940 nm, respec-
tively. To determine the formation energies for the substitution or ab-
sorption of Sn, Zn, O, SnO3, and ZTO molecules on graphene, the slabs 
had a 15 Å-thick vacuum layer placed within the periodic cells repeated 
in the z-axis to obviate interactions. We used a 2 × 2 × 1 k-points mesh 
and a 60 Ry energy cutoff for the wave function. The van der Waals 
interactions were considered using the DFT-D3(BJ) method. All calcu-
lations were spin-polarized. The convergence criteria of the structural 
relaxation and electronic self-consistency for energy and forces set were 
chosen as 10− 7 Ry and 0.00038 Ry/Bohr, respectively. To obtain the 
electronic transport properties of graphene bonded with ZTO molecules, 
we performed the QE and Boltzmann transport equation code, such as 
BoltzTrap [54]. 

2.3. Integration of ZTO-SMC into PDMS film and TENG 

The PDMS elastomer and cross-linker (Sylgard 184, Dow Corning) 
were mixed at a weight ratio of 10:1. To prepare the PDMS-based 
triboelectric layer with ZTO-SMC, ZTO-SMC dispersed in toluene was 
first mixed with PDMS through mechanical stirring for 30 min and 
degassed under vacuum for approximately 1 h. The prepared mixture 
was poured into a Petri dish and stored in an oven at 160 ◦C for 1 h until 
it was cured. Finally, the cured PDMS-based triboelectric layer with 
ZTO-SMC (thickness of 500 μm) was peeled off from the Petri dish. To 
prepare the contact-separation-mode TENG, 2 × 2 cm2 aluminum foil 
was fixed on two acrylic plates adhered with double-sided tape and an 
electrode made from copper wire. The triboelectric layer (2 × 2 cm2) 
was attached to the aluminum foil of the bottom acrylic plate and the top 
and bottom acrylic plates were fixed using four springs. The ZTO-SMC 
TENG (0.3 wt%) sample was plasma-treated at an RF power of 100 W 
with CF4 and O2 gases. Details of the RF plasma treatment conditions can 
be found in our previous study [52]. 

2.4. Electrical measurement and characterization 

The harvesting devices were made for the test of repetitive contact 
and separation mode of triboelectric energy harvesting with a distance 
of 2 mm between two layers. Contact and separation modes for tribo-
electric energy harvesting were tested at a working frequency of 2 Hz 
and a force of 50 N. A Keithley preamplifier (model 6514) and an 
oscilloscope (Tektronix MDO3024) were utilized to perform electrical 
measurements. The morphology of the samples was analyzed through 
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field-emission SEM (FEI, Quanta FEG 250), 3D confocal interferometric 
microscopy (Leica, Leica DCM-8), and EDS or Cs-TEM (JEM-ARM200F, 
JEOL Ltd). Relative permittivity measurements of the triboelectric layer 
were performed using an impedance analyzer (HIOKI, IM 3570). Crys-
tallographic information of all samples was acquired using an X-ray 
diffractometer (X-Pert Pro MPD, Malvern Panalytical) with Cu-Kα ra-
diation (λ = 0.15418 nm) at 40 kV and 100 mA. The binding energies of 
the elements in the samples were determined by XPS (PHI 5000 Versa 
Probe, Physical Electronics). 

3. Results and discussion 

Fig. 1a shows the schematic of the formation of ZTO-SMC via the PLA 
process. During the PLA process, high pressure and high temperature are 
generated around the adjacent area of the laser-irradiated surface. Thus, 
the PLA process causes physicochemical changes in the intrinsic prop-
erties of materials, including chemical composition, morphology, and 
crystal structure [55–58]. Fig. 1a(i) depicts that Zn2+ and Sn4+ ions and 
CNTs are dispersed in ethanol. When a mixed solution was irradiated 
with a pulsed laser, the outer wall of the CNTs collapses and ethanol 
(C2H5OH) decomposes. Subsequently, the oxygen functional groups (e. 
g., hydroxyl and carboxyl) on the surface of the CNTs are formed [59, 
60]. Zn2+ and Sn4+ ions in the ethanol solvent combine with the 
collapsed CNT surface to form ZTO for minimizing the surface energy of 
the CNTs, as shown in Fig. 1a(ii) and 1a(iii). Spherical 
aberration-corrected transmission electron microscopy (Cs-TEM) and 
energy-dispersive X-ray spectroscopy (EDS) was performed to 

investigate the structure and composition of the prepared ZTO-SMC; the 
results are shown in Fig. 1b–g. The injected pulsed laser collapses the 
surface of the CNTs (Fig. 1b and c). Subsequently, the formation of the 
ZTO occurs on the collapsed layer of the CNTs during the PLA process. 
(Fig. 1d and e). ZTO appears to be bound to CNTs without any voids and 
structural defects; the observed lattice fringe is 0.26 nm, corresponding 
to (111) of ZTO, as shown in Fig. 1f. The homogeneous elemental dis-
tribution of Zn, Sn, and O in ZTO and C on the SMCs was confirmed by 
elemental mapping analysis as shown in Fig. 1g. 

Crystallographic information and chemical composition of the ZTO- 
SMC prepared by the PLA process were confirmed through X-ray 
diffractometry (XRD) and X-ray photoelectron spectroscopy (XPS). 
Fig. S1a presents the XRD patterns of ZTO-SMC, SMCs, and CNTs. The 
XPS results reveal the difference between CNTs and SMCs (presence of 
oxygen functional groups) and the formation of ZTO and oxygen func-
tional groups (Zn–O, Sn–O, C––O, C–OH, and HO–C––O) in ZTO-SMCs 
prepared by PLA (Figs. S1b–h). These results indicate that the PLA 
process leads to the surface modification of the CNTs and crystallization 
of the ZTO. Additionally, Fig. S1i confirms the distribution of ZTO on the 
surface of the SMCs. Although many studies provide similar empirical 
descriptions of the pulsed laser ablation process for the crystallization of 
oxides, the mechanisms of the nucleation and subsequent formation or 
growth of the oxides on the SMC are not well understood from a 
fundamental standpoint. To better understand the formation of the ZTO- 
SMC, theoretical DFT calculation was carried out to determine the 
adsorption energy, binding energy, and quantitative adsorption energies 
of the Zn, Sn, O, and SnO3 on graphene are given in Table S1. For the 

Fig. 1. (a) Schematic of the formation of ZTO-SMC, (b–f) HR-TEM and Cs-TEM images of the CNTs, the SMCs, and ZTO-SMC, and (g) element mapping profile of C, 
O, Zn, Sn of ZTO-SMC. (A colour version of this figure can be viewed online.) 
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calculation, the models considering the adsorption of several molecules 
and high index surfaces of ZTO on graphene were built as shown in 
Fig. S2 and Fig. 2. As illustrated in Fig. S2, it is evident that adsorption 
and bonding of O atoms to C atoms of graphene are more stable than 
those of Zn and Sn atoms. This implies that C atoms on the surface of 
CNT prefer to bond with O atoms during the initial stage for the for-
mation of the ZTO. Also, the binding energies of various molecules in 
Fig. 2 clearly show that the SnO3 structure is only stable when adsorbed 
and bonded with C atoms of graphene among the molecules. It is noted 
that the formation of perovskite structures such as ZTO is more stable 
than maintaining dissociated ionic states of Zn2+ and SnO3

2− (Fig. S3). 
Hence, it is suggested that thermal energy generated by irradiation of a 
pulsed laser can promote the chemical bonding between C atoms of the 
SMCs and SnO3

2− ions via pre-adsorption of O2− ions. Subsequently, 
nucleation and growth of the ZTO occur through additional chemical 
reactions with Zn2+ ions in liquid medium containing precursors. From 
this result, it is expected that charge transfer between ZTO and SMC can 
be promoted to provide more surface charge density on the triboelectric 
layer. Experimental results from TEM, XRD, and XPS also support the 
clear evidence for the formation mechanism of the ZTO-SMC derived 
from DFT calculation. 

TENG structure in this study simply consists of one triboelectric layer 
for triboelectrification and two Al electrodes for transferring electrical 
energy, which does not contain the triboelectric layer to demonstrate the 
role of a single ZTO-SMC added triboelectric layer on the performance of 
TENG. The structure of the prepared TENG is schematically presented in 
Fig. S4a. Basic working mechanism of the TENG is that electron flow is 
driven back and forth through the external circuit in the contact- 
separation process of the TENG, generating alternative current and 
voltage pulse [61]. In contact mode, when the PDMS triboelectric layer 
with ZTO-SMC fillers is getting closer to the Al electrodes on top by 
pressing, a potential difference is formed between two layers which 
drives the charge transfer between two electrodes (Figs. S4b and c) until 
the electrostatic balance is formed (Fig. S4d). Noted that the difference 
of charge affinity leads to the surface potential of the PDMS layer and 
top electrodes as negative and positive, respectively. In separation 
mode, when the bottom layer containing PDMS triboelectric layer is 
gradually away from the top electrode, charges move in the reverse 
direction due to decreased potential difference (Fig. 4Se). Such repeated 

contact-separation processing provides alternating current signals to 
external loads [62,63]. 

The PDMS-based triboelectric layers containing different additives 
(pristine PDMS (P-PDMS), SMCs (0.05 wt%), and ZTO-SMC (0.05 wt%)) 
were prepared for evaluating TENG performance. It is clearly shown that 
the output performance of the TENG is gradually enhanced by the 
triboelectric layer with additives in the order of P-PDMS, SMCs, and 
ZTO-SMC. Especially, TENG containing ZTO-SMC exhibited an output 
voltage and a current density of 421.25 V and 77.33 mA m− 2, respec-
tively (Fig. 3a and b). Enhanced triboelectric performance of the TENG 
(ZTO-SMC) can be explained by the coupling of the improved tribo-
electric effect and electrostatic induction. Repetitive contact and sepa-
ration on the TENG result in the deformation of PDMS combined with 
the simultaneous alignment of the dipoles inside ZTO-SMC providing 
enhanced output performance between the top and bottom electrodes 
[61]. Also, considering the contact-separation mode of the TENG, the 
V-Q-x relationship of the TENG is given as follows [64]: 

V = −
Q

S • ε0

(
dPDMS

εr
+ x(t)

)

+
σ • x(t)

ε0
(1)  

where V represents the output voltage, Q indicates the amount of 
transfer charge between the two Al electrodes, and S denotes the 
effective friction area. ε0 symbolizes the vacuum dielectric constant. 
Also, εr and dPDMS represent the relative dielectric constant and thick-
ness of the triboelectric layer, respectively. x(t) represents the distance 
between Al electrodes and the triboelectric layer, and σ is the surface 
charge density of the triboelectric layer. Equation (1) indicates that the 
output voltage increases with the relative dielectric constant (εr) as well 
as surface charge density (σ) proportional to the capacitance, and thus 
the capacitance (C) of the device is given as follows [36,65]: 

C=
εr • S

dPDMS • x(t)
(2)  

where the C is affected by the εr due to the similar thickness of the 
triboelectric layer in this study. Therefore, surface charge density and 
output voltage depend on the frictional area and dielectric constant. 
Also, the dielectric constant of the ZTO-SMC-embedded PDMS layer is 
increased. Based on the results, increased surface charge density 

Fig. 2. Schematic of molecules models used in DFT calculations, and their absorbed energies required to stabilize the molecules (cream: O, blue: Zn, and purple: Sn). 
(A colour version of this figure can be viewed online.) 
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significantly results in the enhanced output performance of the TENG 
device. Combined with pressure-induced polarization alignment, the 
dielectric constant of the triboelectric layer can be another factor to 
achieve enhanced triboelectric performance. 

We investigated the optimal concentration of ZTO-SMC in the PDMS- 
based layer to further enhance the TENG performance as presented in 
Fig. 3c and d. Cross-sectional micrographs of the ZTO-SMC added 
triboelectric layer show homogeneous distribution of ZTO-SMC within 
the PDMS matrix regardless of different concentrations (Fig. S5). As 
increasing the concentration of ZTO-SMC from 0.05 to 0.3 wt%, output 
voltage, and current density increased from 421.25 to 498.13 V and 
77.33–108.43 mA m− 2, respectively. However, TENG output perfor-
mance decreased when the concentration of the ZTO-SMC exceeded 0.3 
wt%. The dielectric constant of the PDMS-based triboelectric layer with 
different ZTO-SMC concentrations was evaluated as shown in Fig. 3e. 
Similar to the results of output performance of the TENG containing the 
ZTO-SMC with different concentrations, the dielectric constant of the 
triboelectric layer is gradually increased with increased ZTO-SMC con-
centration. Also, the dielectric constant of the ZTO-SMC-added tribo-
electric layer exhibited a larger value than that of P-PDMS and CNTs or 
SMCs-added PDMS. However, excessive concentration of the conductive 
and/or dielectric fillers can result in the reduced output performance of 
the TENG [35–37]. Similarly, the dielectric constant of the PDMS-based 

triboelectric layer with ZTO-SMC concentration is decreased when 
exceeded percolation threshold (>0.3 wt%), which makes the tribo-
electric layer conductive and reduces the effective frictional area, 
thereby reducing the surface charge density to directly deteriorate the 
output performance of the TENG. As expected, charge transfer is grad-
ually decreased when exceeded the percolation threshold, which can be 
related to reduced surface charge density (Fig. 3f). Similar results of the 
TENG performance and dielectric constant depending on the ZTO-SMC 
concentration as shown in Fig. 3c and d. 

Triboelectric charge transfer with the co-additives can be considered 
one of the important factors to affect the output performance of the 
PDMS-based TENG. To better understand the effect of ZTO-SMC on the 
charge transfer of PDMS-based TENG, DFT calculation was used to 
investigate the conduction behavior of ZTO-SMC [30,31]. The model 
structures investigated are graphene, and different types of perovskite 
ZTO on the graphene such as 100_A type, 100_B type, 111_A type, and 
111_B type, illustrated in Fig. 2. It is noted that Density of states (DOS), 
and electrical conductivity along x- and y-axis of the graphene and 
different types of the ZTO on the graphene are shown in Fig. 4. The 
results indicate that all simulated models show decreased electrical 
conductivity at the fermi level. However, both 100_B type and 111_A 
type of the ZTO on graphene show a relatively smaller drop in electrical 
conductivity than that of graphene, which implies that unique ZTO-SMC 

Fig. 3. (a) Output voltage and (b) current density of 
the PDMS-based TENGs with different type of addi-
tives under repetitive contact-separation mode. (c) 
Output voltage and (d) current density of TENGs 
using the PDMS-based triboelectric layer with ZTO- 
SMC concentrations under repetitive contact- 
separation mode. (e) Dielectric constant of the 
different triboelectric layers in the frequency between 
10 and 106. (f) Transfer charge of the triboelectric 
layer with different ZTO-SMC concentration from 0 
wt% to 1 wt%. (A colour version of this figure can be 
viewed online.)   
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heterostructure can promote charge transfer, compared to pure CNT. 
Also, a higher work function of the CNTs (5.6 eV) than that of ZTO (4.7 
eV) creates a potential barrier between ZTO and CNTs, thus promoting 
more charge transfer to PDMS (Fig. S6) [66]. Experimental results 
combined with DFT calculation suggest that ZTO-SMC, which shows 
large dielectric constant, press-induced polarization, and related surface 
charge density, are suitable co-additive to enhance the performance of 
the PDMS-based TENG. 

Radio frequency (RF) plasma treatment in CF4 and O2 gases was 
performed to further enhance the TENG performance, which aims at 
improving the effective frictional area of the device through the fluori-
nation on the surface of the PDMS-based triboelectric layer [15,67]. 
Fig. S7 depicts the surface morphology of PDMS before and after the 
plasma treatment. Confocal microscopy images reveal that the surface of 
the PDMS layer after plasma treatment for 7 min becomes rougher. More 
details relating to the effect of the plasma treatment on the fluorination 
on the surface of the PDMS-based layer were found in our previous study 
[52]. As presented in Fig. 5a, the plasma treatment provides increased 
output voltage (665.63 V) and current (137.08 mA m− 2) of ZTO-SMC 
TENG, which is 2.95 and 4.53 times higher value compared to those 
of the P-PDMS TENG. Output performance of the ZTO-SMC TENG on 
load resistance was also investigated as shown in Fig. 5b and c. The 
instantaneous peak power density was calculated using equation (3) as 
follows: 

P=
I2 • R

A
(3)  

where here A indicates the effective friction area of the TENG (20 × 20 
mm2). The results show that the peak power density increases up to 
10.59 W m− 2 at a load resistance of 7 MΩ. Peak densities of the pristine 
PDMS TENG and SMC PDMS TENG at 10MΩ were observed to be 2.4 W 
m− 2 and 7.69 W m− 2, respectively. Quantitative results of the output 
voltage, output current density, and peak power density per unit area 
are summarized in Table S2, which indicates that the ZTO-SMC TENG 
exhibits the highest output performance, compared to that of other 
TENGs. Furthermore, the ZTO-SMC TENG exhibits excellent durability 
and stability without any obvious change in the output voltage as pre-
sented in Fig. 6 and b illustrates that the ZTO-SMC TENG can charge the 
capacitors of 0.15 μF quickly to a maximum voltage of 0.95 V within 1 s, 
providing the electric charge of 142.5 nC. The charging behaviour of the 

various capacitors through operating the ZTO-SMC TENG is also pre-
sented in Fig. 6c. In the aspect of the energy harvesting, the output 
power from the ZTO-SMC TENG can light the 59 LED lamp beads to 
clearly show characters “KITECH” in Fig. 6d and can successfully power 
488 commercial LED beads connected in series (Video S1, Supporting 
information). 

4. Conclusions 

We proposed the materials strategies to enhance the triboelectric 
performance of the PDMS-based TENG for effective energy harvesting 
using experimental and computational methods. Based on the DFT 
calculation, the formation mechanism of the ZTO-SMC as co-additive is 
elucidated: thermal energy generated by irradiation of pulsed laser can 
promote the bonding between C atoms of the SMCs and SnO3

2− ions via 
adsorption of O2− ions, and subsequent nucleation and growth of the 
ZTO occur through an additional chemical reaction with Zn2+ ions in 
liquid medium containing precursors. With applying effective co- 
additive and single-step fluorocarbon and O2 gas plasma treatment, 
experimental results show that optimized ZTO-SMC TENG shows the 
highest output voltage (665.63 V), current (137.08 mA m− 2), and power 
density (10.57 W m− 2), which can be used as a sufficient power source 
not only to light up 59 commercial LED lamp beads connected in series 
but also to charge different types of capacitors. We conclude that the 
synergetic effect of the enhanced dielectric properties and effective 
frictional area improves the output performance of the ZTO-SMC TENG. 
This work opens an avenue for the rational design and fabrication of 
various co-additive for PDMS-based TENGs with enhanced triboelectric 
performance. 

CRediT authorship contribution statement 

Kangpyo Lee: Conceptualization, Investigation, Writing – original 
draft. HyukSu Han: Formal analysis, Writing – original draft. Jeong Ho 
Ryu: Data curation, Visualization. Sukhyun Kang: Investigation. 
Kyunghwan Jung: Validation. Young-Kwang Kim: Software. Taeseup 
Song: Validation. Sungwook Mhin: Project administration, Writing – 
review & editing. Kang Min Kim: Conceptualization, Supervision, All 
authors commented on the manuscript. 

Fig. 4. (a) Density of states and (b, c) electrical conductivities of pure graphene and ZTO molecules on the graphene. (A colour version of this figure can be 
viewed online.) 

Fig. 5. (a) Output voltage and current density of the ZTO-SMC PDMS-based TENG under repetitive contact-separation mode. (b, c) Peak voltage, peak current, and 
peak power density under different external resistances. (A colour version of this figure can be viewed online.) 
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