
SAGE: A Storage-Based Approach for Scalable and Efficient
Sparse Generalized Matrix-Matrix Multiplication

Myung-Hwan Jang
∗

Department of Computer Science

Hanyang University

Seoul, Republic of Korea

sugichiin@hanyang.ac.kr

Yunyong Ko
∗

Department of Computer Science

Hanyang University

Seoul, Republic of Korea

koyunyong@hanyang.ac.kr

Hyuck-Moo Gwon

Department of Computer Science

Hanyang University

Seoul, Republic of Korea

howling6@hanyang.ac.kr

Ikhyeon Jo

Department of Computer Science

Hanyang University

Seoul, Republic of Korea

childyouth@hanyang.ac.kr

Yongjun Park
†

Department of Computer Science

Yonsei University

Seoul, Republic of Korea

yongjunpark@yonsei.ac.kr

Sang-Wook Kim
†

Department of Computer Science

Hanyang University

Seoul, Republic of Korea

wook@hanyang.ac.kr

ABSTRACT
Sparse generalized matrix-matrix multiplication (SpGEMM) is a

fundamental operation for real-world network analysis. With the

increasing size of real-world networks, the single-machine-based

SpGEMM approach cannot perform SpGEMM on large-scale net-

works, exceeding the size of main memory (i.e., not scalable). Al-
though the distributed-system-based approach could handle large-

scale SpGEMM based on multiple machines, it suffers from severe

inter-machine communication overhead to aggregate results of mul-

tiple machines (i.e., not efficient). To address this dilemma, in this

paper, we propose a novel storage-based SpGEMM approach (SAGE)
that stores given networks in storage (e.g., SSD) and loads only the

necessary parts of the networks into main memory when they are

required for processing via a 3-layer architecture. Furthermore, we

point out three challenges that could degrade the overall perfor-

mance of SAGE and propose three effective strategies to address

them: (1) block-based workload allocation for balancing workloads

across threads, (2) in-memory partial aggregation for reducing the

amount of unnecessarily generated storage-memory I/Os, and (3)

distribution-aware memory allocation for preventing unexpected

buffer overflows in main memory. Via extensive evaluation, we

verify the superiority of SAGE over existing SpGEMM methods in

terms of scalability and efficiency.

CCS CONCEPTS
• Information systems→ Data management systems.

∗
Two first authors have contributed equally to this work.

†
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00

https://doi.org/10.1145/3583780.3615044

KEYWORDS
sparse matrix multiplication, real-world graphs, network analysis

ACM Reference Format:
Myung-Hwan Jang, Yunyong Ko[1], Hyuck-MooGwon, Ikhyeon Jo, Yongjun

Park[2], and Sang-Wook Kim. 2023. SAGE: A Storage-Based Approach for

Scalable and Efficient Sparse Generalized Matrix-Matrix Multiplication.

In Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management (CIKM ’23), October 21–25, 2023, Birmingham,
United Kingdom. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3583780.3615044

1 INTRODUCTION
Graphs are widely used tomodel real-world networks, where a node

represents an object and an edge does the pair-wise relationship
between two objects. To analyze real-world networks and discover

useful knowledge, many graph algorithms have been studied [5, 14,

16, 20–24, 26, 34, 39, 42, 45], where a graph is generally represented

as a densematrix (i.e., 2-D array), and each element 𝑒𝑖, 𝑗 = 1 if an edge

exists between nodes 𝑖 and 𝑗 , and 𝑒𝑖, 𝑗 = 0 otherwise. Generalized
matrix-matrix multiplication (GEMM), one of the key operations

in these algorithms, plays a fundamental role to diffuse the node

information via network connectivity. Recently, with the growing

size of real-world networks, it has becomemore crucial to efficiently

perform GEMM on large-scale graphs [3, 13, 50].

Performing GEMM on real-world graphs represented as dense

matrices, however, often requires an unnecessarily large amount

of space and computational cost [36, 40]. This is because they tend

to follow a power-law degree distribution [31] – i.e., a majority of

nodes have only a few edges, while a small number of nodes have a

large number of edges – so that the number of non-zero elements

(existing edges) is much smaller than that of zero elements (non-

existing edges) in the matrix for a real-world graph. Figure 1(a)

shows the power-law degree distribution of Wikipedia [18] and

Figure 1(b) does the matrix density of Wiki-Vote [29, 30], where

each point represents a non-zero element, respectively.

To address this issue, sparse GEMM (SpGEMM) methods have

been widely studied [1–3, 9–12, 37, 40, 48], where a graph is repre-

sented as a sparse matrix containing only existing edges. On one

hand, single-machine-based methods [1, 36, 46, 47] aim to perform

923

https://orcid.org/0000-0003-4419-5148
https://orcid.org/0000-0003-1283-4697
https://orcid.org/0000-0002-8765-1863
https://orcid.org/0000-0003-2245-6220
https://orcid.org/0000-0003-3725-0380
https://orcid.org/0000-0002-6345-9084
https://doi.org/10.1145/3583780.3615044
https://doi.org/10.1145/3583780.3615044
https://doi.org/10.1145/3583780.3615044
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3615044&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Myung-Hwan Jang et al.

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

Node degree

N
u
m
b
e
r
o
f
n
o
d
e
s

(a) Degree distribution. (b) Matrix density (≈ 0.15%).

Figure 1: (a) Power-law degree distribution and (b) visualized
matrix density of real-world graphs.

SpGEMM efficiently on a single machine by considering the char-

acteristics of real-world graphs, where they assume that the sparse

matrix can fit in main memory. Thus, they are unable to process

SpGEMM on large-scale graphs exceeding the size of the main mem-

ory (i.e., not scalable). On the other hand, distributed-system-based
methods [3, 6, 10, 43] are able to perform SpGEMM on large-scale

graphs, exceeding the size of the main memory, by using multiple

machines concurrently. These methods, however, require a substan-

tial amount of inter-machine communication overhead to aggregate

the results from multiple machines, which is often more than 50%

of the entire process [3, 25], and a lot of costs and efforts to maintain

complex distributed systems (i.e., not efficient).
To tackle these two limitations together, in this paper, we propose

a novel storage-based approach for large-scale SpGEMM, named

Storage-bAsed approach for SpGEMM (SAGE). SAGE stores the

entire graphs in external storage of a single machine and loads

only some parts of the graphs when necessary into the main mem-

ory to process them. For efficient data transfers between storage

and main memory, we design SAGE with a 3-layer architecture,

i.e., (1) storage, (2) in-memory, and (3) operation layers, where

each layer closely interacts with other layers. Thus, SAGE (1) is

able to process large-scale graphs, exceeding the size of the main

memory by using sufficient capacity of external storage (i.e., scal-
able) and (2) requires only intra-machine communication overhead

(storage-memory I/Os), much smaller than the inter-machine com-

munication overhead (i.e., efficient).
To improve the performance of SAGE, it is crucial to handle

storage-memory I/Os efficiently, which are inevitably generated

due to the limited size of main memory on a single machine. To

this end, first, we point out three important challenges that could

lead to serious performance degradation in SAGE: (C1) Work-
load balancing, i.e., How to distribute workloads of SpGEMM evenly
across multiple threads?, (C2) Intermediate handling, i.e., How
to handle a large amount of the storage-memory I/Os generated by
the intermediate results of SpGEMM?, and (C3) Memory manage-
ment, i.e., How to allocate the main memory space to three buffers to
reduce storage-memory I/Os? (for two input and one output matri-

ces). Then, we propose three effective strategies to address these

challenges: (1) block-based workload allocation to evenly distribute

workloads of SpGEMM into multiple threads for C1, (2) in-memory
partial aggregation to reduce the amount of unnecessarily generated

storage-memory I/Os for C2, and (3) distribution-aware memory
allocation to adjust the proportions of the three buffers, based on

the characteristics of real-world graphs for C3.

Table 1: Comparison of existing SpGEMM methods with
SAGE based on the three performance-critical challenges

Method (C1) WB (C2) IH (C3) MM

Intel MKL [46] ✓
KNL-SpGEMM [36] ✓
IA-SpGEMM [47] ✓

SpSUMMA [6] ✓
Graphulo [17] ✓ ✓
Split-3D [3] ✓
gRRp [10] ✓ ✓

SAGE (proposed) ✓ ✓ ✓

We note that although there exists several existing storage-based

methods [15, 18, 28, 41, 49], they focus only on the multiplication

between sparse matrix (SpM) and dense vector (DV), i.e., SpMV
but not SpGEMM that we focus on. More specifically, the existing

storage-based SpMVmethods handle only “one" large sparse matrix

and small dense vectors (𝑆𝑝𝑀×𝐷𝑉 = 𝐷𝑉), where the dense vectors

are much smaller than a sparse matrix (𝑆𝑝𝑀 >> 𝐷𝑉). On the

other hand, SAGE handles “three" large sparse matrices (𝑆𝑝𝑀 ×
𝑆𝑝𝑀 = 𝑆𝑝𝑀), which implies that it is more challenging to efficiently

process storage-memory I/Os in the storage-based SpGEMM than

the storage-based SpMV. To the best of our knowledge, this is the

first work to successfully perform large-scale SpGEMM by using

external storage on a single machine. We believe that SAGE could

be a practical alternative to researchers and practitioners who aim

to analyze large-scale real-world graphs.

The main contributions of this work are summarized as follows:

• New Approach: We propose a new storage-based approach for

large-scale SpGEMM, SAGE to address the limitations of existing

single-machine-based (scalability) and distributed-system-based

(efficiency) approaches simultaneously.

• Effective Strategies: We point out three performance-critical

challenges and propose effective strategies to tackle them: (1)

block-based workload allocation, (2) in-memory partial aggrega-
tion, and (3) distribution-aware memory allocation.
• Extensive Evaluation: We conduct extensive evaluation, which

demonstrates that (1) SAGE is able to perform SpGEMM on large-

scale graphs, surpassing the limits of the existing single-machine-

based methods, (2) SAGE achieves high SpGEMM performance

comparable to or better than the distributed-system-based meth-

ods, and (3) each of the proposed strategies of SAGE is effective

in improving the performance of SAGE.

2 RELATEDWORK
In this section, we review existing SpGEMM methods. Table 1 com-

pares SAGEwith existingmethods in terms of the three performance-

critical challenges: (C1) workload balancing (WB), (C2) intermediate

handling (IH), and (C3) memory management (MM).

Single-machine-based approach. A single-machine-based ap-

proach [1, 36, 46, 47] aims to improve the performance of SpGEMM,

based on the properties of real-world networks on a single machine

(e.g., node degree distribution). Intel MKL [46] is an open source

library supporting a series of math functions such as SpGEMM and

SpMV, which are optimized for Intel CPU architecture. Nagasaka

924

SAGE: A Storage-Based Approach for Scalable and Efficient Sparse Generalized Matrix-Matrix Multiplication CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 2: Notations and their descriptions

Notation Description

𝑀1

𝑖𝑛
, 𝑀2

𝑖𝑛
input matrices of SpGEMM

𝑀𝑜𝑢𝑡 output matrix (𝑀1

𝑖𝑛
×𝑀2

𝑖𝑛
)

𝑀 (𝑖, ;) 𝑖-th row of matrix𝑀

𝐵1

𝑖𝑛
, 𝐵2

𝑖𝑛
buffers for input matrices in the main memory

𝐵𝑜𝑢𝑡 buffer for output matrix in the main memory

𝑇 1

𝑏𝑢𝑓
,𝑇 2

𝑏𝑢𝑓
buffer index tables for input matrices𝑀1

𝑖𝑛
, 𝑀2

𝑖𝑛

𝑇 1

𝑜𝑏 𝑗
,𝑇 2

𝑜𝑏 𝑗
object index tables for input matrices𝑀1

𝑖𝑛
, 𝑀2

𝑖𝑛

et al. [36] proposed memory management to keep output results

and thread scheduling strategies to resolve the bottlenecks of the

entire SpGEMM process. Xie et al. [47] proposed an input-aware

auto-tuning framework for SpGEMM (IA-SpGEMM) to reduce the

overhead of memory access and sparse accumulation in SpGEMM.

These single-machine-based methods, however, assume that the

entire input matrices can be loaded in the main memory (i.e., in-

memory based SpGEMM) because the input matrices have only

existing edges in SpGEMM (i.e., sparse matrix). Therefore, they are

not able to process SpGEMM on large-scale graphs exceeding the

size of main memory in a single machine.

There are some works using external storage to process large-

scale graphs on a single machine [15, 18, 28, 49, 50]. However, they

focus on improving sparse matrix and dense vector multiplication
(SpMV) rather than SpGEMM that our work focuses on. Note that

we can obtain the exactly same results as SpGEMM by iteratively

performing SpMVs in concept; however, this way is not suitable

for processing SpGEMM since the operations for dense vectors can

lead to serious performance degradation due to a large amount of

memory usage and computation overhead [3, 6, 40].

Distributed-system-based approach.Adistributed-system-based

approach [3, 6, 10, 17, 43] aims to process SpGEMM on large-scale

graphs that cannot be loaded on the main memory of a single

machine, via multiple machines in a distributed cluster. This ap-

proach splits and stores input matrices into multiple machines, and

then processes them in parallel. Buluç and Gilbert [6] proposed Sp-

SUMMA that parallelizes SpGEMM by partitioning input matrices

into 2-D grids and distributing them to multiple processors. Hutchi-

son et al. [17] proposed a distributed SpGEMM method, Graphulo

that considers the locality of data stored in a distributed database to

reduce the inter-machine communication overhead. Azad et al. [3]

proposed Split-3D that splits input/output matrices into 3-D grids

for parallelization of computations and communications. Demirci

and Aykanat [10] proposed gRRp, a bipartite graph-based partition-

ing method for balancing workloads among multiple machines.

Though the distributed-system-based approach is able to per-

form SpGEMM on large-scale graphs, a substantial amount of

inter-machine communication overhead is required to aggregate

the results from multiple machines, which is non-trivial (more than

50%) [3, 25]. It also requires a lot of costs and efforts to maintain

the high-performance infrastructure of distributed systems such as

fault tolerance and graph partitioning for distributed machines.

3 SAGE: PROPOSED FRAMEWORK
Wepresent a novel storage-based SpGEMMmethod, named Storage-
bAsed approach for SpGEMM (SAGE). First, we describe the nota-
tions and the problem statement (Section 3.1). Then, we present the

X

M1
in M2

in

1

1

1

1

1
Intermediate results

Mout

⊕

1 1 1 1

1

1

1

1

2 1 1

Figure 2: The process of row-wise product.

architecture and core algorithms of SAGE (Section 3.2), and three

novel strategies to address performance-critical challenges (Sec-

tion 3.3). Finally, we analyze the complexity of SAGE (Section 3.4).

3.1 Notations and Problem Statement
3.1.1 Notations. Table 2 shows the notations used in this paper.

We denote two input sparse matrices for SpGEMM as𝑀1

𝑖𝑛
and𝑀2

𝑖𝑛
,

and the outputmatrix as𝑀𝑜𝑢𝑡 (i.e.,𝑀
1

𝑖𝑛
×𝑀2

𝑖𝑛
). In amatrix𝑀 ,𝑀 (𝑖, ;)

is an 𝑖-th row, and𝑀 (𝑖, 𝑗) is a 𝑗-th element in the 𝑖-th row, where

the length of each row (|𝑀 (𝑖, ;) |) can vary across rows because𝑀

is a sparse matrix. For clarity, we denote buffers and index tables

in the main memory as 𝐵 and 𝑇 , respectively. 𝐵1
𝑖𝑛

and 𝐵2
𝑖𝑛

are the

input buffers to hold necessary parts of the input matrices, and

𝐵𝑜𝑢𝑡 is the output buffer for the intermediate results.

3.1.2 Problem statement. Given two input sparse matrices of

𝑀1

𝑖𝑛
and𝑀2

𝑖𝑛
, SAGE aims to produce the output sparse matrix𝑀𝑜𝑢𝑡

by performing SpGEMM between the two sparse matrices. When

performing SpGEMM, three different types of products can be con-

sidered: (1) inner product (row-by-column product), (2) outer product
(column-by-row product), and (3) row-wise product (row-by-row
product). Although these three products generate exactly the same

result,𝑀𝑜𝑢𝑡 , they require different computation overhead and mem-

ory space. Specifically, the row-wise product requires not onlymuch

smaller computation overhead (e.g., index-matching) than the inner

product, but also less memory usage than the outer products [4, 44].

Thus, we adopt the row-wise product for performing SpGEMM in

SAGE, following existing algorithms [1, 36, 46, 47]. In the row-wise

product, the 𝑖-th row of the output matrix is computed by Eq. 1,

𝑀𝑜𝑢𝑡 (𝑖, ;) =
𝑛∑︁
𝑗=1

𝑀1

𝑖𝑛 (𝑖, 𝑗) ×𝑀
2

𝑖𝑛 (𝑗, ;), (1)

where𝑛 indicates the number of rows in the input matrices. Figure 2

illustrates the process of the row-wise product computing the 𝑖-th

row of the output matrix𝑀𝑜𝑢𝑡 in performing SpGEMM. First, every

𝑗-th element of the 𝑖-th row in the former input matrix,𝑀1

𝑖𝑛
(𝑖, 𝑗), is

multiplied by its corresponding 𝑗-th row in the latter input matrix,

𝑀2

𝑖𝑛
(𝑗, ;), (highlighted in the same color in Figure 2). Then, the

intermediate results are aggregated to compute the final result

of the 𝑖-th row of the output matrix, 𝑀𝑜𝑢𝑡 (𝑖, ;). This process is
repeated until all rows of the output matrix are computed.

3.2 Architecture and Algorithm
SAGE stores the entire graphs in storage (e.g., SSD), loads only the

necessary parts of the graphs into the main memory, and processes

them in parallel by using multiple threads. Thus, storage-memory
I/Os are inevitably generated during the process of storage-based

SpGEMM, which could become a bottleneck of the overall SpGEMM

process. To handle the inevitable overhead efficiently, in this section,

we propose a novel 3-layer architecture for efficient data transfers

925

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Myung-Hwan Jang et al.

Object

Block

Element

Storage Layer In-Memory Layer Operation Layer

T1buf
1 2 3 4 5 6

T2buf
1 2 3 4 5 6

T2objT1obj

Mout Bout

B1in

B2in

M1
in

M2
in

Pinned
in memory

⊕

Intermediate
results

Figure 3: Overview of SAGE with the 3-layer architecture (storage, in-memory, and operation layers).

between storage andmainmemory (Section 3.2.1), and describe how

SAGE processes SpGEMM based on the architecture (Section 3.2.2).

3.2.1 Architecture. As illustrated in Figure 3, SAGE consists of

three layers: (1) storage, (2) in-memory, and (3) operation layers,

where each layer closely interacts with other layers to efficiently

process storage-memory I/Os.

Storage layer. This layer is in charge of managing the data stored

in external storage: two input matrices (𝑀1

𝑖𝑛
and 𝑀2

𝑖𝑛
), an output

matrix (𝑀𝑜𝑢𝑡), and intermediate results (𝑀𝑜𝑢𝑡 (𝑖, ;)). This storage
layer handles read/write requests from the in-memory layer. We

define a fixed-size unit standard I/O as a block and store the input

matrices in a set of blocks. Each block usually contains multiple

objects, each of which stores each row of the input matrices (i.e.,

a node and its related edges). In a real-world graph following the

power-law degree distribution, there are a few nodes with a very

high degree, which are too large to be stored in a block. For the

exceptional nodes, we divide and store them in multiple blocks.

In-memory layer. This layer is in charge of (1) loading blocks

required for the next operations into main memory, (2) aggregating

the intermediate results from the operation layer to generate the

final result, and (3) writing the final result to the storage layer. For

this process, we define three buffers and four index tables:

• Input buffers (𝐵1
𝑖𝑛

and 𝐵2
𝑖𝑛
): storing rows of the input matrices

(i.e., blocks) required for the row-wise product.

• Output buffer (𝐵𝑜𝑢𝑡): storing the output result of a row-wise

product computed from the operation layer.

• Buffer index tables (𝑇 1

𝑏𝑢𝑓
and 𝑇 2

𝑏𝑢𝑓
): indicating blocks loaded in

the two input buffers of 𝐵1
𝑖𝑛

and 𝐵2
𝑖𝑛
.

• Object index tables (𝑇 1

𝑜𝑏 𝑗
and 𝑇 2

𝑜𝑏 𝑗
): indicating the mappings of

blocks and objects in external storage.

The buffer index tables (𝑇 ∗
𝑏𝑢𝑓

) are referred to check whether the

required rows are already loaded on the main memory. If the rows

are not on the main memory, this layer requests ‘the block having

the required rows’ to the storage layer. In the object index tables

(𝑇 ∗
𝑜𝑏 𝑗

), the 𝑖-th column represents the indices of objects stored in the

𝑖-th block. For memory efficiency, we sort objects by their indices

and store the only two indices of the first and last objects. The

object index tables (𝑇 ∗
𝑜𝑏 𝑗

) are pinned in the main memory to quickly

load the necessary blocks. Note that the pinned object index tables

do not affect the entire performance of SAGE since it requires only

a small amount of memory less than 0.01% of the original graph.

Operation layer. This layer is in charge of performing actual mul-

tiplications using the data in 𝐵1
𝑖𝑛

and 𝐵2
𝑖𝑛
. This layer is performed

as follows: (1) reading two rows to be multiplied in 𝐵1
𝑖𝑛

and 𝐵2
𝑖𝑛

by referring to 𝑇 1

𝑏𝑢𝑓
and 𝑇 2

𝑏𝑢𝑓
, (2) performing a row-wise product

between them, and (3) writing the result (the intermediate result of

𝑀𝑜𝑢𝑡 (𝑖, ;)) to the output buffer. This process is repeated until the

input matrices are processed. The intermediate results are aggre-

gated in the in-memory layer to generate the final result𝑀out (𝑖, ;),
and then stored in the external storage.

3.2.2 Algorithm and performance consideration. Next, let
us describe how SAGE performs SpGEMM based on the 3-layer

architecture. Algorithm 1 shows the entire process of SAGE (logical

view). Given the two input matrices, which are split and stored

in multiple blocks, and their object index tables, (Data loading)
SAGE first loads the two rows to be multiplied into the input buffers

(LoadData(·) in lines 10-18). Specifically, (1) the operation layer

requests the two rows to the in-memory layer, (2) the in-memory

layer accesses the input buffer tables to check whether the blocks

having the required rows are already in the input buffers, and (3) the

in-memory layer sends the blocks having the required rows to the

Algorithm 1: SAGE: Storage-based SpGEMM

Input : Input matrices𝑀1

𝑖𝑛
,𝑀2

𝑖𝑛
, Object index tables𝑇 1

𝑜𝑏 𝑗
,𝑇 2

𝑜𝑏 𝑗

Output :Output matrix H∗
1 Function SAGE(𝑀1

𝑖𝑛
,𝑀2

𝑖𝑛
,𝑇 1

𝑜𝑏 𝑗
,𝑇 2

𝑜𝑏 𝑗
):

2 𝑇 1

𝑏𝑢𝑓
,𝑇 2

𝑏𝑢𝑓
, 𝑀out, t_row← ∅

3 for𝑀1

𝑖𝑛
(𝑖, ;) ∈ 𝑀1

𝑖𝑛
do // processed in multiple threads

4 LoadData(𝑖,𝑇 1

𝑜𝑏 𝑗
,𝑇 1

𝑏𝑢𝑓
)

5 for𝑀2

𝑖𝑛
(𝑗, ;) ∈ 𝑀2

𝑖𝑛
do // 𝑖-th row computation

6 LoadData(𝑗,𝑇 2

𝑜𝑏 𝑗
,𝑇 2

𝑏𝑢𝑓
)

7 𝐵𝑜𝑢𝑡 ← 𝐵𝑜𝑢𝑡∪{t_row}, t_row← 𝑀1
in (𝑖, 𝑗)×𝑀

2

𝑖𝑛
(𝑗, ;)

8 𝑀𝑜𝑢𝑡 (𝑖, ;) ←
∑

tmp∈𝐵𝑜𝑢𝑡 tmp // result aggregation

9 return𝑀out
10 Function LoadData(𝑖,𝑇𝑜𝑏 𝑗 ,𝑇𝑏𝑢𝑓):
11 for 𝑗 = 0, 1, ..., |𝑇𝑜𝑏 𝑗 | − 1 do
12 (𝑛1, 𝑛2) ← 𝑇𝑜𝑏 𝑗 [𝑗] // first/last nodes in a block

13 if 𝑛1 ≤ 𝑖 ≤ 𝑛2 then
14 b_index← 𝑗

15 break
16 if b_index ∉ 𝑇𝑏𝑢𝑓 then // storage-memory I/O

17 𝑇𝑏𝑢𝑓 ← 𝑇𝑏𝑢𝑓 ∪ {b_index}
18 return

926

SAGE: A Storage-Based Approach for Scalable and Efficient Sparse Generalized Matrix-Matrix Multiplication CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

T1 T2 T3 T5T4

Workload
difference

(a) Row-based allocation.

R1 R2 R3

R4 R5

Balanced workloads

T1 T2 T3 T5T4

(b) Block-based allocation.

Figure 4: Comparison of (a) the row-based workload alloca-
tion and (b) the block-based workload allocation.

operation layer if they are already in the input buffers, or otherwise,

requests the blocks to the storage layer. (Multiplication) Then, for
the two rows loaded in the main memory, SAGE computes the 𝑖-th

row of the output matrix,𝑀𝑜𝑢𝑡 (𝑖, ;), by Eq. 1 (lines 3-8), where the

intermediate results (t_row) are stored in 𝐵𝑜𝑢𝑡 and aggregated to

generate the final result 𝑀𝑜𝑢𝑡 (𝑖, ;) in the in-memory layer. Finally,

the in-memory layer sends (i.e., writes) the final results of the output

matrix to the storage layer.

SAGE employs a multi-thread based row-wise product to accel-

erate SpGEMM. Basically, SAGE assigns each row of the former
input matrix to each thread, rather than the latter input matrix.

Thus, the outer for loop in Algorithm 1 (lines 3-8) is performed by

multiple threads in parallel. In this way, SAGE can benefit from the

parallelism of SpGEMM since the computation of each thread is in-
dependent to each other. Furthermore, to maximize the parallelism,

we adopt a block-based workload allocation strategy to distribute

workloads into multiple threads evenly (elaborated in Section 3.3.1).

3.3 Challenges and Strategies
We then point out three critical challenges leading to serious per-

formance degradation in SAGE and propose effective strategies to

address them: (1) block-based workload allocation, (2) in-memory

partial aggregation, and (3) distribution-aware memory allocation.

3.3.1 Workload balancing. To efficiently perform SpGEMM on

large-scale graphs, existing works generally adopt multi-thread

based computation [1, 3, 6, 36, 46, 47], where each thread is in

charge of computing different rows (nodes) of the output matrix in

parallel (i.e., row-based workload allocation). Thus, the workload

of each thread is decided, depending on the number of elements

of each row. In real-world graphs, however, nodes (rows) have a

quite different number of edges (elements) as real-world graphs

tend to follow the power-law degree distribution. It implies that

the workloads of threads could be significantly different from each

other. Such workload differences among threads can adversely af-

fect the overall performance of SpGEMM by decreasing the benefit

of parallel processing. Figure 4(a) shows an example of row-base

workload allocation for five rows with different lengths (R1-R5)

stored in five blocks (dotted boxes), where a large amount of work-

loads for (R1), stored in three blocks, are assigned on a single thread

(T1) (i.e., over-loaded), while only a small amount of workloads for

(R3, R4, and R5), stored in a single block, are split and assigned on

three threads (T3-T5) (i.e., under-loaded). Thus, it is important to
distribute workloads evenly into threads to maximize the benefit of

parallelizing SpGEMM (Challenge 1).

Storage

Column index

Main memory

Hash-based index matching

Partial aggregation

Column index

Figure 5: The amount of storage-memory I/Os could be sig-
nificantly reduced by the in-memory partial aggregation.

To tackle the challenge of workload balancing, we propose a sim-

ple yet effective strategy that distributes workloads into multiple

threads in a block-based manner (block-based workload alloca-
tion). Specifically, SAGE equipped with the block-based workload

allocation assigns “the same number of blocks” to each thread,

rather than the same number of rows with different numbers of

edges, thereby distributing the workloads into threads evenly. Note

that this strategy is applied to the outer for loop (line 3) in Al-

gorithm 1, where the rows of the former input matrix stored in

each block are assigned together to the same thread. Figure 4(b)

shows an example of our block-based workload allocation, where

the large row (R1), stored in three blocks, is split and assigned on

three threads (T1-T3), and the small rows (R3-R5), grouped in a

single block, are assigned together on a single thread (T5). As a

result, all five threads have the same amount of workloads (one

block per thread).

Theoretically, our block-based strategy improves the workload

difference among threads, compared to the row-based one,𝑂 (|𝑟 |) →
𝑂 (𝑏), where |𝑟 | is the # of elements in a row 𝑟 and 𝑏 (fixed) is # of

elements in a block (in general, |𝑟 |𝑚𝑎𝑥 ≫ 𝑏).

3.3.2 Intermediate handling. As described in Section 3.2.2, the

𝑖-th row of the output matrix (𝑀𝑜𝑢𝑡 (𝑖, ;)) is computed by aggregat-

ing the intermediate results of multiple row-wise products – the

inner for loop (lines 5-8) in Algorithm 1. For the aggregation, the in-

termediate results should be loaded on the output buffer. The output

buffer, however, may not be sufficient to store all intermediates due

to the limited size of the main memory, and it could be overflowed

by a large amount of intermediates. In that case, the intermedi-

ates should be flushed into the storage multiple times to process

the remaining row-wise products. They are then loaded back into

the main memory to be aggregated in the end once the remaining

row-wise products are completed. In other words, a large amount

of storage-memory I/Os could be generated by the intermediates,

which could degrade the performance of SpGEMM significantly.

Therefore, it is critical to handle a large amount of storage-memory
I/Os generated by the intermediates results (Challenge 2).

To address this challenge, we propose to column-wisely aggre-

gate the intermediate results of each row directly in the output

buffer (in-memory partial aggregation). Figure 5 illustrates the
effect of our in-memory partial aggregation strategy, where the

intermediates with the same column indices are aggregated in the

mainmemory before they are flushed to storage. Accordingly, SAGE
is able to reduce a large amount of storage-memory I/Os unneces-

sarily generated by the intermediates. Furthermore, we implement

927

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Myung-Hwan Jang et al.

hash-based index matching in SAGE to quickly find and aggregate

the intermediates with the same column index by following [36].

However, we have observed that SpGEMM on extremely large-scale

graphs may still cause even the partially aggregated intermediates

to be overflowed. In this case, SAGE stores them in storage and

aggregate them after finishing all of the row-wise products.

3.3.3 Memory management. SAGE manages three buffers in

the main memory (i.e., two input and an output buffers). Due to the

limited size of the main memory, the amount of storage-memory

I/Os can vary depending on the proportions of the three buffers.

For example, (Case 1) if the input buffers are set too small, the data

loaded into the input buffers are processed in only a few iterations

and replaced frequently, incurring lots of storage-memory I/Os. On

the other hand, (Case 2) if the output buffer is set too small, it is

easily overflowed by a small number of intermediate results, which

also causes storage-memory I/Os frequently. Therefore, it is crucial

to adjust the proportions of the three buffers to reduce the amount of

storage-memory I/Os (Challenge 3).
Toward this challenge, we propose a practical strategy that ad-

justs the proportions of the three buffers, based on the characteris-

tics of real-world graphs (distribution-aware allocation). First,
SAGE sets the size of the former input buffer 𝐵1

𝑖𝑛
as (𝑏 × 𝑡), where

𝑏 is the size of a block and 𝑡 is the number of threads. Note that

the size of (𝑏 × 𝑡) is sufficient for the former input buffer to load

the blocks that all threads can process simultaneously since SAGE
allocates workloads to threads in a block-based manner.

Second, SAGE determines the size of the output buffer 𝐵𝑜𝑢𝑡 . Un-

fortunately, it is infeasible to predict the exact size of the output

row in advance as it depends on data characteristics. Some previ-

ous works [1, 36, 46, 47] have tried to pre-compute the theoretical

maximum size of the intermediate results for each row, and set

the output buffer size as the maximum size in order to prevent the

output buffer from being overflowed. However, it is inappropriate

for SpGEMM on real-world graphs following the power-law degree

distribution since the space required for the intermediate results of

a majority of rows is often much smaller than the theoretical maxi-

mum size (i.e., inefficient memory usage). Thus, we argue that the

output buffer with a size much smaller than the maximum output

size is practically sufficient to process the intermediate results in

most cases. Based on this intuition, we can compute the maximum

size of the intermediate results,𝑚𝑎𝑥_𝑟𝑜𝑤 , and sets the size of the

output buffer as (𝛼 ×𝑚𝑎𝑥_𝑟𝑜𝑤 × 𝑡), considering the degree distribu-
tion of real-world graphs (i.e., distribution-aware allocation), where
𝛼 is the hyperparameter to adjust the output buffer size.

Lastly, SAGE allocates the remaining portion of the main mem-

ory to the latter input buffer 𝐵2
𝑖𝑛
. Formally, given the capacity of

the main memory 𝐶 , a block size 𝑏, the number of threads 𝑡 , and

the hyperparameter 𝛼 , the main memory is allocated as:

SAGE_𝑚𝑒𝑚(𝐶,𝑏, 𝑡, 𝛼) =


𝑏 × 𝑡, 𝐵1

𝑖𝑛

𝐶 − (|𝐵1
𝑖𝑛
| + |𝐵𝑜𝑢𝑡 |), 𝐵2

𝑖𝑛

𝛼 ×𝑚𝑎𝑥_𝑟𝑜𝑤 × 𝑡, 𝐵𝑜𝑢𝑡 .

(2)

3.4 Complexity Analysis
The computational cost of SAGE derives mainly from (1) loading

input matrices, (2) row-wise products, (3) aggregating the interme-

diate results, and (4) storing the final results in the output matrix.

For brevity, we consider SpGEMM between the two sparse matrices

representing the same real-world graph𝐺 = (𝑁, 𝐸), where 𝑁 and 𝐸

is a set of nodes and edges, respectively. The input loading requires

the time complexity of 𝑂 (|𝑁 |2) for two input matrices. For |𝑁 |
many rows, the computational cost of each row-wise products is

𝑂 (|𝑁 | × 𝑟), where 𝑟 is the average number of elements in each row,

where 𝑟 ≪ |𝑁 | since a real-world graph follows the power-law

degree distribution. Thus, the overall complexity of row-wise prod-

ucts is 𝑂 (|𝑁 |2 × 𝑟). The aggregation of the intermediate results

requires 𝑂 (|𝑁 |2 × 𝑟), i.e., (1) hash-based index matching and (2)

element-wise aggregation. Lastly, storing the final results in the

output matrix requires the complexity of 𝑂 (|𝑁 |2 × 𝑟). As a result,
the overall time complexity of SAGE is 𝑂 (|𝑁 |2 × 𝑟), which is com-

parable to the time complexity of common SpGEMM methods. We

will empirically evaluate the scalability of SAGEwith the increasing
size of graphs in Section 4.2.3.

4 EXPERIMENTS
In this section, we comprehensively evaluate SAGE by answering

the following evaluation questions (EQs):

• EQ1: Does SAGE improve the performance of SpGEMM, com-

pared to the existing single-machine-based methods?

• EQ2: Does SAGE improve the performance of SpGEMM, com-

pared to the existing distributed-system-based methods?

• EQ3: How does the SpGEMM performance of SAGE scale up

with the increasing size of graphs?

• EQ4: How effective are the proposed strategies of SAGE in im-

proving the performance of SpGEMM?

4.1 Experimental Setup
Datasets. We use widely used 26 real-world datasets [27, 32] with

various sizes, ranging from 10MB at the minimum to 60GB at the

maximum, and synthetic datasets. For the synthetic datasets, we use

the RecursiveMATrix generator (R-MAT) [7] to generate synthetic

graphs following a power-law degree distribution. R-MAT takes

several parameters: (1) a benchmark type (Graph500, SSCA, or ER),

(2) the scale of the graph𝑛, (3) the edge factor 𝑒 , and (4) the skewness

parameters 𝑎, 𝑏, 𝑐 , and 𝑑 , determining the skewness of the generated

graph. Based on the input parameters, R-MAT generates a matrix

𝑀 ∈ R2𝑛×2𝑛 with 𝑒 × 2𝑛 elements. We use the same parameters as

used in [3, 6, 10].

Evaluation protocol. To comprehensively evaluate SAGE, we
consider two different types of SpGEMM: (1) SpGEMM between

“the same two matrices” (𝑀 ×𝑀) and (2) SpGEMM between “two

different matrices” (𝑀1×𝑀2 or𝑀×𝑀𝑇
). The first type (1) is used in

many graph algorithms such as finding all-pairs shortest paths [8],

self-similarity joins [16], and summarization of sparse datasets [38],

and the second type (2) is used in collaborative filtering [33], triangle

counting [5], and similarity joins of two different sparse graphs [38].

For the evaluation metric, we use the execution time of SpGEMM
of each method because the goal of this work is to improve the

performance of graph algorithms by accelerating SpGEMM.

928

SAGE: A Storage-Based Approach for Scalable and Efficient Sparse Generalized Matrix-Matrix Multiplication CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 3: Comparison of the single-machine-based approach with SAGE on 18 real-world datasets with various sizes.

Dataset Poisson3D Enron Epinions Sphere Filter3D 598a Torso2 Cop20k Cage12

Intel MKL 0.1131 0.5792 0.6343 0.2521 0.3921 0.2660 0.0940 0.4120 0.3669
SAGE 0.3206 0.7497 0.7001 0.5335 0.7436 0.5626 0.3976 0.7433 0.6331

Difference (sec.) 0.2075↑ 0.1705↑ 0.0658↑ 0.2814↑ 0.3515↑ 0.2966↑ 0.3036↑ 0.3313↑ 0.2662↑

Dataset Slashdot Gowalla Pokec Youtube Livejournal Wikipedia UK-2005 SK-2005 Yahoo

Intel MKL 1.9890 7.8299 12.8732 N/A, OOM N/A, OOM N/A, OOM N/A, OOM N/A, OOM N/A, OOM

SAGE 1.7558 6.772 10.6391 38.734 94.8283 2,276 616 3,709 12,994

Difference (sec.) 0.2332↓ 1.0579↓ 2.2341↓ - - - - - -

Competing methods. We compare SAGE with the following

SpGEMM methods in our experiments.

• IntelMKL [46]: the Intel MKL, a state-of-the-art single-machine-

based method, is the Intel CPU optimized open-source library

supporting a series of math functions such as SpGEMM and

SpMV, which was also used in [1, 36, 40, 44, 47].

• SpSUMMA [6]: SpSUMMA is a distributed-system-basedmethod

that parallelizes SpGEMM by partitioning input matrices into

2-D grids and processing them using multiple machines.

• Graphulo [17]: Graphulo stores input matrices in a distributed

system exploiting the data locality to reduce the inter-machine

communication overhead.

• gRRp [10]: gRRp adopts a bipartite graph-based partitioning

method for balancing workloads among multiple machines in a

distributed system.

Implementation details. We run all experiments on a single ma-

chine equipped with Intel i7-7700K CPU, 64GB main memory, and

4TB SSD as the storage. We set the number of threads 𝑡 as 4 to

fully utilize all four physical cores in the CPU. As explained in

Section 3.3.3, SAGE allocates the main memory into three buffers

(i.e., two input and one output matrices) by the distributed-aware
allocation (Eq. 2), where we set the hyperparameter 𝛼 as 12.5%. We

will empirically evaluate the impact of the hyperparameter 𝛼 on

the performance of SAGE in Section 4.2.4.

4.2 Experimental Results
4.2.1 Single-machine-based approach (EQ1). We first com-

pare SAGEwith the single-machine-based approach, Intel MKL [46],

in terms of the SpGEMM performance (i.e., execution time).

Setup. To comprehensively evaluate SAGE, we use 18 real-world
datasets with various sizes, 12 relatively small datasets that can be

loaded on the main memory and 6 large datasets that exceed the

limit of the main memory capacity. Then, we (1) perform SpGEMM

using each method on the datasets for 5 times and (2) measure

the average execution time of SpGEMM of each method. Note that

we limit the main memory size to 16GB to rigorously evaluate the

ability of SAGE to handle the storage-memory I/Os.

Results and analysis. Table 3 shows the results. First, SAGE pro-

vides the comparable performance to or even “better” than the Intel

MKL, the in-memory based method. Specifically, SAGE (1) finishes

SpGEMM slightly slower (only less than 0.4 sec.) than the Intel

MKL in 9 datasets which are small enough to load the entire data

on the main memory and (2) even outperforms the Intel MKL in

Table 4: Statistics of synthetic datasets

Benchmark Scale 𝑛 # of nodes # of edges

Graph500

(Graphulo and gRRp)

15 32.7K 524K

16 65.6K 1.04M

17 131K 2.09M

18 262K 4.19M

SSCA

(SpSUMMA)

21 2.09M 16.7M

22 4.19M 33.5M

23 8.38M 67.1M

24 16.7M 134M

Slashdot, Gowalla, and Pokec datasets. We highlight that these im-

provements over the Intel MKL are significant, given that the Intel

MKL is an in-memory based SpGEMM method loading and process-

ing the entire data on the main memory (i.e., no storage-memory

I/Os) and specially designed for the Intel CPU architecture, while

SAGE has to handle the inherent additional overhead for data trans-

fers between the main memory and external storage as described

in Section 3.2. Second, SAGE successfully performs SpGEMM on

very large real-world datasets (i.e., from Youtube to Yahoo datasets

in Table 3) that the Intel MKL could not handle due to the limited

capacity of the main memory.

As a result, these results demonstrate that SAGE is able not

only (1) to perform SpGEMM on very large graphs by utilizing the

sufficient capacity of external storage (i.e., scalable), but also (2)

to efficiently handle storage-memory I/Os by addressing the three

challenges, as described in Section 3.3.

4.2.2 Distributed-system-based approach (EQ2). In this ex-

periment, we compare SAGE with three state-of-the-art distributed-

system-based SpGEMM methods: Graphulo [17], gRRp [10], and

Sparse SUMMA (SpSUMMA) [6]. We use their experimental results

reported in [6, 10] by following [18, 19, 28, 35, 41] since we use the

exactly same datasets as in [6, 10] and it is not feasible to construct

the identical distributed systems that the existing works used.

Setup. We use both real-world and synthetic datasets, which were

used in [6, 10]. Specifically, for comparison with Graphulo and

gRRp, we use 13 real-world and 4 synthetic datasets, generated by

Graph500 benchmark with the scale factor varying from 15 to 18,

where we set the edge factor 𝑒 = 16 and the skewness parameters

𝑎 = 0.57, 𝑏 = 0.19, 𝑐 = 0.19, and 𝑑 = 0.05 by following [10]. For

comparison with SpSUMMA, we use 4 synthetic datasets, generated

by SSCA benchmark with the scale factor varying 𝑛 from 21 to 24,

where we set the edge factor 𝑒 = 8 and the skewness parameters

𝑎 = 0.6 and 𝑏 = 𝑐 = 𝑑 = 0.4/3 by following [6]. Table 4 shows the

statistics of the synthetic datasets used in this experiment.

929

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Myung-Hwan Jang et al.

Table 5: Comparison of the distributed-system-based methods with SAGE on 13 real-world datasets with various sizes.

Dataset Sphere Filter3D 598a Torso2 Cage12 144 Wave Majorbasis Scircuit Mac Offshore Mario Tmt_sym

Graphulo 7.37 12.91 9.57 4.81 13.28 11.97 11.85 8.07 6.36 4.63 18.86 9.07 13.55

gRRp 1.50 3.71 1.65 0.86 2.63 2.35 1.87 1.52 1.02 1.31 3.89 1.70 3.34

SAGE 0.36 0.77 0.34 0.11 0.54 0.48 0.41 0.25 0.18 0.25 0.93 0.30 0.62

Difference (sec.) 1.14↓ 2.94↓ 1.31↓ 0.75↓ 2.09↓ 1.87↓ 1.46↓ 1.27↓ 0.84↓ 1.06↓ 2.96↓ 1.40↓ 2.72↓

Graphulo gRRp SAGE
SpSUMMA-L SpSUMMA-M SpSUMMA-H

15 16 17 18

0

5

10

15

20

Graph scale factor (𝑛)

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
.)

(a) Graph500

21 22 23 24

0

20

40

60

Graph scale factor (𝑛)

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
.)

(b) SSCA.

Figure 6: Comparison of the distributed-system-based meth-
ods with SAGE on synthetic datasets.

Then, we (1) perform SpGEMM using SAGE on the datasets for

5 times and (2) measure the average execution time of SpGEMM of

eachmethod.We note that Graphulo and gRRp have been conducted

on the distributed system that consists of 10 machines equipped

with 2 Intel Xeon E5-2690 v4 processors connected via the DGS-

3120-24TC Ethernet [10] and SpSUMMA has been conducted on

the Franklin XT4 system, where each machine is equipped with a

quad-core AMD Opteron processor and connected with each other

via a 6.4 GB/s network [6].

Results and analysis. Table 5 shows the results of Graphulo,

gRRp, and SAGE on 13 real-world datasets. The results reveal that

SAGE consistently outperforms the state-of-the-art distributed-

system-based methods in all real-world datasets. Specifically, SAGE
finishes the SpGEMM by up to 7.7× faster and gRRp, the best per-

former among competitors. Whereas, Graphulo provides the poor

SpGEMM performance on real-world graphs (e.g., by up to 43×
slower than SAGE in Torso2 dataset). This is because Graphulo,

which adopts the outer product, suffers from the significant over-

head of indexing and aggregating a large amount of the intermediate

results of outer-product based SpGEMM as described in Section 3.1.

Although gRRp provides the performance of SpGEMM much better

than Graphulo, SAGE still significantly outperforms gRRp. We ar-

gue that these performance improvement of SAGE over Graphulo

and gRRp is significant, considering they perform SpGEMM on

the high-performance distributed system that consists of 10 ma-

chines [10]. Thus, these results imply that SAGE is able to efficiently

handle large-scale SpGEMM in a single machine, requiring only

intra-machine communication overhead (i.e., storage-memory I/Os),

much smaller than the inter-machine communication overhead.

Figure 6 shows the results on synthetic datasets, generated by

two benchmarks (Graph500 and SSCA), where the 𝑥-axis represents

the graph scale factor 𝑛 of each synthetic dataset and the 𝑦-axis rep-

resents the execution time (sec.). Similar to the results on real-wold

datasets, Figure 6(a) shows that SAGE significantly outperforms the

High Normal Low

18 20 22 24 26 28

10
0

10
1

10
2

10
3

10
4

Graph scale factor

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
.)

(a) Graph500

18 20 22 24 26 28

10
0

10
1

10
2

10
3

10
4

Graph scale factor

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
.)

(b) ER

Figure 7: The SpGEMM execution time of SAGE with the
increasing sizes of synthetic graphs.

two distributed-system-based methods, Graphulo and gRRp, across

all graph scales. Moreover, as shown in Figure 6(b)
1
, SAGE suc-

cessfully performs SpGEMM on very large-scale graphs (the scale

factor 𝑛 ≥ 23) that SpSUMMA-L and SpSUMMA-M fail to handle in

a single machine. As a result, These results demonstrate that SAGE
is able to process large-scale real-world graphs successfully with

only limited computing resources of a single machine, rather than

those of costly distributed-systems (i.e., cost-effective).

4.2.3 Scalability (EQ3). In this experiment, we evaluate the scal-

ability of SAGE with the increasing sizes of graphs.

Setup.We use synthetic datasets, generated by two different bench-

marks (Graph500 and ER) [3] with various graph scales 𝑛 ranging

from 18 to 28, where the scale factor 𝑛 decides the number of nodes

in a generated graph (i.e., |𝑁 | = 2
𝑛
). For each generated graph,

we also consider two different edge factors to control the num-

ber of edges (i.e., one for a high-degree graph and the other for a

low-degree graph). Specifically, we set the edge factor for the high-

degree and low-degree graphs as 1.5 × 𝑒 and 0.5 × 𝑒 , respectively2.
Then, we perform SpGEMM (type (2)) on the generated graphs for

5 times and measure the average execution time (sec.).

Results and analysis. Figure 7 shows the results, where the 𝑥-axis
represents the scale factor 𝑛, the 𝑦-axis represents the execution

time (sec. in log-scale), and the red dotted vertical line represents

the limits of existing single-machine-based methods. We observe

that the execution time of SAGE tends to increase by 4.5 times as the

scale factor increases by 2 (i.e., a graph gets 4× larger). This result

demonstrates that the SpGEMM performance of SAGE successfully

scales up to very large-scale graphs, exceeding the capacity of the

main memory (red dotted vertical line), and SAGE provides (almost)

linear scalability with the increasing sizes of graphs.

1
Buluç and Gilbert [6] used three different number of cores in its system with 3

(SpSUMMA-L), 4 (SpSUMMA-M), and 9 (SpSUMMA-H) machines, respectively.

2
We could not show the results of high-degree graphs with graph scale 28 since R-MAT

generator could not generate them due to the integer overflow.

930

SAGE: A Storage-Based Approach for Scalable and Efficient Sparse Generalized Matrix-Matrix Multiplication CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Wikipedia UK-2005 SK-2005 Yahoo

0

5k

10k

15k

E
x
e
c
u
t
i
o
n
t
i
m
e

(
s
e
c
.)

SAGE-No SAGE-BW SAGE-PA SAGE-All

O
.O
.S
.

O
.O
.S
.

O
.O
.S
.

O
.O
.S
.

(a) Effects on the SpGEMM performance.

Wikipedia UK-2005 SK-2005 Yahoo

0

50

100

R
e
l
a
t
i
v
e
a
m
o
u
n
t

o
f
I
/
O
s
(
%
)

SAGE w/o PA SAGE w/ PA

(b) Analysis of the in-memory-partial aggregation.

Figure 8: Effects of our proposed strategies on SAGE.

4.2.4 Ablation study (EQ4). Lastly, in this section, we evaluate

the effectiveness of the proposed strategies of SAGE individually.

Setup (1). We first evaluate the first two strategies: (1) block-based

workload allocation and (2) in-memory partial aggregation. To rigor-

ously evaluate the two strategies, we (1) use four largest real-world

datasets (i.e.,Wikipedia, UK-2005, SK-2005, and Yahoo datasets [18]),

which could not be loaded into main memory, and (2) limit the size

of the main memory to 2GB to incur a large amount of storage-

memory I/Os. We compare the following four versions of SAGE:
• SAGE-No: a baseline without any optimizations

• SAGE-BW: the version with the block-based workload allocation

• SAGE-PA: the version with the in-memory partial aggregation

• SAGE-All: the final version with both optimizations

We perform SpGEMM (type (1)) using each version and measure

the execution time (sec.). For this experiment, we set the hyperpa-

rameter 𝛼 = 12.5% for the main memory buffer allocation.

Results and analysis (1). As shown in Figure 8(a), each of the

proposed strategy is effective in improving the performance of

SpGEMM and SAGE-All consistently provides the best performance

in all datasets (up to 4.7× over SAGE-no). Also, for the two largest

datasets (i.e., SK-2005 and Yahoo), SAGE-no and SAGE-BW fail to

perform SpGEMM because the size of intermediate results even

exceeds the capacity of the 4TB external storage, where ‘O.O.S.’

indicates ‘out of storage’. Interestingly, SAGE-PA consistently out-

performs SAGE-BW in all cases, which implies that, in case of large-

scale SpGEMM, handling storage-memory I/Os could be more criti-

cal than balancing workloads, in particular when the main memory

size of a single machine is limited.

For more analysis of the in-memory partial aggregation, we mea-

sure the amount of storage-memory I/Os generated by the interme-

diate results during SpGEMMof SAGEwith/without the in-memory

partial aggregation (SAGE w/ PA and SAGE w/o PA in Figure 8(b)).

Figure 8(b) shows the relative amount of storage-memory I/Os,

where our in-memory partial aggregation significantly reduces the

amount of storage-memory I/Os (up to 87% in UK-2005). This result

demonstrates that in performing storage-based SpGEMM on large-

scale graphs, a substantial amount of storage-memory I/Os could

be generated; thus, it is crucial to efficiently handle these I/Os in

order to achieve good performance, as we claimed in Section 3.3.

1 2 4 8 16

0

200

400

the size of 𝐵1

𝑖𝑛 (MB)

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
.)

t=2 t=4 t=8

(a) Input buffer

6.2512.5 25 50

2.2k

2.4k

2.6k

hyperparameter 𝛼 (%)

0.5GB 1GB

2GB 4GB

(b) Output buffer

Figure 9: Effects of distribution-aware memory allocation.

Setup (2). We also evaluate our distribution-aware memory alloca-

tion. As described in in Section 3.3.3, we set (1) the former input

buffer 𝐵1
𝑖𝑛

= 𝑏 × 𝑡 , where 𝑏 is the size of a block (1MB) and 𝑡 is the

number of threads; and (2) the output buffer 𝐵𝑜𝑢𝑡 = 𝛼×𝑚𝑎𝑥_𝑟𝑜𝑤×𝑡 ,
where𝑚𝑎𝑥_𝑟𝑜𝑤 here indicates the maximum size of the final re-

sults for each row. Then, we perform SpGEMMwith varying (1) the

numbers of threads (2, 4, and 8), (2) the size of 𝐵1
𝑖𝑛

(1MB to 16MB),

and (3) the hyperparameter 𝛼 (6.25% to 50%).

Results and analysis (2). Figure 9(a) shows that the performance

of SAGE gets improved as the number of threads and the size of

𝐵1
𝑖𝑛

increase, where the performance improvement converges at

a specific point where the size of 𝐵1
𝑖𝑛

is equal to 𝑏 × 𝑡 , which im-

plies that the buffer size is sufficient to load the blocks for that all
threads can process simultaneously, as explained in Section 3.3.3.

Figure 9(b) shows the performance of SAGEwith respect to the size

of main memory and the hyperparameter 𝛼 . The performance of

SAGE tends to be improved as 𝛼 and the size of the main memory

increase, but the performance improvement gets smaller as 𝛼 in-

creases, which implies that about 12.5 ∼ 25% of the maximum size

is enough for 𝐵𝑜𝑢𝑡 to process the intermediate results of a majority

of rows. As a result, we believe that our distribution-aware memory

allocation is effective and practical in large-scale SpGEMM.

5 CONCLUSIONS
In this paper, we point out the limitations of previous approaches

for SpGEMM: (i) the single-machine-based approach cannot handle

large-scale graphs surpassing the capacity of the main memory

(i.e., not scalable), and (ii) the distributed-system-based approach

requires a substantial amount of inter-machine communication

overhead (i.e., not efficient). To address both challenges of scala-

bility and efficiency, we propose a novel storage-based approach

to SpGEMM (SAGE) with the 3-layer architecture to efficiently

handle storage-memory I/Os. We further identify three important

challenges that could cause serious performance degradation in

storage-based SpGEMM and propose three effective strategies to

address them: (1) block-based workload allocation, (2) in-memory

partial aggregation, and (3) distribution-aware memory allocation.

Through comprehensive evaluation, we demonstrate the superiority

of SAGE in terms of (1) scalability, (2) efficiency, and (3) effectiveness.

6 ACKNOWLEDGMENTS
This is a joint work between Samsung Electronics Co., Ltd and

Hanyang University. This work was supported by Institute of In-

formation & communications Technology Planning & Evaluation

(IITP) grant funded by the Korea government (MSIT) (No.2022-0-

00352 and No.RS-2022-00155586).

931

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Myung-Hwan Jang et al.

REFERENCES
[1] Kadir Akbudak and Cevdet Aykanat. 2017. Exploiting locality in sparse matrix-

matrix multiplication on many-core architectures. IEEE Transactions on Parallel
and Distributed Systems 28, 8 (2017), 2258–2271.

[2] Michael J Anderson, Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali

Patwary, Theodore L Willke, and Pradeep Dubey. 2016. Graphpad: Optimized

graph primitives for parallel and distributed platforms. In 2016 IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 313–322.

[3] Ariful Azad, Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Oded

Schwartz, Sivan Toledo, and Samuel Williams. 2016. Exploiting multiple levels

of parallelism in sparse matrix-matrix multiplication. SIAM Journal on Scientific
Computing 38, 6 (2016), C624–C651.

[4] Daehyeon Baek, Soojin Hwang, Taekyung Heo, Daehoon Kim, and Jaehyuk Huh.

2021. InnerSP: A Memory Efficient Sparse Matrix Multiplication Accelerator with

Locality-Aware Inner Product Processing. In 2021 30th International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE, 116–128.

[5] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. 2008. Efficient

semi-streaming algorithms for local triangle counting in massive graphs. In

Proceedings of the ACM International Conference on Knowledge Discovery and
Data Mining. ACM, 16–24.

[6] Aydin Buluç and John RGilbert. 2012. Parallel sparsematrix-matrixmultiplication

and indexing: Implementation and experiments. SIAM Journal on Scientific
Computing 34, 4 (2012), C170–C191.

[7] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

recursive model for graph mining. In Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 442–446.

[8] Paolo D’alberto and Alexandru Nicolau. 2007. R-Kleene: A high-performance

divide-and-conquer algorithm for the all-pair shortest path for densely connected

networks. Algorithmica 47, 2 (2007), 203–213.
[9] Timothy A Davis. 2019. Algorithm 1000: SuiteSparse: GraphBLAS: Graph algo-

rithms in the language of sparse linear algebra. ACM Transactions on Mathemati-
cal Software (TOMS) 45, 4 (2019), 1–25.

[10] Gunduz Vehbi Demirci and Cevdet Aykanat. 2020. Scaling sparse matrix-matrix

multiplication in the accumulo database. Distributed and Parallel Databases 38, 1
(2020), 31–62.

[11] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. 2017.

Performance-portable sparse matrix-matrix multiplication for many-core archi-

tectures. In 2017 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 693–702.

[12] Felix Gremse, Kerstin Kupper, and Uwe Naumann. 2018. Memory-efficient sparse

matrix-matrix multiplication by row merging on many-core architectures. SIAM
Journal on Scientific Computing 40, 4 (2018), C429–C449.

[13] Rong Gu, Yun Tang, Chen Tian, Hucheng Zhou, Guanru Li, Xudong Zheng,

and Yihua Huang. 2017. Improving execution concurrency of large-scale matrix

multiplication on distributed data-parallel platforms. IEEE Transactions on Parallel
and Distributed Systems 28, 9 (2017), 2539–2552.

[14] Masoud Reyhani Hamedani and Sang-Wook Kim. 2017. JacSim: An accurate and

efficient link-based similarity measure in graphs. Information Sciences 414 (2017),
203–224.

[15] Wook-Shin Han, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,

Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: A fast parallel graph engine han-

dling billion-scale graphs in a single PC. In Proceedings of the ACM international
conference on knowledge discovery and data mining (KDD). 77–85.

[16] Guoming He, Haijun Feng, Cuiping Li, and Hong Chen. 2010. Parallel SimRank

computation on large graphs with iterative aggregation. In Proceedings of the
ACM international conference on knowledge discovery and data mining (SIGKDD).
543–552.

[17] Dylan Hutchison, Jeremy Kepner, Vijay Gadepally, and Adam Fuchs. 2015. Gra-

phulo implementation of server-side sparse matrix multiply in the Accumulo

database. In 2015 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 1–7.

[18] Yong-Yeon Jo, Myung-Hwan Jang, Sang-Wook Kim, and Sunju Park. 2019. Re-

alGraph: A graph engine leveraging the power-law distribution of real-world

graphs. In Proceedings of the World Wide Web Conference. ACM, 807–817.

[19] Sang-Woo Jun, Andy Wright, Sizhuo Zhang, Shuotao Xu, et al. 2018. GraFBoost:

Using accelerated flash storage for external graph analytics. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). IEEE,
411–424.

[20] Yoonsuk Kang, Jun Seok Lee, Won-Yong Shin, and Sang-Wook Kim. 2020. Cr-

graph: Community reinforcement for accurate community detection. In Pro-
ceedings of the 29th ACM International Conference on Information & Knowledge
Management. 2077–2080.

[21] George Karypis and Vipin Kumar. 1998. Multilevel k-way partitioning scheme

for irregular graphs. J. Parallel and Distrib. Comput. 48, 1 (1998), 96–129.
[22] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz Franchetti,

John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning

Meyerhenke, et al. 2016. Mathematical foundations of the GraphBLAS. In 2016

IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–9.
[23] Jeremy Kepner and John Gilbert. 2011. Graph algorithms in the language of linear

algebra. SIAM.

[24] Jon M Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J.
ACM 46, 5 (1999), 604–632.

[25] Yunyong Ko, Kibong Choi, Jiwon Seo, and Sang-Wook Kim. 2021. An In-Depth

Analysis of Distributed Training of Deep Neural Networks. In Proceedings of the
IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE,
994–1003.

[26] Yunyong Ko, Jae-Seo Yu, Hong-Kyun Bae, Yongjun Park, Dongwon Lee, and

Sang-Wook Kim. 2021. MASCOT: A Quantization Framework for Efficient Matrix

Factorization in Recommender Systems. In 2021 IEEE International Conference on
Data Mining (ICDM). IEEE, 290–299.

[27] Scott P Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A

Davis, Matthew Henderson, Yifan Hu, and Read Sandstrom. 2019. The suitesparse

matrix collection website interface. Journal of Open Source Software 4, 35 (2019),
1244.

[28] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale

graph computation on just a pc. In Proceedings of the USENIX symposium on
operating systems design and implementation (OSDI). 31–46.

[29] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Predicting pos-

itive and negative links in online social networks. In Proceedings of the 19th
international conference on World wide web. 641–650.

[30] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed networks

in social media. In Proceedings of the SIGCHI conference on human factors in
computing systems. 1361–1370.

[31] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:

Densification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data 1, 1 (2007), 1–41.

[32] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[33] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon. com recommenda-

tions: Item-to-item collaborative filtering. IEEE Internet computing 7, 1 (2003),

76–80.

[34] Hang Liu, H Howie Huang, and Yang Hu. 2016. ibfs: Concurrent breadth-first

search on gpus. In Proceedings of the 2016 International Conference on Management
of Data. 403–416.

[35] SteffenMaass, ChangwooMin, Sanidhya Kashyap,Woonhak Kang,MohanKumar,

and Taesoo Kim. 2017. Mosaic: Processing a trillion-edge graph on a single

machine. In Proceedings of the Twelfth European Conference on Computer Systems.
527–543.

[36] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Buluç. 2018. High-

performance sparse matrix-matrix products on intel knl and multicore architec-

tures. In Proceedings of the 47th International Conference on Parallel Processing
Companion. 1–10.

[37] Yusuke Nagasaka, Akira Nukada, and Satoshi Matsuoka. 2017. High-performance

and memory-saving sparse general matrix-matrix multiplication for nvidia pascal

gpu. In 2017 46th International Conference on Parallel Processing (ICPP). IEEE, 101–
110.

[38] Carlos Ordonez, Yiqun Zhang, and Wellington Cabrera. 2016. The Gamma matrix

to summarize dense and sparse data sets for big data analytics. IEEE Transactions
on Knowledge and Data Engineering 28, 7 (2016), 1905–1918.

[39] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[40] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-

ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,

and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse ma-

trix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 724–736.

[41] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-

centric graph processing using streaming partitions. In Proceedings of the ACM
symposium on operating systems principles (SOSP). 472–488.

[42] Robert Sedgewick and Kevin Wayne. 2011. Algorithms. Addison-Wesley profes-

sional.

[43] Oguz Selvitopi, Gunduz Vehbi Demirci, Ata Turk, and Cevdet Aykanat. 2019.

Locality-aware and load-balanced static task scheduling for MapReduce. Future
Generation Computer Systems 90 (2019), 49–61.

[44] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.

Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise

product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766–780.

[45] Kenji Suzuki, Isao Horiba, and Noboru Sugie. 2003. Linear-time connected-

component labeling based on sequential local operations. Computer Vision and
Image Understanding 89, 1 (2003), 1–23.

[46] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing

Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phi™. Springer, 167–188.

932

http://snap.stanford.edu/data

SAGE: A Storage-Based Approach for Scalable and Efficient Sparse Generalized Matrix-Matrix Multiplication CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

[47] Zhen Xie, Guangming Tan, Weifeng Liu, and Ninghui Sun. 2019. IA-SpGEMM:

An input-aware auto-tuning framework for parallel sparse matrix-matrix multi-

plication. In Proceedings of the ACM International Conference on Supercomputing.
94–105.

[48] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. 2020. Sparch:

Efficient architecture for sparse matrix multiplication. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE, 261–274.

[49] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe,

and Alexander S Szalay. 2015. FlashGraph: Processing billion-node graphs on

an array of commodity SSDs. In Proceedings of the USENIX conference on file and
storage technologies (FAST). 45–58.

[50] Da Zheng, Disa Mhembere, Vince Lyzinski, Joshua T Vogelstein, Carey E Priebe,

and Randal Burns. 2016. Semi-external memory sparse matrix multiplication for

billion-node graphs. IEEE Transactions on Parallel and Distributed Systems 28, 5
(2016), 1470–1483.

933

	Abstract
	1 Introduction
	2 Related Work
	3 SAGE: Proposed framework
	3.1 Notations and Problem Statement
	3.2 Architecture and Algorithm
	3.3 Challenges and Strategies
	3.4 Complexity Analysis

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Conclusions
	6 Acknowledgments
	References

