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ABSTRACT

AMD’s Secure Encrypted Virtualization (SEV) is a hardware-

based Trusted Execution Environment (TEE) designed to se-

cure tenants’ data on the cloud, even against insider threats.

The latest version of SEV, SEV-Secure Nested Paging (SEV-

SNP), offers protection against most well-known attacks such

as cold boot and hypervisor-based attacks. However, it re-

mains susceptible to a specific type of attack known as Active

DRAM Corruption (ADC), where attackers manipulate mem-

ory content using specially crafted memory devices. The

in-memory key-value store (KVS) on SEV is a prime target

for ADC attacks due to its critical role in cloud infrastruc-

ture and the predictability of its data structures. To counter

this threat, we propose KVSEV, an in-memory KVS resilient

to ADC attacks. KVSEV leverages SNP’s Virtual Machine

Management (VMM) and attestation mechanism to protect

the integrity of key-value pairs, thereby securing the KVS

from ADC attacks. Our evaluation shows that KVSEV se-

cures in-memory KVSs on SEV with a performance overhead

comparable to other secure in-memory KVS solutions.
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1 INTRODUCTION

These days, many applications are deployed as cloud ser-

vices to take various advantages of cloud computing, such as

elasticity, cost-effectiveness, and high availability. Cloud ser-

vices are often built and enacted by stitching together many

individual components or services. In-memory key-value

stores (KVSs), such as Redis [45] are indispensable compo-

nents that almost every cloud service commonly employs

as its temporal data storage. The benefit of cloud computing

comes at a cost, particularly in terms of security, primarily

because cloud services execute remotely and are not under

the complete control of their clients. The machines operate

under the control of privileged software owned by cloud

platform providers. Therefore, this remote execution in the

cloud implies that applications for cloud services have no

choice but to trust the platform providers and execution envi-

ronments for the integrity of their code and data. This blind

trust in the cloud environments presents a potential attack

vector to adversarial insiders (e.g., malicious administrators
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and co-located tenants in the cloud) with capabilities that

the insiders have. To expose or corrupt sensitive contents

managed by cloud applications, such adversarial insiders

could either physically replace hardware components with

a maliciously crafted one or exploit the privileged software

layers like OS and hypervisor.

Concerning these ever-escalating insider threats in the

era of cloud computing, multiple processor vendors such as

Intel, ARM, and AMDhave introduced commodity trusted ex-

ecution environments (TEE) to provide a hardware-assisted

secure computing platform. These TEEs, despite their imple-

mentation differences, share a common attribute: they pro-

tect user code and data from any privileged software layers in

cloud infrastructure using hardware-enforced mechanisms.

Such an appealing security promise offered by TEEs and

the prevalence of KVSs in the cloud have naturally brought

attention from many engineers to leveraging TEEs for de-

veloping secure KVSs [4–6, 29]. These secure KVSs ensure

the confidentiality and integrity of their key-value pairs to

protect the services’ data. However, to the best of our knowl-

edge, no published work has proposed a secure KVS using a

commodity TEE on x86/x64, known as Secure Encrypted Vir-

tualization (SEV) [1], which has been continuously gaining

traction since its initial release in 2016. Considering the grow-

ing popularity of AMD processors in many cloud platforms

today, there is undoubtedly a strong demand for providing a

secure KVS for remote users of AMD systems.

Our work aims to address the demand for protecting a

KVS on SEV from viable attacks that untermine the security

advantages of using SEV. The arms race surrounding SEV

has led to the development of its latest version, SEV-SNP (Se-

cure Nested Paging) [2]. This latest version of SEV thwarts

most existing attacks (e.g., hypervisor-based attacks, cold

boot attacks[17], and DMA attacks [12]), but remains vulner-

able to a specific class of attacks, referred to as active DRAM

corruption (ADC), because SEV does not cryptographically

authenticate the contents of off-chip memory. In particu-

lar, attackers with tools like DDR bus interposers [15, 49]

can dynamically modify or replace off-chip memory con-

tent. Through ADC, an adversary can either corrupt or re-

play the key-value pairs, necessitating additional security

mechanism to ensure the integrity of key-value pairs. Unfor-

tunately, software-only measures such as Merkle tree [48]

that stores cryptographic hashes of the target data cannot

be adopted as a drop-in solution, due to the fact that such

software-protected hashes are also vulnerable to ADC, al-

lowing the attackers to replay hash and key-value pair to

pass the integrity validation with outdated values.

This paper presents our ADC-safe in-memory KVS, named

KVSEV, on an AMD system. The key idea behind KVSEV is

that a sequence of virtual machines (VMs) is used to provide

trusted storage for the cryptographic hashes of key-value

pairs. Different encryption keys assigned for respective VMs

prevent the hashes from being rolled back as outdated hash

will be decrypted to invalid value. VM encryption keys are

secured by on-chip AMD Secure Processor (SP), safe from

ADCs. For the safe deployment and termination of the hash-

holding VMs against possible attacks, KVSEV makes us of

several new features of SEV-SNP. Particularly as useful prim-

itives for our work, we utilize two protocols that SEV-SNP

implements. One is for virtual machine management (VMM),

which empowers remote clients of a cloud to directly com-

municate with the firmware in trusted hardware. The other

is for enhanced attestation that allows a flexible request for

the report at runtime. Further, we make three optimizations

to reduce the latency stemming from continuous VM cre-

ation and VM verification process; we eagerly create VMs

that KVSEV uses to handle requests in advance, debloat the

VMs to quickly boot new VMs, and perform the verification

asynchronously.

We have designed and implemented KVSEV on an off-the-

shelf AMD machine with SEV and, as presented in §5, evalu-

ated it using two workload distributions. Our experimental

results show that KVSEV incurs 13.38× slowdown compared

to an insecure KVS on SEV when handling workload with

90% reads. Experiments with large KVSs also demonstrate

that the performance of KVSEV is comparable to or better

than existing secure in-memory KVSs [29].

2 AMD SEV

SEV is an extension to the AMD Virtualization [10] architec-

ture that is built with Secure Memory Encryption (SME) [26].

SME offers protection against snooping or probing of DRAM

contents by the adversaries. With a hardware-accelerated

Advanced Encryption Standard (AES) engine embedded in

the on-die memory controllers, memory contents are en-

crypted and decrypted on arrival and departure from the

CPU package. While Secure Memory Encryption (SME) uses

just one encryption key for the whole machine, SEV pro-

vides distinct ephemeral keys, called VM Encryption Keys

(VEKs), to encrypt each VM data when stored outside the

CPU package. This encryption with the per-VM key prevents

the malicious host hypervisor or physical attackers from ob-

taining the VM’s data The encryption keys are securely held

by the SEV firmware running on an isolated system on the

same package, called the AMD Secure Processor (SP). This

isolation renders any attempts to access the VEKs fruitless.

The SEV memory controller encrypts the VM memory

using 128-bit AES symmetric encryption. In the first genera-

tion of SEV released in 2016, the AES encryption used the

XOR-Encrypt (XE) mode [11], but this was soon replaced by
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Attack precision Enabling mechanisms
Applicability on

SEV-SNP
Protection

high

(single instruction)

Interrupt injection [33, 52]

(e.g., APIC controller)
�

Hypervisor is restricted from injecting interrupts and exceptions into the VM

by introducing a single injection vector (#HV) to act as a doorbell for VM to

acknowledge [2, 31].

medium

(few instructions)

fault injection [27, 40, 42]

(e.g., manipulating DVFS)
�

Software-based fault injections through undervolting were not able to

generate effective faults on SEV machines [43].

low data access monitoring � KVSEV

Table 1: Mechanisms that ADC attackers can use to improve attack precision, and the corresponding protection

measures.

the XOR-Encrypt-XOR (XEX) mode in the following gener-

ations, SEV-ES [25] and SEV-SNP [2]. The SEV’s encryp-

tion mode encrypts each aligned 16-byte memory block.

In order to prevent the attacker from directly inferring a

plaintext by comparing the ciphertext blocks stored in dif-

ferent locations, SEV uses a physical address-based tweak

function 𝑇 [26]. With this tweak function, a ciphertext 𝑐 is
calculated by running the tweak function with the system

physical address during the encryption process, expressed

as 𝑐 = 𝐸𝑛𝑐𝐾 (𝑝
⊕

𝑇 (𝑃𝑚))
⊕

𝑇 (𝑃𝑚) where 𝑝 denotes the

plaintext and 𝐾 denotes the VEK generated from a secure

entropy source by the firmware.

The second generation of SEV, called SEV-ES, comes with

an additional capability of protecting the register state in-

tegrity during the context switches. The register states that

are stored in an in-memory data structure called Virtual

Machine Save Area (VMSA) are encrypted for this purpose.

The latest one, called SEV-SNP, also protects the memory

integrity from software attackers who control the hypervi-

sor. The ownership of each physical page is managed with

the newly added Reverse Map Table (RMP), which is used to

prevent the hypervisor from writing to VM’s physical pages.

SEV enables its clients to obtain an attestation report as

proof of the integrity of the launched VM. As the first step of

this attestation procedure, the client obtains from the SEV-

enabled server the version information (e.g., Chip-ID and

TCB version). Subsequently, when the VM is loaded, the

server provides the client with the attestation report that the

server signed using a set of private keys. The client verifies

this report using the public keys that it obtains from the

AMD’s key server using the previously obtained Chip-ID

and TCB version.

3 MOTIVATION AND THREAT MODEL

The threat model and design decisions behind the AMD SEV

and its latest variant, SEV-SNP, leave SEV VMs vulnerable to

some physical attacks corrupting the external memory con-

tent. SEV primarily aims to protect memory confidentiality

through encryption and prevents malicious memory cor-

ruption from software-oriented attacks in its latest variant,

SEV VM Encrypted
DRAM

Address Bus

Data Bus
Hypervisor

Attacker

Crafted 
dataInjection precision

information

Figure 1: Illustration of ADC using DDR bus interposer

to inject data or code into SEV-protected VM. The preci-

sion of the injection depends on the information from

the other mechanisms (see Table 1 that the attackers

can combine, as will be explained in §3.2.

SEV-SNP. Specifically, SEV encrypts memory contents for a

VM, performs access control on the memory, and prohibits

using Direct Memory Access (DMA) to leak or corrupt the

protected memory content. These mechanisms are known

to be enough to prevent many physical attacks leaking the

memory content (e.g., the cold boot attack [17]) or software-

oriented attacks corrupting the memory content (e.g., DMA

attacks [12]).

However, the mechanisms cannot prohibit the attacks di-

rectly corrupting the externalmemory content, namely active

DRAM corruption (ADC), leaving it as a valid threat against

SEV. An attacker can perform ADC by incorporating various

tools (e.g., DDR bus interposer [15, 49] or specially manu-

factured physical devices like custom DIMM) to not only

observe DRAM contents but also corrupt or inject data/code

into buses or directly into the DRAM [56], as depicted in

Figure 1

AMD also explicitly acknowledges this limitation in their

document [2]. As discussed earlier, SEV-SNP does not crypto-

graphically authenticate the external memory content, mak-

ing SEV-SNP incapable of protecting the memory integrity

against the intended or unintended faults to memory content.

With ADC, an attacker can make, for example, a random cor-

ruption at their disposal without being noticed [8] or replay

older memory content [18]. The attacker can even forge the

encryptedmemory content using a strategy similar to the one

used for software attacks against older editions of SEV [53] if

the victim VM handles external data that they can control. In
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the worst case, ADC using a maliciously crafted buffer chip

can arbitrarily manipulate all data [50]. Not only because re-

alizing such attacks is challenging but also because SEV-SNP

was released just a year ago and deployed only recently in

commodity systems, there have been yet no real-world attack

examples reported in the literature. However, we argue that

we must proactively provide countermeasures against such

probable attacks before adversaries inflict actual damage on

commodity KVSs relying on SEV-SNP.

3.1 Threat Model

We consider the adversarial insiders who have full privilege

over the machine that we aim to protect. The full privilege

includes physical access to the machines and the control of

privileged software such as hypervisor. With their physical

access, these attackers may attach maliciously crafted hard-

ware to corrupt the content of a victim KVS in the granularity

of their choice (e.g., byte or page) by putting the specially

crafted physical devices into the machine, as pointed out

in previous work [16]. However, they are limited to target

key-value pairs with ADCs, unable to utilize KVS program

code or other data as a medium for successful attack, as will

be explained in §3.2. Specifically, they are unable to freely

perform injection to a victim KVS to conduct attacks at a

precise timing, restricted to be only capable of low-precision

ADC, thus leaving key-value pairs as a sole viable target of

attack. They can take control of privileged software by either

running a maliciously crafted hypervisor or exploiting the

running hypervisor’s vulnerability. The only system com-

ponent such an adversary cannot alter is the CPU package,

including the AMD SP. We also assume that SP’s security

protocol to manage the encrypted VMs does not have vul-

nerability and achieves its stated goal. That is, an attacker

can neither take a recoverable snapshot of a VM without the

help of the VM itself nor obtain the cryptographic key stored

within SP for each VM. The attacker can only take a snapshot

by obtaining the data directly from the physical memory and

can replay the snapshot to the VM running on the same ma-

chine. Like other confidential computing mechanisms, we

only aim to protect the confidentiality and integrity of an

in-memory KVS and rule out upholding availability from

our security goal.

3.2 Feasibility of ADC under SEV-SNP

Though it appears omnipotent by itself, manipulation such

as bus injection [13, 14, 56] merely enables ADC. To per-

form fruitful ADC corrupting valid targets in an attacker-

beneficial way, an attacker must combine the manipulation

with other capabilities. For example, an attacker must at least

have a means to locate the target of corruption to construct

a fully-fledged ADC on top of bus injection because blind

random corruption is likely to cause unexpected results (e.g.,

victim crash). To control the exact moment of corruption

with respect to the victim program execution, the attacker

must be capable of controlling the victim’s execution as well

(e.g., single-stepping).

We find that SEV-SNP limits the attacker’s capability,

which they need for ADC, of precisely controlling the lo-

cation and moment of memory corruption. In the rest of

this section, we present the kind and the level of control the

attackers need when they corrupt the victim’s code or data

and what they can do with the capabilities they still have

under SEV-SNP.

3.2.1 ADC against the program code. Program code is a

juicy target for ADC in that attackers can alter the program

behavior by manipulating the code. To mount a successful

attack, an adversary must incorporate means to accurately

encrypt the target code before injection, as SEV decrypts the

code within the CPU package when it receives the injected

code. However, to the best of our knowledge, there are no

known solutions to build an encryption oracle that works on

SEV-SNP (further elaborated in §6.1), thus rendering based

ADC against the program code infeasible.

3.2.2 ADC against data. An attacker often aims to corrupt

the victim’s data that resides in the external DRAMwhile not

cached. For example, an attacker may directly inject stack

variables to alter the victim VM’s execution context or a heap

object pointer to lead digest computation into using incorrect

data. Depending on the goal, the attacker needs different

levels of control over the victim’s execution. An attacker

intending to change the victim’s run-time contexts often

needs control, at least at the granularity of an instruction

or basic block. Specifically, the attacker must be capable of

performing a corruption exactly in between the execution

of two specific instructions, not to mention that the target

must be evicted from the cache in between. This level of

preciseness requires the capability of single-stepping the

victim VM execution [30].

We found that an attacker does not have the capability

of achieving a high (single-instruction) or medium (few-

instructions) level of control over the victim VM execution,

as we detail in Table 1. A known way to precisely control a

VM’s execution is the repeated injection of interrupts and

exceptions into the VM, as previous works [33, 52] demon-

strate. They trigger the interrupts using APIC controller.

SEV-SNP restricts such injections with its new interface,

Restricted Injection [2], which prohibits interrupt injection

through any vector other than the one for hypervisor (#HV).

The medium precision control only requires the injection

of faults by manipulating the Dynamic Voltage and Fre-

quency Scaling (DVFS) interface as demonstrated in multiple

works [27, 30, 40, 41], and the DVFS-based fault injection was
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Figure 2: Possible attacks targeting key-value pairs on

SEV-protected KVS through low-precision ADC. (a) ar-

bitrary corruption, and (b) rollback

proven effective when targeting Intel SGX. However, a recent

study shows that the attacker cannot generate such faults on

SEV machines [43]. For these reasons, the low-precision ADC

is the only viable means left for an attacker to corrupt the

victim VM’s memory content. With the limited control over

the victim VM under SEV-SNP, the only remaining target

viable to attackers are the ones that do not need such precise

control. One of the examples that an attacker could corrupt

is the key-value pairs in-memory KVS, which motivates us

to devise a means to mitigate physical attacks that do not

require precise control over the victim machine against the

in-memory KVSs running on SEV-SNP.

3.3 ADC against KVSs

The regular data structure of in-memory KVS makes it re-

main susceptible to the low-precision ADC. An unpredictable

change to arbitrary data, which is the best that an attacker

can do with low-precision ADC, is likely to become a seman-

tic error making the victim crash, but this is not the case for

KVSs. An attacker could locate the key-value pairs that the

victim KVSs contain by analyzing memory access patterns,

and even an unpredictable and random change to them may

not crash the KVS. The victim KVS is not likely to recognize

this corruption because the corruption will only change the

set of key-value pairs or the value bound to a particular key.

Specifically, our work aims to defeat two possible attacks

targeting the key-value pairs through low-precision ADC (as

depicted in Figure 2) by assuring the integrity of key-value

pairs in KVSEV running on a SEV-encrypted VM.

• Arbitrary Corruption An attacker corrupts a key-value

pair (𝑘, 𝑣) to arbitrary contents, e.g., to (𝑘, 𝑣 ′), (𝑘 ′, 𝑣), or
(𝑘 ′, 𝑣 ′). Figure 2a illustrates one of these cases where the
attacker corrupts only the value to change (𝑘, 𝑣) into (𝑘, 𝑣 ′).
Note that they can not alter (𝑘, 𝑣) to a specific pair of their

choice because they have no access to the encryption keys.

• Rollback An attacker replaces (𝑘, 𝑣 ′) to an older version

of the pair (𝑘, 𝑣) as depicted in Figure 2b. For this, they

maintain a copy of (𝑘, 𝑣) and replay it after an operation

updating 𝑣 to 𝑣 ′. After the attack, the client receives an
outdated value as the response to a request with the key 𝑘 .

A straw-man solution to this limited integrity against the

physical attacks is to protect the KVS integrity with software-

basedMAC by constructing aMerkle tree spanning the entire

key-value pairs. Hoping to detect the corruption attacks, the

KVS could update this Merkle tree on each write (i.e., PUT)

and verify its content on each read (i.e., GET). However,

this Merkle tree itself is susceptible to the low-precision

ADC because the Merkle root is inevitably stored in external

memory that the attackers can corrupt, as demonstrated in

the next section §3.4.

3.4 Proof-of-Concept Attack to the
Straw-man

To demonstrate the insecurity of the straw-man solution

against the physical attacks, we implement a Proof-of-Concept

(PoC) attack to the KVS that protects its key-value pairs with

MAC using Merkle tree. Our PoC assumes that the adversary

has the ability to manipulate both the KVS memory and the

Merkle tree. Using this capability, we copy the original KVS

data and Merkle tree on the initial PUT request from the

client and use them to replay the outdated key-value pair

on the occurrence of a GET request. To demonstrate the fea-

sibility of our replay attack, we use the DBG_ENCRYPT and

DBG_DECRYPT API provided by SEV to move SEV-protected

data to a controlled destination, replacing KVS data and

Merkle tree to outdated ones. Our PoC confirmed that the

attack successfully bypasses the KVS integrity protection

expected to be enforced through Merkle tree without being

detected, as we could forge a valid Merkle tree and pass

the MAC verification step. Although the DBG APIs can be

disabled on SEV initialization, we believe that an adversary

capable of performing ADCs can craft a similar means to

obtain and corrupt the victim VM data as discussed earlier

in §3.2.2. Note that, the attack mechanism is also valid on

SEV-SNP machines as an adversary can bypass the RMP

protection which is incapable of detecting data corruption

through ADCs as discussed in §3.

3.5 Lack of Software Control on Cache

Due to the lack of built-in memory integrity protection in

SEV, we must have a separate means to authenticate external

memory content. A straightforward approach is to follow

what SGX does for memory integrity. SGX computes a Mes-

sage Authentication Code (MAC) of the protected memory

content on each external memory write and uses the MAC

for verifying the reads. To this end, SGX incorporates an

integrity tree based on Bonsai Merkle Tree (BMT) [48] to

compute the MAC efficiently [16]. This authentication pro-

cess is believed to be crucial for protecting the integrity of

data stored in an untrusted medium, such as the external

memory in this case. Underneath the integrity protection
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Figure 3: KVSEV Design Overview. KVSEV is protected

from attacks that either � corrupt key-value pairs or

� replace MT root to outdated value. New components

introduced by KVSEV are colored in black.

with this procedure by SGX are two hardware components,

the memory or register in which the MAC is kept and the

hardware module authenticating each memory transaction.

This observation motivated us to find the hardware fea-

tures of SEV-SNP that we can repurpose to play the roles

of the two components, but we found that no hardware fea-

ture can directly fulfill the requirements. Modern CPUs do

not provide a means to explicitly control the cached con-

tent with software, making it impossible to intercept and

handle all external memory reads and writes. Instead, we

devise a mechanism that emulates the MAC computation

and verification procedure for each write (i.e., PUT) to and

each read (i.e., GET) from a KVS by utilizing SEV-SNP’s VM

management protocol, as detailed in §4.

Note that SEV is not the only one that follows the de-

sign principle in which it does not authenticate all external

memory reads and writes. For example, Intel announced

the deprecation of SGX on the 11th and 12th generation of

Core processors [23, 24] and started to ship machines that

support a SEV-like feature called Total Memory Encryption

(TME) [22]. We believe that KVSs running on such systems

will also need a mechanism like KVSEV to become resilient

against the low-precision ADCs.

4 DESIGN AND IMPLEMENTATION

Figure 3 gives an overview of KVSEV, which is composed

of two VMs. At the heart of KVSEV is the Authentication

VM (Auth VM) that provides the other, the KVS VM, with the

integrity-protected store for the hash (i.e., the Merkle Root)

of the KVS. The Auth VM securely stores a small amount of

data and raises the alarm for any data corruption by sending

a report to the KVS owner and the clients. KVSEV prevents

the attackers from modifying the data in the Auth VM into

an attacker-controlled value by making each instance of

Auth VM short-lived (§4.1) and free from external data (§4.2),

which an attacker could control. The short lifetime of each

Auth VM prevents the attacker from replaying older Merkle

roots. The absence of external data limits the chance for an

attacker to implant the target value into the Auth VM in an

attempt to exploit the Auth VM as an encryption oracle. The

KVS VM handles requests from clients by executing typical

in-memory KVS operations and verifying the integrity of key-

value pairs using its Merkle tree with the help of the Auth

VM’s secure data store. The verification by KVS VM detects

any corruption of the key-value pairs because the Merkle

root computed from the corrupted KVS will not match the

one contained in the Auth VM (§5.4.1). To avoid this, the

attacker must also corrupt the Merkle root in the Auth VM.

However, the protection scheme of KVSEV using a series of

fresh Auth VMs prohibits such an attack (§5.4.2).

The KVS VM in KVSEV handles a GET request by first

obtaining the key-value pair and then verifying its integrity

using the genuine Merkle root protected by the Auth VM

(§4.4). For each PUT request that it handles, KVSEV creates a

new VM to store the new Merkle root reflecting the inserted

or updated key-value pair and disposes of the older one

(§4.5).

4.1 Renewing the Auth VM

The Auth VM securely renews itself whenever needed (e.g.,

upon each Merkle root update) to make each instance short-

lived. This renewing procedure fulfills the desired property

in which an attacker becomes incapable of using encrypted

values collected from an older Auth VM against the new

one. On each renewal, the current Auth VM (𝑉𝑀𝑐𝑢𝑟𝑟 ) creates

the next Auth VM (𝑉𝑀𝑛𝑒𝑥𝑡 ), which accommodates the next

Merkle root as depicted in Figure 4. This renewal prevents

the attackers from using the data from 𝑉𝑀𝑐𝑢𝑟𝑟 against the

new Auth VM, 𝑉𝑀𝑛𝑒𝑥𝑡 because the two VMs use different

encryption keys.

KVSEV can securely perform this renewal procedure with-

out being hindered by privileged attackers, utilizing the SEV-

SNP’s VM management protocol and AMD SP. To renew

itself, 𝑉𝑀𝑐𝑢𝑟𝑟 invokes a sequence of calls directly to SP fol-

lowing the protocol that the SEV API defines. Upon its suc-

cessful creation,𝑉𝑀𝑐𝑢𝑟𝑟 is given a secure channel to𝑉𝑀𝑛𝑒𝑥𝑡

by SP and uses the channel to help the KVS VM establish

a secure channel with 𝑉𝑀𝑛𝑒𝑥𝑡 . At the same time, 𝑉𝑀𝑐𝑢𝑟𝑟

obtains the attestation report for the authenticity of 𝑉𝑀𝑛𝑒𝑥𝑡

and reports to the KVS owner for any anomaly. Upon receiv-

ing a valid report,𝑉𝑀𝑐𝑢𝑟𝑟 notifies the KVS VM of the success

so that the KVS VM sends the new Merkle root to 𝑉𝑀𝑛𝑒𝑥𝑡 .

𝑉𝑀𝑐𝑢𝑟𝑟 also sends the address given by SP on launch time
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for its identification to 𝑉𝑀𝑛𝑒𝑥𝑡 for the verification of the

termination. After the successful transmission of the Merkle

root, 𝑉𝑀𝑐𝑢𝑟𝑟 terminates, making itself not runnable on the

platform, and requests the hypervisor to shut it down. To

serve this request, the hypervisor issues a decommission

request to SP, which deletes the memory encryption key

and all other internal states that are associated with the

VM, 𝑉𝑀𝑐𝑢𝑟𝑟 here. 𝑉𝑀𝑛𝑒𝑥𝑡 verifies that 𝑉𝑀𝑐𝑢𝑟𝑟 is decommis-

sioned by sending a guest message directly to the SP with

a 𝑉𝑀𝑐𝑢𝑟𝑟 -specific address received with the Merkle root as

one of the message fields. The attempt to send the message is

expected to fail with INVALID_PAGE_STATE status code from
SP, if 𝑉𝑀𝑐𝑢𝑟𝑟 -specific key and context have been success-

fully deleted through the decommission. After verifying the

proper decommission of 𝑉𝑀𝑐𝑢𝑟𝑟 , 𝑉𝑀𝑛𝑒𝑥𝑡 notifies the KVS

VM that it has successfully received the Merkle root.

Reducing Auth VM Size. The latency in creating a new

Auth VM should be reduced to a minimum as it significantly

impacts the latency of PUT requests and becomes a perfor-

mance bottleneck, as shown in §5.2. KVSEV reduces the size

of Auth VM based on an observation that Auth VM does not

perform complex operations or operating system services,

and booting and initializing the operating system remains a

significant bottleneck despite the rich line of work on reduc-

ing VM launching latency [34, 35, 46]. The only functionality

that Auth VM needs is a minimal cryptographic library to

establish and communicate over the secure channel because

Auth VM primarily serves as a storage for the Merkle root.

Accordingly, we built the Auth VM by directly using a mini-

mal KVM-based VM example [54], reducing the VM renewal

latency significantly.

Limiting theHypervisor’s Privilege to Auth VMs. SEV’s

VM management protocol enables 𝑉𝑀𝑐𝑢𝑟𝑟 to specify how

the SP should initialize𝑉𝑀𝑛𝑒𝑥𝑡 when𝑉𝑀𝑐𝑢𝑟𝑟 requests AMD

SP to create a new Auth VM (i.e., 𝑉𝑀𝑛𝑒𝑥𝑡 ), to limit the set of

actions that the hypervisor can take on 𝑉𝑀𝑛𝑒𝑥𝑡 . Specifically,

KVSEV disables two policy bits, DEBUG and MIGRATE_MA,
during the renewal of the Auth VM to protect 𝑉𝑀𝑛𝑒𝑥𝑡 from

potential malicious activity by the hypervisor. Disabling the

DEBUG policy bit prevents the hypervisor from accessing a set

of debug APIs and thereby secures the contents of the Auth

VM, such as the Merkle root, from being decrypted. Turning

off the MIGRATION_MA policy restricts the hypervisor from

initiating unintended migration of the Auth VM, which if re-

played by an attacker, could result in a valid attacker-chosen

Auth VM. If MIGRATION_MA bit is disabled, the hypervisor

cannot trigger migration as the policy enforces Auth VM to

initialize migration on its own directly to AMD SP.

KVS VM

AMD SP
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D
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ey Server
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attestation report:

Figure 4: VM renewal procedure. � KVS VM requests

a new Auth VM, � 𝑉𝑀_𝑐𝑢𝑟𝑟 identification address is

sent,�𝑉𝑀_𝑛𝑒𝑥𝑡 requests attestation report and verifies

termination of𝑉𝑀_𝑐𝑢𝑟𝑟 , � attestation report is sent, �
report is verified, and 	 updated MT root is exchanged.

4.2 Limiting the Auth VM Interfaces

KVSEV hinders attackers from leveraging the Auth VM as

an encryption oracle for controlled data injection by care-

fully limiting the Auth VM’s communication interfaces. First,

the Auth VM stores the incoming data from outside (e.g.,

from the KVS VM) on shared memory that is not encrypted

using the Auth VM’s memory encryption key. This data

placement prevents an attacker from sending a controlled

packet to the Auth VM’s external interface to harvest the

plaintext-ciphertext pairs for later data injection. This design

choice does not sacrifice communication security because

the packets on the shared memory are already encrypted

and authenticated using the channel keys. Second, the Auth

VM also randomizes the location where it decrypts the in-

coming packets. An adversary must pinpoint the location of

decrypted packets to harvest the result of encrypting a de-

sired value by the Auth VM, but the randomization prevents

the adversary from reliably locating the decrypted packets

during the Auth VM’s short life time.

4.3 KVS VM

The second VM that KVSEV composes, the KVS VM, is a

regular VM that runs a modified in-memory KVS. The KVS

it runs is modified to compute hash using Merkle tree from

its content on each request as detailed in the following sec-

tions (§4.4 and §4.5). When KVSEV starts up, the KVS owner

authenticates the KVS VMusing the remote attestation proto-

col for an encrypted VM on SEV-SNP. This protocol ensures

that the genuine KVS VM boots up on the remote machine.

Subsequently, the KVSVM creates the first Auth VM, receives

the Transport Layer Security (TLS) protocol certificate, and

waits for the client’s requests. The clients use TLS protocol

to authenticate and protect the requests and responses.
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4.4 Handling GET Requests

The KVS VM handles a GET request by responding with

the requested key-value pair after verifying the KVS in-

tegrity. Inside the KVS VM is a modified in-memory KVS

that performs the integrity verification using a software-

implemented Merkle tree and its usual GET processing. The

modified KVS computes the Merkle root from its content

at the moment and sends it to the Auth VM. The Auth VM

responds to the KVS VM with the signed attestation only if

the computed Merkle root matches the correct one found

inside the Auth VM. This signed attestation is sent back to

the client who requested the key-value pair so that the client

can verify the authenticity of the response. This integrity

verification with software Merkle tree backed by Auth VM’s

Merkle root protection prevents the attackers from corrupt-

ing key-value pairs in KVSEV into random attacker-chosen

ones, as we further analyze in §5.4.2. The drawback of this

verification step, which is essential for integrity guarantee,

is the additional delay it causes in the critical path of the

request handling. To overcome this, we make the integrity

verification become asynchronous, similar to the deferred

verification proposed earlier in [5].

Asynchronous Integrity Verification. KVSEV hides the

additional delay from integrity verification by removing the

verification from the critical path, using the KVS VM as a

relay. A client placing a PUT or GET request does not wait for

the proof for each request. Instead, the KVS owner receives

the proof for each transaction and only forwards it to the

client when requested. Specifically, upon receiving the proof

(i.e., attestation report), the KVS VM first sends the PUT/GET

requests’ results to the client rather than waiting for the

response of the proof’s verification from the AMDkey-server.

Upon receiving the verification of the proof, the KVS VM

forwards the results to the client posterior to sending the

PUT/GET requests’ results.

Associating Attestation with Request. KVSEV associates

the attestation report from Auth VM with the PUT/GET oper-

ation to track (proof, operation) pair even when the proofs

are requested asynchronously. To track the PUT/GET opera-
tion that requested the proof, KVSEV leverages REPORT_DATA
feature in SEV’s attestation report generation. Specifically,

REPORT_DATA feature enables Auth VM to provide certain

data along with the attestation report when requesting AMD

SP for the report. When Auth VM receives a request for

the attestation report, Auth VM provides the operation (i.e.,

PUT/GET) as input data for report generation, which KVSEV

can use to find the operation corresponding to the proof.

4.5 Handling PUT Requests

The KVS VM starts to handle an incoming PUT request by

first locating where it must place the new key-value pair.

Figure 5: (a) Ensuring the integrity of the new key-

value (KV) pair. � New KV is placed into the unen-

crypted shared memory of KVS. � KV is copied into

KVS private memory. � KV is decrypted at a random

location with KVS-client channel key. � KV is accessed

to update MT. � KV is re-encrypted with KVS-client

channel key. 	 Re-encrypted KV is compared with the

original KV. (b) Protecting new Merkle root (MR). 

KVS computed newMR. � MR is stored at a random lo-

cation. � MR is encrypted with KVS-Auth VM channel

key. 
 Encrypted MR is copied to KVS shared memory.

� New MR is sent to Auth VM.

Subsequently, the KVS VM renews the Auth VM (§4.1) by

requesting the hypervisor to create a new one that will in-

herit the current Auth VM. While the Auth VM renewal is

in progress, the KVS VM computes the new Merkle root re-

flecting the new key-value pair and saves it in the Auth VM

when the new one becomes ready. Underneath these steps

is the process of authenticating the new Auth VM from the

KVS VM with the help of the VM management protocol and

SP. This provisioning delay potentially increases the PUT

latency significantly.

Eager Provisioning. KVSEV eagerly creates new Auth

VMs to hide the cost of VM creation and initialization when

handling a PUT request. The observation behind the design

is that the replay resistance of Auth VMs is maintained inde-

pendently from the VM creation, as long as KVSEV disposes

of old ones during the renewal process before storing the

new Merkle root in the new Auth VM. An adversary cannot

leverage an empty Auth VM, which does not contain any

data useful to the adversary in any way to perform an attack.

On top of this, KVSEV creates a separate thread that con-

tinuously requests to launch a new Auth VM until a certain

number (e.g., 500) of Auth VMs are prepared. We used 500

as the limit because the maximum number of SEV-protected

VM that a processor can run is 512 in our prototype, and §5.2

presents the impact of choosing different bounds.

Integrity of New Key-Value Pair. KVSEV ensures the

integrity of the new key-value pair sent by PUT request
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after Merkle tree root is sent to the Auth VM. However, the

decrypted pair at rest awaiting forMerkle tree computation is

still susceptible to corruption. KVSEV secures such an attack

window by incorporating the following mechanisms. KVSEV

prevents an adversary from changing the key-value pair

into an uncontrolled one before Merkle tree computation by

comparing the re-encrypted pair with the original pair in the

PUT request right after accessing the pair for computation, as

depicted in Figure 5a- 6©. Any arbitrary corruption will result

in a mismatch because the attacker cannot craft a correctly

re-encrypted pair without the secure channel key between

the client and the KVS VM. Note that even the physical attack

does not enable to the attacker to obtain the channel key in

the KVS VM in plaintext. KVSEV also prevents the adversary

from replacing a key-value pair into its older version before

the Merkle tree computation by randomizing the location

of request decryption for every PUT request (Figure 5a- 3©),

similar to the strategy taken by Auth VM discussed in §4.2.

Under SEV’s encryptionmechanism, replaying the encrypted

pair at a different location will cause differently decrypted

contents. As a result, the replayed key-value pair will be

decrypted into a different, arbitrary pair after the decryption

by the KVS VM. The KVS VM recognizes this by comparing

the re-encrypted pair as explained previously.

Protecting New Merkle Root. KVSEV prevents the at-

tacker from corrupting the newly computed Merkle root

before the KVS VM sending it over to renewed Auth VM

(i.e., while the updated root resides in KVS VM). Note that

corrupting the Merkle root into an arbitrary value is coun-

terproductive for the attacker because it results in a root

mismatch on the next GET request. Therefore, it is enough

for KVSEV to prevent the attacker from replaying previously

valid Merkle root only. KVSEV does this by randomizing

the location of the root on every calculation as depicted in

Figure 5b. Replaying the root at a changed location will cause

it to be decrypted into a different, unknown root, resulting

in the same consequence as arbitrary corruption.

Protecting Merkle Root Calculation. KVSEV ensures the

integrity of Merkle root by safekeeping the data in Auth VM,

but the remainder of Merkle tree (i.e., intermediate nodes) re-

siding on KVS VM still remains susceptible to replay during

new Merkle root computation. Specifically, replacing inter-

mediate nodes during the calculation of the new root will

result in a successful update of the root to a valid value cor-

responding to the replayed Merkle nodes, while replacement

during an idle state of the KVS will result in a root mismatch,

as the attacker lacks the means to alter the root stored in

the Auth VM. KVSEV prevents an attacker from replaying

Merkle nodes during new root computation by reserving

one register to hold the node value before spilling it onto the

memory. When the node is read back to register from mem-

ory to resume calculation, KVSEV compares the value with

Components Modified Added Total

Memcached 1.6.12 21 1027 1048

Linux Kernel (Ubuntu) - 219 219

Minimal KVM VM - 348 348

Total 21 1594 1615

Table 2: Components of KVSEV and their complexities

in terms of their lines of code (LoC). All three compo-

nents are written in C.

the one stored in the reserved register, thereby detecting

any modification or tampering of intermediate Merkle tree

nodes during the calculation. Note that most intermediate

results of calculation (i.e., hash) stays in registers, safe from

replay, and only a small subset of nodes are spilled onto the

memory, vulnerable to replacement.

4.6 Implementation

KVSEV is composed of an in-memory KVS running on one

Linux-based VM (KVS VM) and a small bare metal program

running on another VM (the Auth VM). Table 2 shows the

number of lines of code (LoC) that we added or modified to

implement KVSEV. KVSEV’s KVS is an extension of Mem-

cached [36] version 1.6.12. We modified Memcached to exe-

cute Merkle tree updates and Merkle tree verification when

handling PUT and GET requests, respectively. Specifically, we

extend Memcached’s data structure to hold hash and insert

custom Merkle tree APIs (i.e., adding and verifying hash

entries) at the start of request handling. The Linux kernel

for KVS VM and the hypervisor are modified to emulate

SEV-SNP machine because we evaluate KVSEV on a SEV-ES

machine. As the baseline, we use the kernel obtained from

the AMD’s official repository for Linux kernel [3]. The Auth

VM consists of a small codebase to support basic functionali-

ties that store and compare the Merkle Root. As discussed

earlier, we build the Auth VM on top of a minimal KVM VM

example [54] that executes a small piece of assembly code

in a VM. On top of this, Auth VM contains a small crypto-

graphic library (TinyCrypt [9]) to provide an essential set of

primitives to build secure channels with external entities.

5 EVALUATION

Experimental Setup. We run KVSEV on an AMD sys-

tem with SEV, which has AMD EPYC™ 7262 as its CPU and

64GB of main memory for performance measurement. As its

network interface card (NIC), this system uses Intel I350 Gi-

gabit Ethernet Controller (rev 01). The machine runs Ubuntu

20.04.3 LTS with Linux kernel 5.13.0-21 as the host (hypervi-

sor) and Ubuntu 18.04.6 LTS 64bit with Linux kernel 4.15.0-

163 as the KVSVM. As discussed earlier in §4.1, the Auth VMs

do not run an operating system. For the comparison with

ShieldStore [29], which is the state-of-the-art in-memory
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KVS on confidential computing, we use a machine with Intel

Core™ i9-10900K CPU and 128GBmemory.We inevitably use

different machines for the comparison study because KVSEV

requires AMD’s hardware extension and ShieldStore requires

the Intel’s. For the same reason, we use normalized through-

put for the performance comparison, using the throughput

of Memcached [36] on each system as the baseline.

Client. We measure the performance of KVSEV in two con-

figurations depending on how the client sends requests to

KVSEV. The first is the standalone setup in which the client

runs on the same machine with KVSEV. The client generates

the workload within the KVS VM and sends the requests

over the KVS VM’s network stack. We measure the perfor-

mance impact of KVSEV mostly on this setup to rule out the

network communication overheads and thus stress-test the

direct impact of using KVSEV on performance. We addition-

ally evaluate the networked setting with a separate client

machine connected through networks via 1Gb Ethernet.

Workloads. We use two workload patterns (uniform and

zipfian) that the prior work [29] also used to measure the

performance. The keys of requests in the uniform workload

follow the uniform distribution, and those of zipfian follow

the zipf distribution of skewness 0.99, as in YCSB [55]. The

key size is fixed to 16B, while the value size, initial KVS size,

and the ratio of reads vary. The KVS that is initialized to have

10–160 million key-value pairs before the measurement, and

the client sends 1 million requests.

5.1 Throughput

Figure 6 shows the absolute throughput of KVSEV for vari-

ous workload distributions (i.e., read ratio) when accommo-

dating 10 million key-value pairs. The main trend the results

reveal is that the throughput of KVSEV increases as the ratio

of writes (PUTs) in the workload decreases. This is because

KVSEV needs to conduct more VM renewals when handling

an increased number of PUTs. Compared to KVS on native

SEV VM, KVSEV demonstrates up to a 64.23x slowdown

when handling a workload with 10% reads (R10), which de-

creases to 13.38x when handling R90. Later in this section

(§5.3), we show that KVSEV is practical despite its perfor-

mance overheads when compared to other state-of-the-art

secure KVSs [29].

Value Size. The value size does not affect the performance

of KVSEV as shown in Figure 7. To observe the impact of

value size, we use two different workload patterns (uniform

and zipfian). We also present if the impact of value size varies

as the ratio of writes in the request increases. KVSEV runs

with four threads, and the KVSs initially have 10 million

key-value pairs. As the result shows, the value size does not

significantly affect the performance of KVSEV, while the

slowdown becomes higher as the value size increases for the
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Figure 6: Throughput of KVSEV in operations per sec-

ond (ops) over various workload distributions.
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Figure 7: Throughput of KVSEV under different work-

load distribution with varying value sizes in kops.
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Figure 8: Normalized throughput of KVSEV with fixed

KVS size and different (value size, number of entries)

pairs.

workload with 90% reads (R90). The higher overhead when

accommodating larger values is primarily due to the larger

total size of key-value pairs. As the value size increases, the

total size of KVS also increases in this measurement because

we fixed the number of entries the KVS initially has. This

increase in total KVS size negatively affects the throughput

in this measurement. To back this analysis, we also measure

the throughput when the value size varies but the size of

KVS does not. To fix the KVS size to about 10GB, we set the

pair of the number of entries and value size to (160M, 64B);

(40M, 256B); and (10M, 1024B). Figure 8 shows the result

when tested with R90 workload. As anticipated earlier, the

throughput of KVSEV does not decrease as the value size

increases.

Multi-thread Scalability. Figure 9 shows the throughput

of KVSEV when running with a varying number of threads.

The throughput of KVSEV does not scale with the number of
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Figure 9: Throughput of KVSEV with varying number

of threads with R50 workload for different value sizes.
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Figure 10: Normalized throughput of KVSEV when

receiving requests over the network in ops.
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Figure 11: Performance of KVSEV with different num-

ber of eagerly created Auth VMs under R50 workload

using 4 threads.

threads due to the limited throughput of Auth VM creation

and the synchronous Merkle tree handling. As §5.2 shows,

KVSEV can create about 2160 Auth VMs every second, lim-

iting the number of PUT requests that KVSEV can handle

every second to 2160. This makes 20.21kops as the theoret-

ical upper bound of throughput when running a workload

with 90% reads.

Networked Throughput. Figure 10 shows the normalized

throughput of KVSEV running the uniform workload when

it runs with four threads. As expected, the network communi-

cation overheads amortize the overheads incurred by KVSEV.

For example, KVSEV only shows 2.0x slowdown when run-

ning the workload of 90% reads with 128B values, However,

as observed in the standalone evaluations, the slowdown

increases along with the ratio of writes in workloads as VM-

renewal overheads become the bottleneck, showing a 3.27x

slowdown on the workload with 50% reads.

Table 3: The breakdown Auth VM renewal latency in

Figure 4 without asynchronous verification.

VM Renewal Step Time (us) Proportion

New Auth VM request 12 2.2%

VM_curr identification 12 2.2%

VM_next attestation report request 61 11.2%

Attestation report & Merkle root 10 1.9%

Report verification 448 82.5

Total 543 100.0%

5.2 Impact of Design Decisions

Impact of Debloating. To show the benefit of debloating

the Auth VM in VM renewal throughput, wemeasure the VM

creation time taken from LAUNCH_START command, which

initializes the launch process, to LAUNCH_FINISH command,

which finalizes the process before VMRUN for the Auth VM

and Linux VM, respectively. The time it takes to bootstrap

and set up the Auth VM after VMRUN is not included. We use

the same version that KVS VM runs with as the Linux VM.

Our effort to debloat the Auth VM improved the VM creation

throughput from 151.1VMs/s to 2156.3VMs/s, by about 14×.

As discussed earlier, this significantly contributed to the

throughput of KVSEV in that the VM renewal throughput

bounds the number of PUT requests that KVSEV can handle

every second.

Eager VM Creation. Figure 11 shows the throughput of

KVSEV with a varying number of pre-created VMs running

workloads of two different value sizes. This result shows that

eager VM creation is indispensable to achieving the desired

performance. Compared to the minimal setup, which is four

VMs for four threads, our optimization creating VMs eagerly

improves the throughput by up to 2.3×. The result also sug-

gests that KVSEV does not need to maintain too many VMs.

The performance quickly saturates between 64 and 128 VMs,

suggesting that having around 100 VMs is enough in our

system. Note that the performance increases slightly as the

number of eagerly created VMs increase beyond 128 due

to the less number of executions of WBINVD and DF_FLUSH
instructions which are required when all available SEV VMs

are in use.

Impact of Asynchronous Verification. Figure 12 shows

the throughput of KVSEV and its variant that does not use

asynchronous verification. The variant not using asynchro-

nous verification completes handling a request only after the

VM attestation, suffering from even longer verification la-

tency. The asynchronous verification improves the through-

put of KVSEV by 5.7x by hiding the long latency of the VM

verification procedure. Table 3 shows the latency of each step

in the Auth VM renewal procedure depicted in Figure 4 and

explained in §4.1. The table shows that the report verification

overhead consists of over 80% of the total time taken for VM
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Figure 12: Performance of KVSEV with and without

asynchronous verification with four threads under R50

workload and 128B value size.
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Figure 13: Normalized throughput of KVSEV and

ShieldStore with different KVS size and read ratio. For

fair comparison, we use the same distributions for

workload, R50, R90 and R100, as ShieldStore [29].

renewal when asynchronous verification is not used. The

results suggest that the report verification overhead is the

primary bottleneck when conducted synchronously, and the

asynchronous verification is another essential optimization.

5.3 Comparison to an Existing Secure KVS

Figure 13 shows the slowdown of KVSEV and ShieldStore

when running with three workload distributions, three initial

KVS sizes, and 128B values. As discussed earlier, we present

the normalized performance using the insecure MemCached

as the baseline due to the inevitable difference in machine

configurations. The results show two trends in the slowdown

by KVSEV and ShieldStore. First, the overhead of KVSEV

does not increase as the KVS size increases, while ShieldStore

slows down as the KVS size increases. This widens the perfor-

mance gap between KVSEV and ShieldStore when running

with a large KVS. When holding 160 million key-value pairs,

whose size is about 21GB, the slowdown of KVSEV is about

1.47x lower than that of ShieldStore when running the work-

load with 90% reads. Second, KVSEV’s overhead is lower for

workloads with more reads (i.e., R90) due to the decreased

number of required VM renewals. These observations sug-

gest that AMD-based KVSEV would be more advantageous

than SGX-based ShieldStore when an in-memory KVS should

hold large key-value pairs.

5.4 Security Analysis

This section discusses how KVSEV detects or prevents the

attempts to corrupt its key-value pairs. We defer the discus-

sion about the attacks on the other memory content, such as

KVS VM code, to the next section (§6).

5.4.1 Uncontrolled Corruption against the KVS VM. An at-

tacker who has physical access to the machine and controls

the hypervisor may attempt to corrupt the key-value pairs

by overwriting a memory location containing a key-value

pair with an arbitrary value. The attacker is assumed to be

capable of locating the target by observing the memory ac-

cess pattern and the network transactions together. Physical

access enables such an attacker to watch the external mem-

ory transactions, and the control of the hypervisor gives the

capability of learning the network usage pattern. Without

the protection by KVSEV, such an attacker can mislead the

KVS to associate an incorrect value with a key.

KVSEV detects such an attack while comparing the hash

of the key-value pair and the one stored in another location

in the KVS VM, as an internal node of the Merkle tree. Even

if the attacker correctly corrupts the internal node as well,

KVSEV continues toward the Merkle root and detects the

attack from the mismatch in the Merkle root. The attacker

cannot manipulate the KVS VM beyond this and trick the

KVS VM either into skipping the Merkle root comparison

or using an incorrect one for comparison because the at-

tacker cannot modify the KVS VM memory to a value of the

attacker’s choice. We discuss why the previously reported

exploits modifying the memory with the controlled values

do not work in §6.

5.4.2 Integrity of Merkle Root in the Auth VM. Another

chance for an attacker is to modify the Merkle root in the

Auth VM in an attempt to bypass the protection of KVSEV.

To such an attacker, the corruption of the Merkle root to an

arbitrary value is not an option. Doing so causes the KVS

VM to detect the mismatch because the attacker cannot con-

trol which value the Merkle root will be modified to and

cannot calculate the desired Merkle root value. Therefore,

such an attacker has no choice but to perform the replay

attack in which it retains a previous Merkle root, replay the

KVS VM using its snapshot, and reuse the retained Merkle

root so that the KVS VM does not recognize that it is being

replayed maliciously. KVSEV prevents such an attempt with

its VM renewal, as described in §4.1. Any old Merkle root

value, in an encrypted form, will be of no use because, after

one or more PUT requests, KVSEV disposes of the VM that

contained the old Merkle root. If the attacker replaces the

Merkle root of the current Auth VM with the retained value,

the current Auth VMwill decrypt the attacker-injected value
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into an unpredictable one, which is highly unlikely to match

the desired Merkle root.

5.4.3 Intervening with Auth VM Renewal. Another option

for an attacker is to use its capability to control the hypervi-

sor to intervene with the VM renewal of KVSEV and enforce

KVSEV to use one Auth VM repeatedly. This repeated use of

one Auth VM will enable the attacker to replay the Merkle

root, allowing the replaying of the KVS contents undetected

as the root value will match the replayed data. An adversary

can make this happen in one of the following two ways. First,

an attacker may migrate the Auth VM to have two identical

instances simultaneously. While the standard renewal pro-

cedure continues on one instance, the other can stay idle to

retain the previous Merkle root. On a request for verification

from the KVS VM, the attacker will relay the request to the

Auth VM holding the previous Merkle root. KVSEV prevents

this attack by disabling migration as a policy during launch

as explained in §4.1. The VM policy is included in the gener-

ated attestation report, which is later verified to detect any

misconfiguration that may lead up to the attack mentioned

above. Second, an attacker may intercept a disposal request

from the Auth VM to subvert disposal and preserve the out-

dated Merkle root stored in the Auth VM. An adversary will

try to perform a replay attack using this preserved root on

a verification request. KVSEV prevents such an attack by

validating the correct disposal of old Auth VM during the

VM renewal process as explained in §4.1. The mechanism

is immune to hypervisor intervention because KVSEV per-

forms the validation through a secure channel between VM

and AMD SP provided by guest message protocol.

6 DISCUSSION

6.1 KVS VM Code Integrity

The security guarantee that KVSEV brings relies on the code

integrity of the KVS VM. If an attacker successfully manipu-

lates the KVS VM code, they can skip the integrity check that

the KVS VM performs before it responds to the requester

with the obtained key-value pair. To manipulate the KVS

VM code in a controlled way, the attacker must be capable

of modifying a SEV VM memory to a controlled value. The

lack of integrity protection against physical attackers leaves

a memory corruption attack undetected, but the attacker

cannot control which value the memory content will be de-

crypted. Only an attacker who can forge a correct ciphertext

for the desired plaintext can predictably control the result

of memory corruption. The KVS VM is susceptible to such

an attack that manipulates SEV VM memory with chosen

values but only from an attacker who exploits a vulnerability

in the design of SEV. Recent studies have reported a couple

of such vulnerabilities, but the latest release of SEV is known

to be appropriately patched, and the demonstrated attacks

do not work anymore. Consequently, we can assume that

an attacker cannot modify KVS VM memory in a controlled

manner and thus cannot predictably modify the KVS VM

code to nullify the integrity protection of KVSEV.

6.2 Attacks on the Other Data in KVS VM

While KVSEV verifies the integrity of key-value pairs, other

data that the KVS uses are not protected. For example, an

adversary might modify a condition variable to a specific

value to subvert the security checks or modify the pointer

variables to change the KVS execution flow. To perform a

meaningful attack, an attacker must modify the data to a

controlled value at a specific time, as random corruption will

only cause unexpected behavior. An attacker can make such

a controlled modification by changing data stored in memory

or registers. An attack changing the data stored in memory

was demonstrated by Radev et al. [44], and the attack ex-

ploits the Reserved bit in NPT entry during the MMIO or

nested page fault exception to forge the MMIO region and

exfiltrate data such as AES key. However, this is no longer

possible as an immediate patch [47] that implements #VC
handler to check whether the accessed page is encrypted or

not when receiving an MMIO or nested page fault exception

was applied after the disclosure of the attack. Additionally,

data corruption using the same steps to inject arbitrary code

proposed by [39] is also not applicable for the reasons that

we described in the previous section(§6.1).

6.3 Possible Alternatives for Auth VMs

Reserved Registers. The first option is to reserve one or

more general-purpose registers to store the Merkle root. KV-

SEV would update the register while handling PUT requests

(i.e., re-calculating Merkle root) and read it when handling

GET requests. The content remains out of the reach of at-

tackers because all programs running inside the KVS VM

are recompiled not to use the reserved register as a general-

purpose register. What makes this approach less desirable

than KVSEV’s Auth VMs is the need for thorough recompila-

tion. Not only the KVS, but also all the software components

that may ever run within the KVS VM must be recompiled

to reserve the particular register.

Randomizing the Location of Merkle Root. Another

potential method is to randomize the address of the Merkle

root whenever it is updated. Randomization cannot prevent

the privileged attackers to locate where Merkle root is, due

to the fact that malicious hypervisor can infer information

about guest VM’s memory assignment by monitoring NPT

entries through manipulating permission bits and causing

#NPFs, which was proven effective to gather location of VM’s
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critical data in multiple attacks [19, 32, 37, 38]. Instead, ran-

domization causes the new Merkle root to be encrypted with

different tweak, thwarting the replay of old root to the new

location. The challenge of taking this approach is in the fact

that KVS VM can only randomize the location at the guest

physical address space while the actual tweak is determined

by the host physical address, or machine address. As a re-

sult, an attacker may repeatedly map the guest physical page

containing the Merkle root to the same host physical page,

regardless of the actual guest physical page base address.

This still allows the KVS VM to randomize the Merkle root

location within the page, but the number of slots inside a

page is severely limited, and the KVS VM will inevitably

place the Merkle root at a conflicting location from which

the attacker has previously collected a Merkle root.

Periodic Re-encryption. The third of the potential al-

ternatives is to store encrypted root (on top of transparent

encryption provided by SEV) inside KVS VM and periodically

re-encrypt the root with different keys, thus having similar

effect as Auth VM renewal. The limitation of this approach

lies in the possibility of replaying the cryptographic key,

which resides in the KVS VM’s memory. While encryption

keys for Auth VMs are safekept via inherent mechanism of

SEV and AMD SP, re-encryption requires keys to be stored

in KVS VM, thereby allowing an adversary to replay the

encryption key and Merkle root at the same time.

Monotonic Counter. Utilizing secure monotonic counters

[20, 21, 51] is another option. Secure monotonic counters

provide tamper-resistant counter values that cannot be re-

verted to previous values once incremented. Such counter

values can be used as a salt for encrypting the Merkle root

and incremented after encryption, thus preventing the root

rollback as decryption with different counter value will re-

sult in an invalid Merkle root. Unfortunately, the resolution

of existing secure monotonic counters is not high enough.

The synchronous trusted counter of SGX can increment only

once every 60ms [7], thus limiting the rate of Merkle root

updates to once per 60ms.

7 RELATED WORK

Secure In-memory KVSs. Existing secure in-memory

KVSs are built on Intel SGX to utilize its security guaran-

tee that ensures the KVS integrity against both software

and physical attacks. ShieldStore [29] alleviates the over-

heads of securing all key-value pairs inside an enclave by

only maintaining the hash of the pairs inside it and plac-

ing the encrypted data outside (i.e., unprotected memory).

Avocado [6] shows that a secure in-memory KVS can be ac-

celerated and expanded to the distributed environment with

direct I/O networking, well-established protocols, and opti-

mized data structures. Concerto [5] introduced a verification

method called deferred verification to reduce the overheads

from using Merkle Tree-like data structures, and FastVer [4]

extended the idea to make it faster by combining advantages

of both Merkle Trees and deferred verification. KVSEV is

similar to these studies in that they all aim to provide secure

in-memory KVS by utilizing hardware-assisted TEEs. How-

ever, KVSEV differs from the other approaches in that it is

the first to leverage SEV as a TEE. KVSEV focuses on provid-

ing the missing security guarantees rather than performance

optimizations because SEV inherently provides different se-

curity guarantees than SGX. Speicher [7] and Tweezer [28]

are another secure KVSs protected with SGX, but it aims

to adapt a log-structured merge tree-based, persistent KVS,

unlike KVSEV designed as an in-memory KVS.

8 CONCLUSION

To the best of our knowledge, this study is the first attempt

to design an AMD SEV-based in-memory KVS that is re-

sistant to the types of ADC that are capable of corrupting

and/or replaying key-value pairs. Under the observation that

software-only measures cannot be adopted as a drop-in solu-

tion as software-protected components are also vulnerable

to ADCs, KVSEV leverages a sequence of VMs to provide

trusted storage for the cryptographic hashes of key-value

pairs. Combining VMM and attestation protocol provided

by SEV-SNP for safe deployment and termination of hash-

holding VMs, KVSEV protects the integrity of key-value

pairs against ADCs. Our evaluation shows that KVSEV se-

cures in-memory KVSs on SEV with a performance overhead

comparable to or better than existing secure in-memory KVS

solutions when running large KVSs.
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