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REVIEW ARTICLE
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ABSTRACT
Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly
caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron
exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis
pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by
the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance
disruption, the brain gets adversely affected which further causes neurodegenerative diseases
(NDDs) like Parkinson’s and Alzheimer’s disease, strokes, and brain tumors like glioblastoma (GBS),
and glioma. Nanotechnology has played an important role in the prevention and treatment of
these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective
and efficient approach in the field of nanomedicine. In the current review, the authors have
highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of
major molecular key players and various mechanisms involved in the ferroptosis pathway.
Moreover, here the authors have also addressed the correlation of ferroptosis with the
pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the
prevention and treatment of NDDs.
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1. Introduction

Annually, on a global level, an escalating trend of people
affected by Neuro Degenerative Disorders (NDDs) [1]. NDDs
are diseases related to neurons and neural circuits. NDDs
include Alzheimer’s disease (AD) and Parkinson’s disorder
(PD), glioblastoma (GBS), ischemia stroke (IS), and multiple
sclerosis (MS) [2,3]. NDDs are always involved with the
wasting of the cortex and hippocampus which causes abnorm-
ality in feeling andmovement [4]. Currently, there is a huge gap
in understanding and implementing a comprehensive treat-
ment of such NDDs due to the blood–brain barrier (BBB) and
less anatomical brain study [5]. To date, several investigations
have shown the significant positive effect of conventional
drugs on such NDDs [6] for instance Esposito and their group
suspended the bromocriptine crystals with a combination of

lipid tristearin/tricaprin and coated them with poloxamer-188
[7]. Further, the investigator obtained improved results with
the nanosized bromocriptine for the treatment of PDs. In
another study, in order to treat amyotrophic lateral sclerosis
hydralazine was loaded on the mesoporous silica (SiO2) nano-
particles (NPs), and polyethylene glycol (PEG) was used to
coat them. The combination of both the above-mentioned
materials ameliorated the damage caused to both cell mem-
branes and mitochondria. This process was induced by
exposure to a normally lethal amount of acrolein in vitro [8].
For the treatment of MS, a group of investigators led by
Basso formulated a nanosized fullerene derivative (water-
soluble) (ABS 75) whose functionalization was carried out
with an N-Methyl-D-aspartate receptor (NMDAR) antagonist
[9]. From all the above investigations, it was found that there
were two major drawbacks of conventional therapeutic
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drugs: (a) reduction in the effective drug dosage to the target
sites and (b) inhibition in the growth of healthy cells [10,11].
This second factor becomes more crucial during the treatment
of brain tumor or Glioblastoma (GBS)[12]. Hence, to overcome
this issue there is a requirement for an emerging and efficient
technology that could cross the BBB and deliver the drug
effect for the treatment of NDDs [13]. Ferroptosis is a novel
and emerging type of iron-dependent programmed cell
death that is analyzed by the Fe-dependent lipid peroxidation
(LiPr). This biological process involves a reduction in the activity
of glutathione (GSH) peroxidase 4 (GPX4) and an accumulation
of lipid peroxide (LiP) [14,15]. Ferroptosis is resultant of an
imbalance between the production and degradation of Reac-
tive Oxygen Species (ROS) [16]. A number of literature have
shown that Fe and ferroptosis are associated with tumors and
NDDs, like GBS, AD, and PD, as well as stroke, and are found
very effective for the treatment of several cancers, and NDDs
[17]. In all these disorders, ferroptosis is involved which med-
iates a cascade of molecular pathways. Ferroptosis activates
several molecules that encourage various pathways for GBS,
AD, PD, and stroke [18]. Previous investigations have shown
that Fe2+ ions-based glutathione (GSH) activation results in
the formation of ROS [19]. This particular pathway activates
GPX4 molecules and ultimately leads to AD [20]. In the case
of stroke, selenium activates GPX4 molecules, which activates
tau (τ) protein where entire pathways are controlled by ferrop-
tosis [21].

In the present review, an attempt has been made to
emphasize the recent advancements in the ferroptosis-
based treatment of several NDDs in association with the mol-
ecular mechanism of ferroptosis for NDDs. Here the authors
have emphasized the recent progress in the nano-ferroptotic
inducers for the therapy of ADs, PDs, and brain tumors
(glioma and glioblastoma). Authors have also focused on
various approaches of ferroptosis along with nanotechnology
for the theragnostic approaches of NDDs. Emphasis was also
given on the current and future challenges of nanoferropto-
tic-based therapy of NDDs and various clinical trials
ongoing in this field.

2. Timeline of ferroptosis research

For the first time, ferroptosis was coined in 2012, after which
numerous advances took place in this field. Various histories
related to the ferroptosis research has been done in the last
20 years by various groups of investigators around the
globe which is summarized below in Table 1. In these last
20 years, most of the molecules (including inducing ferropto-
sis regulators and ferroptosis inhibitors) along with their role
in the ferroptosis pathway have been identified.

3. Ferroptosis and its characteristics

3.1. Ferroptosis

Ferroptosis [56] event is strongly linked to the Oxidative
Stress (OS) response and metabolism of cystine as a govern-
ing form of nonapoptotic cell death [57]. From the initial
investigation, it was assumed that ferroptosis differs from
apoptosis at all three levels i.e. morphological, biochemical,
and genetic. Moreover, investigators also suggested that
the cells undergoing ferroptotic events generally show a
necrosis-like morphological change [44]. A detailed

observation by the investigators confirmed that necrosis,
autophagy, shrinkage of mitochondria, and LiP deposition
take place during ferroptosis which is similar to apoptosis.
In ferroptosis cell shrinkage, chromatin agglutination, and
other events do not take place [58–61]. Lipid oxidation in fer-
roptosis totally relies on the presence of Fe2+/Fe3+ ions inside

Table 1. Major milestones in ferroptosis research in last two deacdes.

Year Milestones References
Molecules Roles

2003 Erastin Mutant RAS selective compound [22]
2007 Vitamin-E Antioxidant [22]

VDAC2/3 Mitochondrial porins [22]
Mutated RAS Oncogene [22]

2008 TFRC Iron transporter [22]
RSL3
RSL5

Mutant RAS selective compounds [22]

DFO Iron chelator [22]
2010 ML162

ML210
Mutant RAS selective compounds [23–25]

2012 SLC7A11 Cystine/glutamate transporter.
Coined the term ferroptosis

[22]

Ferrostatin-1 Ferroptosis inhibitor [22]
Sulfasalazine SLC7A11 inhibitor [22]

2014 GPX4 Phospholipidhydroperoxidase [22]
Sorafenib SLC7A11 inhibitor [22]
Liporoxststin-1 Ferroptosis inhibitor [26]
Zileuton ALOX inhibitor [27]

2015 SLC38A1 Glutamine transporter [28–30]
HSPB1 Heat shock protein [31]
TP53 (mutated
tumor suppressor
gene)

Transcription factor [32]

Artesunate Antimalarial agent [33]
IKE SLC7A11 inhibitor [22]

2016 ACSL4 Lipid biosynthesis [34]
FIN56 GPX4 and coenzyme Q10 (CoQ10)

inhibitor
[22]

NEF2L2 Transcription factor [35]
NCOA4 Ferritinophagy [28–30]
ALOXs Lipoxygenases [22]
FINO2 Inactivation of GPX4 & oxidation

of Fe
[36]

Statins HMG-CoA reductase [22]
2017 BH3-interacting

domain death
agonist (BID)

BCL2 family [37]

ZEB1 EMT-activator [38]
ITGA6-ITGB4 Cell adhesion [39]
Hemoglobin Hemin Iron-containing protein [40]
Rosiglitazone ACSL4 inhibitor [41]

2018 BAP1 Epigenetic regulation [42]
NECTIN4 Cell clustering [43]
CTSB Lysosomal cell death [31]
Withaferin A Increase iron [44]
LOX-Block-1 ALOX inhibitor [45]

2019 YAP1
NF2
WWTR1

Cell contact [46]

Apoptosis-inducing
factor
mitochondria-
associated 2
(AIFM2)

CoQ10 production [47]

Cyst(e)inase Cysteine depletion [48]
Ferroptocide Thioredoxin inhibitor [49]
iFSP AIFM2 inhibitor [50]

2020 PEX10
PEX3

Peroxisome [51]

GCH1 BH4 production [52]
CHMP5
CHMP6

ESCRT-III membrane repair [31]

POR (p450
reductase)

Phospholipid peroxidation [53]

Zalcitabine Antiretroviral agent [31]
Quercetin Antioxidant agent [54]

2023 Piezo1 & TRP
channels

Cooperatively promote
ferroptosis by facilitating cation
flux

[55]
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the cell [62]. Additionally, when the intracellular oxidation–
reduction is imbalanced, the Polyunsaturated Fatty Acids
(PUFAs) in phospholipid (PL) molecules on the cellular mem-
brane are oxidized and destroyed by LiP, which causes the
rupture of the cellular membrane and cell death [63]. When
the cellular glutathione-dependent antioxidant defense
system gets inactivated there will be deposition of lipid
ROS ultimately causing ferroptosis [64]. Cellular ferroptosis
is characterized by abnormalities in intracellular lipid oxide
metabolism, aberrant Fe ion-catalyzed metabolism,
decreased antioxidant defenses, and an accumulation of
lipid ROS [65], which leads to an unstable intracellular
redox and causes cell death [64]. The three major, factors
that lead to cell passage in ferroptosis are (a) an increase in
free intracellular Fe, (b) a decrease in redox glutathione/
GPX4/framework Xc, & (c) oxidation of layer PUFAs [66]. The
ferroptosis further depends on various pathways like Xc-
system /cysteine/GSH, dysfunction of varistor anion channels
(VDACs) [67,68], p53 pathway [32,69,70], p62-Keap1-Nrf2 [71],
ferroptosis suppressor protein 1 (FSP 1) as well as the trans-
sulfuration pathway [72,73].

3.2. Important molecular players of ferroptosis

There are several important molecular players of ferroptosis
which play a key role. These molecular players may act
either as an inducer or inhibitor. Some of the important
ones are described below in brief.

3.2.1. SLC7A11
SLC7A11/xCT/system xc- are amino acid anti-transporters
that are made up of two core components: SLC7A11 (light-
chain subunit) and SLC3A2 (heavy-chain subunit). Both of
these chains/components sustain the formation of an
endogenous antioxidant GSH, through a series of reactions
once it exchanges extracellular cystine for intracellular gluta-
mic acid.

3.2.2. GPX4
It acts as a PL hydroperoxidase which lowers the formation of
PL hydroperoxide to the respective PL alcohol. The functions
of GPX4 are governed by Se and GSH. Selenium could
enhance the anti-ferroptosis features of GPX4 through the
selenocysteine residue at 46 [74].

3.2.3. AIFM2
The AIFM2 stands for ‘Apoptosis-inducing factor mitochon-
dria-associated 2’ and is also called FSP1. It is a conventional
inducer of apoptosis in the mitochondria and has been
recently identified as a regulator of antioxidants in ferropto-
sis. N-myristoylation is needed for the translocation of
AIFM2 from mitochondria to the cell membrane. After reach-
ing the cell membrane, it catalyzes the regeneration of non-
mitochondrial reduced CoQ10 by utilizing nicotinamide
adenine dinucleotide phosphate (NADPH) which in turn
traps the LiP in a GPX4-independent manner [75].

3.2.4. CGL
CGL stands for cystathionine gamma-lyase which acts as the
source of cysteine. The decomposition of the cystathionine
(part of the transsulfuration pathway) is being carried out
by CGL This pathway acts as a connecting link between meth-
ionine and GSH biosynthesis [76].

3.2.5. NADPH
It is an important reducing agent, formed during the pentose
phosphate pathway (PPP). It has an important role in limiting
the damage of peroxidation caused by ferroptosis. It could be
formed by the phosphorylation of NAD by NAD kinase
(NADK). When the NADK silencing is done there is a reduction
in the NADPH and erastin-, RSL3- and FIN56-induced ferrop-
tosis, which increases [77].

3.2.6. Aldosterone reductase family 1 (AKR1)
AKR1 is a family of aldo-keto reductase enzymes which has a
significant contribution to steroid metabolism. Moreover, it
includes both AKR1C and AKR1D subfamilies. In elastin-resist-
ant tumor cells, there is an increased expression of AKR1C
which inhibits ferroptosis by lowering the end products of
LiP (AA/ AdA-PE-OOHs) to their respective nontoxic lipid-
derived alcohols (AA/AdA-PE-OHs) [78].

3.2.7. Peroxiredoxin (PRDXs)
It is a family of Se-independent GSH peroxidases that have a
major role in suppressing ferroptosis. The OS is followed by
the recruitment of PRDXs on the peroxidized cell membrane.
Here PRDX6 minimizes and hydrolyses the oxidized sn-2 fatty
acyl or the sn-2 ester (alkyl) bond of oxidized PLs. It prevents
erastin- or RSL3-induced LOOH formation and ferroptosis via
Ca2+-independent PLA2 activity [79,80].

3.2.8. Thioredoxin
Its molecular weight is 12 kDa, which has an oxidoreductase
activity. It is specifically located in the thioredoxin antioxidant
system comprised of thioredoxin, thioredoxin reductase, and
NADPH [81,82]. Ferroptocide is involved in the rapid induc-
tion of ferroptosis-like cell death in several cancerous cells
by preventing the enzymatic action of thioredoxin [83]. The
knockout of thioredoxin reductase 1 (TXNRD1) checks the
ML210-induced ferroptosis in cancerous cells.

3.2.9. GTP cyclohydrolase-1 (GCH1)
It is a rate-limiting enzyme of tetrahydrobiopterin (BH4) bio-
synthesis. BH4 is a major cofactor for numerous key
enzymes that participate in the formation of dopamine and
NO (neurotransmitters). GCH1-mediated BH4 formation
leads to lipid remodeling and inhibits ferroptosis by selec-
tively preventing two polyunsaturated fatty acyl tails from uti-
lizing PLs. The deficiency of BH4 could play a significant role in
the pathogenesis of ferroptosis-based disorders.

3.3. Different mechanisms of ferroptosis

Several researchers have detailed the various ferroptosis
pathway mechanisms, the most simplified of which is
explained in the present study. Ferroptosis is induced either
by amino acid metabolism, Fe metabolism, or LiPr [63]
which are explained in the following discussion. Figure 1 exhi-
bits the mechanisms involved in the ferroptosis pathway.

3.3.1. Iron metabolism-based ferroptosis pathway
Iron being an essential element is required for numerous cel-
lular functions like deoxyribonucleic acid (DNA) synthesis, O2

transport, cellular respiration, and biosynthesis of neurotrans-
mitters in the nervous system [84,85]. The homeostasis of iron
plays a major role in the survival and formation of normal cells
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[86]. On the contrary, its deficiency leads to anemia [87]. Fer-
roptosis is marked by the deposition of iron while an excess of
iron will lead to an elevated risk of cancer [88]. A significant
number of studies showed that there are several Iron Regulat-
ory Proteins (IRP) (IRP1 and IRP2) that control the cellular iron
metabolism by posttranscriptional control. Both types of s
could regulate the iron metabolism genes transferrin recep-
tor (TFRC) and ferritin heavy chain 1 (FTH1) under normal
physiological environments to maintain the stability of
unstable iron pools, where the LIPs, are made up of a lesser
quantity of free Fe2+ [89]. Iron is mainly available in either
Fe2+ (ferrous) or Fe3+ (ferric), while the Fe that circulates in
the blood is mainly Fe3+ after binding to transferrin (TF).
Firstly, Fe3+ ions are brought inside the cell by various iron
transporter proteins i.e. transferrin receptor 1 (TFR1), and
lead to the formation of an intracellular iron pool. From this
iron pool, some of the iron is discharged out from the cell
as ferroproteins while the remaining iron pool is involved in
the Fenton reaction and leads to OS. During this Fenton reac-
tion, there is a release of O2 from the mitochondria. O2 along
with NOX causes OS inside the cell followed by LiPr which ulti-
mately leads to ferroptosis [90]. The detailed events involved
in iron-mediated ferroptosis are discussed below. Fe-
mediated ferroptosis begins with the entry of free Fe3+ ions
into the cell via a TFR 1 (cell membrane protein). These Fe3+

ions accumulate inside the nucleosome of the cell which is
further reduced to Fe2+ with the help of nucleosome iron

reductase-prostrate hexame transmembrane epithelial
antigen 3 (STEAP 3). The reduced form of iron gets trans-
ported from the endosome to the cytoplasm facilitated by
divalent metal transporter 1 (DMT 1). In general, Fe2+ ions
get deposited into the ferritocyte stock protein complex,
which is made up of FTH 1 and ferritin light chain (FTL), in
order to maintain the balance of unstable pools of iron and
inhibit the generation of ROS [91]. Some fraction of Fe2+

ions get exported to the extracellular space with the help
of a ferritin FPN 1 (membrane protein). Further, if there is
any failure in the uptake, transport, storage, and use of intra-
cellular iron, then there will be excess Fe2+ ions accumulation
inside the cell. This will lead to the initiation of the Fenton
reaction, ultimately leading to the generation of (°OH) and
ROS. The ROS generated in the previous step in turn
modifies and interferes with the biological molecules of the
cell (proteins, lipids, and DNA). Moreover, there is an occur-
rence of sequential peroxidation reactions with PUFAs on
the cell membrane which leads to the generation of LiP
[92]. Due to the formation of LiP, there is destruction in the
cell morphology ultimately leading to cell ferroptosis. The
deposition of iron in the cell is especially due to the following
barriers i.e. membrane iron transporter (FPN), TFR 1, and DMT
1 [93]. Due to all these barriers, there is a loss of control over
iron transport. Alternative to this, nuclear receptor coactiva-
tor 4 (NCOA4)-based degradation of ferritin phagocytosis
pathway may get initiated which may result in the enhanced

Figure 1. Mechanism pathways of ferroptosis adapted from [16].
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storage of iron [94]. Further, there is a Fenton reaction/mito-
chondrial damage/lipoxygenase (LOX) function which may
ultimately lead to enhanced iron accumulation in the active
iron pool. Finally, due to all the above events, there is an
increased ROS which eventually results in ferroptosis.

3.3.2. PUFAs-based ferroptosis pathway
PUFAs-mediated pathway is another mechanism, where
PUFAs get converted into PUF-CoA in the presence of
ACSL4. Further, PUF-CoA gets converted into polyunsatu-
rated fatty acid (PUF)-phosphatidylethanolamine-(PE) arachi-
donic acid (AA) [PUFA-PE-AA] in the presence of
lysophosphatidylcholine acyltransferase 3 (LPCAT3). PEs
having AA are one of the key phospholipids that induce cel-
lular ferroptosis. Further, PUFA-PE-AA gets converted into
polyunsaturated fatty acid (PUFA)-phosphatidylethanola-
mine-(PE)[PUFA-PE-AA-OOH] in the presence of lipoxygenase
(LOX). At this point, the molecules get affected by the OS and
there is lipid oxidation which leads to ferroptosis [95]. The
detailed mechanism of these pathways is described below
in detail. The pathways start with the formation of ROS
(OH) which triggers the LiPr to form lipid radicals and lipid
peroxy radicals [96]. These lipid radicals further react with
the PUFAs to form LiP which ultimately leads to ferroptosis.
Here in total, these pathways are involved in the iron partici-
pation in the accumulation of ROS. ROS further interacts with
the PUFAs in the lipid membrane which induces LiPr, which in
turn triggers intracellular ferroptosis. The dyalenyl H atoms of
PUFAs react readily with the ROS leading to LiPr and ulti-
mately leading to the death of cellular iron [21]. Further,
phospholipids (PEs) having AA induces cellular ferroptosis.
In the next step, there is an enhanced ferroptosis which is
achieved by supplementing with AA/other PUFAs and inhibit-
ing the LPCAT 3 and Acyl-CoA synthetase long-chain family
member 4 (ACSL4) activity. In order to generate the ferropto-
sis signals there is a requirement for the generation of PUFA
and coenzyme A (CoA) derivatives followed by their binding
with the PLs [97]. These could be the potential targets for the
treatment of disorders involved with ferroptosis.

3.3.3. Cystine/glutamic acid-based ferroptosis pathway
The third mechanism is the cystine/glutamic acid-mediated
pathway where cystine/glutamic acid metabolism contributes
a significant role in ferroptosis [98]. In this particular pathway,
there is an Xc-system, which is an amino acid antiporter that
mainly facilitates the exchange of extracellular L-cystine and
intracellular L-glutamic acid across the plasma membrane of
the cell [99]. The Xc system is comprised of light-chain solute
carrier family 7 members 11(SLC7A11) and heavy-chain solute
carrier family 3 members 2 (SLC3A2) which are attached by
disulfide bonds. It transports the glutamic acid outward of the
cell whereas cysteine is transported inward to the cell by main-
taining a 1:1 ratio (glutamic acid: cysteine). The glutamate
further gets converted into glutathione (GSH), which reversibly
gets oxidized and converted into oxidized GSH (GSSG). The glu-
tathione-dependent peroxidase (GPX4) molecule gets activated
which further joins the PUFAs-mediated pathway and Fe-
mediated pathway, leading to LiPr and causing ferroptosis
[100]. Figure 2 showed a typical cystine/glutamic acid-mediated
ferroptosis pathway [101]. Figure 3 depicts a combined ferropto-
sis pathway mediated by cystine/glutamic acid, LiPr oxidation,
and iron metabolism.

4. Ferroptosis inducers and inhibitors and other
causes of ferroptosis

A ferroptotic event in a cell is controlled by the various types
of biomolecules and inorganic materials which may act either
as an inducer or inhibitor for ferroptosis [102]. There are
several molecules in a cell that could trigger/induce the fer-
roptosis event for instance erastin, FINO2, FAC, statins,
FIN56 etc. Besides this, there are several molecules that may
affect the ferroptotic event in a cell by inhibiting i.e. DFO, sel-
enium, dopamine CoQ10, etc. [103]. Ferroptosis regulators
can be broadly divided into two categories i.e. inhibiting fer-
roptosis and inducing ferroptosis [97]. Inhibiting ferroptosis
regulators are mainly Se, CoQ10, NRF2, Fanconi anemia
group D2 protein (FANCD2), and NFE2L2 whereas inducing
ferroptosis includes NADPH, p53, and BECN1 (Beclin 1) [97].
All these regulators have different roles either in inhibiting
or inducing the ferroptosis. Both inducers and inhibitors of
ferroptosis have different mechanisms on the ferroptotic
event [104], which are briefly discussed below and given in
Table 2.

Selenium (a ferroptosis inhibitor) is an essential micronu-
trient that maintains the GPX4 activity, which in turn activates
the abundance and activity of GPX4 [105,106].

There is a synergistic activation of the transcription factor
AP-2 gamma (TFAP2c) and Sp1 transcription factor (Sp1), by
preventing ferroptosis to a certain extent for the protection
of neurons [21,107].

Another inhibiting ferroptosis regulator is CoQ10, whose
concentration in the cells is lowered by ferroptosis suppressor
protein 1 (FSP 1) [108], to prevent LiPr and inhibit ferroptosis.
Hence FSP 1 could prove to be an important target for the
treatment of similar disorders [109,110].

NRF2 has a significant role in the upregulation of the
expression of gene clusters engaged in the iron and ROS
metabolism NAD(P)H quinone oxidoreductase 1 (NQO1),
FTH1 through the p62-Keap1-NRF2 pathway and heme oxy-
genase 1 (HO1) [111].

Another important ferroptosis inhibitor is FANCD2 which
helps in the regulation of expression of protein through
both transcription-dependent and nondependent
mechanisms.

NFE2L2 minimizes oxidative damage (OD) during ferrop-
tosis wherein NFE2L2 regulates the expression of related
genes (associated with the metabolism of Fe and GSH, and
the anti-ROS process) through transactivation plays an
important role in the regulation of the expression of
related genes by transactivation to restrict OD during ferrop-
tosis [97]. Several literary works suggest that the NFE2L2 sig-
naling pathway is a very crucial defense method against
ferroptosis [112].

Among inducers of ferroptosis, one of the important mol-
ecules is NADPH which controls or mediates the circulation of
the GSH-GPX4 antioxidant system [113]. The heavy consump-
tion of GSH-GPX4 will restrict the antioxidant activity of GSH-
GPX4. If NADPH is consumed higher than this will control the
activity of GSH-GPX4 and can trigger ferroptosis [114].

The inhibition of cysteine uptake by downregulating the
expression of SLC7A 11 (Xc- system component) is controlled
by the p53 regulator.

BECN1 inhibits the activity of the Xc- system and blocks
cysteine output, which eventually results in the occurrence
of cellular ferroptosis [115].
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Figure 2. Cystine/glutamic acid-mediated ferroptosis pathway.

Figure 3. Ferroptosis mechanism pathways adapted from [14].
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5. Hallmarks features of ferroptosis

Ferroptosis in a cell is marked by its several hallmark features
which are broadly classified into four groups namely morpho-
logical features, biochemical, genetic features, and immune
features. Figure 4 shows the hallmarks features of ferroptosis.

5.1. Morphological features

In ferroptosis the morphological features are marked by
necrosis-like changes in the shape and size of various cellular
organelles, loss of integrity of plasma membrane, swelling of

cytoplasmic organelles and cytoplasm (oncosis) [49], conden-
sation of chromatin, cells detachment and rounding up, and
increased autophagosomes [125]. It is the tendency of a fer-
roptotic cell to spread quickly in the adjacent cell [126]. The
detailed study at the ultrastructural level of a cell undergoing
ferroptosis revealed that during ferroptosis cell shows mito-
chondrial abnormalities i.e. swelling/condensation, density
of membrane increases, lowering or absence of crista, and
rupturing of outer membrane [127]. Some recent investi-
gations have exhibited that mitochondria-based ROS gener-
ation, DNA stress, and metabolic reprogramming are
needed for LiPr and induction of ferroptosis [127,128].

Table 2. Inhibitors and inducers of ferroptosis.

Role Mode of action Small molecules Nanoparticles References

Inducer Fe homeostasis FAC Fe-based NMs like IONPs,
Fe-organic NPs, FePt

[116]

NRF2 inhibition Trigonelline, brusatol – [117]
LiPr FINO2 WS2, Fe-organic NP, FePt &

MoS2
[36]

Inhibition system xc
−

Sulfasalazine; glutamate, erastin, PE, sorafenib, IKE erastin analogs – [118]

GSH depletion Cystine/cysteine deprivation, acetaminophen, cisplatin, BSO, DPI2, cysteinase Zinc oxide NPs [119]
Suppression GPX4 (1S,3R)-RSL3; ML162, FIN56; DPI family members Fe-free NMs, (WS2, MoS2 &

Copper NPs)
[120]

CoQ10 biosynthesis
inhibition

Statins – [121]

Inhibitor System xc−
activation

β-mercaptoethanol, Cycloheximide – [122]

Fe chelators DFX, CPX, DFO, DFP – [116]
Selenoprotein
increment

Se – [116]

Reduction of LiPr Vit-E, BHT, BHA, Fer-1, AA-861, zileuton; vildagliptin, alogliptin, trolox,
tocotrienols, Lip-1; CoQ10, idebenone; XJB-5-131; deferoxamine, cyclipirox,
deferiprone; CDC, baicalein, PD-146176 and linagliptin

CPS [123]

GPX4 upgradation Dopamine – [124]

Figure 4. Hallmarks features of ferroptosis.
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5.2. Biochemical features

From the various literature, it has been confirmed that ferrop-
tosis is a ROS-dependent apoptosis that is present with two
basic features i.e. iron accumulation and LiPr [96].

5.2.1. Iron accumulation
Ferroptosis activators like erastin or RSL3 cease the antiox-
idant system once they enhance the deposition of iron
inside the cell [129]. The iron deposited over here will
directly produce excessive ROS via the Fenton reaction,
leading to an increase in OD [130]. Moreover, the activity
of enzymes namely LOX or Egg-laying defective nine
(EGLN) prolyl hydroxylases is increased by iron accumu-
lation, where the roles of the enzymes are LiPr and
oxygen homeostasis respectively [49,94,131,132]. The sensi-
tivity of ferroptosis depends on the dynamics between sys-
temic and local cellular regulation of Fe. Further, ferroptotic
cell death is effectively inhibited either by targeting genes
associated with iron overload or due to the use of iron-che-
lating agents [133].

5.2.2. Lipid peroxidation (LiPr)
LiPr is a free radical-propelled reaction that specifically
affects the unsaturated fatty acids in the cell membrane
[134]. The various LiPr products are initial lipid hydroperox-
ides (LOOHs), and subsequent reactive aldehydes [malon-
dialdehyde (MDA) and 4-hydroxynonenal (4HNE)], whose
concentration increases during the ferroptosis [135]. Here
there is an involvement of mainly three types of fatty
acids namely: saturated fatty acids, monounsaturated
fatty acids (MUFAs,) and PUFAs [136,137]. During the fer-
roptotic event, various lipids of the cell membrane like
phosphatidylcholine, phosphatidylethanolamine (PE), and
cardiolipin get oxidized but peroxidation of PUFAs in phos-
pholipids by LOX is highly important for ferroptosis. The
peroxidation of cardiolipin has not been observed yet in
ferroptosis [63].

5.3. Genetic features

Several investigations have revealed that the ferroptotic
event is marked by the overexpression of certain genes/
proteins, for instance, prostaglandinendoperoxide
synthase 2 (PTGS2/COX2)[required for prostaglandin bio-
synthesis] [138]. Another such enzyme is Acyl-CoA synthe-
tase long-chain family member 4 (ACSL4) which plays an
important role in the metabolism of fatty acid [139]. It is
considered an important biomarker and driver of ferropto-
sis as the upregulation of ACSL4 enhances the PUFA
content in phospholipids. These enhanced PUFA contents
are prone to oxidation reactions directing to ferroptosis
[140]. Genes having an important role in the antioxidant
defense get activated during ferroptosis [e.g. GSH &
CoQ10 system, and nuclear factor erythroid 2-like 2
(NFE2L2/NRF2) transcription pathway] along with mem-
brane repair (e.g. the endosomal sorting complexes
required for transport (ESCRT)-III pathway34), that lowers
the damage of the cellular membrane during ferroptosis
[64]. Hence based on the balance of the injury and anti-
injury responses, a cell decides to live or to die in response
to the stimulus of ferroptosis.

5.4. Immune features

Ferroptosis has two significant immunological effects on the
cell, one is the death of leukocyte types and the correspond-
ing loss of immune activity, for instance, LiPr induces ferrop-
tosis in T cells and favors viral or parasitic diseases [141].
Secondly, when non-leukocytic cells are affected by ferrop-
tosis, it becomes very important how the dying cells or
forming corpses are handled by the immune system [142].
This is more important as the death of different cells may
give rise to different immune and inflammatory responses
through releasing and activating different damage-associ-
ated molecular pattern (DAMP) signals. During ferroptosis,
the inflamed cells die which are associated with the
DAMPs or LiPr at the time of tissue injury or tumor
therapy [143]. The 4-HNE is a pro-inflammatory mediator
that is formed during the LiPr. This LiPr product is
engaged in the activation of the nuclear factor-κB (NF-κB)
pathway, in aging and chronic diseases [144]. Another one
is high mobility group box 1 (HMGB1), which is a prototypi-
cal DAMP that plays an important role in cell death. HMGB1
is discharged by the ferroptotic cells which in turn triggers
an inflammatory response in peripheral macrophages by a
specific pathway [145]. In order to treat inflammatory dis-
eases that arise from ferroptotic damage, one has to target
the lipid metabolism-related DAMP signaling which could
prove to be a promising strategy [94].

6. Detection procedures of ferroptosis

6.1. Biomarkers associated with ferroptosis

There are several ferroptosis markers that can be used to
confirm the ferroptotic event in the cell [146]. A biomarker in
ferroptosis could be mainly categorized into three types on
the basis of their biological nature. A biomarker in ferroptosis
could be either metabolites, proteins, or genes [147] which is
shown in Figure 5. A ferroptotic event is marked by several cel-
lular behaviors for instance, the effect on the mitochondria,
behavior of the cell, morphology of the cell, and its nucleus,
and the biological effect on the cell once the iron dies
[146,148] (Figure 5), which discussed below in detail.

During the ferroptotic event, mitochondria act as an
important marker as it goes various changes like there is
a decrease in the size and numbers of mitochondria, mito-
chondrial atrophy, decrease/disappearance in the mito-
chondrial spine [149]. Moreover, some of the ferroptotic
events in mitochondria could also be marked by the
increase in the mitochondrial membrane density which
could be due to the dysfunction of the VDACs and
changes in the mitochondrial membrane fluidity [150].
Another important cellular ferroptotic marker is the behav-
ior of the cell, which could be marked by the shedding and
aggregation of the cells and a drastic rise in the intracellu-
lar autophagosomes [151]. Cellular ferroptotic events
could also be marked by the cell structure for instance
rupture of the cell membrane and the formation of a
bubble [152]. Several investigators have also marked the
cellular ferroptotic event by visualization of the nucleus
features for instance there will be devoid of chromatin
agglutination, comparatively smaller intracellular mito-
chondria, rupturing of the outer membrane of mitochon-
dria, and enhanced bilayer membrane density [152].
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6.2. Procedures applied for the assessment of
ferroptosis

6.2.1. Microscopy imaging
Ferroptosis involves several proteins, molecules, and genes that
bring about several changes at the molecular level [151], which
can be observed by using microscopic techniques like trans-
mission electron microscopy (TEM) and confocal microscopy
[153]. Moreover, these microscopic techniques could provide
a detailed structure at the subcellular level. Earlier Zhang and
coworkers observed the mitochondrial shrinkage with fused
cristae of mitochondria in a ZnO NPs-treated Human umbilical
vein endothelial cells (HUVEC) under TEM.

6.2.2. Mass spectrophotometry
The ferroptosis involves LiPr, a pathway that generates LiPr
products which can be examined by mass spectrometry.
The MS mainly provides mass to charge ratio (m/z), of the
lipid particles and generates mass spectra that can
provide data about molecular mass, elemental com-
ponents, and chemical structure of lipids [154]. Previously,
Kagan and their team utilized liquid chromatography
coupled with MS, in order to detect the structure of
LOOHs in ferroptosis [155]. A team led by Isabel applied
matrix-assisted laser desorption/ionization (MALDI) based
MS for the investigation of the role of oxidized PUFAs in fer-
roptosis [156].

Figure 5. Various markers of ferroptosis.
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6.2.3. Western blotting
Ferroptosis involves several biological protein molecules like
SLC7A11, GPX4, TRF2, etc. which have been identified by
western blotting. Previously a team led by Eleftheriadis exam-
ined the expression of these protein molecules involved in a
ferroptotic event of a cell [157]. Wang and their team have
used this method to reveal the activity of glycyrrhizin on fer-
roptosis in acute hepatitis failure [158]. Zhou and their
coworkers applied western blotting and found that there
was a continuous decrease in the proteins (GPX4 and
SOD2) in the ferroptosis [159].

6.2.4. Genetic analysis
As ferroptosis is controlled by several genes, the investigation
of ferroptosis could be done by either genetic analysis or by
gene mutagenesis [160]. The former technique applies RNA
interference screening and genome screening for the identifi-
cation of relevant genes [161]. A team led by Gao applied
RNAi screening to a wider range of investigations of ferropto-
tic cells. By applying similar techniques, ferroptosis genes and
some uncorroborated genes were also found to be involved
with ferroptosis [162]. A team led by Cao reported the utiliz-
ation of genome-wide human haploid cell genetic screening
methods to investigate the genes that are involved in the
intracellular regulation of GSH abundance and their impor-
tance in regulating ferroptosis [163].

6.2.5. Other methods
As ferroptosis involves Fe the ferroptotic event in a cell can be
measured by the analysis of Fe ion by the inductively coupled
plasma (ICP)-MS (ICP-MS) [164]. ICPMS are highly accurate
techniques for the quantification of Fe content in biological
systems. Previously Pepper and their coworkers have used
ICP-MS for the estimation of Fe3+ ions in an organic phase
in order to distinguish between Fe3+ and Fe2+ ions in the bio-
logical systems [165]. Several investigators have also used
fluoresce spectrophotometry for differentiating ferrous and
ferric ions in biological systems by applying fluorescent
probes. Fluorescent probes specifically chelate Fe2+ (nanthro-
line and ferrozine) and Fe3+ (Rhodamine B hydrazonespirolac-
tam) with an alternation in their spectra [166]. The ferrous and
ferric phases of iron could easily be distinguished by using
Mössbauer spectroscopy and Absorption near edge spec-
troscopy (XANES), but these two techniques rarely have
been used so far.

7. Mechanism of nanomaterial-induced
ferroptosis

The NMs-induced ferroptosis could exhibit significant infer-
ences in nanomedicines and nanosafety. From the various
investigations, it has been observed that the NMs-induced
ferroptosis has the equivalent classical features as small mol-
ecule inducers e.g. inhibition of GPX4, Fe overloading, and
LiPr. It has been observed that the initial molecular reactions
in the NMs-based induced ferroptosis pathway are comple-
tely different. Zheng and their team have proposed three fer-
roptosis pathways on the basis of reported ferroptosis signals
induced by NMs. These pathways are membrane impairment,
lysosomal dysfunction, and mitochondrial damage [167].

7.1. Membrane impairment

The free access of exogenous NPs is controlled by the cellular
plasma membrane [168]. Some of the NMs like fumed silica
and graphene oxide were strongly associated with the
plasma membrane and least in the lysosomes [169]. XC-

system and TRF1 are valuable upstream proteins in Fe metab-
olism therefore the binding of NMs on the plasma membrane
may alter the biological activity of these proteins [129]. A
team led by Herbison found that Co(II)Tf and Mn(II)Tf could
upregulate the TFR1 and reduce ferritin that could affect
iron homeostasis. Mn2+ ions could utilize the same imported
(DMT1) with ferric ion which may have a competition and
may affect the uptake of iron homeostasis [170].

7.2. Lysosomal dysfunction

Ferroptosis is closely associated with the lysosomal dysfunc-
tion. A surplus amount of redox-active iron is being deposited
in the lysosome [116]. The lysosome may undergo undesir-
able reactions with endocytic NMs, out of which some of
the NMs may get transformed into the acidic and enzymatic
organelle to elicit impairment of lysosomes by redox reac-
tions, denaturation of biomolecules presents in lysosomes,
and physical interactions [116]. Zheng and coworkers exhib-
ited that the dysfunction of lysosomes by MoS2 and WS2
nanosheets could result in the discharge of the Fe2+ ions in
the cytoplasm. These free Fe2+ ions triggered the formation
of ROS by the Fenton reaction and also induced LiPr which
leads to ferroptosis. When both the nanosheets were
modified by the Na2S or methanol ameliorated the impair-
ment of lysosome and minimized the secretion of Fe2+ ion
in the cytoplasm, which played a major role in the improve-
ment of cell viability [171,172]. A team led by Wang utilized
amine-modified polystyrene NPs, which resulted in the
release of lysosomal enzymes and iron to activate ferroptosis
[173].

7.3. Mitochondrial damage

Mitochondria is one of the most important subcellular orga-
nelles which adds a role in apoptosis, autophagy, and fer-
roptosis [174]. Numerous investigations have exhibited a
change in the shape and size of the mitochondria in the fer-
roptotic cells that were induced by the NMs [175]. Zhang
and coworkers have developed a FePt@MoS2 nanocompo-
sites (ferroptosis agent) that could discharge 30% ferrous
ion within 3 days in the tumor microenvironment for indu-
cing the ferroptosis by accelerating the Fenton reactions
[176]. A team led by Huang utilized zero-valent iron (ZVI)
NPs to control the ferroptosis where the oxidative conver-
sion of ZVI to ferrous ion assisted the Fenton reaction for
inducing the mitochondrial LiPr and MDA formation [177].
Zhang and their colleagues showed that Zn2+ dissolved
from zinc oxide NPs could upregulate the mitochondrial
VDAC proteins [178]. All these three pathways are shown
in Figure 6.

8. Neurological diseases associated with
signaling pathways of ferroptosis

Ferroptosis-based approaches for treating various neurologi-
cal-related diseases are mainly due to the reason that the iron
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ions participate in the various cancerous cell cycles by alter-
ing the DNA replication and repair pathway [179]. From the
investigations, it has been revealed that the neoplastic cells
have increased iron concentration than the non-cancerous
cells [180]. So, there is a scope for the iron-based signaling
pathway to inhibit cancer growth [181,182]. Several investi-
gators found that in the unavailability of antioxidant protec-
tion, efficient killing of the cancerous cells was attained by
inducing Fe-dependent OD via the ferroptotic pathway
[182]. To date, numerous ferroptotic inducers both in
micron and nanosized have been synthesized to upgrade
the currently ineffective anti-tumor approaches. The appli-
cation of novel inducers of ferroptosis with targeted nanocar-
riers has several advantages improved drug stability,
prolonged plasma half-life, facilitated cellular internalization,
and enhanced accumulation at the tumor sites [183]. All
these factors help in the eradication of cancerous cells. In
one of the investigations carried out by Ma and coworkers,
it was found that the IONPs were used as a carrier for cisplatin
(IV) for enhanced anti-tumor activity and reduced systemic
toxicity [184].

8.1. Ferroptosis in general diseases

Several investigators have shown the role of ferroptosis in the
various organ-related disorders in the body [15]. Zhang and
their team reported the involvement of ferroptosis in the
various disorders associated with acute kidney injury,
cancer, hepatic fibrosis, PDs, and ADs [18]. More especially,
it is involved in all types of cancer of the liver, gastrointestinal
tract, kidney, and lungs [185,186]. In addition, it has an impor-
tant role in CNS-related disorders [96,187,188]. Since OS and
Fe accumulation are the trademark pathological characters
of NDDs, the importance of ferroptosis in NDDs has been
investigated a lot [189].

8.2. NDDs associated with ferroptosis

Neurological disease is considered to occur when the central
nervous system gets damaged which leads to an increase in
the ROS protein nitration [190]. The most reliable approach
to reduce the progression of NDDs is to enrich the body
with antioxidants which will stop the overproduction of
ROS [191]. The majority of NDDs have a common pathological
mechanism like damaged protein, quality control, and degra-
dation pathway, dysfunctional stress granules of mitochon-
dria, and incompatible innate immune responses (ImR)
[192,193]. Moreover, NDDs also exhibit unique pathologies
and clinical features in different parts of the brain [194,195].
Several investigations have shown that ferroptosis is present
with several NDDs (ADs, PD, Huntington’s disease), strokes,
and various types of cancer. Ou and their team reported that
NMs like low-density lipoprotein–docosahexaenoic acid NPs
could specifically trigger ferroptosis in liver cancer cells by
LiPr, lowering of GSH, and inactivation of GPX4 [196].

Figure 7 shows a putative pathway for ferroptosis that
takes part in neuroinflammation to neurological diseases
[16]. Here DAMP molecules [ROS, cfDNA, ITs, HMGB1, and
PGs] generated during the ferroptosis events, activate glial
cells (AGC) by activating neuroimmune pathways. Further,
these AGCs produce a series of inflammatory factors that
add to neural impairment and a series of NDDs (Huntington’s
disease, ADs, PDs, GBS, and strokes).

8.2.1. Alzheimer’s disease (AD)
Alzheimer’s disease is a chronic NDDs with prolonged precli-
nical stages along with an average clinical time of 8–10 years
[197,198]. Every year around 30 million people are affected by
ADs and predicted to increase to 106 million by 2050 [199–
201]. In this disease, there is mainly deposition of amyloid
beta (Aβ) plaques present outside the cell and neurofibrillary
tangles (NFT) in the brain [202]. Several literary works have

Figure 6. Mechanisms of NPs-induced ferroptosis. (a) Membrane impairment induced by NPs involving LiPr and inactivation of system xc-; (b) lysosome dysfunc-
tion induced by NPs including disruption of lysosomal membrane, alteration of acidic environment, modification of STEAP3 and DMT1 activities; and (c) mito-
chondrial damage induced by NPs including destruction of mitochondrial morphology and dysregulation of the mitochondrial antioxidant defense as well as
iron dyshomeostasis.
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evidenced that AD occurs due to a complex synergy, for
instance, genetic susceptibility [203,204], aging [205],
environment [206], occupation [207], and overexposure to
metals [208,209]. Breijyeh and their team presented a
detailed overview of the causes and treatment of AD [208].
The synaptic function is attenuated by the pathogenic
forms of Aβ and τ which result in activating an order of
events that results in the death of neurons [210,211]. Pre-
sently the exact pathogenesis events of AD is not known
thoroughly, so the only option to minimize the risk of this
disease is clearing Aβ and τ in NFT in neurons [212]. More-
over, the risk of AD could be reduced by either preventing

or interfering with Aβ and τ aggregates which will minimize
membrane damage, cell apoptosis, intracellular microtubule
impairment, and ROS generation [213,214].

Several investigations have shown that the ferroptotic
events are also present in the AD out of which the most pro-
minent are excess accumulation of iron, increased LiP, and
ROS. All these events are associated with typical clinical fea-
tures, for instance at the time of excess iron accumulation
there is a higher concentration of iron in the brain of patients
suffering from AD [102]. Another important clinical feature is
brain atrophy coincident with the sites deposited with Fe
[215]. When there is increased LiP in AD, the investigators

Figure 7. Putative pathway for ferroptosis participates in neuroinflammation to NDDs reprinted from [16].
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evaluated the various LiPr products like malondialdehyde
(MDA), isoprostanes, 4-HNE, acrolein, etc. as the identifying
biomarkers at the beginning of AD [216]. The majority of
the studies reported the presence of mainly MDA, isopros-
tanes, and 4-HNE which suggested that the deposited lipid
peroxides could also be involved in the neuropathology of
AD. A few of these LiPr products could also be used as a
marker for the identification and prognosis of AD [217].

Several studies have also shown that the accumulation of
ROS generation and decreased cortical GSH are also associ-
ated with AD pathology. Earlier investigations have shown
that in AD pathology, more ROS produced whereas lowering
the ROS accumulation might restore the condition in AD in
the model rats [217]. In addition, these studies revealed
that all the phospholipids and total fatty acids were
reduced up to a significant level in the hippocampus of AD
victims. Moreover, it was also observed that the AD-associ-
ated GSH levels are reduced in rats and human brain
models. Zhang and their coworkers found that GSH levels
have a close association with amyloidosis in the brain and
the pathology of AD. So, concluded that the lipid OS (key
method of ferroptosis), is intimately associated with the
pathological progress of AD [218].

Several investigators have shown that Fe homeostasis and
lowered endogenous antioxidant systems (along with GPX)
are associated with the pathology of AD [219]. The pro-
gression of AD and cognitive decline is directly involved
with the level of iron in the brain. The magnetic resonance
imaging (MRI) from the affected patient showed that the
affected region had a high iron quantity [220]. In comparison
to a normal individual, an AD patient with mild cognitive dys-
function showed a higher amount of Fe along with an elev-
ated Aβ plaque load in the cortical region that elevated the
chances of AD [221–223]. Numerous investigators showed
that an imbalance of iron in brain homeostasis is associated
with Aβ plaques and NFTs [219]. Investigators also found
that Fe binds directly to His6, His13, His14, and amino acid
residues in β to increase the neurotoxicity of Aβ [224,225].
Studies have shown that iron regulates both the phosphoryl-
ation of τ protein and the aggregation of hyperphosphory-
lated τ protein [226].

Few investigators have shown that during hippocampal
neurodegeneration (HND), neural death is triggered by fer-
roptosis in the hippocampus, which is done via ablating the
forebrain neuron GPX4, which is directly correlated with cog-
nitive impairment [227]. Some of the studies attempted in
vivo experiments in mice and revealed that GPX4-deficient
mice could exhibit obvious cognitive dysfunction and HND
[228]. Moreover, the investigator further showed that if
such mice are administered with Vit-E or lipoxstatin-1 (ferrop-
tosis inhibitor) then there is a possibility of significant impro-
visation in the degree of neurodegeneration [228]. Various
pieces of literature have shown that the typical preclinical
signs of AD and cognitive impairment are marked by abnor-
mal iron homeostasis, LiPr, glutathione metabolism disorder,
and inflammation (trademarks of ferroptosis). Porsteinsson
and their colleagues classified the clinical signs and symp-
toms of ADS into six stages, where stages 1 & and 2 a precli-
nical stage which is presymptomatic, stage 3 (prodromal): AD
with MCI, stage 4 (mild AD dementia): AD with mild dementia,
stage 5 (moderate AD dementia): AD with moderate demen-
tia, and the stage 6 (severe AD dementia): AD with severe
dementia. Besides this, there are certain associated

symptoms/pathology with AD i.e. proof of AD pathology
(Aβ and τ deposits/neural injury) throughout all the six
stages. The changes in the behavioral and psychological fea-
tures are observed from the second stage onwards. Cognitive
impairment is observed from stage three while functional
impairment is observed from stage four onwards [229].

Moreover, investigators concluded that targeted ferropto-
sis therapy might result in further excitotoxicity and energy
deficiency. Few investigators showed that alpha-lipoic acid
(LA) can help in the prevention of τ-induced iron overload,
LiPr, and inflammation, which are all associated with ferropto-
sis [189,230,231]. A group of investigators, while working on
AD, found that iron contributes a role in aggravating the
polymerization of toxic Aβ and hyperphosphorylated τ. In
addition to this, investigators also found that iron has a
direct role in neuronal OD [232]. Iron is highly significant in
ferroptosis and the pathological process of AD. Ferroptosis
could help in providing new directions into the molecular
pathophysiology of AD [233]. Several investigators have
shown in-vivo experiments related to ferroptosis and AD in
model animals like mice. A team led by Hambright exhibited
that in GPX4 BIKO mice there was the deletion of GPX4,
especially in neurons of the forebrain which was caused by
tamoxifen. Further, the study revealed that the mice
showed significant lackings in spatial learning and memory
function, and HND. Finally, the team revealed that the out-
comes of the experiment were involved with ferroptosis
markers, for instance elevated LiPr, Extracellular signal-regu-
lated kinase (ERK) activation, and neuroinflammation. More-
over, the investigating team supplemented the GPx4BIKO
mice with a Vit-E, deficient food. Further, the team observed
that there was an accelerated rate of HND and behavioral dys-
function. In addition to this, the team administered the mice
with a ferroptosis inhibitor (Liproxstatin-1) and noticed
improved neurodegeneration. In addition to this, in an in
vitro model, iron was found to increase nerve cell death,
when there was a reduction in the level of GSH levels were
reduced. This happened due to the decrease in the activity
of glutamic acid cysteine ligase [234]. Another study led by
Hirata showed that GIF-0726-r (oxindole) stopped the cell
death induced by OS (oxytosis), which was induced by gluta-
mic acid and ferroptosis induced by erastin [235].

From both the above experiments, it was found that the
excess of extracellular glutamic acid was associated with an
extracellular higher iron level, which was responsible for the
overactivation of glutamate receptors [236]. Due to this,
there was an increased uptake of iron by the neurons and
astrocytes, which resulted in the increased generation of
membrane peroxides. Death of neurons, induced by glutamic
acid could be mitigated by iron chelators or free radical sca-
vengers [237]. Further, it was found that, in the excitotoxicity
of glutamic acid, ferroptosis is induced by ROS [238,239].
Further, it was reported that GSH content in HT22 cell lines
could be maintained by sterubin compound. During the
treatment of cell lines with erastin and RSL3, the cells were
protected from ferroptosis [240]. Investigators exhibited
that 7-O-esters of taxifolin 1 and 2 have neuroprotective
activity against ferroptosis induced by RSL3 in HT22 cells
[241].

An investigation showed that chalcones 14a–c successfully
inhibited β-amyloid aggregation. Moreover, it was also found
that the particular chalcones could provide protection to
neural cells, toxicity induced by the aggregation of Aβ, and
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from erastin and RSL3-induced ferroptosis in human neuro-
blastoma SH-SY5Y cells [242]. The work depicted that toxicity
induced by aggregation of Aβ plaques and of ferroptosis is
inhibited because of the presence of the -OH group in the
chalcones 14a–c. Moreover, it was found that the compound
(chalcones 14a–c) could react with lipid peroxyl radicals by
transferring H-atom, hence inhibiting LiPr [243]. A study led
by Ates in mice showed that there was a reduction in the
LiPr, when fatty acid synthase (FASN) was inhibited by
CMS121. It was noticed that by using CMS121, there was a
lesser level of 15LOX2 in the hippocampus in comparison
to those of untreated WT mice. It was noticed that in the
untreated ADs mice, endocannabinoids, fatty acids, and
PUFAs were significantly elevated in comparison to
CMS121-treated AD mice. This suggested that there might
be several other enzymes that could be associated with the
method of ferroptosis in AD [244]. Figure 8 shows a signaling
pathway of ferroptosis and NDDs. The mechanism is briefly

described below. The death of tumor cells is induced by fer-
roptosis by promoting the Fenton reaction which accelerates
ROS generation. ACSL4 acts as an inhibitor for increase in the
glioma cells by activating ferroptosis. The chemical ferropto-
sis inhibitors [Fer-1, Trolox an analog of (Vit-E), and deferoxa-
mine] were found to lower the ICH-induced cytotoxicity in In
vitro conditions. The examination of the brain cells in the AD
victims showed biochemical and morphological properties
(degradation of GSH, GPX4 inactivation, and elevated ROS)
similar to ferroptosis. All these features were observed due
to the imbalance of Fe homeostasis LiPr, and mitochondrial
impairment. Among PD patients, an elevated progression in
ferroptosis was due to Ferrostatin-1 derivatives and PKC
inhibitors. The reduction in cerebrovascular damage after
stroke could be achieved by using Fe chelators, antioxidants,
and free radical scavengers.

Muthukumaran and their team formulated a water soluble
nanomicellaer CoQ10 (Ubisol-Q10), and applied them against

Figure 8. Signalling pathways of ferroptosis and associated NDDs.
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controlling the AD. The developed nano formulation signifi-
cantly inhibited the Aβ plaque production and improvised
long-term memory. So, it was concluded that ferroptosis
could be a valuable process in the NDDs and AD where the
ferroptosis inhibitor could play a potential and promising
role in the treatment and prevention of AD [215].

The Rabies virus has a tendency to enter the CNS by cross-
ing the BBB [245], so this concept was utilized by a team led
by Nie to develop a DFO-loaded PEG-PLGA NPs with RVG29 (a
rabies virus glycoprotein made up of 29 amino acid peptide)
functionalization to deliver DFO to chelate large amount of Fe
in the brain of PD mice [246]. A team led by Qiao developed a
metal–organic framework-based nano platform which have a
physical bullet-shaped structure and surface RVG29 modifi-
cation which shows an excellent potential to penetrate the
BBB [247].

8.2.2. Parkinson’s disease (PD)
PD is a long-term chronic neurological disorder which affects
the cortico-basal ganglia-thalamic circuitry [248]. It generally
affects individuals over 65 years of age [249]. Every year it
affects nearly 3% of elderly people and is placed second to
AD [250,251]. During PD, firstly there is a deficiency of β-oxi-
dation which causes a decrease in the long chain of acylcar-
nitine [56]. As a result, there is a gradual increase in the
presynaptic protein α-synuclein in intracellular fibers. In the
midbrain substantia nigra there is degeneration of dopamine
neurons resulting in quiescent tremor, bradykinesia, and
muscle stiffness [252,253].

Recent studies have shown that there is deterioration of
dopaminergic nerve cells in the substantia nigra compact
area (SNpc) enriched with iron, which is the major pathologi-
cal feature of PD. This is the most important participant in
tyrosine hydroxylase-dependent dopamine synthesis and
other dopamine metabolism methods [254]. The prominent
features of PD and ferroptosis are GSH depletion, LiPr, and
increased levels of ROS [255]. Iron chelators like deferiprone
(DFP) are known to minimize OS and enhance the activity
of dopamine for improving the motor nerve clinical signs
and minimizing deterioration of motor function, which
results in the neuroprotective effect in the initial phases of
PD [256]. Some of the work has shown the effect of iron che-
lators in mice models and concluded that ferroptosis is inhib-
ited by iron chelators and these chelators protect the
dopamine neurons from cell death. Moreover, the GSH level
in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
mouse model was decreased [257]. As a consequence of
the GSH depletion, there was an enhanced 1-methyl-4-
phenyl-pyridinium ion (MPP+) toxicity of substantia nigra
dopaminergic nerve cells [258]. All these previous studies
suggested that ferroptosis is associated with the degener-
ation of dopamine neurons in PD. It was concluded that the
inhibition of dopamine neuron ferroptosis could prove to
be a successful strategy for the treatment of PD. It also
observed the ferroptosis in 6-hydroxydopamine (6-OHDA)-
induced PD models in SH-SY57 cells and Zebrafish. It was
observed that in these models, there is a possibility of pre-
venting 6-OHDA-induced ferroptosis after activating the
p62-Keap1-Nrf2 pathway [259]. A team led by Tian showed
that when 6-OHDA was used as an inducing agent for ferrop-
tosis then the expression of FTH1 in PD rats was down-regu-
lated significantly to control ferritinophagy, microtubule-
associated protein light chain 3 and NCOA4. It was also

reported that by using ferritinophagy inhibitors it is possible
to inhibit the degradation of ferritin and ferroptosis induced
by 6-OHDA [244,260]. During the progression of PD, ferric
ammonium citrate (FAC) was used to simulate the Fe over-
load, and observed that lower doses of FAC were sufficient
to induce ferroptosis. Moreover, when the FAC quantity was
increased, then the cells mainly followed apoptosis. The
above events can be rescued by the ferroptosis inhibitors
by relying on regulating the p53 signaling pathway. More-
over, these above functions were not present with the apop-
tosis inhibitor [261].

Fuentes and their group prepared a dopamine-loaded
albumin/poly lactic acid-co-glycolic acid (PLGA) nanosystems
and studied them in a 6-OHDA PD mice model. It was found
that the developed nanosystems efficiently crossed the BBB,
and replenished dopamine at the nigrostriatal pathway
which resulted in noteworthy motor symptom improvement
in comparison to the lesioned and L-DOPA groups [262].

Tryphena and their group provided detailed information
on the theranostic capability of the integration of miRNAs
with nanotechnology. Moreover, the investigators empha-
sized the combined effect of both on the promises and chal-
lenges for the treatment of PDs [263].

8.2.3. Glioblastoma (GBS) and brain tumors
Brain tumors could be broadly divided into 2 classes namely
glioma and glioma tumors. On the basis of histopathology
and degree of proliferation, glioma could be further subdi-
vided into 4 subtypes and grades (I to IV) [264]. Grade IV
glioma is commonly known as Glioblastoma [265]. GBS is a
very common, invasive, aggressive, and undifferentiated
type of malignant brain tumor, whose annual occurrence is
3.2 for every 100,000 persons [266–268]. The median survival
of GBS patients is mainly 4–15 months from the date of diag-
nosis. Moreover, its prognosis is poor in addition to the
higher recurrence and mortality rate (MR). The vessel in
tumors has improper morphology and activity which leads to
a microenvironment with lowered O2 tension and raised inter-
stitial fluid pressure [269]. In addition, mitotic activity, MVC, and
tumor growth factor receptors also behave abnormally in GBS.
Currently, surgical removal is the most preferred treatment
method for GBS patients. Since the glioma cells have a ten-
dency of strong invasiveness a patient is required to go for
adjuvant chemotherapy after surgery, which affects the clinical
recovery of GBS [270]. Moreover, the efficacy of the drugs is
also minimized by both types of barriers (blood–brain and
blood-tumor). Though several advancements have been
made for immunotherapy-based tumor treatment the treat-
ment of brain tumors is still challenging. Most of the glioma
cells overexpress the epidermal growth factor receptor (EGFR)
which leads to abnormal behaviors of the underlyingmolecular
signaling pathway [271]. Currently, EGFR and the mutant EGFR-
vIII are two dominant focal points in GBS therapy [272].

A number of recent studies reported NMs-assisted GBS
therapy for instance ferroptosis, gene therapy (GT)
[266,273], radiotherapy [274], photothermal therapy (PTT)
[275], magnetothermal therapy [276,277], and immunother-
apy [278]. Ferroptosis is an iron-mediated apoptosis distin-
guished from necrosis, autophagy [279], apoptosis, and
pyroptosis [280]. Excess amount of iron reacts with H2O2

and generates free radicals and singlet O2 in cells. Due to
the high production of free radicals, there is cytotoxic LiPr.
Eventually, a combination of techniques targeting ferroptosis
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and apoptosis could be an effective approach to GBS treat-
ment [57]. A team led by Yulin developed IONPs (porous, car-
boxyl linked) and clubbed them with GT [small interfering
RNA (siRNA), GPX4, and targeting glutathione peroxidase 4]
along with cisplatin and utilized the synergistic effect on
the treatment of GBS-suffering patient via ferroptosis and
apoptosis after surgery. This study concluded that there
was a remarkable therapeutic effect with very little systemic
toxicity in in-vitro and in-vivo conditions [281].

Several studies reported the use of PTT and in one such
attempt, NMs with high conversion efficiency were adminis-
tered and got acclimated near the tumor [282,283]. Further,
that area was exposed to external irradiation which led to
the generation of heat and eventually killed the tumor. A
team led by Yulin developed gallic acid/ Fe2+ NPs with
remarkable PT conservation capacity, where NIR 808 nm
improved the Fe2+ release efficiency of NPs many folds. Inves-
tigators concluded that ferroptosis was induced in the tumor
cells which also released a significant amount of heat to kill
cancerous cells [281,284]. MNPs have been used for magne-
tothermal therapy, where NMPs are introduced to the
tumor sites and upon exposure to an external magnetic
field generate sufficient heat (42–45°C) to kill tumor cells.
Several experiments have proven that at 42°C there is irre-
versible damage to tumor cells which leads to apoptosis
[285,286].

More recently, Zhao and their team utilized graphdiyne
(GDY) nanoplatforms for the PTT and ferroptois-based com-
bined therapy for the treatment of GBS. GDY is one of the
widely used nanomaterials due to its biocompatible nature
and photothermal conversion efficiency. The investigators
used FIN56 (ferroptosis inducer) for developing GDY-FIN56-
RAP (GFR) polymer [287] self-assembled nanoplatforms
(NPF) against GBM. The basic reason behind using GDY was
the capability of the GDY to adequately load FIN56 and
FIN56 discharged out from the GFR, in a pH-dependent
manner. Moreover, the GFR NPF were reported to have a
few advantages like penetration of BBB and acidic environ-
ment-induced in situ FIN56 discharge. In addition to this,
the investigator also observed that the GBM cell ferroptosis
was induced by GFR NPF by inhibiting GPX4 expression.
Investigators also observed that 808 nm light rays reinforced
GFR-mediated ferroptosis by raising the temperature and
promoting FIN56 discharge from GFR. The investigators per-
formed an investigation in an orthotopic xenograft mouse
model of GBM, where they found that: GFR NPF was inclined
to locate in tumor tissue, GBM growth was inhibited, and life-
span was increased by inducing GPX4-mediated ferroptosis.
During the utilization of 808 nm rays, these GFR-mediated
effects were further improved. Finally, the investigators
concluded that the GFR could prove to be a suitable
nanomedicine for the treatment of cancer and GFR clubbed
with PTT could prove to be a promising approach against
GBM [288].

Several investigators have shown the importance of
various organic, polymer (nanocapsules and nanospheres),
inorganic/metal (transferrin drug-loaded systems), and lipid-
based (sulfatide-containing nanoliposomes) nanocarriers for
the delivery of drugs against GBS, ependymoma, neuroblas-
toma [289], medulloblastoma, and primary CNS lymphomas.
In various investigations these nanocarriers were loaded
with apoptosis- and/or ferroptosis-stimulating agents which
exhibited promising anti-cancer activity [290].

Manicum and their colleagues highlighted the nano-
immunotherapeutic approaches for targeted RNA delivery.
Further, the investigator focused on the role of monocytes/
macrophages as nanocarriers for the treatment of GBS multi-
forme [291].

Wang and their team developed a biomimetic glioma C6
cell membrane (C6M) derived nano-vesicles (DOX-FN/C6M-
NVs) loaded with doxorubicin (DOX) and iron NPs (ultra-
small). This nanocarrier (DOX-FN/C6M-NVs) was further
applied for the enhanced combined apoptosis and ferroptosis
for the treatment of glioma. The developed nano vehicles
showed enhanced therapeutic efficacy by helping in the tar-
geted drug delivery at the tumor site and reduced cardiotoxi-
city and side effects of doxorubicin. The developed
nanocarriers showed more potent anti-tumor activity in com-
parison to the free DOX-promoting/DOX-mediated apoptosis
and enhanced ferroptosis via the mediation of iron NPs.
Finally, the investigators concluded that the developed nano-
vehicle as an effective inducer of ferroptosis and apoptosis
exhibited effective suppression of tumor in order to treat
glioma [292].

Neuroblastoma (neural crest-derived malignancy) and
meningioma are also types of brain tumors where the
former accounts for more than 15% of pediatric cancer
deaths [181] while the latter mainly affects old age people
i.e. those over 65 years of age, and is prevalent more in
women than men, and less frequently in children [293]. A
team led by Hassannia claimed to identify withaferin A
(WA) as a natural ferroptosis inducer in neuroblastoma.
Here the investigators have used nano-sized WA which per-
mitted systemic utilization and suppressed tumor growth
because of increased accumulation at the site of tumor [181].

8.2.4. Miscellaneous disorders
Mansur and their developed hybrid nano catalysts based on
the conjugation of GOx (a natural enzyme) and MIONs (inor-
ganic nanozyme) which was stabilized by a biocompatible
polymer shell of carboxymethyl cellulose. This engineered
hybrid nanocatalyst was used against cancer treatment. It
was found that the magnetic IONPs (e.g. Fe2O3 and Fe3O4,
MIONs) had a pH-dependent based enzymatic activity.
These nanozymes could decompose hydrogen peroxide
into water and oxygen by acting as catalysts under mild pH
conditions. Under a mildly acidic environment, these nano-
zymes may use hydrogen peroxide as a substrate for the pro-
duction of highly toxic ROS through the production of (°OH),
exhibiting peroxidase-like activity. Here the investigators
have developed supramolecular vesicle-like NMs which
were evaluated for in vitro killing of tumor cells of the brain
(U-87 MG) where the nanovesicle showed anticancer proper-
ties due to the ferroptosis-induced cell death. Finally, the
investigators concluded that the developed hybrid NMs
acted as a cascade of integrated nanocatalysts, where firstly
GOx acted as a starting catalyst and generated hydrogen per-
oxide from the glucose in the medium. Secondly, the hydro-
gen peroxide (generated earlier) was catalyzed by the
downstream enzymes through Fenton-like reactions generat-
ing ROS, which led to cell death [294]. A team led by Shen uti-
lized a lactoferrin receptor-mediated transcytosis approach
for the delivery of cisplatin-loaded magnetite/Gd2O3 hybrid
NPs designed for ferroptosis therapy of orthotopic brain
tumors [295].
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9. Clinical trials

To date, several clinical trials are under investigation where a
combined effect of ferroptosis and nanomaterials has been
employed for the treatment of neurological disorders like
PD, AD, GBS, and other CNS-related disorders. In most of
these clinical trials, it was found that the drug carriers were
a nanomaterial for better delivery of the drug. Moreover, in
some of the trials, it was found that the nanocarriers were
mainly made of biological material that was biocompatible,
while in a few cases, the nanocarriers were porous in nature
for instance (mesoporous silica NPs), which ensures a sus-
tained and controlled release of the drug. In addition to
this, some of the clinical trials have used conventional
drugs like doxorubicin, dopamine, etc. in their nanosized
form for enhanced uptake by the brain cells. An additional
advantage of these nanosized drug/drug carriers is that
they could easily cross the blood–brain barriers and may
exhibit their therapeutic effect on the affected cells thus pre-
venting the occurrence of NDDs, by inhibiting the ferroptosis.
In one of the clinical trials involvement of ferroptosis’ in dopa-
minergic cell death was confirmed in the MPTP mouse for
PDs. Mostly, iron and iron oxide-based NPs have been used
for inducing ferroptosis-based therapy for NDDs. In addition
to this, several non-iron-based nano-ferroptotic inducers
have also been used (silica NPs, carbon dots) for inducing fer-
roptosis, for instance, the best one is carboxyl-modified poly-
styrene nanoparticles (CPS). It was found that the CPS could
gain access to cells via micropinocytosis and could effectively
protect the cells from ferroptosis by lowering the intracellular
ROS and triggering the lysosome stress in a size-dependent
fashion [296].

10. Conclusions

Ferroptosis-mediated cell death is still in its infancy stage and
very little information is available in the domain. But, in recent
years numerous attempts have been made in this field, due to
the participation of ferroptosis in several neurodegenerative
disorders like Parkinson’s and Alzheimer’s disease, and glio-
blastoma. Most neurodegenerative disorders have an associ-
ation with iron accumulation in the brain. Ferroptosis mainly
involves iron metabolism, LiPr, and the cystine/glutamate
system. Experimental studies carried out in vivo have estab-
lished several mechanisms involved in ferroptosis. Several
attempts have shown the effect of ferroptosis inducers and
inhibitors on several neurodegenerative disorders. There is
a requirement for more potent and specific nano-ferroptotic
drugs, the rational combination of ferroptotic treatment with
another anti-CNS-related disorder approach for synergistic
efficacy, and the fabrication of novel-anti ferroptosis NPs for
the treatment of NDDs. This field might still result in promis-
ing and disruptive therapeutic alternatives for patients
suffering from neural disorders.

Abbreviations

ACSL4 Acyl-CoA synthetase long-chain family member 4
AD Alzheimer’s Disease
DAMP Damage-Associated Molecular Pattern
ERK Extracellular Regulated Kinases
FTH1 Ferritin heavy chain 1
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GBS Glioblastoma
GPX4 Glutathione peroxidase 4

GSH Glutathione
GSSG Oxidized glutathione
HND Hippocampal NeuroDegeneration
IOGNPs Iron oxide glyconanoparticles
IRPs Iron Regulatory Proteins
LiPr Lipid Peroxidation
LOX Lipoxygenases
MRI Magnetic resonance imaging
NADPH nicotinamide adenine dinucleotide phosphate
NFE2L2 erythroid 2-related factor 2
NMs Nanomaterials
NDDs Neurodegenerative disorders
OS Oxidative Stress
PD Parkinson’s disease
PEs Phosphatidylethanolamine
PUFAs Polyunsaturated fatty acids
PUF-CoAPolyunsaturated fatty acids- Acetyl coenzyme A
ROS Reactive oxygen species
TFR 1 transferrin receptor 1
VDACs Dysfunction of varistor anion channels
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