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ABSTRACT

Double-vector embedding methods capture the asymmetric infor-
mation in directed graphs first, and then preserve them in the
embedding space by providing two latent vectors, i.e., source and
target, per node. Although these methods are known to be superior
to the single-vector ones (i.e., providing a single latent vector per
node), we point out their three drawbacks as inability to preserve
asymmetry on NU-paths, inability to preserve global nodes simi-
larity, and impairing in/out-degree distributions. To address these,
we first propose CRW, a novel similarity measure for graphs that
considers contributions of both in-links and out-links in similarity
computation, without ignoring their directions. Then, we propose
ELTRA, an effective double-vector embedding method to preserve
asymmetric information in directed graphs. ELTRA computes asym-
metry preserving proximity scores (AP-scores) by employing CRW in
which the contribution of out-links and in-links in similarity com-
putation is upgraded and downgraded, respectively. Then, for every
node u, ELTRA selects its top-t closest nodes based on AP-scores
and conforms the ranks of their corresponding target vectors w.r.t
u’s source vector in the embedding space to their original ranks. Our
extensive experimental results with seven real-world datasets and
sixteen embedding methods show that (1) CRW significantly outper-
forms Katz and RWR in computing nodes similarity in graphs, (2)
ELTRA outperforms the existing state-of-the-art methods in graph
reconstruction, link prediction, and node classification tasks.
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Figure 1: A sample graph.
1 INTRODUCTION

Graph embedding methods® (in short, embedding methods) aim to
map nodes in a graph into low-dimensional latent vectors while
preserving the topological information within the graph structure
[5, 10, 18, 29]. The obtained latent vectors can be utilized by various
machine learning tasks such as graph reconstruction [15, 28], link
prediction [15, 28, 39, 43, 44], and node classification [42, 47, 48].
In general, embedding methods can be applied to both directed
and undirected graphs; however, the graph embedding is more
challenging for directed graphs than undirected ones since contrary
to the latter, the former has a asymmetric nature [15, 28, 34]. In
directed graphs, links represent the relation between objects (i.e.,
nodes) in a domain (e.g., social networks, citation networks, and
protein networks) and their directions do asymmetric information,
which should be preserved in the embedding space [15, 28, 34, 45,
48]; for example, in a citation graph, a directed link w0 denotes a
citation relationship between papers u and v in which u cites v but
not inversely. In this paper, we focus on graph embedding methods
for directed graphs (simply, graphs from now on).

Single-vector embedding methods such as DeepWalk [29], DWNS
[3], FREDE [38], GELTOR [8], Gravity [33], NetMF [31], node2vec
[5], and VERSE [37] provide a single latent vector # per node u in
a graph, thereby having limitations in preserving the asymmetric
information in the embedding space [15, 28, 34, 48]; the value of 4-0
indicates only the probability of having a link or path between u and
v in the graph, but unable to represent the direction. To alleviate this
problem, double-vector embedding methods capture the asymmetric
information in graphs first, and then try to preserve them in the
embedding space as follows. They consider two roles, i.e., source
and target, for any nodes u in the graph based on an assumption
that a directed link or path exists from a source to a target. Then,
they provide two respective latent vectors u; and ; as a source
vector and a target vector where the value of us- 07 indicates the
probability of having a link or a path only from u as a source to v as
a target. Random-walk-based methods such as ATP [34], DIVINE
[44], DNE [48], and NERD [15] try to preserve the neighborhood
of nodes in the graph among their corresponding latent vectors in
the embedding space, while similarity-based ones such as HOPE

!In this paper, we focus on embedding methods that exploit only the topological
information of the graph structure in the embedding process.
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Figure 2: The original in/out-degree distributions of the DBLP dataset and the ones reconstructed by different methods.

[28], Lemane [47], NRP [42], and STRAP [43] try to conform the
similarity distribution of latent vectors in the embedding space to
that of nodes in the graph. Although double-vector methods are
known to be superior to the single-vector ones in various machine
learning tasks [15, 28, 34, 44, 48], we point out their three drawbacks.
Before proceeding, let us introduce the following three notions by
referring to Figure 1 that shows a sample graph and the similarity
scores of four node-pairs computed by different measures?.
Definition 1: In a graph, we define a unidirectional path (U-path)
from node u to v as a sequence of nodes u=vg, v1,v2, ..., vy =v where
directed links exist only from v;_; tov; (1<i<l);e.g,a—b—cis
a U-path in Figure 1.
Definition 2: In a graph, we define a non-unidirectional path (NU-
path) from node u to v as a sequence of nodes u=uvy, v1, v, ..., v} =0
where, contrary to U-paths, at least one directed link exists from v;
tovj—1 (1<i<l);e.g., a—b— c« f is a NU-path in Figure 1.
Definition 3: To capture the asymmetric information in a graph,
most of the existing methods exploit only out-links based on an
assumption that U-paths exists from a source to a target. However,
it has been shown that the asymmetric information exist not only
between direct neighbors (e.g., d and g in Figure 1) and any pairs of
nodes connected by U-paths (e.g., a and c) but also between those
pairs of nodes connected by NU-paths (e.g., a and f) where NU-
paths from a source to a target contain a more number of out-links
than in-links [48]; we call this an asymmetry on NU-paths.
Now, we point out three drawbacks of existing double-vector
embedding methods as follows:
D1. Inability to Preserve Asymmetry on NU-paths: ATP and
DIVINE have limitations to capture asymmetry on NU-paths due to
employing normal random walks where only out-links are traversed.
In NERD, although random walks traverse both in-links and out-
links, only the paths with alternately changing link directions are
considered (e.g., path a — e « h is considered, while a —» b —
¢ < f is not), thereby still having limitations to completely solve
the problem. DNE solves this problem by considering NU-paths;
however, it still suffers from drawbacks D2 and D3. HOPE employs
Katz [13], and NRP, STRAP, and Lemane employ random walk
with restart (RWR) [36] to compute asymmetric similarity scores of
nodes in the graph and utilize them in the embedding process. To
compute the asymmetric similarity score of a node-pair (u, v), these
two measures consider the contributions of only U-paths from u to

2CRW and RWR scores are computed in five iterations; the value of C in CRW is set
as 0.6, and those of @ and f§ in RWR and Katz are set as 0.15 and 0.10 by following [36]
and [28], respectively.
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v [8, 46], thereby having limitations in capturing the asymmetry on
NU-paths; consequently, HOPE, NRP, STRAP, and Lemane cannot
address the problem. For example, in Figure 1, Katz and RWR assign
non-zero and zero similarity scores to node-pairs (d, g) and (g, d),
respectively, and the same respective circumstances are observed
for (a,c) and (c, a); these two measures capture the asymmetric
information for directly connected nodes d and g and also that for a
and ¢ connected by a U-path. However, they assign zero similarity
scores to both (a, f) and (f, a), showing they cannot capture the
asymmetry between a and f connected by NU-paths.

D2. Inability to Preserve Global Nodes Similarity: ATP, DI-
VINE, DNE, and NERD employ random walks to capture the neigh-
borhood of nodes in the graph. They utilize an implicit and local
neighborhood views of nodes in the embedding process, thus unable
to preserve the global similarity of nodes in the graph. This limits
the capability of latent vectors for graph inference and analysis in
diverse machine learning tasks [8, 14, 37, 38].

D3. Impairing In/Out-Degree Distributions: In ATP and DI-
VINE, random walks traverse only out-links, thereby having diffi-
culties in sampling nodes with zero out-degrees or low in-degrees
[15, 44, 48]. In NERD and DNE, although random walks traverse
both out-links and in-links, NRED has limitations in covering NU-
paths and DNE traverses out-links and in-links uniformly by equal
probabilities (e.g., in Figurel, the probabilities that a random walk
on h visits e and f are regarded equal to that of visiting g) with-
out following in/out-degree distributions in the graph. In HOPE,
Lemane, NRP, and STRAP similarity scores are transformed into a
distribution via normalization (i.e.,},cy S(u,v) =1 for any node u);
therefore, the reconstructed graph based on the latent vectors may
not follow power-law distributions [8]. Consider Figure 2 that il-
lustrates the original in/out-degree distributions of the DBLP [6, 8]
dataset and those reconstructed by the above eight embedding
methods and our ELTRA; the degree distributions obtained by the
eight competitors are quite different from the original one.

In this paper, we first propose CRW, a new similarity measure for
graphs based on Comprehensive Random Walks. CRW employs a
novel random walk strategy, which enables to consider contribu-
tions of not only U-paths but also those of NU-paths in similarity
computation, without ignoring the link directions. We also pro-
pose a matrix form for CRW, which dramatically accelerates its
computation while providing exact similarity scores.

Then, we propose ELTRA, a novel and effective similarity-based
double-vector Embedding method based on listwise Learning-To-
Rank (LTR) [1, 40, 41] that preserves Asymmetric information in
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Table 1: Comparing embedding methods in terms of the three
drawbacks
ATP DIVINE DNE HOPE Lemane NERD NRP STRAP ELTRA

D1 X X 4 X X X X X v/
D2 X X X 4 v X v v v
D3 X X X X X X X X v

graphs. To this, ELTRA assigns an asymmetry preserving proximity
score (AP-score) to any node-pair (u,v) in the graph by employing
CRW in which the contribution of out-links in similarity com-
putation is upgraded, while that of in-links is downgraded; these
asymmetric AP-scores enable ELTRA to identify the relative roles
of u and v based on the out-links existing in the paths from u
to v by following [48]. Contrary to the existing methods, ELTRA
does not preserve the neighborhood of nodes among their corre-
sponding latent vectors in the embedding space nor conforms the
similarity distribution of latent vectors to that of nodes in the graph.
Instead, for every node u, ELTRA selects top-t closest nodes to u
in a descending order, 7, based on their AP-scores w.r.t u. Then,
it conforms the ranks of 7,,’s corresponding target vectors w.r.t
U; in the embedding space (i.e., obtained by dot product) to the
original ranks of 7, obtained based on the AP-scores. ELTRA not
only preserves the global similarity of nodes in the graph but also
well preserves the asymmetry on NU-paths, thanks to CRW and
AP-scores; also, it does not suffer from the impairing in/out-degree
distributions since it does not consider AP-scores as a distribution,
thanks to our listwise LTR lost function. Table 1 outlines the abil-
ity (i.e., v') and inability (i.e., X) of nine double-vector methods in
alleviating the three aforementioned drawbacks; as we observe in
the table, ELTRA addresses all the three drawbacks.

We carefully evaluate the effectiveness of both CRW and ELTRA
by conducting extensive experiments with seven real-world datasets;
the results demonstrate that (1) CRW significantly outperforms both
Katz and RWR in computing nodes similarity in graphs, (2) our
ELTRA significantly outperforms sixteen single-vector and double-
vector embedding methods in graph reconstruction, link prediction,
and node classification tasks.

We summarize our contributions in this paper as follows:

(1) We point out three drawbacks of existing double-vector em-
bedding methods as inability to preserve asymmetry on NU-
paths, inability to preserve global nodes similarity, and im-
pairing in/out-degree distributions.

(2) We propose CRW, a novel similarity measure for graphs:

e CRW employs an effective random walk strategy to ex-
ploit both U-paths and NU-paths in similarity computation,
without ignoring link directions.

e We provide a matrix form that dramatically accelerates
the CRW computation while providing the exact scores.

(3) We propose ELTRA, a novel double-vector embedding method
to preserve asymmetric information in graphs:

o ELTRA preserves both the global similarity of nodes in a
graph and asymmetry on NU-paths.

e ELTRA employs the AP-scores for ranking rather than
considering them as a distribution, thereby being robust
against impairing in/out-degree distributions drawback.

(4) We conduct extensive experiments with seven real-world
datasets and sixteen various embedding methods to carefully
evaluate our proposed method.
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2 RELATED WORK

As explained in Section 1, single-vector embedding methods such
as DeepWalk [29], DWNS [3], FREDE [38], GELTOR [8], Gravity
[33], NetMF [31], node2vec [5], and VERSE [37] have limitations in
preserving the asymmetric information in graphs due to providing
a single latent vector per node [15, 28, 34, 48]. To alleviate this
problem, double-vector embedding methods provide two latent
vectors, i.e., source and target, in the embedding space per node;
we classify them into two following categories:
Random-Walk-based Methods: ATP [34] constructs an asym-
metric proximity matrix by incorporating the graph hierarchy and
its reachability; then, the non-negative matrix factorization (NMF)
[2] is applied to the matrix. NERD [15] samples the nodes with high
out/in-degree distributions as sources/targets and their neighbor-
hoods are obtained via a random walk strategy where the directions
of links are alternately changed; a skip-gram model [25] is applied
to obtain the latent vectors. DNE [48] also employs a skip-gram
model where the neighborhood of nodes obtained by a random
walk strategy in which both in-links and out-links are traversed
uniformly with equal probabilities. DIVINE [44] constructs a signed
graph by adding virtual negative links to the original graph and
then utilizes random walks to define the neighborhood of nodes;
finally, it applies SIDE [16] to obtain the latent vectors.
Similarity-based Methods: HOPE [28] utilizes Katz [13] to com-
pute similarity scores among nodes in the graph and then applies
the singular value decomposition (SVD) [4] to the similarity matrix
to obtain latent vectors. STRAP [43] applies SVD to a similarity
matrix where the similarity score of a node-pair is considered as
a summation of its RWR score in the original graph and that in
the transpose graph. In NRP [42], instead of computing the whole
similarity matrix and then factorizing it, the similarity matrix is
factorized by applying randomized SVD [27] after each step of
RWR computation while assigning higher similarity scores to those
pairs of nodes having higher in/out-degrees. Lemane [47] applies a
trainable RWR where the restart probability « is learnt for a target
machine learning task based on sampled sub-graphs of the original
graph. Then, SVD is applied to the similarity matrix.

3 PROPOSED METHOD
3.1 CRW

In this section, we propose our novel similarity measure, CRW, and
present its component and matrix forms in details.

3.1.1  Preliminaries To compute the similarity score of a node-pair
(u,v), both Katz [13] and RWR [36] employ a single random walk
traversing the graph recursively via only out-links by starting from
u with no capability to change the walking directions. Practically,
they consider the contributions of only U-paths from u to v in
similarity computation; u and v are regarded dissimilar if there are
no such paths. As observed in Figure 1, both Katz and RWR assign
non-zero similarity scores (i.e., 0.0100 and 0.1847, respectively) to
(a,c) due to the U-path a — b — c. However, they both assign
zero as similarity scores to (a, f) since there are no U-paths from
a to f although they are connected via multiple NU-paths such as
a— b— c« f; the same circumstances are observed for (c, a) and
(f, a). As a result, these two measures incur limitations in accurate
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Table 2: A sample of similarity computation by CRW

Init.|Vi, j€V, So(i, j)=1if i=j; otherwise Sy (i, j) =0

IT. 1[04 = (e, )i =g} = Sy )= (LD 15 (g, )=

IT. 1|0 ={}:Le={b.f} = Si(c. f)= G - (2ELF0US) - ©

IT. 2

Oc={}:L={a,d, h} = Sy(e, f) = S - (&N LN )y _

IT.2[0) = ()i Ty = {ad) = Sa(b.1)= (51 (e, )+ SLLISUAN ) _

_c

IT.3 -

Oa={b.e}ilo={} = Ss(a, f)= G - (L%l

similarity computation in real-world graphs; they regard a large
number of node-pairs (u, v) not similar at all.

3.1.2  Component Form Suppose that G(V,E) is a graph, V is a
set of nodes, E C VXV is a set of links among nodes, Oy, is a set
of nodes directly connected to u via its out-links, and I, is a set of
nodes directly connected to u via its in-links. To compute accurate
similarity scores in graphs, we propose CRW, a novel similarity
measure based on comprehensive random walks; CRW employs a
random walk strategy to traverse not only U-paths but also NU-
paths in the graph effectively, without ignoring link directions as
follows. To compute the CRW score of (u,v), S(u,v), two random
walks r, and r; starting from u traverse the graph recursively via
out-links and in-links, respectively, where u and v are regarded
similar if any of r, and r; visits v; by employing the two random
walks, we can easily change the walking directions to traverse any
of out-links and in-links involving in a NU-path. Formally, S(u, v)
is computed by the following recursive component form:

C. Yico, (o) Xjer, S(.0)

S(u,v)=—
2 ( |Oul .|

) )

where C € (0,1) is a damping factor, |Oy| denotes the size of Oy,
and S(u,v) =1if u=v, as the base case of the recursive computation.

The above recursion can be solved by an iteration to a fixed-point
for k=1,2,... over S(u,v) as follows: the computation starts with
So(u,v) =1 if u=v, otherwise Sy(u,v) =0; Sy (u,v) =1 for any k, if
u=uvu; otherwise

(Zieou Sk-1(i,0)  2jer, Sk-1(J,0)
|0yl |L|

Table 2 summarizes the CRW score computation for node-pair
(a, f) in our sample graph (Init. and IT. k are abbreviations for
initialization and iteration k, respectively); for simplicity, we show
the computation process in three iterations only for some required
node-pairs. As observed in the table, CRW considers both possible
NU-paths with length three from a to f (i.e., a—b—c« f and
a — e — h — f) to compute S(a, f). More specifically, on each
iteration k, similarity scores are computed for those node-pairs
(u,v) where u is connected to v via U-paths/NU-paths of length k
by utilizing the similarity scores computed on iteration k—1.
Component Form Properties: (1) CRW exploits all paths in the
graph, thereby covering those paths neglected by Katz and RWR in
similarity computation and assigning accurate similarity scores to
all node-pairs in the graph; contrary to Katz and RWR, CRW assigns
non-zero similarity scores to (¢, a), (a, f), (f, a), and (g, d) in Figure
1. (2) CRW scores are asymmetric, bounded, monotonic, unique, and

Sk (u, U)=§' ) (2)
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always existence®. (3) The time and space complexities are O(|V|?)
and O(|V|?), respectively, in the worst cases. (4) Although in this
paper we focus on directed graphs, CRW is applicable to undirected
graphs as well without requiring any changes.

3.1.3  Matrix Form Now, we provide a matrix form for CRW to

accelerate its computation with large graphs. To compute the CRW

score of (u,v), instead of considering only the nodes in Oy, and I,

we can consider all the nodes in the graph by rewriting Equation

(1) as follows:

Yiev[Alui-SGi0) LjevIAlju-500)
) 3

04| 1|

where A|y|x|v| is the adjacency matrix of the graph, [A]y,;=1if
i€0y, and [A]j,=1if jeI,.

. Aliu
Note that [rgul" and L II]]I’
[Qluw,i and [W]j 4, respectively, where Q and W are respective row
and column normalized versions of A; therefore, we provide the

following matrix form for CRW:

C.(

S(u,v)zE

in Equitation (3) are identical to

S(u, v):§~(Q-S+WT-S)VI (4)

where S € RIVIXIVI is a matrix whose entry [S]y, contains the
CRW score of node-pair (u,v), W is the transpose of W, Iivixv
is an identity matrix, and V is a disjunction operator selecting its
maximum operand to guarantee that S(u,v)=1if u=0.

Matrix Form Properties: (1) As observed above, we transform the
component form into a matrix form via a straightforward mathemat-
ical process without applying any approximation; the matrix form
provides exact CRW scores. (2) The space complexity is O(|V|?).
(3) S is implemented as a dense matrix, while Q and W are both im-
plemented as compressed sparse row (CSR) matrices*[32]; the time
complexity of each of the two matrix multiplications is O(|V||E|)
in the worst case where |E| is the number of edges in the graph.

3.2 ELTRA

Now, we propose ELTRA, a novel and effective embedding method
to preserve the asymmetric information in graphs.

3.2.1 Asymmetry Preserving Proximity Score CRW may not ac-
curately capture the asymmetric information since it considers
contributions of in-links and out-links equally significant in com-
puting the CRW score of a node-pair (u, v), thereby being unable to
identify the relative roles of the two nodes based on their similarity
score. For example, in Figure 1, the CRW score of (d, g) (i.e., 0.1065)
is smaller than that of (g, d) (i.e., 0.3367), while there is a link from d
to g but not inversely; CRW cannot capture the asymmetric informa-
tion for d and g. The same circumstance is observed for nodes a and
f connected via six NU-paths where in all paths from a to f (ie.,
a—>b-oc—f,ase—h—>f,a>be—d—oe—h->f,
a—>e—d—-o>g—>h—->f,a>bed—->g—h— f and
a—e«—d—b—c«f), the number of out-links is larger than that
of in-links, implying that a is a source and f is a target following
[48]; however, the CRW score of (a, f) is less than that of (f,a).
To address this problem, we define the notion of an asymmetry

3The proof is available via ELTRA’s GitHub page.

“Note that CRW assigns non-zero similarity scores to all possible node-pairs in the
graph after some iterations; therefore, implementing S as a CSR matrix may result
inefficiency in both computation time and space after a few iterations.
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preserving proximity score (AP-score), which is computed by em-
ploying CRW; however, the contribution of out-links in similarity
computation is upgraded, while that of in-links is downgraded by
following the assumption that having a more number of out-links
than in-links in NU-paths from u to v indicates that u is a source
and v is a target. The AP-score of a node-pair (u,v) is computed by
the following component form:

0 vely
AP—score(u,v)—{ prx(u,0)  otherwise
w-Xico, prx(i,v) (1-w)-Xjer, prx(j,0)
prx(u, v)— ( IE|O | ]|I€| ) &

where prx(u,v)=1if u=v and w € (0.5, 1) is an importance factor
for out-links. Note that setting « to any value in range (0.5, 1)
makes AP-scores to capture the asymmetric information; however,
in order to prevent very small AP-scores, we set w as 0.6.

We apply the similar process explained in Section 3.1.3, to trans-
form the above component form into the following matrix form:

AP=A0X
X:%-(w'Q-X+(l—w)'WT~X)VI (6)

where APeRIVIXIVl and X e RIVIXIVI are two matrices in which

their entries [AP], » and [X]4,, contain AP-score(u, v) and prx(u, v),

respectively, A is the invert of A where 0 and 1 are replaced, and ©
is the Hadamard product.

AP-scores Properties: (1) As observed in Figure 1, contrary to
CRW scores, the AP-score of (a, f) is larger than that of (f, a), and
the same circumstance is observed for (d, g) and (g, d); AP-scores
capture the asymmetric information not only for directly connected
neighbors and pairs of nodes connected by U-paths but also for
those connected by NU-paths. (2) Contrary to DNE [48], NU-paths
are not exploited by traversing out-links and in-links uniformly
under an equal probability; instead, the are traversed under their
corresponding probabilities as 1/(]Oy|) and 1/(|L,|), respectively;
this enables ELTRA to follow in/out-degree distributions in the
graph. (3) AP-scores are asymmetric likewise the CRW scores.

3.2.2 Listwise Learning-to-Rank Listwise LTR has been widely
used in various domains such as sentiment analysis, information
retrieval and collaborative filtering where sorting objects based on
certain factors is the main intention [1, 41]. The listwise LTR takes
a number of queries, each of which is associated with a ranked list
of objects in the descending order of their relevance degrees to the
query as the training samples, and trains a model by minimizing a
loss function defined on the whole predicted lists conditioned on the
ground truth lists [1, 41, 49]. In the literature, various listwise LTRs
such as ListMLE [41], ListNet [1], and RankCosine [30] have been
proposed where ListMLE fits the noise in the training data well due
to having a tighter generalization bond [17]. Inspired by the fact
that, in practical applications, correct ranking at top-¢ positions is
much more important than that in the whole list, top-¢ True Loss (a
variant of ListMLE) [40] minimizes the errors occurring only at the
top-t positions of a ranked list; this variant is successfully applied
to single-vector graph embedding [8]. These findings motivated us
to employ a listwise loss function based on ListMLE in our ELTRA.
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Now, to make our paper self-contained, let us provide a formal
definition of the listwise LTR based on top-t True Loss as follows.
Suppose that X is an input space whose elements are sets of ob-
jects, Y is an output space whose elements are permutations of
objects, and T : X — Y is a ranking model. Given i.i.d a training
set {(x(/), y(j))}?:1 where x(/) € X, xU) = {xfj),xéj) (j)}

X
y(f) €Y, y(]) is the index of an object ranked in position i of y(J),
and a scoring function f :x(/) 5 R™j T is obtained by minimizing
the following loss function where the index of training samples,

letter j, is ignored here for simplicity:

= Z ~log p(ylx: f) )
] 1
f
plyhaf)= H xp ({(xy.) ®)

1 2o (f(xy,))

where the loss function is defined as a negative log likelihood of
observing ground truth y conditioned on the predicted scores f(x)
by considering a permutation probability on f(x), which follows
the Plackett-Luce model [23] focusing on the top-t objects in y.

Weighted-ListMLE [11] is also a useful variant of ListMLE that
influences the likelihood by a score reflecting the quality of the
sorting order in a ground truth list. The training set is defined
as {(x), y(j)), w) };.':1 where w(/) | indicated by the user, is the
corresponding score of a training sample (x), y(j )) and the loss
function is defined as follows

—Z —~w-log p(ylx;: f)

Jj=1

)

where it is obtained by applying a simple modification to the loss
functions for ListMLE proposed in [40] and [41] by adding weights
to the gradient computation [11].

3.2.3 Learning Model Given a graph G = (V,E), ELTRA learns
two functions A, ¢ — R? that represent each node u in the graph as
a latent source vector 7; and a latent target vector 7; respectively,
in a d-dimensional space where d <« |V|. We first define a function
F:V — (N}, R) that maps each node u onto a tuple (7, wy) in
which 7, contains top-t closest nodes v,,; (1<i<t) to u based on
their AP-scores w.r.t u and wy, is the score defined in Equation (9);
we consider wy, as the discounted cumulative gain (DCG)® [12] of
the AP-scores of all nodes w.r.t u sorted in the descending order.
Then, we train a model that conforms the ranks of o,,; ; based on
their dot products w.r.t to % to the ranks of 7. To this end, we
maximize a Bayesian posterior probability by following [8], where
the prior has a normal distribution and 7, of any node u is regarded
independent from those of others:

- 3 log (p(xu[@)+5 01

uevV

(10)

where © is the model parameter, p(7,|©) is our likelihood, and the
second term is the L2 regularizing term.

Our scoring function f is a dot product of two latent vectors
and 7, contains only the top-t closest nodes to u; consequently, by

SDCG is a well-known metric in the information retrieval area to evaluate the quality
of retrieved relevant objects to a query [28, 35].
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replacing f and changing the parameters in Equation (8), we obtain
the following likelihood:

t
p(rl®)=] |

i=1

— —
eXP(“s 'Uu,i;)
W30 exp(5-Dury)
where ¥ = 3,y exp(us -0;); following Equation (9), by incorpo-

rating wy, into our likelihood and applying it to Equation (10), we
have the following final loss function:

(11)

i—

t 1
A

L= Wy (10 W= exp(ts-Our,))—Us Ous )+— e|? (12

u;v Zl gl Zl P(@-Dur ) = Bty )+ 1O (12)
3.2.4 Implementation and Algorithm ELTRA is implemented by a
simple deep neural network consisting of a single hidden layer and
an output layer where the input is a one-hot vector of size |V|, the
hidden layer of size d is equipped with a linear activation function
(i.e., acting as a projection layer to fetch 73), and the output layer
contains the dot products between u; and o7 (i.e., Yo € V) equipped
with the ReLU activation function. The latent vectors u; and u; are
the row u and column u of the hidden layer and output layer weigh
matrices, respectively. It is worth to note that ELTRA is applicable
to undeirected graphs as well.®

Algorithm 1: ELTRA Computation

Input :G(V,E),d, t, w,itr

Output: [S]v|xa, [T]jv|xa

[T]vixe> [Qlvx1=F (G, itr, t, @)
initialize Wy, W

foru«—1to |V|do

I,,=one_hot(u)

[Y]1><|V\ =train(I,)
loss=LossFunction([T ]y« [Q]u, 1)
Wy, Wi «— backpropagation_update(loss)
return W, W'lT

unction LossFunction(zy,, wy, Y):
Y=Y -max(Y)

¥ =sum(exp(Y))

[Y']1x¢ =gather(Y, 7,)

[Y"J1xe =ECS(exp(Y'))
loss=sum(wy,- (log(¥-Y") —Y/))
return loss

O X N U R e N e

o]

11

12

13

14
15

Given graph G, embedding dimensionality d, the number of
top closest nodes t, the importance factor w, and the number of
iterations itr to compute AP-scores, Algorithm 1 performs the
ELTRA computation as follows. Line 1 computes function F. In
line 2, the weight matrix of the hidden layer, Wy, and that of the
output layer, Wi, are randomly initialized. In lines 3 to 8, the training
process proceeds (for simplicity, the batch size and the epoch are
considered as one): in line 4, the input vector is constructed; in line
5, the model’s output is fetched; in line 6, the loss value is computed,
and Wy and W; are updated in line 7. Lines 9 to 15 implement our
loss function: line 10 is to guarantee the mathematical stability for
the exp() function; line 11 applies exp() to the model’s output and
sums them up; in line 12, values of ﬂs)zmt are extracted for all nodes
Uy,; € Ty, from the model’s output; line 13 calculates exp(ﬂ}zm ;) for
nodes in 7, and applies an exclusive cumulative sum (ESC) function
to them (e.g., ESC([a, b, c]) =[0, a, a+b]); line 14 computes the final
loss value. The complexity of our loss function is O(|V]).

SPlease refer to ELTRA’s GitHub page to check the details.
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Table 3: Some statistics about our datasets

4] |E| #Labels
Cit_PH 34,546 421,578 -
CoCit 44,034 195,361 15
Cora 23,166 91,500 70
DBLP 21,177 124,065 11
Facebook 4,039 88,234 -
TREC 42,302 374,701 16
Twitter 47,260 168,964 -

4 EXPERIMENTAL EVALUATION

Research Questions. We carefully design our experimental evalu-

ation to answer the following questions:

e Q1: Is the CRW matrix form more efficient than its component
form?

e Q2:Is CRW really effective in similarity computation in graphs?

e Q3:Is AP-score beneficial to preserving asymmetric information?

® Q4: Is considering the contribution of NU-paths beneficial to
directed graph embedding?

e Q5: Is ELTRA more effective in directed graph embedding than
the existing state-of-the-art methods?

4.1 Experimental Settings

Datasets. We use seven real-world datasets summarized in Table 3:

e Cit_PH [19, 34] is an unlabeled citation graph in high energy
physics (phenomenology) area from the arXiv open-access archive.

e CoCit [8, 37, 38] is a fully labeled citation graph in data mining,
databases, and machine learning areas where node labels denote
publication venues.

e Cora [8, 28, 50] is a fully labeled citation graph in computer
science where node labels denote research topics.

e DBLP [6, 8] is a partially labeled citation graph in data mining
and databases areas where node labels represent research topics.

e Facebook [5] is an unlabeled social graph where nodes represent
users and edges do a "friendship" relation between them.

e TREC [6, 7] is a partially labeled hyperlink graph based on TREC
20037 where node labels indicate query topics for webpages.

e Twitter [21, 48] is an unlabeled social graph where nodes repre-
sent users and edges do a "following" relation between them.
Competitors. To answer Q1, we compare the computation times
of the two forms of CRW with all datasets. To answer Q2, we com-
pare the accuracy of CRW with those of Katz and RWR in comput-
ing similarity of nodes with our labeled datasets. To answer Q5,
we compare the effectiveness of our ELTRA (ELT) with those of
eight single-vector embedding methods (i.e., DeepWalk (DWK) [29],
DWNS (DWN) [3], FREDE (FRD) [38], GELTOR (GLT) [8], Gravity
(GRV) [33], node2vec (N2V) [5], NetMF (NMF) [31], and VERSE (VRS)
[37]) and eight double-vector ones (i.e., ATP [34], DNE [48], DIVINE
(DVN) [44], HOPE (HPE) [28], Lemane (LMN) [47], NERD (NRD) [15],
NRP [42], and STRAP (STP) [43]). For all these methods, we use
their source codes publicly available with the optimal parameter
settings suggested by their original papers; we set the embedding

dimensionality d to 128 by following [28, 42, 43, 47].

ELTRA Variants. To answer Q3, we compare the effectiveness of
ELT with that of its variant, ELT-C where the original CRW scores
are employed instead of the AP-scores in ELT. To answer Q4, we

http://trec.nist.gov/data.html
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Table 4: Execution time (minutes) of two CRW forms

Cit_PH CoCit Cora DBLP Facebook TREC Twitter
Component 526.09 406.09 105.17 114.72 12.30  601.54 405.18
Matrix 1.80 1.87 0.52 0.46 0.03 2.11 1.88

compare the effectiveness of ELT with those of its two variants,
ELT-K and ELT-R where the Katz and RWR scores are employed
instead of the AP-scores in ELT, respectively.

Machine Learning Tasks. We employ following three machine
learning tasks: (1) graph reconstruction where we aim to rebuild a
graph’s adjacency matrix [15, 28, 43], (2) link prediction where we
try to predict missing links in a graph [28, 34, 47, 48], and (3) node
classification where we try to predict the correct labels of nodes
[15, 42, 43]. For each task, we run an embedding method five times
and take their average value in effectiveness as the final one.
Environment. All codes® are implemented with Python 3.10 and
TensorFlow 2.9 on an Intel machine equipped with 19-9900K CPU,
128 GB RAM, and a 64-bit Fedora Core 35 operating system.

4.2 Results and Analyses: CRW

In this section, we provide answers A1 and A2 to Q1 and Q2,
respectively.

4.2.1 Efficiency of Two CRW Forms As explained in Section 3.1,
we proposed two forms for CRW (i.e., component and matrix forms),
both of which provide exact similarity scores, while the latter one
accelerates the CRW computation. Table 4 shows the computation
times (in minutes) of the two forms with our datasets only in five
iterations. The time complexity of the component form depends
not only on the number of nodes but also on the average number of
in/out-neighbors in the graph (refer to Equation (1)); although the
TREC dataset is smaller than CoCit, it shows longer computation
time since the average number of its in-neighbors (i.e., 10.96) and
out-neighbors (i.e., 9.78) are larger than those of CoCit (i.e., 5.89 and
5.48, respectively). Likewise, the computation time of the matrix
form also depends on the number of links in the graph; again, TREC
shows longer computation time than CoCit since the number of
links in TREC (i.e., 374,701) is larger than that of CoCit (i.e., 195,361).
A1. As observed in Table 4, the matrix form of CRW is dramatically
faster than its component form.

4.2.2  Effectiveness of CRW We compare the accuracy of CRW with
those of Katz and RWR in similarity computation on the four labeled
datasets in terms of MAP (mean average precision) and F-score [22]
as evaluation metrics. In each dataset, we use every node with a
label ] as a query and retrieve its top-t (¢ =10, 20, 30) similar nodes by
employing each of the three measures; if a retrieved node is labeled
with [, it is regarded as relevant, otherwise irrelevant. The average
value of each metric over all values of t and all labels [ in the dataset
is regarded as the final accuracy. The values of f and « in Katz and
RWR are set as 0.10 and 0.15 by following [28] and [36], respectively;
we set the value of C in CRW as 0.6 since our experimental results
show that the accuracy with different values of C (i.e., 0.4, 0.6, 0.8)
are not tangible with all datasets. We consider the best accuracy
of CRW and RWR obtained in their executions for 10 iterations; RWR
shows its best accuracy on iteration 10 with all datasets, while CRW
shows that on iterations 6, 5, 6, and 7 with CoCit, Cora, DBLP, and

8All the codes and data are publicly available via ELTRA’s GitHub page.
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Table 5: Accuracy comparison of the three measures

CoCit Cora DBLP TREC

Katz 0.00050 0.01196 0.03148 0.00830

MAP RWR 0.00050  0.01217  0.03621 0.01096
CRW 0.00092  0.02346  0.05145  0.03523

Katz 0.00193 0.02947 0.06728 0.01769

F-score RWR 0.00192  0.02999 0.07332  0.02482
CRW 0.00338  0.05626  0.12304  0.04657

TREC, respectively. Table 5 shows our experimental results where
the best accuracy are highlighted per dataset.

A2. As observed in Table 5, our CRW significantly outperforms Katz
and RWR in terms of both metrics with all datasets.

4.3 Results and Analyses: ELTRA

In this section, we first explain the parameter tuning of ELT, and
then we provide answers A3, A4, and A5 to Q3, Q4, and Q5, re-
spectively, for each machine learning task.

4.3.1 Parameter Tuning To find the best value of ¢ for Algorithm 1,
we do not take a completely heuristic parameter tuning by following
[8]; instead, we exploit the structural property of a target graph

G(V,E) by defining t = Bl finding the best value of ¢ as follows.

VI

For each dataset, we set the value of ¢ in the range of [10,45] in
step of 5, construct the latent vectors for each case, and evaluate
its effectiveness in the three machine learning tasks (the parameter
sensitivity of ELT is explained in Section 4.3.5). For the sake of
brevity, we set the value of t/, the number of iterations to compute
AP-scores, the number of epochs, the number of batches, a learning
rate, and a regularizing parameter to 20, 3, 150, 5% of the dataset
size (in power of 2), 0.0025, and 0.001, with all datasets, respectively.
For the four ELT variants, we set their parameters identical to those
of ELT; also, the number of iterations for CRW and RWR in ELT-C
and ELT-R are set as 3 and 10, respectively.

4.3.2  Graph Reconstruction First, we construct latent vectors by
applying each embedding method to our datasets. Then, with all
single-vector embedding methods except for GELTOR [8], for any
node u, we compute dot products of u’s latent vector and those
of other nodes, sort the nodes in descending order of their corre-
sponding dot product scores w.r.t. u, and pick up the top nodes
as many as the u’s out-degree in the graph; we perform the same
process for GELTOR but we pick up the top nodes as many as u’s
in-degree by following [8], since GELTOR exploits in-links in the
graph embedding. With all double-vector embedding methods, for
any node u, we compute dot products of u; and corresponding
target vectors of other nodes, sort them, and pick up the top nodes
as many as to the u’s out-degree. In all cases, the accuracy is con-
sidered as the average ratio of correctly selected neighbors for all
nodes. Table 6 shows the results where GRV cannot run on Twitter
due to the issue of the dataset size; for each dataset, underlined and
italic underlined scores indicate the best accuracy among single-
vector and double-vector competitor methods, respectively, while
highlighted scores do the best accuracy among all methods. Figure
3 depicts original in/out-degree distributions of the Cit PH dataset
and the ones rebuilt by different double-vector embedding methods
(i.e., NERD is excluded for a space issue here since it shows the worst
result); except our ELT, the degree distributions obtained by other
methods are quite different from those of the original one. Now, we
provide A3, A4, and A5 as follows:
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Table 6: Results of graph reconstruction task

Cit_PH CoCit Cora DBLP Facebook TREC Twitter
DWK 0.0781 0.0845 0.1249 0.0977 0.0630 0.1928 0.2473
DWN 0.1000 0.1918 0.2152 0.1311 0.3188 0.1343 0.3109
FRD 0.0261 0.0277 0.0410 0.0446 0.1444 0.1622 0.0601
GLT 0.3322 0.2870 0.3114 0.2916 0.3204 0.2240 0.3944
GRV 0.0025 0.0002 0.0012 0.0024 0.0190 0.0021 NA
N2V 0.0783 0.0867 0.1226 0.0990 0.0565 0.1903 0.2453
NMF 0.0050 0.0019 0.0285 0.0118 0.0091 0.0658 0.0784
VRS 0.1913 0.2214 0.2476 0.1738 0.4402 0.4211 0.4256
ATP 0.0503 0.0473 0.0605 0.0189 0.1432 0.0294 0.0180
DNE 0.1027 0.0775 0.1560 0.1401 0.2123 0.3264 0.2047
DVN 0.0069 0.3461 0.3399 0.2442 0.2672 0.1811 0.4062
HPE 0.2145 0.1260 0.2041 0.2128 0.4537 0.3024 0.0620
LMN 0.2012 0.1324 0.1602 0.1684 0.4592 0.2916 0.0967
NRD 0.0137 0.0096 0.0111 0.0200 0.0617 0.0193 0.0018
NRP 0.2355 0.1419 0.2146 0.2478 0.4813 0.3890 0.0767
STP 0.2150 0.1368 0.1938 0.1915 0.4828 0.3967 0.0889
ELT-C| 0.6520 0.6835 0.6892 0.7140 0.4528 04279 0.4936
ELT-K| 0.0257 0.1870 0.2905 0.2940 0.0273 0.0127 0.0423
ELT-R| 0.3953 0.3091 0.3906 0.4264 0.3942 0.4005 0.4009
ELT [ 0.7248 0.7209 0.7050 0.7907 0.4642 0.4331 0.4117

A3. As observed in the table, with all datasets except for Twitter,
ELT shows better accuracy than ELT-C; it implies that our AP-scores
are beneficial to preserving asymmetric information.

A4. ELT outperforms both ELT-K and ELT-R with all datasets; also,
ELT-C outperforms the two other variants with all datasets. These
results imply that considering the contribution of NU-paths is benefi-
cial to directed graph embedding.

AS5. ELT significantly outperforms all single-vector and double-
vector embedding methods with all datasets except for Facebook
and Twitte: in the former dataset, STP shows slightly better accuracy
than ELT; in the latter one, ELT-C, a variant of ELT, shows the
highest accuracy. These results show that our ELT is more effective in
directed graph embedding than the existing state-of-the-art methods.

4] ] ]
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Figure 3: In/out-degree distributions with the Cit_PH dataset.

4.3.3 Link Prediction With each graph G, we randomly remove 10%
of links as a test set, TS, (i.e., the size of TS is N) while the remained
graph G is connected except for Cit_PH and CoCit datasets, which
are both originally not connected. Then, the N links in TS are
considered as positive samples, and N non-existing links in the
original graph G are randomly selected as negative ones; note that,
in directed graphs, each link 3 is ordered where we aim to predict
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Table 7: Results of link prediction task

Cit_PH CoCit Cora DBLP Facebook TREC Twitter
DWK 0.7619 0.7025 0.7413 0.7700 0.7178 0.7341 0.6354
DWN 0.7001 0.7227 0.7351 0.7824 0.7717 0.8211 0.5911
FRD 0.7209 0.7511 0.6443 0.6846 0.8156 0.7125 0.6842
GLT 0.7949 0.7725 0.8419 0.8440 0.8063 0.7983 0.6707
GRV 0.7082 0.5950 0.5922 0.6500 0.6665 0.5960 NA
N2V 0.7558 0.7033 0.7417 0.7705 0.7185 0.7338 0.6287
NMF 0.8189 0.7828 0.7746 0.7781 0.8093 0.7606 0.6951
VRS 0.7604 0.6294 0.6605 0.6897 0.7706 0.7100 0.7042
ATP 0.8113 0.8050 0.8192 0.8261 0.8724 0.6669 0.6943
DNE 0.9650 0.9549 0.9681 0.9609 0.9784 0.9872 0.9466
DVN 0.9032 0.7457 0.8494 0.7308 0.9073 0.8797 0.8469
HPE 0.9647 0.9019 0.9289 0.9380 0.9855 0.9758 0.8821
LMN 0.9774 0.9268 0.9480 0.9489  0.9870 0.9831 0.9122
NRD 0.8666 0.8513 0.8547 0.8807 0.8439 0.9021 0.7292
NRP 0.9345 0.8335 0.8582 0.8923 0.9494 0.9390 0.7769
STP 0.9754 0.9136 0.9330 0.9454 0.9849 0.9709 0.8994
ELT-C| 0.9880 0.9608 0.9773 0.9702 0.9712 0.9901 0.9566
ELT-K| 0.4066 0.9226 0.9413 0.9459 0.3910 0.3552 0.3448
ELT-R| 0.9824 0.9473 0.9601 0.9578 0.9522 0.9832 0.9388
ELT [ 0.9892 0.9622 0.9802 0.9756 0.9763 0.9925 0.9597

whether there is a link only from u to v. Finally, we apply each of
our embedding methods to graph G to obtain latent vectors. With
double-vector embedding methods, following [15, 42, 47], for each
positive or negative sample w0 in TS, we compute u; 01, sort them
in descending order, and then evaluate the effectiveness by the Area
Under Curve (AUC) [24]. With single-vector embedding methods,
following [42, 43, 47], we first construct a train set, TR, with the
same size as TS, by randomly selecting N existing links in G as
positive samples. Then, we randomly select N non-existing links
in G as negative samples. For each link u2 in both TR and TS, we
concatenate the latent vector of u and that of v. Finally, 2d-length
vectors in TR are utilized to train a logistic regression classifier, and
it is used to do link prediction on TS, which is evaluated by AUC.
Table 7 shows the results where underlined, italic underlined, and
highlighted scores have the same meanings as in Table 6; now, let
us provide A3, A4, and A5 as follows:

A3. As observed in the table, with all datasets, ELT consistently
outperforms ELT-C, which means our AP-scores are beneficial to
preserving asymmetric information.

A4. ELT and its variant ELT-C outperform both ELT-K and ELT-R
with all datasets; these results again show that considering the
contribution of NU-paths is beneficial to directed graph embedding.
A5. ELT outperforms all single-vector and double-vector embedding
methods with all datasets except for a single dataset, Facebook,
where LMN shows the best accuracy. These results acknowledge
that our ELT is more effective in directed graph embedding than
the existing state-of-the-art methods.

4.3.4 Node Classification First, we obtain latent vectors by ap-
plying embedding methods to CoCit and Cora, our fully labeled
datasets. With each of them, we randomly select g%, ¢={1,3,5,7, 9},
of nodes as a test set and the ones remained as a training set. Fol-
lowing [42, 47, 48], with single-vector embedding methods, for any
node u, we consider its latent vector as a node’s feature, while with
double-vector ones, we consider the concatenation of 7, and u;
as the node’s feature. Then, we apply the logistic regression clas-
sifier to the nodes’ features. We evaluate the accuracy in terms
of Micro-F1 [9]; Table 8 presents the results where underlined,
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Table 8: Results of node classification task

CoCit

Cora

1% 3% 5% 7% 9%

1% 3% 5% 7% 9%

DWK  [0.1950 0.1974 0.2134 0.2102 0.2112|[0.2371 0.2273 0.2295 0.2318 0.2283
DWN  |0.2336 0.2443 0.2507 0.2478 0.2571|[0.3836 0.3914 0.4029 0.4149 0.4053
FRD  [0.2109 0.2103 0.2203 0.2206 0.2243|[0.2500 0.2273 0.2252 0.2324 0.2225
GLT  |0.4444 0.4236 0.4337 0.4428 0.4420]|0.6034 0.5942 0.5807 0.5808 0.5818
GRV  |0.3424 0.3396 0.3411 0.3471 0.3494||0.4483 0.4288 0.4236 0.4353 0.4336
N2V [0.1859 0.1936 0.2048 0.2060 0.2094|[0.2328 0.2129 0.2200 0.2238 0.2221
NMF  |0.1383 0.1513 0.1594 0.1589 0.1635||0.0603 0.0748 0.0811 0.0832 0.0830
VRS |0.43310.4304 0.4319 0.4447 0.4432|[0.5560 0.5712 0.5867 0.5999 0.6082
ATP  [0.2268 0.2504 0.2634 0.2663 0.2674][0.2155 0.2273 0.2148 0.2164 0.2125
DNE |0.4626 0.4614 0.4682 0.4715 0.4702||0.5216 0.5209 0.5194 0.5314 0.5372
DVN  |0.4399 0.4085 0.4133 0.4132 0.4132(|0.4957 0.4921 0.5082 0.5185 0.5199
HPE  |0.2857 0.2844 0.2975 0.3030 0.3007|0.4052 0.3942 0.3822 0.3915 0.3799
LMN  |0.3810 0.3820 0.3969 0.3990 0.4026|[0.5129 0.4978 0.4789 0.4827 0.4835
NRD  [0.1293 0.1536 0.1717 0.1719 0.1784{|0.0431 0.0576 0.0595 0.0647 0.0600
NRP  [0.2132 0.2163 0.2216 0.2241 0.2306||0.2112 0.2029 0.2028 0.2121 0.2058
STP  0.3923 0.3873 0.3974 0.3990 0.4006|0.4914 0.4921 0.4909 0.4951 0.4940
ELT-C[0.4444 0.4372 0.4485 0.4528 0.4511][0.6078 0.5942 0.6005 0.6091 0.6149
ELT-K|0.4603 0.4440 0.4409 0.4376 0.4306|[0.5216 0.5180 0.5220 0.5376 0.5487
ELT-R|0.4376 0.4266 0.4387 0.4259 0.4319(/0.5000 0.5295 0.5496 0.5469 0.5506

ELT [0.5057 0.4667 0.4814 0.4736 0.4735[[0.6164 0.6173 0.6152 0.6184 0.6129

italic underlined, and highlighted scores have the same meanings
as in Tables 6 and 7; now, we provide A3, A4, and A5 as follows:
A3. As observed in the table, with both datasets, ELT outperforms
ELT-C for all values of g, except for one case when g=9% with the
Cora dataset; these results show that our AP-scores are beneficial
to preserving asymmetric information.

Ad4. ELT outperforms ELT-K and ELT-R with both datasets for all
values of g; also, ELT-C outperforms ELT-K and ELT-R in all cases
except for CoCit where ELT-K outperforms it for ¢ = {1%,2%};
these results imply that considering the contribution of NU-paths
is beneficial to directed graph embedding.

AS5. ELT outperforms all single-vector and double-vector methods
with both datasets for all values of g; it shows that our ELT is more
effective in directed graph embedding than all the existing methods.

4.3.5 Parameter Sensitivity In our ELT, k (i.e., the number of it-

erations to compute AP-scores) and t = % xt’ (i.e., the number

of top closest nodes to a any node) are two important parameters.
Let us look over the sensitivity of ELT to different values of k and
t';as sample cases, Figure 4 illustrates behaviors of ELT with the
three machine learning tasks (i.e., for node classification, g=5% as
a sample) on different datasets where the values of k and t are set
to {2,3,4,5} and {10, 15, 20, ..., 45}, respectively.

Sensitivity to k. With all the three tasks, ELT shows highest ac-
curacy when k= {3, 4}; we observe the same circumstances with
other datasets as well. These results imply that for any node u,
considering those nodes connected to u via short paths (i.e., k <2)
or too long paths (i.e., k> 5) are not beneficial to graph embedding.
Sensitivity to t . For graph reconstruction, ELT shows highest
accuracy when t is set to small values (i-e., {10, 15}); for example,
with the Facebook dataset, the accuracy of ELT is 0.6430 when k=3
and t’ = 10, which is quite higher than that of the best observed
case in Table 6 (i.e., 0.4828 obtained by STP). However, for the two
other tasks, ELT shows better effectiveness when t is set to middle
values (i.e., {20, 25}). We observe the same circumstances with
other datasets as well, which means our ELT is a flexible embedding
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Figure 4: Parameter sensitivity for three sample tasks.

method that can be trained for a specific machine learning task by
only changing its parameters’ values; note, however, as stated in
Section 4, for the sake of brevity, we set the values of k and t to3
and 20 for all tasks with all datasets, respectively.

5 CONCLUSIONS

Observation. In this paper, we first pointed out the three draw-
backs of existing double-vector embedding methods: inability to
preserve asymmetry on NU-paths, inability to preserve global nodes
similarity, and impairing in/out-degree distributions.

CRW. We then proposed CRW, a novel similarity measure for
graphs that considers contributions of both U-paths and NU-paths
in similarity computation, without ignoring link directions.
ELTRA. We proposed ELTRA that captures the asymmetric infor-
mation by utilizing the AP-scores computed based on CRW where
the respective contributions of out-links and in-links are upgraded
and downgraded in similarity computation. Then, it preserves the
asymmetric information by using a learning-to-rank loss function.
Experiments. We demonstrated that (1) CRW outperforms Katz
and RWR in nodes similarity computation with all datasets, (2)
ELTRA significantly outperforms all state-of-the-art single-vector
and double-vector embedding methods in three machine learning
tasks with seven real-world datasets.

Future Work. We plan to improve the ELTRA’s efficiency by (1)
applying acceleration techniques [20, 46] and also single-source
computations [46] to AP-scores, and (2) utilizing negative sampling
techniques [26] in our loss function.
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