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ABSTRACT
Recently, Graph Neural Networks (GNNs) have achieved state-
of-the-art performance on the multivariate time-series anomaly
detection task by learning relationships between variables (sensors).
However, they show limitations in capturing temporal dependen-
cies due to lack of sufficient consideration on the characteristics of
time to their graph structure. Several studies constructed a time-
oriented graph, where each node represents a timestamp within a
certain sliding window, to model temporal dependencies, but they
failed to learn the trend of changes in time-series. This paper pro-
poses Dual time-oriented Graph ATtention networks (DuoGAT)
that resolves the aforementioned problems. Unlike previous work
that uses the simple complete undirected structure for time-oriented
graphs, our work models directed graphs with weighted edges that
only connect from prior events to posterior events, and the edges
that connect nearby events are given higher weights. In addition,
another time-oriented graph is used to model time series stationary
via differencing, which especially focuses on capturing the series of
changes. Empirically, our method outperformed the existing state-
of-the-art work with the highest F1-score for the four real-world
dataset while maintaining low training cost. We also proposed a
novel explanation method for anomaly detection using DuoGAT,
which provides time-oriented reasoning via hierarchically tracking
time points critical in a specific anomaly detection. Our code is
available at: https://github.com/ByeongtaePark/DuoGAT
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1 INTRODUCTION
In recent years, there has been an explosion in time-series data
generation as a result of the widespread adoption of sensors and
Internet of Things (IoT) devices in various fields such as healthcare,
smart factories, or cybersecurity [28, 44]. Research on multivariate
time-series analysis has gained great attention from researchers
and practitioners in these fields. Anomaly detection on such a data
stream, which aims to identify a certain period of time generating
data significantly different from the overall series, is one of the
most important tasks; a rapid and accurate anomaly detection can
support diagnosis and maintenance of a system and prevent any
potential problems that may have led to critical damage [7, 10, 16].

Anomaly detection can be performed in either supervised or
unsupervised manner. Following recent trend, this paper focuses
on the unsupervised approach where all the training examples are
assumed to be normal. In this case, anomalies are detected based on
a notion of residual, which indicates how each data point is signifi-
cantly different from normal patterns learned from training data.
Traditional methods in this area are based on the unsupervised
models such as Principal Component Analysis (PCA) [40], K-nearest
neighbors (KNN ) [3] and Feature Bagging (FB) [20]. Recent detectors
are mostly based on deep neural networks which can be roughly
categorized by AutoEncoder based methods (e.g., USAD [5] and
DAGMM [49]), Convolutional Neural Networks (CNN ) based meth-
ods (e.g., SR-CNN [34] and MSCRED [46]), (3) Recurrent Neural
Networks (RNN ) based methods (e.g., LSTM-AD [25], LSTM-ED
[24], LSTM-VAE [33], OmniAnomaly [41] and THOC [39]) and (4)
Generative Adversarial Networks (GAN ) [15] based methods (e.g.,
TAnoGAN [6] and MAD-GAN [22]). Very recently, several methods
are designed based on Graph Neural Networks (GNN) [35] to explic-
itly model relationships between data from sensors and their latent
interactions, where notable examples include GDN [11], MTAD-
GAT [48] and GTA [8], achieving state-of-the-art performance on
the multivariate time-series anomaly detection.

Among them, our work is motivated MTAD-GAT [48], which
is a framework learning from both the feature-oriented graph and
time-oriented graph to capture the complex dependencies in both
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feature and temporal dimensions. Here, the time-oriented graph
considers all the timestamps within a sliding window as a complete
graph where each node represents a feature vector on the corre-
sponding timestamp. This structure helps in modeling the temporal
dependencies within each time-series, although there is still room
for improvement.

However, we argue that existing GNN-based detectors still have
limitations in capturing temporal dependencies. In terms of their
graph structures, the feature-oriented graphs have intrinsic dif-
ficulty in modeling relationships between data near times. Even
though the time-oriented graph suggested by MTAD-GAT [48] tar-
gets modeling such dependencies, it may not work well due to its
undirected, unweighted and complete graph structure that cannot
model both the direction and weight according to the time flow
but increases computational complexity. In addition, time-series
anomalies would be more likely to occur as the change in sensor
values is sudden and large [4, 32]. However, existing GNN-based
work does not try to specifically model the changes in features.

In this paper, we present DuoGAT: Dual time-oriented Graph
ATtention networks towards accurate, efficient and explainable
detection of time-series anomalies. Instead of the undirected, un-
weighted and complete time-oriented graph used by the previous
work, we build a directed and weighted graph where each directed
edge starts from prior time point to posterior time and higher
weights are given to the edges connecting nearby times. Our design
prevents the unrealistic modeling that (1) a data point at a posterior
time affects prior time and (2) equal weight is assigned to both
edges connecting near data points and far data points in time. In
addition, we transform the input time-series via differencing [29],
i.e., computing the differences between consecutive observations,
and model this additional data with another time-oriented graph,
focusing on understanding the patterns of change in features. Dual
graph attention networks are then trained on top of the two graphs,
each aims to model temporal dependencies between time points
and the changes in sensor values over time, respectively. Here, the
multi-dimensional attention mechanism [43] is employed to re-
flect various information obtained from latent spaces with multiple
dimensions to the output attention matrix.

Our contributions can be structured in three folds:

• DuoGAT: It adopts the directed and weighted graph struc-
ture to model a given time-series data for better capturing
temporal dependencies inside. It also takes additional input
data generated via differencing and models it through another
time-oriented graph so that it learns to be more attentive
to changes over time. Its dual graph attention networks are
based on the multi-dimensional attention mechanism, which
benefits from rich information in multiple embedding spaces.

• Accurate and efficient: Empirically, DuoGAT achieves a
state-of-the-art performance in four real-world dataset (SWaT,
WADI, SMAP and MSL) while maintaining low computational
complexity. Our ablation study confirms the effectiveness of
each aforementioned idea of DuoGAT.

• Explainable:Additionally, we provide an explanationmethod
for anomaly detection working on top of DuoGAT. Existing
explanatory methods mostly use the attention scores to point
out important sensors on a specific anomaly detection, which

lacks the temporal relationship between detection of abnor-
mal time period and data points near the time period. Our
explanation covers the gap via hierarchically tracking critical
time points to provide time-oriented reasoning.

2 RELATEDWORK
This section summarizes the existing literature on unsupervised
time-series anomaly detection in terms of the two data types: uni-
variate time-series and multivariate time-series [10].

2.1 Univariate Time-Series Anomaly Detection.
Univariate time series is like data collected from a single sensor,
where each instance consists of single attribute. The anomaly detec-
tors in the early stage focused on this type of data. For example, PCA
[40], one of a dimensionality reduction methods, detects anomalies
through the principal component classifier that finds observations
extreme and out of a normal correlation structure. KNN [3] uses the
distance between data points to find observations far from majority
of data. ARIMA [47] is a statistical regression analysis model that
predicts future values based on prior values, where anomalies are
identified based on the residual errors.

Recently, deep learning-based approaches have been applied to
the univariate time-series anomaly detection. SR-CNN [34] gener-
ates spectral residual inspired by the visual saliency domain and
applies CNN on the residual to detect anomalies. DeepAnt [30] con-
sists of a time-series predictor based on CNN to forecast future
values and an anomaly detector module working based on the pre-
dicted values. TAnoGAN [6] is a GAN-based detector that models
the normal data’s distribution via the adversarial training process
[15] and computes reconstruction loss between an observation
sequence and its generated version from the learned distribution
given its latent code.

2.2 Multivariate Time-Series Anomaly
Detection.

Multivariate time-series data is typically collected from a set of
multiple sensors, where each instance in dataset consists of multi-
ple attributes. FB [20] is a bagging-based method that aggregates
the scores of the detectors using a meta-estimator that fits multiple
detectors trained with various small subsets of features. AE [1]
is an anomaly detector using the Autoencoder structure, where
the anomaly score is calculated based on the reconstruction error:
the difference between the input raw data and its reconstructed
version. KitNET [27] uses an ensemble of AEs, each calculating the
reconstruction error to collectively detect anomalies. LSTM-VAE
[33] consists of an encoder that projects observations and their
temporal dependencies into latent space using a series of connected
LSTM and VAE (Variational AutoEncoder) layers, and a decoder
that estimates the expected distribution of the observations from
the latent space representation. LSTM-NDT [18] considers an error
set, which includes the differences between the predicted and ac-
tual values. This set is smoothed to mitigate spikes in errors that
often occur in LSTM-based predictions. DAGMM [49] consists of a
compression network that generates the low-dimensional represen-
tation via an AutoEncoder and an estimation network that accepts
the generated representation to process density estimation based on
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GMM for input data. GAN-AD [21] adopts LSTM-RNN style genera-
tor and discriminator to capture the distribution of time-series data.
MAD-GAN [22] designs the generator and discriminator structure
based on LSTM-RNN to capture temporal correlation of time-series
distributions and detects anomalies through reconstruction and
discrimination errors. OmniAnomaly [41] is based on a stochastic
RNN that combines VAE [19] and Gated Recurrent Unit (GRU) [9].
It learns temporal dependence between stochastic variables with a
stochastic variable connection and a planar normalizing flow, and
uses reconstruction probabilities to detect anomalies. USAD [5]
is also a GAN-inspired model with an adversarial learning auto-
encoder architecture that learns to amplify reconstruction errors
while achieving good stability.

Very recently, Graph Neural Networks (GNN ) [35] have been
actively adopted in this task to compensate for the limitations of ex-
isting methods that cannot explicitly learn the relationships among
features. Especially, the Graph Attention Networks (GAT ) structure
has been commonly chosen to focus on the most important signals.
GDN [11] is a GAT-based model that learns relationships between
sensors by using the feature-oriented graph. It selects the top-𝑘
similar sensors based on the learned feature representations of a
given sensor, forecasts its future behavior, and identifies deviations
from the learned sensor relationships. MTAD-GAT [48] designs a
feature-oriented graph attention layer to capture relationships be-
tweenmultiple features and a time-oriented graph attention layer to
understand temporal dependencies. The two GAT layers are jointly
optimized with the forecasting loss and the reconstruction loss
functions. MST-GAT [12] consists of a multimodal graph attention
network (M-GAT), which includes a multi-head attention module
and two relational attention modules, and a temporal convolution
network to capture temporal dependencies. It detects anomalies by
simultaneously optimizing the reconstruction and prediction mod-
ules. GTA [8] consists of the three encoder layers and one decoder
layer, including a context encoding block composed of 𝑙 levels multi-
scale dilated convolution and graph convolution pairs. Multi-branch
self-attention is used to solve the quadratic complexity challenge
of the original multi-head attention mechanism.

3 PROPOSED METHOD
Time-series is a sequence of data points collected over time, gen-
erally with equal time intervals. Multivariate time-series can be
formally defined as 𝑥 = {𝑥1, .., 𝑥𝑛} where 𝑛 is the maximum length
of timestamps and each 𝑥𝑡 ∈ 𝑅

𝑚 is an 𝑚-dimensional vector at
time 𝑡 with 𝑚 sensors. The goal of the anomaly detection is to
detect whether an observation at time 𝑡 is an anomaly. A com-
mon approach to multivariate time-series anomaly detection is a
forecasting-based approach that uses observations 𝑥 = {𝑥𝑡−𝑘 , ...,
𝑥𝑡−1} belonging to a window of size 𝑘 to determine whether there
is an anomaly at time 𝑡 . This approach then calculates anomaly
score through the difference between actual and predicted values
at 𝑥𝑡 and judges anomaly when the score exceeds a pre-defined
threshold. This task is performed in an unsupervised manner; our
training data is assumed to be containing only normal data and we
determine whether each given time-series window of test data is an
anomaly or not based on the computed anomaly scores. Following

Figure 1: Our graph configuration in an arbitrary window
with size 𝑘 . In the graph, the node v𝑘 represents the time
point 𝑘 and has sensor values as feature vectors. An edge
with a weight𝑤[1][𝑘] has a direction from 1 to 𝑘 , where 𝑘 is
a posterior time point, and represents influence of v1 on v𝑘 .
The thickness of each edge represents the magnitude of the
weight values.

prior work [8, 48], we applied the min-max normalization to both
training and test data before putting them to our model.

3.1 Overview
Figure 2 shows the overview of DuoGAT. It consists of the following
four main components:
• Graph configuration.We define a directed and weighted time-

oriented graph to model temporal characteristics, which can be
simply represented by the upper triangular adjacency matrix
format.

• Differencing of time-series. We generate additional input
data obtained through differencing [29]. We then obtain the
differencing-based attention score that captures the amount of
changes in sensor values over time.

• Dual GAT layers based on multi-dimensional attention.
DuoGAT has two GAT layers: T-GAT layer aligned with the
original time-series input and the D-GAT layer that deals with
the additional input produced by differencing. For each layer,
multi-dimensional attention mechanism is adopted to benefit
from various perspectives of multiple embedding spaces.

• Anomaly score computation. Anomaly score is calculated
by sequentially passing the hidden states derived from the two
GAT layers to the Gated Recurrent Unit (GRU) and the Fully-
Connected layer (FC).
The following subsections introduce the aforementioned com-

ponents in detail.

3.2 Graph Construction
As previously mentioned, the graph structures of the existing GNN-
based detectors cannot properly model the characteristics of time.
Our graph structure resolves the problem by the structure of a
directed and weighted graph, illustrated in Figure 1.

Formally, each node in our graph represents a time point, and
has the feature vector representing the values of sensors at the
corresponding time. Considering the window size 𝑘 , a set of node
features within awindow can be denoted as𝑉 = [v1, v2, ..., v𝑘],𝑉 ∈

𝑅
𝑘×𝑚 where𝑚 is dimension of feature (i.e., the number of sensors)1.

1If a data point is mapped to a node, we use notation v instead of 𝑥 [48].

1190



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Jongsoo Lee, Byeongtae Park, and Dong-Kyu Chae

Figure 2: Overview of our DuoGAT with two GAT layers (T-GAT and D-GAT layers) including multi-dimensional attention.
Each 𝐴

𝑑
𝑡 indicates an attention matrix. The outputs of each GAT layer is fed to each GRU layer. The outputs from both GRU

layers are concatenated and fed to the final fully connected layer to forecast the values of next time point.

For defining the edge directions, we set each element 𝑎𝑖 𝑗 of the
adjacency matrix 𝐴 = {𝑎11, 𝑎12, ..., 𝑎𝑖 𝑗} ∈ 𝑅

𝑘×𝑘 as follows:

𝑎𝑖 𝑗 = { 1, if 𝑖 ≤ 𝑗

0, otherwise
where 𝑎𝑖 𝑗 = 1 indicates that node 𝑖 points to node 𝑗 and 𝑎𝑖 𝑗 = 0
represents that there is no connection among 𝑖 and 𝑗 .

Finally, we construct a weighted adjacency matrix where the
weights are differently assigned so that closer time points havemore
influence. For theweighted adjacencymatrix𝐴𝑤

= {𝑤11,𝑤12, ...,𝑤𝑖 𝑗},
𝐴
𝑤
∈ 𝑅

𝑘×𝑘 , we define each element𝑤𝑖 𝑗 as follows:

𝑤𝑖 𝑗 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

log𝑘 (𝑘 − ( 𝑗 − 𝑖) + 1), 𝑖 < 𝑗

1, 𝑖 = 𝑗

0. otherwise

3.3 Dual GAT Layers
Here, two GAT layers are designed to learn characteristics of multi-
variate time-series modeled via our graph structure.

3.3.1 T-GAT: the time-oriented GAT layer. The goal of the T-GAT
layer is to learn the relationships between time points to reflect the
sequential characteristic of time-series. The T-GAT layer is trained
with the graph we introduced in the previous subsection as an input.
An attention score 𝛼𝑖 𝑗 of T-GAT, which represents the importance
between the time points (nodes) 𝑖 and 𝑗 , is calculated by:

𝑒𝑖 𝑗 = 𝜔
𝑇
𝑡 ⋅ 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑊𝑡 ⋅ [v𝑖 ∥ v𝑗 ]) (1)

𝛼𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑒𝑖 𝑗 ) =
𝑒𝑥𝑝(𝑒𝑖 𝑗 )

∑𝑛∈𝑁 (𝑖) 𝑒𝑥𝑝(𝑒𝑖𝑛)
(2)

where 𝑊𝑡 ∈ 𝑅
2𝑚×2𝑚 is a learnable parameter matrix, [ ∥ ]

indicates the concatenation operation, and 𝜔𝑡 ∈ 𝑅
2𝑚 is a learnable

parameter vector for the attention mechanism. 𝑒𝑖 𝑗 is the attention
coefficient of node 𝑖 to 𝑗 , and normalized with the Softmax function.
𝑁 (𝑖) = { 𝑗 ∣𝑤𝑖 𝑗 > 0} is the set of neighbors of node 𝑖 .

3.3.2 D-GAT: the differencing-based GAT layer. Another GAT layer,
named as D-GAT, is designed to capture sudden changes that can
cause anomalies by attentively learning how much the sensor val-
ues change over time. To this end, we first produce the data with
differencing [29] of input time-series, which is known to remove
trends and seasonality in time-series by computing the differences
between consecutive data points (i.e., 𝑥 ′𝑡 = 𝑥𝑡 − 𝑥𝑡−1). The D-GAT
layer then applies the attention mechanism to the differenced data
in order to output a differencing-based attention score that focuses
on the feature differences over time. Formally, a differencing-based
attention score 𝛼𝑑𝑖 𝑗 between node 𝑖 and node 𝑗 is calculated by:

v𝑑𝑡 = v𝑡 − v𝑡−1 (3)

𝑒
𝑑
𝑖 𝑗 = 𝜔

𝑇
𝑑 ⋅ 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑊𝑑 ⋅ [v𝑑𝑖 ∥ v𝑑𝑗 ]) (4)

𝛼
𝑑
𝑖 𝑗 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑒𝑑𝑖 𝑗 ) =

𝑒𝑥𝑝(𝑒𝑑𝑖 𝑗 )
∑𝑛∈𝑁 (𝑖) 𝑒𝑥𝑝(𝑒𝑑𝑖𝑛)

(5)

where𝑊𝑑 ∈ 𝑅
2𝑚×2𝑚 is a learnable parameter matrix and𝜔𝑑 ∈ 𝑅

2𝑚

is a learnable parameter vector for the attention mechanism. v𝑑𝑡
is the node feature vector at the time point 𝑡 that was applied
differencing. 𝑁 (𝑖) = { 𝑗 ∣ 𝑖 ≥ 𝑗} is the set of neighbor nodes of 𝑖 .
3.3.3 Multi-dimensional attention for the Dual GAT layers. This
subsection introduces the details of the multi-dimensional atten-
tion equipped with the two GAT layers. The typical choice in the
literature has been the multi-head attention approach, where an
attention score is calculated through parallel computation for the
same dimension of embedding space.

However, we argue that it is insufficient to capture various in-
formation in the same dimensions for learning the relationships
between nodes. To overcome the limitation, each feature vector
v ∈ 𝑅

𝑚 should be embedded in multiple dimensions of latent spaces
to calculate the attention score while reflecting various aspects:

𝑉
′
= [v′1, v′2, . . . , v′𝑘] ∈ 𝑅

𝑘×∣𝑞∣
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where q ∈ {𝑞1, 𝑞2, ..., 𝑞𝑢} denotes the set of embedding dimension
values and each v′ denotes the embedding of the corresponding
node feature. To calculate the attention score, we performed the at-
tention mechanism parallel to each embedding node feature vector
v′. The attention scores from each embedding dimension are passed
through a linear function to derive a multi-dimensional attention
score. Formally, the multi-dimensional attention score 𝑠𝑖 𝑗 between
the node pair v𝑖 and v𝑗 is derived as follows:

𝑠𝑖 𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑊𝑚𝑢𝑙𝑡𝑖
𝑡 ⋅ [∥𝑢𝑐=1(𝛼𝑖 𝑗 )𝑞𝑐 ∥ 𝛼𝑖 𝑗 ]) (6)

where (𝛼𝑖 𝑗 )𝑞𝑐 , from 𝑐 = 1 to 𝑢, are the attention scores for embed-
ding vectors v′𝑖 ∈ 𝑅

𝑞𝑐 and v′𝑗 ∈ 𝑅
𝑞𝑐 of nodes 𝑖 and 𝑗 , respectively,

and (𝛼𝑖 𝑗 ) is the attention score for the original 𝑚-dimensional
feature vectors. All these are concatenated to contain various infor-
mation from the multi-dimensional attention.𝑊𝑚𝑢𝑙𝑡𝑖

𝑡 ∈ 𝑅
𝑢×1 is a

learnable parameter vector. Applying the multi-dimensional atten-
tion to our T-GAT layer helps understand relationships between
time points from various perspectives.

The output of T-GAT layer h𝑖 is the hidden state of node 𝑖 by ag-
gregating neighborhood nodes by reflecting the multi-dimensional
attention score 𝑠𝑡𝑖 𝑗 and the weighted adjacency matrix𝐴𝑤 . Formally,
h𝑖 is calculated by:

h𝑖 = 𝜎( ∑
𝑗∈𝑁 (𝑖)

𝑠𝑖 𝑗𝑤𝑖 𝑗v𝑗 ) (7)

where 𝜎 represents the sigmoid activation function. Note that h𝑖 ∈
𝑅
𝑚 has the same dimension with the input 𝑥 .
The multi-dimensional approach is also applied to the D-GAT

layer to benefit from various perspectives. The multi-dimensional
differencing-based attention score 𝑠𝑑𝑖 𝑗 between node pairs v𝑑𝑖 and
v𝑑𝑗 is calculated as follows:

𝑠
𝑑
𝑖 𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑊𝑚𝑢𝑙𝑡𝑖

𝑑 ⋅ [∥𝑢𝑐=1(𝛼𝑑𝑖 𝑗 )𝑞𝑐 ∥ 𝛼
𝑑
𝑖 𝑗 ]) (8)

where (𝛼𝑑𝑖 𝑗 )𝑞𝑐 is the differencing-based attention score for em-

bedding vectors v𝑑𝑖
′
∈ 𝑅

𝑞𝑐 and v𝑑𝑗
′
∈ 𝑅

𝑞𝑐 of node 𝑖 and node 𝑗 .
𝑊

𝑚𝑢𝑙𝑡𝑖
𝑑 ∈ 𝑅

𝑢×1 is a learnable parameter vector. The output of
D-GAT layer, h𝑑𝑖 , is also the hidden state of node 𝑖 updated by
aggregating neighborhood nodes, each with the score 𝑠𝑑𝑖 𝑗 . Here,
unlike the T-GAT layer, our D-GAT does not apply the weighted ad-
jacency matrix 𝐴𝑤 because the differencing of time-series weakens
the temporal characteristics [14], so we allow all the interactions
among time points within a window. As a result, the output h𝑑𝑖 is
calculated by:

h𝑑𝑖 = 𝜎( ∑
𝑗∈𝑁 (𝑖)

𝑠
𝑑
𝑖 𝑗v𝑗 ) (9)

Again, h𝑑𝑖 ∈ 𝑅
𝑚 has the same dimension with the input 𝑥 .

3.4 Training Objective
The outputs of our T-GAT and D-GAT layers are fed to each GRU
(Gated Recurrent Unit) layer. Formally, its operations can be denoted
as follows:

𝑟𝑡 = 𝜎(𝑊𝑟h𝑖 +𝑈𝑟𝑔𝑡−1 + 𝑏𝑟 ) (10)

𝑧𝑡 = 𝜎(𝑊𝑧h𝑖 +𝑈𝑧𝑔𝑡−1 + 𝑏𝑧) (11)

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊h𝑖 +𝑈 (𝑟𝑡 ⊙ 𝑔𝑡−1) + 𝑏) (12)

𝑔𝑡 = (1 − 𝑧𝑡 )⊙ 𝑔𝑡−1 + 𝑧𝑡 ⊙ 𝑔𝑡 (13)

where 𝑧 and 𝑟 are the update and reset gates, respectively.𝑊𝑧 ,𝑊𝑟 ,
𝑊 , 𝑏𝑧 , 𝑏𝑟 and 𝑏 are the parameters of the GRU layer. h𝑖 and 𝑔𝑡 are
respectively the input and output of it. ⊙ denotes element-wise
multiplication.

Finally, the outputs of the two GRU layers are concatenated and
fed to the Fully-Connected (FC) layer, which then forecasts the
values of the sensors at the following time point, i.e., 𝑥𝑡 , within a
window. Its prediction error is measured by Root Mean Square Error
(RMSE), which is used as a loss function for our model training:

𝐿𝑅𝑀𝑆𝐸 =

√
√√√√√⎷∑𝑇𝑡𝑟𝑎𝑖𝑛

𝑡=𝑘+1(𝑥𝑡 − 𝑥𝑡 )2

𝑇𝑡𝑟𝑎𝑖𝑛 − 𝑘
(14)

where 𝑇𝑡𝑟𝑎𝑖𝑛 indicates the last time point(instance) of the training
dataset.

3.5 Anomaly Detection
After the model training is complete, we compute the anomaly
scores bymeasuring the difference between the actual and predicted
values of the sensors at a given time. The anomaly score of sensor
𝑜 at time point 𝑡 is obtained as follows:

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒
𝑜
𝑡 = ∣𝑥𝑜𝑡 − 𝑥

𝑜
𝑡 ∣ (15)

Since each sensor data has various characteristics, the anomaly
score for each sensor has various scales. As a result, there is a
risk of relying on a particular sensor with a big scale to detect
anomalies. To mitigate this issue, we standardized the calculated
anomaly scores as follows:

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒
𝑜
𝑡 =

𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒
𝑜
𝑡 − 𝜇𝑜

𝜎𝑜
(16)

where 𝜇𝑜 and 𝜎𝑜 denotes the average and standard deviation of
anomaly scores for each sensor. Then, the final anomaly score is
derived using the maximum value of the anomaly scores at the
given time point:

𝐴(𝑡) = max
𝑜

(𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒
𝑜
𝑡 ) (17)

Finally, the model detects an anomaly when the score exceeds
a pre-defined threshold, which is selected by the grid search on a
validation set.

4 EXPERIMENTAL SETTINGS
We conducted extensive experiments to evaluate our DuoGAT. This
section summarizes our experimental environment.
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Dataset # features # train # test Anomaly rate(%)
SWaT 51 496,800 449,919 12.14
WADI 127 1,209,601 172,801 5.99
SMAP 25 135,183 427,617 13.13
MSL 55 58,317 73,729 10.72

Table 1: A summary statistics of the dataset.

4.1 Dataset
We employed the four real-world publicly available dataset: SWaT
(Secure Water Treatment) [26], WADI (Water Distribution) [2],
SMAP (Soil Moisture Active Passive satellite) [31] and MSL (Mars
Science Laboratory rover) [38]. SWaT and WADI are water treat-
ment physical testbed systems available from iTrust.23 Specifically,
SWaT testbed is an industrial control system (ICS) for the purpose
of security research and was launched on March 15, 2015. It was
collected from 51 sensors and actuators that operated continuously
for 11 days, including 7 days of normal operation and 4 days with an
attack scenario. WADI is an extension of SWaT and was launched
on July 26, 2016. It was collected from 127 sensors and actuators
that operated for 16 consecutive days, including 14 days of normal
operation and 2 days with an attack scenario.

SMAP and MSL are spacecraft dataset collected from NASA,
available at the public storage4. SMAP is one of the first Earth
observation satellites developed by NASA. The orbiting observatory
measures surface soil conditions everywhere on Earth every 2 ∼ 3
days, distinguishing between frozen and thawed land. On land not
frozen or covered in water, SMAP uses this information to create a
global map of soil moisture, measuring how much water is in the
top layer of soil. MSL gathers imaging, spectroscopy, composition
data, and other measurements for selected Martian soils, rocks, and
the atmosphere. Table 1 summarizes the statistics of each data.

4.2 Evaluation Metrics
We evaluated the anomaly detection performance with Precision,
Recall and F1-score, which are the most widely-used metrics. Each
can be computed by:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(18)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(19)

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(20)

where TP, FP and FN stand for true positive, false positive and
false negative, respectively. Following prior work [8], we applied
the point-adjust approach [42] to compute the evaluation metrics.
This is because anomalous observations often occur in the form of
contiguous anomaly segments. In this approach, even if only one
observation is detected as an anomaly in an anomalous segment, we
assume that all other observations in that anomalous segment are
detected as anomalies and consider the classification to be correct.
2https://itrust.sutd.edu.sg/testbeds/secure-water-treatment-swat/
3https://itrust.sutd.edu.sg/testbeds/water-distribution-wadi/
4https://s3-us-west-2.amazonaws.com/telemanom/data.zip

4.3 Competitors
We compared DuoGAT with a wide range of anomaly detector fam-
ilies: PCA [40], KNN [3] and FB [20] from the traditional detectors,
AE [1], KitNET [27], DAGMM [49], OmniAnomaly [41] and
USAD [5] which are the AutoEncoder-based methods, LSTM-NDT
[18] and LSTM-VAE [33] within the LSTM-based models, GAN-AD
[21] and MAD-GAN [22] from the GAN-based detectors, and the
GNN-based state-of-the-arts including GDN [11],MTAD-GAT [48],
MST-GAT [12] and GTA [8]. Most of these competitors employed
are explained in the Related Work section.

4.4 Implementation Details
We implement our model using PyTorch version 1.7.1 with CUDA
11.0 and PyTorch Geometric Library [13] version 1.5.0. We con-
ducted all our experiments on a server equipped with the 11𝑡ℎ Gen-
eration Intel CPU, 3.50GHz i9-11900KF, and the NVIDIA GeForce
RTX 3090 GPU. We adopted the Adam optimizer with learning rate
1𝑒−3. We trained the model with over 30 epochs and used early
stopping with the patience value of 15. We set the each embedding
dimension of set 𝑞 to 50% and 25%, and the hidden dimension size
of GRU layers to 150. For each dataset, we empirically chose the
sliding window size among {5, 50, 150, 30} and the hidden dimen-
sion size of the FC layers among {150, 150, 100, 150} based on the
validation set. More details can be found in our code.

5 RESULTS AND ANALYSES
This section reports the results of our extensive experiments.

5.1 Performance Comparisons
Tables 2 and 3 report the multivariate time-series anomaly detection
accuracy of each method in terms of Precision, Recall and F1-score.
Our DuoGAT exhibited state-of-the art performance for all the
dataset used. Specifically, in term of F1-score, DuoGAT achieved
5.49%, 10.71%, 2.50% and 3.20% relative improvement over the best
competitor, GTA, on SWaT, WADI, SMAP and MSL dataset, respec-
tively.

We also observed that GNN-based methods tend to show higher
accuracy than other categories. This result implies the importance
of learning the relationships between nodes (i.e., sensors or time
points) through a graph structure. However, the existing GNN-
based models do not fully reflect temporal characteristics in time-
series to their graph structures. For example, GDN does not capture
temporal characteristics as it focuses on learning relationships
between sensors with the feature-oriented graph structure. MTAD-
GAT used the undirected, unweighted and complete time-oriented
graph, which models a contradiction like posterior data points af-
fects prior data points in time. GTA adopts GCN which includes
dilated convolution layers for temporal data, but it still learns based
on the sensor-based graph structure. Unlike the existing work, we
carefully designed the graph structure and input data configura-
tions, which plays a key role in achieving such high performance.

5.2 Ablation Study
Our ablation study aims to verify that each idea applied to our Duo-
GAT really helps in improving the detection performance. To this
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Method SWaT WADI
Precision Recall F1-score Precision Recall F1-score

PCA♦[40] 0.2492 0.2163 0.23 0.3953 0.0563 0.10
KNN♦[3] 0.0783 0.0783 0.08 0.0776 0.0775 0.08
FB♦[20] 0.1017 0.1017 0.10 0.0860 0.0860 0.09
DAGMM♦[49] 0.2746 0.6952 0.39 0.5444 0.2699 0.36
AE♦[1] 0.7263 0.5263 0.61 0.3435 0.3435 0.34
LSTM-VAE♦[33] 0.9624 0.5991 0.74 0.8779 0.1445 0.25
MAD-GAN♦[22] 0.9897 0.6374 0.77 0.4144 0.3392 0.37
OmniAnomaly♢[41] 0.9825 0.6497 0.78 0.9947 0.1298 0.23
USAD♢[5] 0.9851 0.6618 0.79 0.6451 0.3220 0.43
GDN♦[11] 0.9935 0.6812 0.81 0.9750 0.4019 0.57
MST-GAT♢[12] 0.9873 0.7241 0.84 0.9824 0.4351 0.60
GTA♦[8] 0.9483 0.8810 0.91 0.8391 0.8361 0.84
DuoGAT 0.9712 0.9428 0.96 (5.49%) 0.8942 0.9797 0.93 (10.71%)

Table 2: Performance comparison of DuoGAT and the competitors on SWaT and WADI. The best performance by F1-score is
shown in bold. The percentage next to DuoGAT’s F1-score represents improvement over the second best performer whose score
is underlined. ♦ : Results from GTA [8]. ♢ : Results from MST-GAT [12].

Method SMAP MSL
Precision Recall F1-score Precision Recall F1-score

PCA♢[40] 0.2884 0.1993 0.2357 0.2937 0.2414 0.2650
DAGMM♦[49] 0.5845 0.9058 0.7105 0.5412 0.9934 0.7007
AE♢[1] 0.7216 0.7995 0.7586 0.7166 0.5008 0.5896
LSTM-VAE♦[33] 0.8551 0.6366 0.7298 0.5257 0.9546 0.6780
GAN-AD♦[21] 0.6710 0.8706 0.7579 0.7102 0.8706 0.7823
KitNet♦[27] 0.7725 0.8327 0.8014 0.6312 0.7936 0.7031
MAD-GAN♦[22] 0.8049 0.8214 0.8131 0.8517 0.8991 0.8747
OmniAnomaly♦[41] 0.7416 0.9776 0.8434 0.8867 0.9117 0.8989
USAD♢[5] 0.9096 0.8529 0.8803 0.9308 0.8917 0.9108
LSTM-NDT♦[18] 0.8965 0.8846 0.8905 0.5934 0.5374 0.5640
GDN♢[11] 0.8932 0.8872 0.8902 0.9135 0.8612 0.8866
MTAD-GAT♦[48] 0.8906 0.9123 0.9013 0.8754 0.9440 0.9084
GTA♦[8] 0.8911 0.9176 0.9041 0.9104 0.9117 0.9111
MST-GAT♢[12] 0.9126 0.8983 0.9054 0.9506 0.8910 0.9198
DuoGAT 0.8634 1.000 0.9267 (2.35%) 0.9271 0.9538 0.9403 (2.23%)

Table 3: Performance comparison of DuoGAT and the competitors on SMAP and MSL. The best performance by F1-score is
shown in bold. The percentage next to DuoGAT’s F1-score represents improvement over the second best performer whose score
is underlined. ♦ : Results from GTA [8]. ♢ : Results from MST-GAT [12].

end, we made the following ablations: DuoGAT without the D-GAT
layer that learns from the additional data produced by differencing
(denoted as -w/o D-GAT), DuoGAT without the multi-dimensional
attention for either or both the T-GAT and D-GAT layers (denoted
as -w/o T&D-multi, -w/o T-multi, and -w/o D-multi), DuoGAT
without our weighted and directed graph, which uses the undirected,
unweighted and complete graph structure instead (denoted as -w/o

weight), and embedding dimension experiments. The results are
summarized in Tables 4, 5 and 6.

From the results, we have the following observations:
• We observed a performance decrease when DuoGAT neglects

the differenced time-series data in all dataset. This result sheds
light on the importance of additionally learning data generated
from differencing, which highlights the changes in sensor values,
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Method SWaT WADI
Prec Rec F1 Prec Rec F1

DuoGAT 0.971 0.943 0.96 0.894 0.978 0.93
- w/o D-GAT 0.971 0.922 0.946 0.822 1.00 0.902
- w/o T&D-multi 0.940 0.927 0.934 0.774 0.980 0.865
– w/o T-multi 0.935 0.953 0.943 0.789 0.980 0.874
– w/o D-multi 0.918 0.960 0.938 0.864 0.980 0.918

- w/o weight 0.975 0.911 0.942 0.649 0.916 0.760
Table 4: Ablation study on SWaT and WADI.

Method SMAP MSL
Prec Rec F1 Prec Rec F1

DuoGAT 0.863 1.000 0.927 0.927 0.954 0.940
- w/o D-GAT 0.841 0.858 0.849 0.878 0.939 0.907
- w/o T&D-multi 0.783 0.926 0.849 0.859 0.939 0.898
– w/o T-multi 0.813 0.738 0.774 0.857 0.935 0.894
– w/o D-multi 0.877 0.857 0.867 0.880 0.939 0.909

- w/o weight 0.827 0.867 0.846 0.927 0.903 0.915
Table 5: Ablation study on SMAP and MSL.

in the anomaly detection task. This especially helps capture
sudden changes of features and thereby improves the accurate
of anomaly detection.

• It was also observed that the multi-dimensional attention ap-
proach is very effective in anomaly detection: we can see the
degraded performance in all cases where the multi-dimensional
attention is not applied. This results confirm that considering
various perspectives from multiple dimensions of embedding
spaces helps clearly learn the relationships between time points
in time-series data.

• We also confirm that our graph structure, which is directed and
weighted, can properly reflect the characteristics of timewhereas
the previous undirected and unweighted graph: we observed that
the detection performance decreased when DuoGAT adopted
the undirected and unweighted version.

• To investigate the impact of embedding dimensions on detection
performance, we performed additional experiments with the var-
ious embedding dimension sets 𝑞: we observed that using two
embedding dimensions ({25%, 50%}) together with the original
embedding size (100%) shows the best performance. We also con-
firmed the superiority of our method compared to the original
multi-head attention mechanism using the same dimensions.
We believe that the results of our ablation studies shed light

on the importance of reflecting temporal characteristics to graph
structures, learning from data of differenced time-series, and the
usage ofmulti-dimentional attention, and suggest potential research
directions towards developing more effective detector of time-series
anomalies.

5.3 Training Time Comparison
The experiments in this subsection aims to verify the training ef-
ficiency of our DuoGAT. We compared the training time cost of
DuoGAT with several GNN-based methods. For fair comparison,
we set all the environments related to the model training such as
the window size and the batch size (these are set to 10 and 256,

Embedding dimensions (𝑞) SWaT WADI SMAP MSL
{25%} 0.938 0.917 0.831 0.909
{50%} 0.937 0.924 0.841 0.913
{25%, 50%} 0.957 0.935 0.927 0.940
{25%, 50%, 75%} 0.930 0.910 0.811 0.925
Multi-head 0.941 0.912 0.852 0.913

Table 6: Results on different sets of embedding dimensions.

Methods SWaT WADI SMAP MSL
GDN [11] 38.42s 254.11s 8.03s 4.74s
MTAD-GAT [48] 57.01s 653.98s 6.43s 7.56s
GTA [8] 351.26s 846.13s 157.24s 46.55s
DuoGAT 33.50s 88.08s 8.70s 3.87s
Table 7: Average training time per epoch (in seconds).

respectively) to be identical. We also used the same computer for
running all the compared methods. We measured the average time
cost per epoch, aggregated from running 10 epochs.

Table 7 reports the result. DuoGAT is generally performed most
efficiently compared to the other GNN-based methods. One notable
point is that our DuoGAT can be trained much faster than GAT, al-
most 10 ∼ 20 times faster, which is one of the strongest competitors
in terms of the anomaly detection accuracy. GTA involves quite
a lot components such as dilated convolution, graph convolution,
the three encoder layers and one decoder layer. On the contrary,
DuoGAT consists of fewer components than GTA, such as T-GAT
and D-GAT layers and the GRU layer, but exhibits higher accuracy
while consuming much less training time.

6 EXPLAINABILITY
Recently, various approaches have been studied to explain deep
learning models, and a number of explanation methods for GNN
have been studied [17, 23, 36, 37, 45]. In particular, in the field of
multivariate time-series anomaly detection, explanation is mainly
attempted through the attention mechanism: it provides an expla-
nation via comparing the attention scores of normal and anomaly
to specify the certain sensor causing the anomaly [11, 48].

However, such explanations lack the continual temporal depen-
dencies between the anomaly detection and its previous data stream.
For providing explanations that is more suitable for time-series data,
we suggest a novel explanation method that follows the idea of
perturbation. Unlike the existing methods that identify a specific
sensor, our explanation can recursively point out time points that
lead to anomaly detection based on the influence between time
points.

As previously mentioned our graph structure reflects the char-
acteristics of time that an event occurring at a certain time point is
influenced by the behavior of the adjacent previous time points. In
order to quantitatively measure the influence, we apply the mask-
ing scheme to each of the adjacent previous time points, in order
to derive the importance score of each time point on causing the
detected anomaly. In addition, this process can be recursively per-
formed to grasp the cascading between time points, which also
reflects the sequential characteristic of time-series. As a result, the
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Figure 3: The process of tracking critical time points for
detected anomaly on SWaT.𝑛280058 is the target index number
on SWaT test set. The intensity of the color is determined
in proportion to the importance score and is indicated by a
number below the label.

critical time points can be recursively tracked, starting from a de-
tected anomaly to the time point when the importance score is the
highest, which will be repeated a predetermined number of times.
Finally the overview of the chain of these critical time points can
provide an explanation. Since anomalous observations often occur
in the form of contiguous anomaly segments, which means that the
first anomaly in a segment can trigger other anomalies in the same
segment, our explanations have ability to highlight this pattern.

In summary, the process of our proposed explanation method is
as follows:

(i) A specific anomaly detected by our DuoGAT is selected as
the explanation target.

(ii) Edge masking is performed on the nodes (i.e. timestamps in
a window) in our two graphs.

(iii) The importance score of each time point is calculated by
the difference in anomaly score before and after masking
the corresponding edge. After then, the time point with the
highest importance score is selected as the next explanation
target.

(iv) The process from (ii) to (iii) is repeated 𝑛 times.
The importance score calculated from (ii) is the difference be-

tween the values before and after masking. It is categorized into
negative, positive, and zero. A negative number represents the fact
that our model predicted the explanation target a little closer to
the anomaly due to the masked time point, which had a positive
effect on detecting the anomaly by making it easier to detect. A
positive number represents the fact that our model predicted the
explanation target slightly closer to normal due to the masked time
point, which had a negative effect on detecting the anomaly by
making it difficult to detect. Zero represents that the masked time
point had no effect on detecting the anomaly. In this way the sug-
gested explanation method can provide an easily understandable
explanations for anomaly occurrence.

As a working example, Figure 3 illustrates a real case obtained
from a detection of abnormal time 𝑛280058 in the test set of SWaT.
From the anomaly detected by our DuoGAT, we computed the

importance scores of each time point and found out that 𝑛280053,
𝑛280052, and 𝑛280051 are critical time points for detected anomaly.
From these points, we recursively traced the cause of anomaly
occurrence along the time steps, assuming that it was triggered by
a cascade of events rather than a single time point.

Discussion: However, there may be a sudden spike in the time
series due to various unpredictable fluctuations such as external
shocks to sensors, etc. It is indeed an anomaly, but the previous time
points may not have influenced it. However, in such scenarios, our
explanation method may try to recursively trace the cause of the
anomaly. Therefore, our explanation method may not be suitable
for environments where such sudden spikes occur frequently. In
addition, our explanation works on a time-oriented graph. If it is
used for GNN-based detectors that operate on feature-oriented
graphs, it will not work. Our future work is to design an anomaly
detector that uses both time-oriented and feature-oriented graphs
like MTAD-GAT [48], and to develop an explanation method that
can track both the time points and the variables that affect the
occurrence of anomalies.

7 CONCLUSIONS
In this paper, we proposed DuoGAT, an accurate, efficient and ex-
plainable anomaly detector for multivariate time-series data. Our
work starts with a careful design of graph structure that can prop-
erly model a given time-series. Our model consists of two GAT
layers that aim to capture the characteristics of time-series: a Time-
oriented Graph Attention (T-GAT) layer that learns relationships
between time points and a Differencing-based Graph Attention
(D-GAT) layer that attentively learns changes in sensor values over
time. We also adopted the multi-dimensional attention in the dual
GAT layers for further improvements. We conducted extensive ex-
periments using four real-world dataset (SWaT, WADI, SMAP and
MSL). Empirically, DuoGAT outperformed other state-of-the-arts,
especially improved GTA, the state-of-the-art in this area, by a wide
margin. Furthermore, the training time of DuoGAT is shown to
be faster than the compared GNN-based methods, which means
that our framework enabled faster deployment at model serving
level for anomaly detection tasks in the real-world environment
with significantly less number of parameters compared to the other
GNN-based models. Our ablation study confirms that each idea
of DuoGAT is really effective in improving the detection perfor-
mance. On top of DuoGAT, we present an explanationmethod based
on a masking approach. Decision making can be assisted by our
proposed explanation with visualized importance scores through
highlighting possible causes of an anomaly.
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