
Received 25 April 2023, accepted 12 May 2023, date of publication 24 May 2023, date of current version 12 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3279408

Azeroth: Auditable Zero-Knowledge Transactions
in Smart Contracts
GWEONHO JEONG 1, NURI LEE2, JIHYE KIM2,3, (Member, IEEE),
AND HYUNOK OH 1,3, (Member, IEEE)
1Department of Information Systems, Hanyang University, Seoul 04763, South Korea
2Electronics and Information System Engineering Major, Kookmin University, Seoul 02707, South Korea
3Zkrypto, Seoul 04763, South Korea

Corresponding authors: Jihye Kim (jihyek@kookmin.ac.kr) and Hyunok Oh (hoh@hanyang.ac.kr)

This work was supported in part by the Institute for Information and Communications Technology Promotion (IITP) funded by the
Korean Government (MSIT), in part by the Blockchain Privacy Preserving Techniques Based on Data Encryption (50%) under
Grant 2021-0-00518, in part by the Study on Cryptographic Primitives for SNARK (50%) under Grant 2021-0-00727,
and in part by the Klaytn Foundation.

ABSTRACT With the rapid growth of the blockchain market, privacy and security issues for digital
assets are becoming more important. In the most widely used public blockchains, such as Bitcoin and
Ethereum, all activities on user accounts are publicly disclosed, which violates privacy regulations such as
EU GDPR. Encryption of accounts and transactions may protect privacy, but it also raises issues of validity
and transparency. While encrypted information can protect privacy, it cannot alone verify the validity of a
transaction. Additionally, encryption makes it difficult to meet anti-money laundering regulations, such as
auditability. In this paper, we propose Azeroth, an auditable zero-knowledge transfer framework. Azeroth
connects a zero-knowledge proof to an encrypted transaction, enabling it to check its validation while
protecting its privacy. Azeroth also allows authorized auditors to audit transactions. Azeroth is designed as
a smart contract for flexible deployment on existing blockchains. We implement the Azeroth smart contract,
and execute it on various platforms including an Ethereum testnet blockchain, and measure the time to show
the practicality of our proposal. The end-to-end latency of a privacy-preserving transfer takes about 4.4s.
In particular, the client’s transaction generation time with a proof only takes about 0.9s. The security of
Azeroth is proven under the cryptographic assumptions.

INDEX TERMS Blockchain application, zero-knowledge proof, SNARK, privacy-preserving payment.

I. INTRODUCTION
With the widespread adoption of blockchains, various decen-
tralized applications (DApps) and digital assets used in
DApps are becoming popular. Unlike traditional banking
systems, however, the blockchain creates privacy concerns
about digital assets since all transaction information is shared
across the network for strong data integrity. Various stud-
ies have been attempted to protect transaction privacy by
utilizing cryptographic techniques such as mixers [2], [22],
[23], ring signatures [28], homomorphic encryption [7], zero-
knowledge proofs [5], [7], [19], [27].

The associate editor coordinating the review of this manuscript and

approving it for publication was Sedat Akleylek .

In the blockchain community, the zero-knowledge proof
(ZKP) system is a widely used solution to resolve the con-
flict between privacy and verifiability. The ZKP is a proof
system that can prove the validity of the statement with-
out revealing the witness value; users can prove arbitrary
statements of encrypted data, enabling public validation
while protecting data privacy. For instance, the well-known
anonymous blockchain ledger Zerocash [5] operates on the
UTXO model, secures transactions while leveraging zero-
knowledge proofs [17] to ensure transactions in a valid
set of UTXOs. Zether [7] based on the account model
encrypts accounts with homomorphic encryption and pro-
vides zero-knowledge proofs [9] to ensure valid modification
of encrypted accounts. Zether builds up partial privacy for

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

56463

https://orcid.org/0000-0003-2527-2320
https://orcid.org/0000-0002-9044-7441
https://orcid.org/0000-0001-7005-6489

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

unlinkability between sender and receiver addresses, similar
to Monero [28].

As asset transactions on the blockchain increase, the
demand for adequate auditing capabilities is also increase.
Moreover, if transaction privacy is protected without proper
regulation, financial transactions can be abused by criminals
and terrorists. Without the management of illegal money
flows, it would also be difficult to establish amonetary system
required to maintain a sound financial system and enforce
policies accordingly. Recently, Bittrex1 delisted dark coins
such as Monero [28], Dash [13], and Zerocash [5]. In fact,
many global cryptocurrency exchanges are also strengthening
their distance from private and anonymous cryptocurren-
cies as recommended by the Financial Action Task Force
(FATF) [14]. Thus, we need to find a middle ground of
contradiction between privacy preservation and fraudulent
practices. This paper focuses on a privacy-preserving transfer
that provides auditability for auditors while protecting trans-
action information from non-auditors.

Auditable private transfer can be designed by using encryp-
tion and the ZKP. A sender encrypts a transaction so that
only its receiver and the auditor can decrypt it. At the
same time, the sender should prove that the ciphertext sat-
isfies all the requirements for the validity of the transac-
tion. In particular, we utilize zk-SNARK (Zero-Knowledge
Succinct Non-interactive ARgument of Knowledge) [17],
[18], [26] to prove arbitrary functionalities for messages,
including encryption. Although the encryption check incurs
non-negligible overhead for the prover, it is essential for the
validity and auditability of the transaction. Indeed, without
a proof for encryption as in Zerocash [5], even if a cipher-
text passes all other transaction checks, there always exists
a possibility that an incorrectly generated ciphertext, either
accidentally or intentionally, will be accepted, resulting in the
loss of the validity and auditability of the transaction.

In this paper, we propose Azeroth, an auditable zero-
knowledge transaction framework based on zk-SNARK.
The Azeroth framework provides privacy, verifiability, and
auditability for personal digital assets while maintaining the
efficiency of transactions. Azeroth preserves the original
functionality of the account-based blockchain as well as pro-
viding additional zero-knowledge feature to meet standard
privacy requirements.

There are two main privacy considerations in a trans-
fer transaction: confidentiality (concealing a balance and a
transfer amount) and anonymity (concealing a sender and
a recipient). Cryptographic primitives(e.g., encryption, com-
mitment) can provide confidentiality and anonymity. Specif-
ically, we employ dual accounts that constitute an encrypted
account in addition to a plain account, similar to Block-
maze [19]. A user may execute deposit/withdrawal trans-
actions between its own plain/encrypted accounts. At the
same time, the user may send some encrypted value from
its accounts to the accumulator (implemented as a Merkle

1https://global.bittrex.com/

tree). The owner of the encrypted value may receive it from
the accumulator to the user’s accounts. Additionally, to hide
the function type, we construct a single transaction to execute
all these functions of deposit/withdrawal/send/receive simul-
taneously. Information about the transaction can be inferred
only from the plain account state transition; if the plain
account state keeps the same, it cannot learn even the function
type as well as the value amount. We also add auditability by
utilizing two-recipient encryption so that an authorizer and
receiver can decrypt the transaction. The auditor’s ability can
be distributed through a threshold scheme. In order to have
this strong anonymity with auditability, the most challenging
part is how to adopt and implement zk-SNARKs for this
complex relation proof. Azeroth is devised using encryption
for two recipients (i.e., the recipient and the auditor) so that
the auditor can audit all transactions. Still, the auditor’s capa-
bility is limited to auditing and cannot manipulate any trans-
actions. Azeroth enhances the privacy of the transaction by
performing multiple functions such as deposit, withdrawal,
and transfer in one transaction. For real-world use, we adopt
a SNARK-friendly hash algorithm to instantiate encryption
for efficient proving time and execute experiments on various
platforms.
Contributions: The contributions of this paper are summa-

rized as follows.
• Framework: We design a privacy-preserving framework

Azeroth on an account-based blockchain model, includ-
ing encryption verifiability and auditability. More-
over, since Azeroth constructed as smart contract
does not require any modifications to the base ledger,
it advocates flexible deployment, which means that any
blockchain models supporting smart-contract can utilize
our framework.

• Security: We revise and extend the security proper-
ties of private transactions: ledger indistinguishability,
transaction non-malleability, balance, and auditability,
and prove that Azeroth satisfies all required prop-
erties under the security of underlying cryptographic
primitives.

• Implementation: We implemented and tested Azeroth
on existing account-based blockchain models, such as
Ethereum [8]. According to our experiment, it takes
4.38s to generate a transaction in a client and pro-
cess it in a smart contract completely on the Ethereum
testnet. While Azeroth additionally supports encryp-
tion verifiability and auditability, it performs better than
other schemes through implementation optimization.
To show the practicality of our scheme, we imple-
ment the client side on various devices, including
Android/iOS mobile phones. For the details, refer to
section VI.

Organizations: The paper is comprised of the follow-
ing contents: First, we provide the related works con-
cerning our proposed scheme in Section II. In Section III,
we describe preliminaries on our proposed system.
In Section IV, we explain data structures utilized in Azeroth.

56464 VOLUME 11, 2023

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

Afterward, we elucidate the overview and construction.
In section Section V, we define the security model and
describe the security proofs related to it. Section VI shows
the implementation and the experimental results. Finally,
we conclude in Section VII.

II. RELATED WORK
The blockchain has been proposed for integrity rather than
privacy. Various schemes have been proposed to provide
privacy in blockchain along several lines of work.

A mixing service(or tumbler) such as CoinJoin [22],
Möbius [23], and Tornado Cash [2] offers for mixing identi-
fiable cryptocurrency transfer with others to obscure the trail
back to the transfer’s source. Thus, the mixer supports per-
sonal privacy protection for transactions on the blockchain.
However, since the mixers take heed of anonymity, the pos-
sibility of a malevolent problem exists.

Zerocash [5] provides a well-known privacy-preserving
transfer on UTXO-model blockchains. In Zerocash, a sender
makes new commitments that hide the information of the
transaction (i.e., value, receiver), which is open only to the
receiver. The sender then proves the correctness of the com-
mitments using the zero-knowledge proof. As an extension
to a smart contract, Zeth [27] sorts the privacy problem out
by implementing Zerocash into a smart contract. Zeth creates
the anonymous coin within the smart contract in the form of
underlying the UTXO model. Thus, operations and mecha-
nisms in Zeth are almost the same as in Zerocash. ZEXE [6],
which extends Zerocash with scripting capabilities, supports
functional privacy such that nobody knows which computa-
tion is executed offline. Hawk [21] is a privacy-preserving
framework for building arbitrary smart contracts. However,
there exists a manager entrusted with the private data that
generates a zk-SNARK proof to show that the process is
executed correctly.

Blockmaze [19] proposes a dual balance model for
account-model blockchains, consisting of a public and pri-
vate balance. To hide the internal confidential information,
they employ zk-SNARK when constructing the privacy-
preserving transactions. Thus, it performs within the transfor-
mation between the public balance and the private balance to
disconnect the linkage of users. Blockmaze is implemented
by revising the blockchain core algorithm, restricting its
deployment to other existing blockchains.

Quisquis [15] is a new anonymity system without a trusted
setup. However, it has the possibility of a front-running attack
by updating the public keys in anonymity set before the
transaction is broadcasted. Moreover, this system is a stan-
dalone cryptocurrency that does not support deployment on
any smart contract platform.

Zether [7] accomplishes privacy protection in the
account-based model using ZKPs (Bulletproofs [9]) and the
ElGamal encryption scheme. While Zether is stateful, it does
not hide the identities of parties involved in the transaction.
Moreover, since the sender should generate a zero-knowledge
proof for the large user set for anonymity, it has limitations to

support a high level of anonymity. Diamond [12] proposes
‘‘many out of many proofs’’ to enhance proving time for
a subset of a fixed list of commitments. Nevertheless, the
anonymity corresponding to all system users is not supported.

Among the privacy-preserving payment systems, some
approaches allow auditability. Solidus [10] is a privacy-
preserving protocol for asset transfer in which banks play a
role as an arbitrator of mediation. Solidus utilizes ORAM to
support updating accounts without revealing the values but
cannot provide a dedicated audit function. Specifically, it can
only offer auditing by revealing whole keys to an auditor and
opening transactions.

zkLedger [24] and FabZK [20] enable anonymous pay-
ments via the use of homomorphic commitments and NIZK
while supporting auditability. However, since these systems
are designed based on organizational units, there is the prob-
lem of performance degradation as the number of organi-
zations increases. Thus, they are practical only when there
are a small number of organizations due to performance
issues.

PGC [11] aims for a middle ground between privacy and
auditability and then proposes auditable decentralized con-
fidential payment using additively-homomorphic public-key
encryption. However, the anonymity set size should be small
in the approach. The work [3] proposes a privacy-preserving
auditable token management system using NIZK. However,
the work is designed for enterprise networks on a permis-
sioned blockchain. Moreover, whenever transferring a token,
a user should contact the privileged party called by Certifier,
which checks if the transaction is valid.

Table 1 summarizes and compares some notable schemes
described in the related works. Our research demonstrates the
provision of both anonymity and confidentiality, along with
the capability of auditability. Furthermore, our research dis-
plays a relatively lower transaction fee compared to the main
related works, however, with limitations to a non-transparent
setting.

III. PRELIMINARIES
In this section, we describe notations for standard crypto-
graphic primitives.

A. NOTATIONS
Let λ be the security parameter. We denote randomly choos-
ing←$ as the standard notation. LetF denote a finite field and
G denote a group. Given a security parameter 1λ, a relation
generator RG returns a polynomial time decidable relation
R ← RG(1λ). For (x,w) ∈ R, we say w is a witness
to the statement (I/O) x is in the relation. Also, we uti-
lize collision-resistant hash (CRH), a commitment scheme
(COM), and pseudorandom function (PRF). Given an input
x, we denote CRH as y ← CRH(x). For the commitment
scheme, we define the commitment cm for a message u and
an opening o as cm ← COM(u; o). We notate the PRF
output for a seed k and an input x as PRFk (x).

VOLUME 11, 2023 56465

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

TABLE 1. Comparison of Azeroth to main related works: The term ‘Platform’ indicates that it has its ledger. The notation ‘△’ implies that it is difficult to
support high anonymity, meaning that the anonymity set can only be limited to a small size.

B. ZK-SNARK
As described in [17] and [18], given a relation R, a zero-
knowledge Succinct Non-interactive Arguments of Knowl-
edge (zk-SNARK) is composed of a set of algorithms
5snark = (Setup, Prove, VerProof, SimProve) that works
as follows.

• Setup(λ,R) → crs := (ek, vk), td : The algorithm
takes a security parameter λ and a relation R as input
and returns a common reference string crs containing
an evaluating key ek and a verification key vk, and a
simulation trapdoor td.

• Prove(ek, x,w) → π : The algorithm takes an evalu-
ating key ek, a statement x, and a witness w such that
(x,w) ∈ R as inputs and returns a proof π .

• VerProof(vk, x, π)→ true/false :The algorithm takes
a verification key vk, a statement x, and a proof π as
inputs, and returns true if the proof is correct, or false
otherwise.

• SimProve(ek, td, x) → πsim : The SimProve algo-
rithm takes a evaluating key ek, a simulation trapdoor
td, and a statement x as inputs, and returns a proof πsim
such that VerProof(vk, x, πsim)→ true.

Its properties are completeness, knowledge soundness, zero
knowledge, and succinctness, as described below.

1) COMPLETENESS
The honest verifier always accepts the proof for any pair
(x,w) satisfying the relation R. Strictly, for ∀λ ∈ N, ∀Rλ,
and ∀(x,w) ∈ Rλ, it holds as follow.

Pr
[
(ek, vk, td)←Setup(R);

π←Prove(ek, x,w)

∣∣∣∣true←VerProof(vk, x, π)
]
=1

2) KNOWLEDGE SOUNDNESS
Knowledge soundness says that the prover must know a
witness if the honest prover outputs a proof π . Such knowl-
edge can be extracted with a knowledge extractor E in
polynomial time. To be more specific, if there exists a
knowledge extractor E for any PPT adversary A such that
Pr

[
GameKS

RG,A,E = true
]
= negl(λ), an argument system

5snark has knowledge soundness.

GameKS
RG,A,E → res

(R, auxR)← RG(1λ); (crs := (ek, vk), td)← Setup(R);

(x, π)← A(R, auxR, crs);w← E(transcriptA);
Return res← (VerProof(vk, x, π) ∧ (x, π) /∈ R)

3) ZERO KNOWLEDGE
Simply, a zero-knowledge means that a proof π for (x,w) ∈
R on 5snark only has information about the truth of the
statement x. If a simulator exists such that the following
conditions hold for any adversary A, we say that 5snark is
zero-knowledge in Pr, as shown at the bottom of the next
page.

4) SUCCINCTNESS
An arguments system5 is succinctness if it has a small proof
size and fast verification time.

|π | ≤ Poly(λ)(λ+ log|w|)
TimeVerProof ≤ Poly(λ)(λ+ log|w| + |x|)

C. SYMMETRIC-KEY ENCRYPTION
We use a symmetric-key encryption schemeSE, a set of algo-
rithms SE = (Gen, Enc, Dec), which operates as follows.
• Gen(1λ) → k : The Gen algorithm takes a security

parameter 1λ and returns a key k.
• Enck(msg) → sct : The Enc algorithm inputs a key k

and a plaintext msg and returns a ciphertext sct.
• Deck(sct)→ msg : The Dec algorithm inputs a key k

and a ciphertext sct. It returns a plaintext msg.
The encryption scheme SE satisfies ciphertext indistin-
guishability under chosen-plaintext attack IND-CPA security
and key indistinguishability under chosen-plaintext attack IK-
CPA security.

D. PUBLIC-KEY ENCRYPTION
We use a public-key encryption scheme PE = (Gen, Enc,
Dec) which operates as follows.
• Gen(1λ) → (sk, pk) : The Gen algorithm takes a

security parameter 1λ and returns a key pair (sk, pk).

56466 VOLUME 11, 2023

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

• Encpk(msg)→ pct : The Enc algorithm takes a public
key pk and a message msg as inputs and returns a
ciphertext pct.

• Decsk(pct) → msg : The Dec algorithm takes a pri-
vate key sk and a ciphertext pct as inputs. It returns a
plaintext msg.

The encryption scheme PE satisfies ciphertext indistin-
guishability under chosen-plaintext attack IND-CPA security
and key indistinguishability under chosen-plaintext attack
IK-CPA security.
Remark:To prove that encryption is performed correctly

within a zk-SNARK circuit, we need random values used
in encryption as a witness. We denote the values as aux.
Depending on the context in our protocol, we denote the
encryption such that it also outputs aux as a SNARK witness
as follows.

(pct, aux)← PE.Encpk(msg)

Supporting the audit function allows the trusted auditor to
decrypt the message for the encrypted message. Thus, we
need encryption with two recipients.We denote its encryption
with a user public key pk and an auditor public key apk as
follows.

(pct, aux)← PE.Encpk,apk(msg)

IV. CONSTRUCTION OF Azeroth SCHEME
This section describes the data structures used in our pro-
posed schemeAzeroth, referring to the notion. Subsequently,
we present an overview of the Azeroth system, detailing
its core techniques and providing a concrete description of
its construction. The overview comprehensively explains the
core function’s overall structure and functionality.

A. DATA STRUCTURES
1) LEDGER
All users can access the ledger denoted as L, which contains
the information of all blocks. Additionally, L is sequentially
expanded out by appending new transactions to the previous
one (i.e., for any T′ < T, LT always incorporates LT′).

2) ACCOUNT
There are two types of accounts in Azeroth: an externally
owned account denoted as EOA, and an encrypted account
denoted as ENA. The former is the same one as in other
account-based blockchains (e.g., Ethereum), and the latter is

an account that includes a ciphertext indicating an amount in
the account. EOA is maintained by the blockchain network
and interacts with the smart contract, while A smart contract
manages ENA registration and updates; users cannot see the
value in ENA without its secret key.

3) AUDITOR KEY
An auditor generates a pair of private/public keys (ask, apk)
used in the public key system; apk is used when a user
generates an encrypted transaction, while ask is used when
an auditor needs to audit the ciphertext.

4) USER KEY
Each user generates a pair of private/public keys (usk =
(kENA, skown, skenc), upk = (addr, pkown, pkenc)).
• kENA : It indicates a secret key for an encrypted account

of ENA in a symmetric-key encryption system.
• (skown, pkown) : pkown is computed by hashing skown.

The key pair is used to prove the ownership of an account
in a transaction. Note that skown is also used to generate
a nullifier, preventing double-spending.

• (skenc, pkenc) : These keys are used in a public-key
encryption system; skenc is used to decrypt ciphertexts
taken from transactions while pkenc is used to encrypt
transactions.

• addr : It is a user address computed by hashing pkown
and pkenc.

5) COMMITMENT AND NOTE
We use a commitment scheme to construct a privacy-
preserving transaction in which a commitment is utilized to
hide sensitive information (i.e., amount, address). Our com-
mitment is noted as follows.

cm = COM(v, addr;o)

To commit, it takes v, addr as inputs and runs with an
opening o. v is the digital asset value to be transferred and
addr is the address of a recipient. Once cm is published on a
blockchain, the recipient with the opening key o and the value
v from the encrypted transaction uses them to make another
transfer. We denote the data required to spend a commitment
as a note:

note = (cm, o, v)

Note that each user privately stores his notes in his wallet for
convenience.

Pr

[
(R, auxR)← RG(1λ); (crs := (ek, vk), td)← 5.Setup(R)

: π ← Prove(ek, x,w); true← A(crs, auxR, π)

]
≈

Pr

[
(R, auxR)← RG(1λ); (crs := (ek, vk), td)← Setup(R)

: πsim ← SimProve(ek, td, x); true← A(crs, auxR, πsim)

]

VOLUME 11, 2023 56467

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

6) MEMBERSHIP BASED ON MERKLE TREE
We use a Merkle hash tree to prove the membership of com-
mitments in Azeroth and denote the Merkle tree and its root
as MT and rt, respectively. MT holds all commitments in L,
and it appends commitments to nodes and updates rt when
new commitments are given. Additionally, an authentication
co-path from a commitment cm to rt is denoted as Pathcm.
For any given time T, MTT includes a list of all commitments
and rt of these commitments. There are three algorithms
related to MT.
• true/false ← MembershipMT(rt, cm, Pathcm) : This

algorithm verifies if cm is included in MT rooted by
rt; if rt is the same as a computed hash value from the
commitment cm along the authentication path Pathcm,
it returns true.

• Pathcm ← ComputePathMT(cm) : This algorithm
returns the authentication co-path from a commitment
cm appearing in MT.

• rtnew ← TreeUpdateMT(cm) : This algorithm appends
a new commitment cm, performs hash computation for
each tree layer, and returns a new tree root rtnew.

7) VALUE TYPE
A transaction includes several publicly visible or privately
secured input/output asset values. In our description, pub and
priv represent publicly visible and encrypted (or committed)
values, respectively. ‘‘in’’ indicates the value to be deposited
to one’s account, and ‘‘out’’ represents the value to be with-
drawn from one’s account. We summarize the types of digital
asset values as follows.

• vENA: The digital asset value is available in the
encrypted account ENA.

• vpub
in and vpub

out : The digital asset value is to be publicly
transferred from the sender’s EOA and the digital asset
value to the receiver’s public accountEOA, respectively.

• vpriv
in and vpriv

out : The digital asset value received anony-
mously from an existing commitment and the value sent
anonymously to a new commitment in MT, respectively.

B. OVERVIEW
We construct Azeroth by integrating deposit/withdrawal
transactions and public/private transfer transactions into a
single transaction zkTransfer. Since zkTransfer executes
multi-functions in the same structure, it improves function
anonymity. One may try to guess which function is exe-
cuted by observing the input/output values in zkTransfer.
zkTransfer, however, reveals the input/output values only
in EOA; the values withdrawn/deposited from/to ENA and
the values transferred from/to MT are hidden. A member-
ship proof of MT hides the recipient’s address. As a result,
the information that an observer can extract from the trans-
action is that someone’s EOA value either increases or
decreases; he cannot know whether the amount of difference
is deposited/withdrawn to/from its own ENA or is trans-
ferred from/to a new commitment in MT. It is even more

complicated because those values can be mixed in a range
where the sum of the input values equals the sum of the output
values.

zkTransfer implements a private transfer with only two
transactions; a sender executes zkTransfer transferred to MT
and a receiver executes zkTransfer transferred from MT.
In zkTransfer, all values in ENA and MT are processed as
ciphertexts. Whether remittance is between own or non-own
accounts is hidden, so the linking information between the
sender and receiver is protected.

Figure 1 illustrates the zkTransfer. The left box ‘‘IN’’
represents input values, and the right box ‘‘OUT’’ denotes
output values. In zkTransfer, vpub

in and vpub
out are publicly

visible values. vENA is obtained by decrypting its encrypted
account value sct. The updated vENA

new is encrypted and stored
as sct∗ inENA. The amount (vpriv

in) included in a commitment
can be used as input if a user has its opening key; the opening
key is delivered in a ciphertext pct so that only the destined
user can correctly decrypt it. To prevent double spending, for
each spent commitment, a nullifier is generated by hashing
the commitment and the private key skown and appended; it
is still unlinkable between the commitment and the nullifier
without the private key skown. Finally, zkTransfer proves
that all of the above procedures are correctly performed by
generating a zk-SNARK proof for transaction validity.

Auditability is achieved by utilizing public-key encryption
with two recipients; all pct ciphertexts can be decrypted by
an auditor and a receiver so that the auditor can monitor all
the transactions. We note that ENA exploits symmetric-key
encryption only for the performance gain, although ENA can
also utilize the public-key encryption. Notice that without
decrypting ENA, the auditor can still learn the value change
in ENA by computing the remaining values from vpub

in , vpub
out ,

vpriv
in , and vpriv

out .

C. CONSTRUCTION
Azeroth consists of three components: Client, Smart
Contract, and Relation. Client generates a transaction with
a ciphertext, a commitment, and a proof. Smart Contract
denotes a smart contract running on a blockchain. Relation
represents a zk-SNARK circuit for generating a zkTransfer
proof.

1) [Azeroth Client]
We define the term ‘Client’ to encompass not only users
but also auditors and trusted parties in the context outside of
the blockchain. Intuitively, our Client algorithm is a tuple of
algorithms defined as stated below. We formally define the
algorithm of the Client and describe it in fig. 2.

• SetupClient: A trusted party runs this algorithm only
once to set up the whole system. It also returns the public
parameter pp.

• KeyGenAuditClient: This algorithm generates an auditor
key pair (ask, apk). It also outputs the key pair and a
transaction TxKGA.

56468 VOLUME 11, 2023

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

FIGURE 1. Overview of zk Transfer.

• KeyGenUserClient: This algorithm generates a user key
pair (usk, upk). It also returns a transaction TxKGU to
register the user’s public key.

• zkTransferClient: A user executes this algorithm for
transfer. The internal procedures are described as
follows:
i) Consuming note = (cm, o, v): It proves the knowl-

edge of the committed value v using the opening key
o and the membership of a commitment cm in MT
and derives a nullifier nf from PRF to nullify the used
commitment.

ii) Generating cmnew: By executing COM(vpriv
out ,

addrrecv; onew), a new commitment and its open-
ing key are obtained. Then it encrypts (onew, vpriv

out ,
addrrecv) via PE.Enc and outputs pct.

iii) Processing currency: The sender’s ENA balance is
updated based on vpriv

in (from note), vpriv
out , vpub

in , and
vpub

out or 1vENA
= vpriv

in + vpub
in − vpriv

out − vpub
out .

With prepared witnesses and statements, the algorithm
generates a zk-SNARK proof and finally outputs a
zkTransfer transaction TxZKT.

• RetreiveNoteClient: This algorithm is a sub-algorithm
computing a note used in zkTransferClient. It allows
a user to find cm transferred to the user along with
its opening key and its committed value. Then, a user
decrypts the ciphertext using skenc each transaction
pct ∈ L to (o, v, addr∗) and stores (cm, o, v) as note
in the user’s wallet if addr∗ matches its address addr.

• AuditClient: An auditor with a valid ask runs this algo-
rithm to audit a transaction by decrypting the ciphertext
pct in the transaction.

2) [Azeroth Smart Contract]
The Smart Contract algorithm describes the processes
involved in the deployment and specifies only the essen-
tial parts. The Azeroth Smart Contract comprises several

algorithms, as described below. Note that within the algo-
rithms, ‘this’ refers to the Azeroth contract address, and
TransferFrom is a simple public transfer function from the
sender to the receiver. The specific and formal description is
provided in fig. 3.
• SetupSC: This algorithm deploys a smart contract and

stores the verification key vk from zk-SNARK where
vk is used to verify a zk-SNARK proof in the smart
contract.

• RegisterAuditorSC: This algorithm stores an auditor
public key apk in Azeroth’s smart contract.

• RegisterUserSC: This algorithm registers a new
encrypted account for address addr. The transaction is
reverted if the address already exists in Listaddr. Other-
wise, it registers a new ENA and initializes it with zero
amount.

• zkTransferSC: This algorithm checks the validity of the
transaction and processes the transaction. A transaction
is valid iff: Merkle root rtold exists in root list Listrt,
a nullifier nf does not exists in the nullifier list Listnf,
addrsend exists, cmnew does not exists in Listcm, and
a proof π is valid in zk-SNARK. If the transaction is
valid, the cmnew is appended to MT, MT is updated,
a new Merkle tree root rtnew is added to Listrt and the
nullifier nf is appended to Listnf. The encrypted account
is updated. And then the public amounts are processed;
vpub

in is acquired from EOAsend, and vpub
out is delivered to

EOArecv. If the transaction is invalid, it is reverted and
aborted.

3) [Azeroth Relation]
The statement x⃗ and witness w⃗ of Relation RZKT are as
shown at the bottom of page 9.

Intuitively, we say that a witness w⃗ is valid for a state-
ment x⃗, if and only if the following holds:
• If vpriv

in > 0, then cmold must exist in MT with given rt
and Path.

VOLUME 11, 2023 56469

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

FIGURE 2. Azeroth’s client(Client) algorithms.

• pksend
own = CRH(sksend

own).
• The user address addrsend and addrrecv are well-

formed.
• cmold and cmnew are valid.
• nf is derived from cmold and sksend

own .
• pctnew is an encryption of cmnew via auxnew.
• sctnew is an encryption of updated ENA balance.
• All amounts (e.g., vpriv

in , vpub
in , . . .) are not negative.

We detail the relations mentioned above and present them in
fig. 4.

V. SECURITY
Following the similarmodel defined in [5] and [19], we define
the security properties of Azeroth including ledger indistin-
guishability, transaction non-malleability, and balance, and
define auditability as a new property.
Before describing the security definition for each property

and its experiment, we assume that there exists a (stateful)
Azeroth oracle OAzeroth answering queries from an adver-
sary A who uses a challenger C in the role of performer
for the experiment’s sanity checks. First, we recount how

56470 VOLUME 11, 2023

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

FIGURE 3. Azeroth’s Smart Algorithms.

OAzeroth works. Given a list of public parameters pp, the
oracleOAzeroth, and auditor public key apk is initialized and
retains its state of which it has the elements internally : [I] L,
a ledger; [II] Acct, a set of account key pairs; [III] NOTE,
a set of notes. In the beginning, all of the elements are empty.
Note that, regardingKeyGenAudit, it is already presupposed
that it has undergone the initialization process within the
ledger. In the case of RetreiveNote, it serves as a subsidiary
algorithm for readability purposes and, therefore, cannot be
considered the primary algorithm. As such, the scope of
the query is limited to Q =

{
KeyGenUser, zkTransfer

}
.

We describe each query type Q and how it works as follows.
Q(KeyGenUser) :

i) Compute a key pair (usk = (kENA, skown, skenc), upk=
(addr, pkown, pkenc), TxKGU) := KeyGenUser(pp)

ii) ADD the key pair (usk, upk) to Acct.
iii) Register the ENA address addr to L, and initialize

ENA[addr] to 0.
iv) Add the KeyGenUser transaction TxKGU to L
v) Output the public key upk.

Q(zkTransfer, note, upksend, upkrecv, vpriv
out , vpub

in , vpub
out ,

EOArecv)

i) Compute rt over all commitment in L
ii) Find usksend in Acct. If no such key usksend, then
OAzeroth aborts.

iii) Get an auditor public key apk in L.

iv) Compute (TxZKT, note) := zkTransfer(note, apk,
usksend, upksend, upkrecv, vpriv

out , vpub
in , vpub

out ,
EOArecv).

v) Add a new note note to NOTE.
vi) Add the zkTransfer transaction TxZKT to L.
vii) Parse usk as (kENA, skown, skenc).
viii) If any of the above operations fail, OAzeroth aborts.

Otherwise, output ⊥.

Remark: OAzeroth additionally provides adversaries with
a way to directly add zkTransfer transaction to L. In other
words, an adversary can use a zkTransfer query to cause
TxZKT in L, or if he has generated a key himself and knows all
the information about the key, he can add TxZKT to L without
asking a zkTransfer query. We name its query as Insert.

1) LEDGER INDISTINGUISHABILITY
Informally, we define the ledger as indistinguishable if it
satisfies a security property that prevents an adversary A
from learning new information, even when the adversary
can observe all public information adaptively interact with
honest parties to execute Azeroth functions. More specif-
ically, if there exist two ledgers L0 and L1 constructed
by the adversary using oracle queries, A cannot distin-
guish between these ledgers. Additionally, note that the
property implies the unlinkability between the sender and
the receiver on the blockchain. Any information containing
the users’ details is not publicly available; hence, a ledger
is distinguishable if a linkage between users is identified.

x⃗ = (apk, rt, nf, upksend, cmnew, sctold, sctnew, vpub
in , vpub

out , pctnew)

w⃗ = (usksend, cmold, oold, vpriv
in , upkrecv, onew, vpriv

out , auxnew, Path)

VOLUME 11, 2023 56471

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

FIGURE 4. Azeroth’s Relation.

We formally describe ledger indistinguishability using an
experiment L-IND, as depicted in fig. 5. Before describing
the experiment, we define the notion of public consistency
for a pair of queries.
Definition 5.1 (Public Consistency): A pair of queries

(Q,Q′) is publicly consistent if two queries (Q,Q′) must be
the same type and publicly consistent in A’s viewpoint.

• If (Q,Q′) are of type KeyGenUser, they are always
publicly consistent. The same key can be generated in
the special case of KeyGenUser.

• If (Q,Q′) are both of type zkTransfer, thenQ,Q′ must
be well-formed respectively and jointly consistent with
respect to public information and A’s view as follows.
a) note in Q and Q′ must appear in the ledger oracles’

NOTE table.
b) The notes in two queries are unspent, which means

their serial number must not appear in a valid TxZKT
transaction on the corresponding oracle’s ledger.

c) The sender addresses addrsend in Q and Q′ must
match the addresses of their note.

d) The balance equation must hold.

vENA
new = vENA

old + vpriv
in − vpriv

out + vpub
in − vpub

out > 0

e) The public values vpub
in and vpub

out inQ andQ′ must be
equal.

f) The receiver’s external addresses EOArecv in Q and
Q′ must be equal.

g) The transaction strings in Q and Q′ must be equal.
h) If the recipient’s public key upkrecv in Q is not in

Acct, then vpriv
out in Q and Q′ must be equal (and vice

versa for Q′).
i) If any of note in (Q,Q′) is generated by an Insert

query, both note in (Q,Q′) must be generated by an
Insert.

Definition 5.2: Let 5Azeroth = (Setup, KeyGenAudit,
KeyGenUser, RetreiveNote, zkTransfer,Audit) be a
Azeroth scheme.We say that, for everyA and adequate secu-
rity parameter λ, 5Azeroth is L-IND secure if the following
equation holds:

Pr
[
Azeroth.GL-IND

A (λ) = 1
]
≤

1
2
+ negl(λ)

2) TRANSACTION NON-MALLEABILITY
Transaction non-malleability refers to the property in that a
transaction cannot be modified in a way that changes the
personal data, such as the secret key, associated with it.
Intuitively, a transaction is non-malleable if no transaction
can be constructed with incorrect personal data (i.e., secret
key). We formalize this property with an experiment TR-NM,
shown in fig. 5, where a PPT adversary A attempts to break
a given Azeroth scheme. It is worth noting thatA could also
be an auditor trying to attack our scheme with their private
key ask. We describe the TR-NM experiment in fig. 5.
Definition 5.3: Let 5Azeroth = (Setup, KeyGenAudit,

KeyGenUser, RetreiveNote, zkTransfer,Audit) be a
Azeroth scheme. We say that, for every A and adequate
security parameter λ, 5Azeroth is TR-NM secure if the
following equation holds:

Pr
[
Azeroth.GTR-NM

A (λ) = 1
]
≤ negl(λ)

3) BALANCE
We define the balance property of Azeroth as the property
that prevents an attacker from spending more than she has
or receiving more than what is allowed. We formalize this
property with an experiment BAL as shown in fig. 5.
Definition 5.4: Let 5Azeroth = (Setup, KeyGenAudit,

KeyGenUser, RetreiveNote, zkTransfer,Audit) be a
Azeroth scheme.We say that, for everyA and adequate secu-
rity parameter λ, 5Azeroth is BAL secure if the following
equation holds:

Pr
[
Azeroth.GBAL

A (λ) = 1
]
≤ negl(λ)

56472 VOLUME 11, 2023

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

FIGURE 5. The experiments to ledger indistinguishability (L-IND), transaction non-malleability(TR-NM), balance(BAL), and auditability(AUD).
In GBAL

A (λ), we use Listnote to denote a table of note and ENA to denote the new encrypted account balance. Compute is denoted as a function
that computes balance values with returned variables from A.

4) AUDITABILITY
If the auditor can always monitor the confidential data of
any user, we informally say that the scheme has auditability.
More precisely, we define that Azeroth is auditable if there is
no transaction in which the decrypted plaintext differs from
commitment openings. We define an experiment AUD as
shown in fig. 5. Let aux be the auxiliary input consisting of the
committed value, it is opening, and addrrecv, utilized when
verifying the commitment. If the commitment is correct, the
function VerifyCommit returns 1; otherwise returns 0.
Definition 5.5: Let 5Azeroth = (Setup, KeyGenAudit,

KeyGenUser, RetreiveNote, zkTransfer, Audit) be a
Azeroth scheme.We say that, for everyA and adequate secu-
rity parameter λ, 5Azeroth is AUD secure if the following
equation holds:

Pr
[
Azeroth.GAUD

A (λ) = 1
]
≤ negl(λ)

Theorem 5.1: Let 5Azeroth = (Setup, KeyGenAudit,
KeyGenUser, RetreiveNote, zkTransfer,Audit) be a
Azeroth scheme in fig. 2. 5Azeroth satisfies ledger indis-
tinguishability, transaction non-malleability, balance, and
auditability.

A. SECURITY PROOFS
We now formally prove Theorem 5.1 by showing that
Azeroth construction satisfies ledger indistinguishability,
transaction non-malleability, balance, and auditability.

1) LEDGER INDISTINGUISHABILITY
By using a hybrid game, we prove ledger indistinguisha-
bility. Thus, we say that it is indistinguishable if the dif-
ference between a real game GameReal and a simulation

TABLE 2. Notations.

game GameSim is negligible. All Games are executed by
the interaction of an adversary A with a challenger C, as in
the L-IND experiment. However, GameSim is distinct from
the others since it runs regardless of a bit b where it means a
chosen bit from the L-IND experiment. Thus, for GameSim,
the advantage of A is 0. Moreover, the zk-SNARK keys are
generated as (ek, vk, td) ← 5snark.Sim(R) to obtain the
zero-knowledge trapdoor td.We now show thatAdvL-IND

5Azeroth,A
is at most negligibly different than AdvGameSim . First of all,
we define the notations as follows.

We describe how the challenger C responds to the answer of
each query to provide it with the adversaryA in the simulation
gameGameSim. The challenger C responds to eachA’s query
as below :

• Query(KeyGenUser): C actions under the
Q(KeyGenUser) query, except that it makes the fol-
lowing modifications: C generates a key pair (upk, usk)
from KeyGenUser(pp), supersedes pkown, pkenc to a
random string of the appropriate length, and then com-
putes the user address addr ← CRH(pkown, pkenc).

VOLUME 11, 2023 56473

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

C also puts these elements in a table and returns upk to
A. C does the above procedure for Q′.

• Query(zkTransfer, note, upksend, upkrecv, vpriv
out , vpub

in ,
vpub

out , EOArecv): C actions under the Q(zkTransfer)
query, except that it makes the following modifica-
tions: by default, we assume that upksend exists in
the table. We abort the queries if upksend does not
exist in the table. C comes up with random strings and
replaces nf and cmnew to these values, respectively.
If upkrecv is a public key generated by a previous query
to KeyGenUser, then C sets sctnew and pctnew to
an arbitrary string. Otherwise, C computes these ele-
ments as in the zkTransfer algorithm. Also, C stores the
changed elements in the table.

We now define each game to prove the ledger indistin-
guishability of Azeroth. Once again, AdvGameSim

A is 0 since
A is computed independently of the bit b where b is chosen
by C in the experiments.
• Game1. We now define the Game1, which equals

GameReal, except that C simulates the zk-SNARK
proof. For zkTransfer, the zk-SNARK key is gener-
ated as (ek, vk, tdZKT) ← 5snark.Sim(RZKT) instead of
5snark.Setup(RZKT) to procure the trapdoor tdZKT. After
obtaining the tdZKT, C computes the proof πsim without a
proper witness. The view of the simulated proof πsim is iden-
tical to that of the proof computed in GameReal. In addition,
when A asks for the KeyGenUser query, we replace the
elements of public key upk as a random string. The simulated
(usk, upk) distribution is also identical to that of the key pairs
computed in GameReal. In a nutshell, AdvGame1 = 0.
• Game2. We define the Game2 equal to Game1 except

that C uses a random string r of a suitable length to replace
the ciphertext pctnew. If the address addr of upksend does not
exist in the table, then C aborts. By Lemma 5.2, |AdvGame2−

AdvGame1 | ≤ 2 · qZKT · AdvPE.
• Game3. We define the Game3 as Game2 with one

modification where C changes the ciphertext sctnew from
correct to an acceptable random string r . Specifically, if the
address addr of upksend exists in the table, C replaces sctnew
as r . Otherwise, C aborts. By Lemma 5.3, |AdvGame3 −

AdvGame2 | ≤ qZKT · AdvSE.
• Game4. We define the Game4 as the same as

Game3 except that C uses a random string to change the
nullifier nf created by PRF. By Lemma 5.4, |AdvGame4 −

AdvGame3 | ≤ qZKT · AdvPRF.
• GameSim. GameSim is identical to Game4, except that

C replaces commitments (e.g., cmold, cmnew) computed by
COM to an arbitrary string. By Lemma 5.5, |AdvGameSim −

AdvGame4 | ≤ qZKT · AdvCOM.
By summing over all the above A’s advantages in the

games, A’s advantage in the L-IND experiment can be com-
puted as follows:

AdvL-IND
5,A (λ)

≤ qZKT · (2 · AdvPE
+AdvSE

+AdvPRF
+AdvCOM)

Since AdvL-IND
5,A (λ) = 2 · Pr[AzerothL-IND

5,A (λ) = 1] − 1 and
A’s advantage in the L-IND experiment is negligible for λ,
we can conclude that it provides ledger indistinguishability.
Lemma 5.2: Let Adv5PE be A’s advantage in 5PE’s

IND-CPA and IK-CPA experiments. IfA’s zkTransfer query
occurs qZKT, then |AdvGame2 − AdvGame1 | ≤ 2 · qZKT ·

AdvPE.
Proof:We utilize a hybrid game GameH as an interme-

diate between Game1 and Game2. First of all, to prove that
AdvGameH is negligibly different from AdvGame1 , we define
a security model of our encryption scheme PE. It per-
forms with the interaction between the adversary A and the
IND-CPA challenger. A queries the encryption for a ran-
dom message, and then C returns the ciphertext of it. After
querying,A sends two messages M0, M1 to the challenger C.
C chooses one of the two received messages and returns the
ciphertext to the adversary A. If the adversary A correctly
answers which message is encrypted, A wins. We denote
this experiment as Ereal. We define another experiment Esim,
which simulates the real one with only the following modifi-
cation:When encrypting a message, replaceSE.Enc’s output
with a random string. A cannot distinguish the Esim from
Ereal but a negligible probability, due to the security of SE.
The probability of A distinguishes the ciphertexts in Esim is
1/2; a ciphertext pct from Esim is uniformly distributed in
A’s view. Overall, the advantage of A in distinguishing the
ciphertexts is negligible, which means that PE is IND-CPA.
Finally, the advantage ofAdvGameH is equal toAdvPE, hence
|AdvGameH − AdvGame1 | ≤ qZKT · AdvPE.
Like the above, Game2 is the same as GameH except that

it encrypts plaintext by setting the key to a new public key
instead of the one obtained by querying KeyGenUser. After
querying KeyGenUser,A queries the IK-CPA challenger to
gain pk0, whereas pk1 is obtained from the KeyGenUser
query. The IK-CPA challenger encrypts the same plaintext
as pct∗ using pkb where b is the bit selected by the IK-CPA
challenger per zkTransfer query. The challenger sets pct in
TxZKT to pct∗ and appends it to L. A outputs a bit b by
guessing b with respect to the IK-CPA experiment. If b =
0 then A’s view is equal to Game2, whereas if b = 1 then
A’s view is GameH . If the maximum advantage for IK-CPA
experiment is AdvPE, then we can say that |AdvGame2 −

AdvGameH | ≤ qZKT ·AdvPE. As a result, the sum ofA’s two
advantages is |AdvGame2 −AdvGame1 | ≤ 2 · qZKT ·AdvPE.
Lemma 5.3: Let Adv5SE be A’s advantage in 5SE’s

IND-CPA experiment. If A’s zkTransfer query occurs qZKT
times, then |AdvGame3 − AdvGame2 | ≤ qZKT · AdvSE.

Proof: To prove that AdvGame3 is negligibly differ-
ent from AdvGame2 , we define a security model of our
encryption scheme SE. It performs with the interaction
between the adversary A and the IND-CPA challenger. A
queries the encryption for a random message, and then C
returns the ciphertext of it. After querying, A sends two
messages M0, M1 to the challenger C. C chooses one of
the two received messages and returns the ciphertext to the
adversary A. If the adversary A correctly answers which

56474 VOLUME 11, 2023

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

message is encrypted, A wins. However, since SE is based
on PRF, A cannot distinguish the ciphertexts with all but
negligible. the advantage of AdvGame2 is equal to AdvSE.
Hence, |AdvGame3 − AdvGame2 | ≤ qZKT · AdvSE.
Lemma 5.4: Let AdvPRF beA’s advantage in distinguish-

ing PRF from a true random function. If A makes qZKT
queries, then |AdvGame4 − AdvGame3 | ≤ qZKT · AdvPRF.

Proof: We now describe that the difference between
Game4 and Game3 is negligibly different. In zkTransfer
algorithm, nf is computed by PRFsksend

own
(cmold). Thus, the

advantage of Game4 is only related to PRF’s advantage.
In other words, the advantage AdvPRF is negligible and
|AdvGame4 − AdvGame3 | ≤ qZKT · AdvPRF.
Lemma 5.5: Let AdvCOM be A’s advantage against the

hiding property of COM. If A makes qZKT queries, then
|AdvGameSim − AdvGame4 | ≤ qZKT · AdvCOM

Proof: On the zkTransfer query, the challenger C sub-
stitutes the commitment cmnew as a random string r of
an acceptable length. The advantage of adversary A is at
most like that of COM. Thus, since the commitment cmnew
exists only in the zkTransfer query, C performs one repli-
cation of each zkTransfer query. Hence, we conclude that
|AdvGameSim − AdvGame4 | ≤ qZKT · AdvCOM.

2) TRANSACTION NON-MALLEABILITY
Suppose that A outputs a transaction Tx′ as follows:

Tx′ = (π, nf, · · ·)

Recall thatA wins TR-NM experiment only if Tx′ contains a
nullifier already revealed and a valid proof.We show that such
a transaction cannot be constructed with all but negligible
probability under the properties of zk-SNARK. For formal
proof, let ϵ := AdvTR−NM

Azeroth,A(λ), and utilize zk-SNARK wit-
ness extractor denoted as E forA. We can build an algorithm
B finding collision for PRF with an advantage negligibly
close to ϵ, which suffices the proof. AlgorithmB should work
as follows:
i) Run A (simulating its interaction with the challenger C

and obtain Tx′).
ii) Run E to extract a witness w⃗ for a zk-SNARK proof π

for Tx′.
iii) Get apk, sctold from L and parse Tx′ to construct a

statement x⃗ for π .
iv) Check whether w⃗ is a valid witness for x⃗ or not. If it fails,

it aborts and then outputs 0.
v) Parse w⃗ then get skown, cmold.
vi) Find a transaction Tx ∈ L that contains nf.
vii) If Tx is found, let (sk′own, cm′old) be the corresponding

witness to Tx attained from E . If skown ̸= sk′own,
then output ((skown, cmold), (sk′own, cm′old)). Other-
wise, output 0.

Seeing that the proof π for a transaction Tx is valid, with all
but negligible probability, the extracted witness w⃗ is valid.
Moreover, Pr[skown = sk′own] =

1
2l where l is the bit length

of skown. Thus, its probability is negl. Putting probabilities

together, we conclude that B finds a collision for PRF with
probability ϵ − negl(λ).

3) BALANCE
This part shows that AdvBAL is at most negligible. For each
zkTransfer transaction on the ledger L, the challenger C
computes a witness w⃗ for the zk-SNARK instance x⃗ corre-
sponding to the transaction TxZKT in the BAL experiment.
It does not affect A’s view. For such a way, C obtains an
augmented ledger (L, W⃗) in which w⃗i means a witness for
the zk-SNARK instance x⃗i of i-th zkTransfer transaction
in L. Note that we can parse an augmented ledger as a list
of matched pairs (TxZKT, w⃗i) where TxZKT is a zkTransfer
transaction and w⃗i is its corresponding witness.

a: BALANCED LEDGER
We say that an augmented ledger L is balanced if the follow-
ing conditions hold as defined in [5] and [19].
• Condition 1: In each (TxZKT, w⃗), the opening of unique
commitment cmnew exists, and the commitment cmnew
is also a result of previous TxZKT.

• Condition 2: The two different openings in (TxZKT, w⃗)
and (TxZKT

∗, w⃗∗) are not openings of a single commit-
ment.

• Condition 3: Each (TxZKT, w⃗) contains openings of
cmold and cmnew, and values, satisfying that vENA

old +

vpriv
in − vpriv

out + vpub
in − vpub

out = vENA∗ where we denote
an updating of the value as ∗.

• Condition 4: The values used to compute cmold are the
same as the value for cm∗new, if cmold = cm∗new where
cmold is the commitment employed in (TxZKT, w⃗), and
cm∗new is the output of a previous transaction before
TxZKT.

• Condition 5: If (TxZKT, w⃗) was inserted by A, and
cmnew contained in TxZKT is the result of an earlier
zkTransfer transaction Tx′, then the recipient’s account
address addrrecv does not exist in Acct.

We say that (L, w⃗) is balanced, if the following equation
holds:

vENA
+ vpub

out + vpriv
out = vpub

in + vpriv
in

For each of the above conditions, we use a contraction to
prove that the probability of each case is, at most, negligible.
Note that, for better legibility, we denote the A’s win prob-
ability of each case as Pr[A(Ci) = 1], which means A wins
but violates Condition i.
An infringement on condition 1. Each (TxZKT, w⃗)∈ (L, W⃗),

not inserted by A, always satisfies condition 1; The proba-
bility Pr[A(C1) = 1] is that A inserts TxZKT to build a pair
(TxZKT, w⃗) where cmold in w⃗ is not the output of all previ-
ous transactions before receiving the value by zkTransfer.
However, each TxZKT utilizes the witness w⃗, containing the
commitment cmold taken as input for making a nullifier
nf, to generate the proof by proving the validity of TxZKT.
Namely, there is a violation of condition 1 if its commitment

VOLUME 11, 2023 56475

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

corresponding to nf does not exist in L. The violation’s mean-
ing is equal to breaking the binding property of COM; Hence
Pr[A(C1) = 1] is negligible.
An infringement on condition 2. Each (TxZKT, w⃗)∈ (L, W⃗),

not inserted by A, always satisfies condition 2; The prob-
ability Pr[A(C2) = 1] is that there are two transactions
(TxZKT, TxZKT

′) in which their commitment is the same but
has different two nullifiers nf and nf′. However, it contradicts
the binding property of COM; Thus, Pr[A(C2) = 1] is
negligible.
An infringement on condition 3. In each (TxZKT, w⃗) ∈

(L, W⃗), there exists a zk-SNARK proof, which can guarantee
each of values vENA, vpriv

in , vpriv
out , vpub

in , vpub
out , and vENA∗,

satisfying the following equation: vENA
old + vpriv

in − vpriv
out +

vpub
in − vpub

out = vENA∗. Pr[A(C3) = 1] is a probability that
its equation does not hold. However, this violates the proof
knowledge property of the zk-SNARK; It is negligible.
An infringement on condition 4. Each (TxZKT, w⃗) ∈ (L, W⃗)

encompasses the values taken as the commitment (e.g., vpriv
out ,

addrrecv, and onew). Pr[A(C4) = 1] is a probability that the
commitments are equal. All values related to commitment
inputs in two transactions (TxZKT, TxZKT

∗) are equivalent
except for the amount (i.e., vpriv

out ̸= vpriv
out
∗

) where TxZKT
∗ a

pre-existing zkTransfer transaction. However, since it con-
tradicts the binding property of COM, it happens negligibly.
An infringement on condition 5. Each (TxZKT, w⃗) ∈ (L, W⃗)

publishes the recipient’s address of a commitment cmnew.
If the zkTransfer transaction inserted by A issues addrrecv,
the output of a previous zkTransfer transactionTxZKT

′ whose
recipient’s account address is in Acct, it is the violation of the
condition 5; Thus, Pr[A(C5) = 1]. However, this contradicts
the collision resistance of CRH.
To sum up, we prove the Definition 5.4 holds since it is

at most negligible that the opposite happens, as mentioned
above.

4) AUDITABILITY
In the AUD experiment, A wins if the tuple (TxZKT, aux)
holds the following conditions where aux consists of
(onew, vpriv

out , addrrecv):
i) TxZKT passes the transaction verification.

VerifyTx(TxZKT, L) = true

ii) aux and the commitment cmnew in TxZKT are verified.

VerCommit(cmnew, aux) = true

iii) The decrypted message of pctnew and the values
(onew, vpriv

out , addrrecv) in aux are not the same.

(onew, vpriv
out , addrrecv) ̸= Auditask(pctnew)

If A wins in the experiment, when the auditor decrypts
pctnew, it implies that the auditor obtains an arbitrary string,
not a correct plaintext. However, A’s winning probability is
negligible since it breaks the binding property of COM. Also,

assume that an extractor χ can extract the witness. When
obtaining the witness usingχ , it is obvious that aux is equal to
(onew, vpriv

out , addrrecv). Thus, A’s winning should also break
the knowledge soundness property of the zk-SNARK. Con-
sequently, since the properties of COM and zk-SNARK, the
auditor with an authorized key (i.e., ask) can always observe
the correct plaintext and surveil illegal acts in transactions.

VI. IMPLEMENTATION AND EXPERIMENT
A. IMPLEMENTATION
Our Azeroth implementation coded in Python, C++, and
Solidity languages consists of two parts; the client and the
smart contract. The client interacts with the blockchain net-
work using Web3.py.2 To generate a zk-SNARK proof in
Azeroth, we use libsnark3 with Groth16 [17] and BN254
curve.

1) PRF, COM, AND CRH
We instantiate the pseudorandom function PRFk (x) where k
is the seed, and x is the input, using a collision-resistant hash
function as follows.

PRFk (x) := CRH(k||x)

A commitment is also realized using a hash function CRH as
follows.

COM(v, addr;o) := CRH(v||addr||o)

A collision-resistant hash function CRH is imple-
mented using zk-SNARK friendly hash algorithms such as
MiMC7 [1] and Poseidon [16] as well as a standard hash
function SHA256 [25].

2) SYMMETRIC-KEY ENCRYPTION
The symmetric-key encryption needs to be efficient in the
proof generation for encryption. Therefore, we implement
an efficient stream cipher based on PRF using zk-SNARK
friendly hash algorithms such as MiMC7 and Poseidon as
follows.

SE.Enck (msg)→ (r, sct)

r
$
← F; sct← msg+ PRFk (r)

return (r, sct)
SE.Deck (r, sct)→ msg

msg← sct− PRFk (r)
return msg

We also employ the CTRmode if themessage size is longer
than the range of PRF.

3) PUBLIC-KEY ENCRYPTION
To enable two recipients, a receiver and an auditor, to use
public-key encryption, we extend the ElGamal encryption

2https://github.com/ethereum/web3.py
3https://github.com/scipr-lab/libsnark

56476 VOLUME 11, 2023

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

system to allow for the re-use of randomness, as described
in the treatment of multi-recipient encryption in [4]. We also
use standard hybrid encryption to improve performance,
where a random key is encrypted using public key encryp-
tion. This key is then used to encrypt the message using
a symmetric-key encryption scheme. Given two key pairs
(pk1, sk1) and (pk2, sk2) for ElGamal encryption, as well
as the symmetric-key encryption scheme SE, the resulting
implementation of the public key encryption is as follows:

PE.Encpk1,pk2 (msg)→ pct, aux

k
$
← G; r $

← F
c0←Gr ; c1←k ·pkr1 ; c2←k ·pkr2 ; c3←SE.Enck (msg)
pct← (c0, c1, c2, c3);aux← (k, r)

return pct, aux
PE.Decski (pct)→ msg
(c0, c1, c2, c3)← pct

k ← ci/c
ski
0 ;msg← SE.Deck (c3)

return msg

B. EXPERIMENT
In our experiment, the term cfgHash,Depth denotes a config-
uration of Merkle hash tree depth and hash type in Azeroth.
For instance, cfgMiMC7,32 means that we run Azeroth with
MiMC7 [1] and its Merkle tree depth is 32. Table 3(a) illus-
trates our system environments. We execute all experiments
on the machineServer described in Table 3(a) for the overall
performance evaluation as a default machine. The default
blockchain is the Ethereum testnet. The used proof system
is Gro16 [17].

1) OVERALL PERFORMANCE
We show that the performance and gas consumption of
Azeroth with cfgMiMC7,32 are presented in Table 3 (b).4 The
execution time of Setup is 4.04s, comprising the zk-SNARK
key generation time of 2.2s and the deployment time of
Azeroth’s smart contract to the blockchain of 1.84s. Setup
consumes a significant amount of gas due to the initialization
of the Merkle tree. In zkTransfer, the total execution time is
4.38s, including both the Client and Smart Contract parts.
The gas is primarily used to verify the SNARK proof and
update the Merkle hash tree. Further analysis of zkTransfer
by varying the hash function is described in the following
experiments.

2) zk-SNARK PERFORMANCE
We evaluate the performance of zk-SNARK used to exe-
cute zkTransfer on various systems (Server, System1, · · · ,

System4) as described in Table 3 (b). Table 3 (c) shows
the setup time, the proving time, and the verification time,
respectively, on each system with cfgMiMC7,32. Although

4The results include the execution time up to the point of receiving the
transaction receipt.

System3 has the lowest performance, still its proving time
of 4.56s is practically acceptable.

3) HASH TYPE AND TREE DEPTH
We evaluate Azeroth performance depending on hash tree
depths and hash types as shown in Figure 6 and Figure 7.
Figure 6 illustrates the execution time of zk-SNARK for

MiMC7 [1], Poseidon [16],5 and SHA256 [25] where the
hash tree depth is 32. The SNARK key generation times are
2.311s, 2.182s, and 53.393s, respectively. The proving times
forMiMC7 andPoseidon are 0.901s and 0.582s respectively,
while it takes 20.69 seconds with SHA256; SHA256 is
about 20× and 40× slower than MiMC7 and Poseidon in
zk-SNARK. The verification time is almost independent of
the hash type. However, when each hash function is executed
natively, SHA256 shows the best performance as shown in
Figure 6 (d), which is similar to the gas consumption trend
shown in Figure 6 (e).
Figure 7 shows the key size. The proving key (ek) size is

proportional to the tree depth, whereas the verification key
size remains 1KB.6 Poseidon has the smallest sizes of ek
and constraints. Specifically, in depth 32, the ek sizes in
Poseidon, MiMC7, and SHA256 are 3,341KB, 4,339KB,
and 255,000KB respectively. The circuit size of SHA256
is enormous due to numerous bit operations, and Poseidon
has 30% smaller size than MiMC7’s. Figure 7 (c) shows that
MiMC7 and Poseidon hashes consume relatively more gas
than SHA256 since not only is SHA256 natively supported
in Ethereum [8], but also it shows better native performance
as shown in Figure 6 (e).

4) THE NUMBER OF CONSTRAINTS
We measure the number of constraints for each algorithm
component as shown in Table 4. The membership proof algo-
rithm performs the hash execution as many as the tree depth.
SE.Dec conducts the one hash computation, and PE.Enc
executes the group operation (i.e., exponentiation) three times
internally. Note that in the table, the number of constraints
for CRH is obtained when a single input block is provided to
the hash, and the number of constraints is proportional to the
number of input blocks.

5) PERFORMANCE ANALYSIS OF SMART CONTRACT
We analyze the execution time and the gas consumption in
smart contract zkTransferSC. Table 5 shows the gas con-
sumption for each function in smart contract zkTransferSC.
In particular, the 5snark.Verify and TreeUpdate functions
are the most time-consuming in the smart contract, with the
gas consumption of the latter depending on the hash tree
depth and hash type.

Figure 8 represents the execution time of 5snark.Verify
and TreeUpdate. The verification time is 11.9ms, and the

5We utilize a well-optimized Poseidon smart contract from
circomlib(https://github.com/iden3/circomlib/tree/feature/extend-poseidon)

6We omit the graph of vk, since it is constant.

VOLUME 11, 2023 56477

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

TABLE 3. Benchmark of Azeroth.

FIGURE 6. Performance with 32 hash tree depth. (a)-(c): The execution time of zk-SNARK’s algorithms where the y axis is time(s). (d): The native
execution time of each hash algorithm written in C++ where the y axis is time(s). (e): The gas consumption where the y axis denotes the gas
consumption.

FIGURE 7. Key size, constraints in circuits and gas consumption by varying hash tree depth and hash type.

TABLE 4. The number of constraints for each algorithm component.

execution time of TreeUpdate is 12.8ms, 17.4ms, and 7.3ms
on MiMC7, Poseidon, and SHA256 respectively.

6) COMPARISON WITH THE OTHER EXISTING SCHEMES
We compare the proposed scheme Azeroth with other
privacy-preserving transfer schemes such as Zeth [27],
Blockmaze [19], Zether [7], and PGC [11] in Table 6. Our

TABLE 5. Gas cost for each function.

proposal performs better than the existing schemes, even
if Azeroth provides an additional function of auditability.
Zeth and Blockmaze are implemented with cfgMiMC7,32
and cfgSHA256,8 respectively, and the same configuration
is applied to the proposed scheme for a fair comparison.
The experiment is conducted on Server. Note that the

proof generation time in the table excludes the circuit load-
ing time for a fair comparison, and the loading time is

56478 VOLUME 11, 2023

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

TABLE 6. Comparison between our proposed scheme and existing work.

FIGURE 8. The execution time of functions in zkTransferSC.

significantly longer in Blockmaze. On the other hand,
PGC [11] and Zether [7] use standard ElGamal encryp-
tion and NIZK to provide confidentiality instead of utilizing
Merkle Tree. The performance results in these works exclude
anonymity, meaning the anonymity set size is 2. Note that
the performance degrades as the anonymity set size increases
in PGC and Zether since the number of Elliptic curve oper-
ations in the smart contract increases proportionally to the
anonymity set size.

In comparison with Zeth,7 we utilize ganache-cli8 as our
test network. Due to the circuit optimization of Azeroth, the
resulting circuit size is 4× smaller, and the size of pp is
22× smaller than Zeth. In zkTransfer, Azeroth reduces the
execution time by 90% compared with Zeth’s Mix function.

While BlockMaze9 has four transactions ofMint , Redeem,
Send , Deposit , Azeroth provides the equivalent function-
ality using a single transaction zkTransfer. It takes 20s to
load the proving key in Blockmaze while it is only 1s in
Azeroth. Hence Azeroth provides much better performance
than Blockmaze in practice.

7https://github.com/clearmatics/zeth
8https://github.com/trufflesuite/ganache
9https://github.com/Agzs/BlockMaze

Zether [7] and PGC [11] are stateful10 schemes using
ElGamal encryption and NIZK. Due to the large difference
in structure, the comparison experiment compares the gas
cost and transaction size generated per transfer. Zether and
PGC require 4.6 times and 5.3 times more gas than Azeroth,
respectively, due to the Elliptic curve operations in the smart
contract. In terms of transaction size, Azeroth generates a
smaller transaction than Zether and PGC, although Azeroth
provides higher anonymity than them.

VII. CONCLUSION
In this paper, we propose an auditable privacy-preserving dig-
ital asset-transferring system called Azeroth, which hides the
receiver, and the amount value to be transferred. At the same
time, a zero-knowledge proof guarantees the transferring cor-
rectness. In addition, the proposedAzeroth supports an audit-
ing functionality in which an authorized auditor can trace
transactions to comply with an anti-money laundry regula-
tions. Its security is proven formally and implemented onto
various platforms, including the Ethereum testnet blockchain.
The experimental results show that the proposed Azeroth is
efficient enough to be practically deployed.

REFERENCES
[1] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, ‘‘MIMC:

Efficient encryption and cryptographic hashing with minimal multiplica-
tive complexity,’’ in Proc. ASIACRYPT, 2016, pp. 191–219.

[2] A. Pertsev, R. Semenov, and R. Storm, ‘‘Tornado cash privacy solution,’’
Tech. Rep., 2019.

[3] E. Androulaki, J. Camenisch, A. D. Caro,M. Dubovitskaya, K. Elkhiyaoui,
and B. Tackmann, ‘‘Privacy-preserving auditable token payments in a
permissioned blockchain system,’’ in Proc. 2nd ACM Conf. Adv. Financial
Technol., Oct. 2020, pp. 255–267.

10The meaning is that the account is renewed immediately through one
transaction.

VOLUME 11, 2023 56479

G. Jeong et al.: Azeroth: Auditable Zero-Knowledge Transactions in Smart Contracts

[4] M. Bellare, A. Boldyreva, K. Kurosawa, and J. Staddon, ‘‘Multirecip-
ient encryption schemes: How to save on bandwidth and computation
without sacrificing security,’’ IEEE Trans. Inf. Theory, vol. 53, no. 11,
pp. 3927–3943, Nov. 2007.

[5] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, ‘‘Zerocash: Decentralized anonymous payments from Bitcoin,’’
in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 459–474.

[6] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra, and H. Wu, ‘‘ZEXE:
Enabling decentralized private computation,’’ in Proc. IEEE Symp. Secur.
Privacy (SP), May 2020, pp. 947–964.

[7] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, ‘‘Zether: Towards privacy
in a smart contract world,’’ in Proc. Int. Conf. Financial Cryptogr. Data
Secur., 2020, pp. 423–443.

[8] V. Buterin, ‘‘Ethereum white paper: A next generation smart contract-
decentralized application platform,’’ Tech. Rep., 2013.

[9] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
‘‘Bulletproofs: Short proofs for confidential transactions and more,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 315–334.

[10] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi, ‘‘Solidus:
Confidential distributed ledger transactions via PVORM,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 701–717.

[11] Y. C. X. M. C. Tang and M. H. Au, ‘‘PGC: Decentralized confidential pay-
ment system with auditability,’’ in Computer Security—ESORICS 2020,
2020, pp. 591–610.

[12] B. E. Diamond, ‘‘Many-out-of-many proofs and applications to anony-
mous Zether,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2021,
pp. 1800–1817.

[13] E. Duffield and D. Diaz. (2015). Dash: A Privacycentric Cryptocurrency.
[Online]. Available: https://github.com/dashpay/dash/wiki/Whitepaper

[14] Virtual Assets and Virtual Asset Service Providers, FATF, Paris, France,
2021.

[15] P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi, ‘‘Quisquis: A new
design for anonymous cryptocurrencies,’’ in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur., 2019, pp. 649–678.

[16] D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger, ‘‘Poseidon:
A new hash function for zero-knowledge proof systems,’’ in Proc. 30th
USENIX Secur. Symp., Aug. 2021, pp. 1–16.

[17] J. Groth, ‘‘On the size of pairing-based non-interactive arguments,’’ in
Proc. 35th Annu. Int. Conf. Theory Appl. Cryptograph. Techn., 2016,
pp. 305–326.

[18] J. Groth and M. Maller, ‘‘Snarky signatures: Minimal signatures of knowl-
edge from simulation-extractable SNARKs,’’ in Proc. 37th Annu. Int.
Cryptol. Conf., 2017, pp. 581–612.

[19] Z. Guan, Z. Wan, Y. Yang, Y. Zhou, and B. Huang, ‘‘BlockMaze:
An efficient privacy-preserving account-model blockchain based on zk-
SNARKs,’’ IEEE Trans. Dependable Secure Comput., vol. 19, no. 3,
pp. 1446–1463, May 2022.

[20] H. Kang, T. Dai, N. Jean-Louis, S. Tao, and X. Gu, ‘‘FabZK: Supporting
privacy-preserving, auditable smart contracts in hyperledger fabric,’’ in
Proc. 49th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2019, pp. 543–555.

[21] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘‘Hawk:
The blockchain model of cryptography and privacy-preserving smart con-
tracts,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 839–858.

[22] G. Maxwell, ‘‘Coinjoin: Bitcoin privacy for the real world,’’
Tech. Rep., 2013.

[23] S. Meiklejohn and R. Mercer, ‘‘Möbius: Trustless tumbling for transaction
privacy,’’Proc. Privacy Enhancing Technol., vol. 2018, no. 2, pp. 105–121,
Apr. 2018.

[24] N. N. W. Vasquez and M. Virza, ‘‘zkLedger: Privacy-preserving auditing
for distributed ledgers,’’ in Proc. 15th USENIX Symp. Networked Syst.
Design Implement., Apr. 2018, pp. 65–80.

[25] SecureHash Standard, Standard Fips180-2, National Institute of Standards
and Technology (NIST), 2002.

[26] B. Parno, J. Howell, C. Gentry, and M. Raykova, ‘‘Pinocchio: Nearly
practical verifiable computation,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 238–252.

[27] A. Rondelet andM. Zajac, ‘‘ZETH:On integrating zerocash on Ethereum,’’
2019, arXiv:1904.00905.

[28] N. N. Saberhagen. (2013). Cryptonote V2.0. [Online]. Available:
https://cryptonote.org/whitepaper.pdf

GWEONHO JEONG received the B.S. degree in
information systems engineering from Hanyang
University, Seoul, South Korea, where he is cur-
rently pursuing the Ph.D. degree in information
systems engineering. His current research interests
include applied cryptography, including protocols
for applied cryptography, verifiable computation,
and zero-knowledge proofs.

NURI LEE received the B.S. and M.S. degrees in
electronics engineering from Kookmin University,
Seoul, South Korea. His research interests include
applied cryptography, zero-knowledge proofs, and
their applications to blockchain technology.

JIHYE KIM (Member, IEEE) received the B.S.
and M.S. degrees from the School of Computer
Science and Engineering, Seoul National Univer-
sity, South Korea, in 1999 and 2003, respectively,
and the Ph.D. degree in computer science from the
University of California at Irvine, Irvine, in 2008.
She is currently a Professor with the Department
of Electrical Engineering, Kookmin University.
Her research interests include applied cryptogra-
phy, verifiable computation, and zero-knowledge
proofs.

HYUNOK OH (Member, IEEE) received the
B.S., M.S., and Ph.D. degrees in computer engi-
neering from Seoul National University, Seoul,
South Korea, in 1996, 1998, and 2003, respec-
tively. He is currently a Full Professor with the
Department of Information Systems, Hanyang
University, Seoul. His research interests include
applied cryptography, zero-knowledge proofs, ver-
ifiable computation, non-volatile memory, and
embedded systems.

56480 VOLUME 11, 2023

