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ABSTRACT This paper presents nonlinear model predictive control based adaptive equivalent consumption
minimization strategy for fuel cell hybrid electric bus. The proposed strategy considers the average travel
speed profile of road segments in route of fuel cell hybrid electric bus. The proposed nonlinear model
predictive control based adaptive equivalent consumption minimization strategy determines the optimal
control input by considering the battery current-rate and the fuel cell balance-of-plant. The nonlinear
model predictive control based adaptive equivalent consumption minimization strategy consists of three
main stages: the data pre-processing stage, the nonlinear model predictive control stage, and the adaptive
equivalent consumption minimization strategy stage. In the data preprocessing stage, reference power
trajectory is generatedwhile considering the response time of the fuel cell hybrid electric bus. In the nonlinear
model predictive control stage, the reference state of charge trajectory is generated by considering the battery
current-rate and the fuel cell balance-of-plant. In the adaptive equivalent consumption minimization strategy
stage, the optimal control input is determined to minimize instantaneous equivalent fuel consumption by
considering the reference state of charge trajectory. The proposed energy management system is compared
with dynamic programming using actual bus route based real-driving scenarios. The comparison results
demonstrate that the proposed energy management system can generate control inputs that are similar to the
global optimal solution calculated by dynamic programming with a reasonable computation time.

INDEX TERMS Nonlinear programming (NLP), model predictive control (MPC), equivalent consumption
minimization strategy (ECMS), fuel cell hybrid electric vehicle (FCHEV), fuel cell hybrid electric bus
(FCHEB), average travel speed.

I. INTRODUCTION
A. BACKGROUND
The overuse of fossil fuels is contributing to exces-
sive greenhouse gas emissions, accelerating air pollution
and global warming. In response to these environmental
concerns, environmental regulations are getting tighter in

The associate editor coordinating the review of this manuscript and

approving it for publication was Wencong Su .

many countries. Representatively, the National Highway
Traffic Safety Administration (NHTSA) in United States
has established a Corporate Average Fuel Economy (CAFE)
standard that mandates to achieve an average fuel economy
of 23.2 mpg by 2025 [1], [2]. In response to these
environmental regulations, automotive industry has been
investing significant resources in eco-friendly vehicles and
development of electric vehicles has been one of top
priorities.
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Due to the low energy density of batteries compared
to internal combustion engines, the short driving range is
the primary disadvantage of battery-based electric vehicles
(BEV). Therefore, fuel cells have risen as a new power source
for electric vehicles because they are emission-free mobility
with high energy density. However, the fuel cells have a
relatively slow response time when changes in driving load,
such as sudden acceleration or deceleration are made. Also,
they require a considerable amount of time to initiate and
generate sufficient power at cold starts. There is a growing
interest in the fuel cell hybrid electric vehicles (FCHEV),
which integrate both fuel cell and battery, to overcome the
limitations of both power sources.

The FCHEV combines merits of above two vehicles: the
quick response time of battery, the long driving range, and
rapid charging speed of fuel cell. This indicates that the
FCHEV is suitable for city buses, which require long driving
ranges and responsiveness to frequent change in driving load,
such as stopping, accelerating, and decelerating. Therefore,
fuel cell hybrid electric city buses (FCHEB) are spotlighted
for their potential to establish an eco-friendly and sustainable
public transportation system in urban areas. The FCHEB
can operate the fuel cell and battery in high-efficiency
areas and utilize regenerative braking, which recovers kinetic
energy [3]. For instance, FCHEBmodels likeHyundai’s Elec-
city and Universe have been introduced to the market [4].

In order to maximize performance of FCHEB, the energy
management strategy (EMS) is crucial as it determines the
power distribution ratio between the fuel cell and battery to
minimize energy losses.

B. LITERATURE REVIEW
EMS for FCHEV can be categorized into rule-based and
optimization-based approaches. The rule-based EMS is a
method that controls the vehicle according to pre-designed
conditions and rules, which are designed based on the
experience of engineers. The rule-based EMS has an intuitive
and simple structure with low computational load, making it
suitable for real-time system design and operation. In other
words, it ensures high stability and robustness by relying on
fixed decision rules. Representative rule-based EMS include
state machine-based [5] and fuzzy logic-based [6], [7], [8].
However, the rule-based EMS may not effectively respond to
dynamic changes or complex driving conditions. As a result,
it can lead to inefficient utilization of the fuel cell and battery,
as the rule-based EMS does not generate optimal power
distribution inputs, affecting overall vehicle performance and
fuel economy.

The optimization-based EMS is a methodology that
utilizes optimization theory or algorithms to compute opti-
mal control inputs. The optimization-based EMS has an
unintuitive and complex structure with high computational
load, which makes it difficult to design real-time system.
Despite these problems, the optimization-based EMS has the
capability to generate optimal control inputs that minimize

fuel consumption while maximizing driving range. Its eco-
friendly attributes, which contributes to the reduction of air
pollution and greenhouse gas emissions, has attracted signif-
icant interest. Moreover, advance in intelligent intersection
systems (ITS) and autonomous driving technologies have
accelerated abundance of traffic and driving information,
stimulating further research in this field. Depending on the
applied optimization theory, the optimization-based EMS
can be categorized into offline and online optimization
algorithms.

The first is offline optimization algorithm. An offline
optimization algorithm is an approach that finds the global
optimal solution based on known driving conditions, such
as vehicle speed and road gradient. The most popular
algorithm is dynamic programming (DP). DP [9], [10],
[11] involves decomposing a given complex problem into
smaller subproblems and computing the optimal solutions for
these subproblems to calculate the global optimal solution.
However, computational complexity is very high because it
calculates the solutions for all the subproblems sequentially.
Additionally, DP has limitations in its ability to adapt to
real-time driving condition change because it precomputes
the optimal solution based on given driving conditions.
Therefore, it is primarily used as a benchmark for evaluating
the performance of other EMSs.

The second is online optimization algorithm. An online
optimization algorithm is an approach that finds the local
optimal solution when driving condition is changing dynami-
cally. It must ensure low computational complexity, stability,
and robustness because it calculates optimal solution at each
control period using limited computational resources avail-
able in the hybrid control unit (HCU). Representative online
optimization algorithms include pontryagin’s minimum prin-
ciple (PMP), equivalent consumption minimization strategy
(ECMS), andmodel predictive control (MPC), etc. PMP [12],
[13], [14], [15] involves deriving the Hamiltonian function
from the constraints and the cost function. It establishes
necessary conditions for optimality based on Hamiltonian
function. By satisfying these necessary conditions, PMP
calculates the optimal control input. ECMS [16], [17], [18]
calculates the equivalent energy consumption and determines
the optimal control inputs that minimize the cost function.
However, accurately determining the equivalent factor, the
cost difference between the fuel cell and battery, is chal-
lenging because it varies dynamically according to change
in driving conditions. Therefore, the adaptive-ECMS (A-
ECMS) [19], [20], [21], [22] algorithm has been proposed,
as it can adjust the equivalent factor according to various
driving conditions. MPC [23], [24], [25], [26], [27] utilizes
a mathematical model of the target system to predict its
future state over a specific time horizon. It employs numerical
methods to calculate optimal inputs that minimize a cost
function, considering the predicted state trajectory.

Recently, various EMS have been proposed by combining
the afore mentioned methods to leverage advantages of
each method. Li et al. [28] proposed a multi-objective
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MPC-based EMS that aims to enhance the fuel cell durability
and lifetime while minimizing fuel consumption. The cost
function of the proposed MPC consists of three terms:
instantaneous fuel consumption, fuel cell stress, and battery
stress. In multi-objective MPC, assigning suitable weights
to these terms is important to accurately respond to the
driving conditions. The proposed multi-object MPC-based
EMS utilized fuzzy logic to determine the appropriate
weights for the driving conditions. Lin et al. [29] proposed an
A-ECMS based EMS for a plug-in fuel cell electric vehicle
(FCEV). The proposed A-ECMS uses multivariate nonlinear
regression (MNLR) and sequential quadratic programming
(SQP) to update the equivalent factor. The proposed ECMS
is validated by comparison with the existing ECMS methods
in simulation environment, which is a combined driving
cycle including the New York City cycle (NYCC), urban
driving dynamometer schedule (UDDS) and highway fuel
economy test cycle (HWFET). Yan et al. [30] proposed a
hierarchical predictive EMS (HPEMS) for FCHEV. The
HPEMS consists of two levels: the upper-level determines the
optimal launch time based on traffic and vehicle states using
deep reinforcement learning (DRL), while the lower-level
employs MPC to determine the power distribution ratio
between the fuel cell and battery. The proposed HPEMS
aims to reduce energy consumption and travel time by
considering the energy loss caused by frequent starting
and stopping at intersections. Salem et al. [31] proposed a
multi-objective online optimization-based EMS. The cost
function of the proposed EMS consists of four terms:
instantaneous fuel consumption, fuel cell stress, battery
stress, and the penalty for deviations from the desired State
of Charge (SOC) of the battery. The cost function in the
multi-objective online optimization-based EMS is formulated
as a quadratic form with linear constraints. The Hildreth
algorithm, which is an iterative optimization algorithm
used to solve quadratic programming (QP), is employed to
calculate the optimal control input. The proposed EMS is
validated by comparing it with the results obtained using
DP for the New European Driving Cycle (NEDC) and US06
scenarios.

The above research has made significant contributions to
the advancement of EMS for FCHEV. Specifically, the EMS
based on A-ECMS and MPC was proven to be well-suited
as an online optimization algorithm, since various driving
conditions are taken into consideration when calculating
optimal control inputs. However, there are three additional
aspects that need to consider in an EMS when it is applied to
FCHEB.

• First, the FCHEB currently operating in urban areas
where autonomous driving capabilities are not equipped.
Consequently, the EMS cannot use the precise speed
profile to calculate the optimal control input. The lack
of information on speed profile is detrimental to the
performance of the EMS. Hence, it is crucial to include
even limited information, such as the average speed

obtained from the navigation system, to minimize fuel
consumption throughout the route.

• Second, city buses experience frequent start-and-stop
cycles due to traffic congestion, intersections, and bus
stops. These repetitive operations have a negative impact
on the durability of the fuel cell and battery. The balance-
of-plant (BOP), which includes components like pumps
and humidifiers, plays a crucial role in maintaining the
durability of the fuel cell. Additionally, the current-rate
(C-rate), which regulates the charging and discharging
rate of the battery, significantly influences its durability.
Therefore, when calculating the optimal control input,
the EMS of the FCHEB must consider both the C-rate
and BOP.

• Third, the performance of the EMS for FCHEB should
be validated by comparing it to a global optimal solution
using real driving scenarios rather than using standard
driving cycles. City buses often follow repetitive routs,
making it effective and important to analyze the
performance of EMS under real driving scenarios.

C. MAIN CONTRIBUTION
The main objective of this paper is to develop the EMS for
FCHEB that considers the average travel speed of the road.
The main contributions are listed as follows:

• First, a hierarchical nonlinear control framework is
proposed in this study, where nonlinear MPC (NMPC)
is employed at the high-level and A-ECMS is used
at the low-level. Unlike previous research, the NMPC
generates a reference SOC trajectory that considers the
average travel speed of the road.

• Second, the NMPCwith the interior point method (IPM)
is utilized to generate the reference SOC trajectory,
considering the average travel speed of the roads
along the route of the target city bus. The prediction
model and constraints are designed to incorporate the
characteristics of the BOP and C-rate, while the cost
function is formulated to minimize fuel consumption of
the fuel cell. And the A-ECMS calculates the optimal
power distribution ratio between the fuel cell and battery
by considering the accelerator/brake pedal input. The
A-ECMS adjusts the equivalent factor based on the
reference SOC trajectory calculated by the NMPC.

• Third, the proposed NMPC-based A-ECMS is validated,
by comparing it with the global optimal results of DP.
It is validated on the real driving scenarios, which were
measured by RT3100 device, with diverse traffic envi-
ronments. These real driving scenarios consist of four
driving situations, which include the road environment
of two city bus routes and the traffic environment at two
different time periods.

The remainder of this paper is organized as follows.
Section II. describes the vehicle model of target FCHEB.
Section III. introduces the NMPC-based A-ECMS, which
consists of the NMPC at the high-level and A-ECMS at the
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FIGURE 1. Powertrain topology of FCHEB, which operate in three modes,
namely fuel cell-only mode, battery-only mode, and hybrid mode. This is
designed to allow the fuel cell stack to generate additional power to meet
power requirements, while saving excess power in the battery. The FCHEB
can charge the battery in either hybrid or fuel cell-only mode using power
from the fuel cell stack.

TABLE 1. Component specifications of the FCHEB.

low-level. Section IV. analyzes the simulation results and
validates the performance of the proposed EMS. Finally,
Section V. summarizes the conclusions and discusses future
work.

II. VEHICLE MODEL
This section describes the system model for the vehicle
targeted in this paper. The target vehicle is a FCHEB,
consisting of a fuel cell stack, battery, traction motor,
as shown in Figure 1. The detailed specifications of the target
FCHEB are shown in Table 1. The system model described
in this section is a type of control-oriented model that is used
for NMPC and A-ECMS.

A. VEHICLE DYNAMICS
The longitudinal vehicle dynamics model is used to calculate
the demand power, which is required to drive the vehicle.
First, the wheel torque is calculated using the driving speed
and road gradient, as shown in (1). The wheel torque
represents the torque required when tracking the target speed,
considering acceleration force, air drag force, gradient force,
and rolling resistance force. The wheel speed is calculated by
the longitudinal vehicle chassis speed, as shown in (2). Tw is
thewheel torque, γw is thewheel radius,m is the vehiclemass,
v is the vehicle speed, ρ is the air density,Af is the frontal area,
Ca is the drag coefficient, g is the gravitational acceleration,
θ is the road gradient, Cr is the rolling coefficient, and ωw is

FIGURE 2. Motor power map for charging and discharging. The red line
indicates the maximum torque of the motor, while the blue line
represents the minimum torque of the motor.

the wheel speed.

Tw = γw(m
dv
dt

+
1
2
ρAf Cav2 + mg sin θ + mgCr ) (1)

ωw = v
1
γw

(2)

Second, the motor torque is calculated using the gear ratio
and efficiency of the final drive gear, as shown in (3). In the
FCHEB, the motor is connected to the wheels through the
final drive gear. The motor speed is calculated by the wheel
speed, as shown in (4). The motor torque and motor speed
represent the required torque and speed for the motor to
propel the vehicle using energy from the fuel cell and battery.
Tmot is the motor torque, ftrq is the function for the motor
torque, ωmot is the motor torque, fspd is the function for the
motor speed, ηfd is the final drive gear efficiency, and γfd is
the final drive gear ratio.

Tmot = ftrq(v, θ) =


Twηfd

1
γfd

(Tw < 0)

Tw
1

ηfd

1
γfd

(Tw >= 0)
(3)

ωmot = fspd(v) = ωwγfd (4)

Third, the motor power is obtained from the map, as shown
in Figure 2. The motor power map represents the relationship
between torque and speed, considering the efficiency of
motor, as shown in (5). Themotor power is the demand power
required by the vehicle to track the reference speed. fpwr is the
function for the motor torque.

Pmot = fpwr(Tmot, ωmot) (5)

B. FUEL CELL STACK
The fuel cell generates electrical power through a chemical
reaction involving hydrogen and oxygen. However, due to
the complexity and high uncertainty of the chemical reaction,
they are not directly used in the EMS. Instead, the proposed
EMS relies on a control-oriented model that represents the
relationship between fuel cell power and fuel consumption
rate, as shown in Figure 3.
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FIGURE 3. Fuel consumption rate map. The fuel consumption rate is
closely related to the power of the fuel cell. As the fuel cell outputs more
power, a higher fuel consumption rate is required. However, this
relationship is not linear, because it reflects the efficiency of the fuel cell.

The proposed EMS determines the optimal control input
to minimize fuel consumption, which is calculated through
the integration of the fuel consumption rate. To formulate
the fuel consumption rate map as an optimal control problem
(OCP) for the NMPC, it is necessary to represent the map as
a polynomial function, as illustrated in (6). The comparison
between the polynomial function (represented by the dashed
blue line) and the original map (represented by the solid red
line) is illustrated in Figure 3. ṁfc is the fuel consumption rate,
Pfc is the fuel cell power, and c3 / c2 / c1 / c0 are coefficients
of the polynomial.

ṁfc(Pfc) = c3P3fc + c2P2fc + c1Pfc + c0 (6)

The BOPs are the auxiliary devices that are related to
the supporting systems, which is required for the reliable
operation of the fuel cell stack. These components are
responsible for functions such as fuel delivery, air delivery,
cooling management, and control of valves and switches.
The operation of the BOP, which is crucial for ensuring the
durability and reliability of the fuel cell stack, requires the
consumption of electrical power. Therefore, it is necessary
to consider the electrical power consumed by the BOP to
optimize the energy consumption of the FCHEB.

In this paper, we focus on three key components of the
BOP: pump, compressor, and expander. The pump, which
is part of the fuel supply system, maintains the pressure of
the fuel and delivers it to the stack. The compressor intakes,
compresses, and delivers air to the stack as part of the air
supply system. The expander is responsible for efficient
heat management within the fuel cell stack. It utilizes the
waste heat energy from the exhaust gases of the stack to
recover electrical energy. The power consumed by the BOP
is dependent on the fuel cell power, as shown in Figure 4. The
BOP is used to calculate the demand power, which must be
generated by the fuel cell stack and battery, as shown in (7)–
(8). To incorporate the BOP power map into the OCP of the
NMPC, it is essential to represent the map as a polynomial
function, as shown in (9). Figure 4 illustrates the comparison
between the polynomial function (represented by the dashed
black line) and the original map (represented by the solid

FIGURE 4. BOP power map. The power consumption of the pump,
compressor, and expander is represented by the red, green, and blue
lines, respectively. The solid black line represents the BOP power map,
which is the sum of the power consumption of the pump, compressor,
and expander. The dashed black line represents the polynomial function
approximating the BOP power map.

black line). Pbop is the BOP power, Ppump is the pump power,
Pcomp is the compressor power, Pexpa is the expander power,
Pdmd is the demand power, ηdc is the efficiency of dc/dc
converter, Pbat is the battery power, and a3 / a2 / a1 are
coefficients of the polynomial.

Pbop = Ppump + Pcomp − Pexpa (7)

Pdmd = Pmot + Pbop = ηfcPfc + Pbat (8)

Pbop = a3P3fc + a2P2fc + a1Pfc (9)

C. BATTERY
The internal resistance model, which is a control-oriented
battery model, is utilized to calculate the SOC. This model
calculates the battery SOC by defining the equivalent circuit
by considering internal resistance, open-circuit voltage, and
motor power, as shown in (10). Ibat is the battery current, Voc
is the open-circuit voltage, and Rint is the internal resistance.

Ibat =
Voc −

√
V 2
oc − 4RintPbat
2Rint

(10)

The open-circuit voltage and internal resistance of a battery
are functions of the SOC. To formulate the SOC as anOCP for
the NMPC, it is necessary to translate the open-circuit voltage
map and internal resistance map into equation, as illustrated
in (11)–(12). q3 / q2 / q1 / q0 are coefficients of the open-
circuit voltage, and r3 / r2 / r1 / r0 are coefficients of the
internal resistance.

Voc = q3SOC3
+ q2SOC2

+ q1SOC + q0 (11)

Rint = r0 exp(−r1SOC) + r2 exp(−r3SOC) (12)

The battery SOC is calculated by integrating the current
used by the battery, as shown in (13). Qbat is the battery
capacity.

˙SOC = −
Ibat
Qbat

= −
Voc −

√
V 2
oc − 4RintPbat

2RintQbat
(13)

The C-rate of a battery represents its relative charging
or discharging rate to its capacity, as shown in (14). It is
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FIGURE 5. The concept diagram of the NMPC based ECMS for FCHEB
considering average travel speed.

calculated as the ratio of the current to the battery capacity,
which indicates number of times that the battery capacity
can be charged or discharged within a specific time. The
C-rate is a critical factor when determining the maximum
charge or discharge current that the battery can safely
handle. Therefore, it is essential to consider the C-rate when
calculating the optimal input to ensure the durability of the
battery. Crate is the battery C-rate, and Imax is the maximum
battery current.

Crate =
Imax

Qbat
(14)

III. NONLINEAR MODEL PREDICTIVE CONTROL BASED
ADAPTIVE EQUIVALENT CONSUMPTION MINIMIZATION
STRATEGY
This section presents a description of the hierarchical
nonlinear control framework for the proposed NMPC-based
A-ECMS. The structure of the NMPC-based A-ECMS is
illustrated in Figure 5. The NMPC-based A-ECMS’s optimal
control input calculating process can be divided in to 3 stages:
the data pre-processing stage, the NMPC stage, and A-ECMS
stage.

The proposed NMPC-based A-ECMS utilizes the average
travel speed of the road segment, which represents the speed
of the traffic flow rather than the speed of individual vehicles.
The average travel speed indicates the typical range of speed
at which the vehicle generally travels. The grade of the road
influences the driving resistance of the vehicle. Both the
average travel speed and the grade of the road are major
factors that impact fuel economy significantly [32], [33]. This
information represents the specific driving pattern, which can
influence the fuel economy of a vehicle. It is important that
equivalent factor of A-ECMS reflects these driving patterns
because it represents the difference in energy value between
the fuel cell and battery under specific driving conditions.

FIGURE 6. The result of calculating the reference speed profile using the
average travel speed profile based on the travel time. The reference
speed profile considers the delay time of the FCHEB system. It also
compensates for the difference between the travel distance and the
length of the road segment due to the delay.

A. DATA PRE-PROCESSING
The data pre-processing stage generates the reference power
trajectory by considering the average travel speed profile
of each road segment along the path of the FCHEB.
The reference power trajectory is used to determine the
appropriate equivalent factor for the road traffic environment.
The reference power trajectory is calculated in three steps.

The first step is to create a travel time-based average
travel speed profile. The average travel speed profile is
distance-based profile because it represents the average speed
values assigned to the road segments included in the FCHEB
route. However, the average speed profile must be a travel
time-based profile when it is used in the EMS. The estimated
travel time is calculated by the length and average speed of
each road segments, as shown in (15). As a result, the travel
distance-based average speed profile is transformed into the
travel time-based average speed profile by taking into account
the length and average speed of each road segment. ttrav.i is the
travel time of the ith road segment, lroad.i is the length of the
ith road segment, and vavg.i is the average speed of the ith road
segment.

ttrav.i =
lroad.i
vavg.i

(15)

The second step is generating the reference speed profile
that reflects the characteristics of the FCHEB. The average
travel speed profile is not differentiable because of its
discrete characteristics. It is discontinuous because single
value representing the average speed is assigned to each
road segment. However, the differentiation of the average
travel speed profile is necessary to calculate the acceleration
force to generate the reference power trajectory. Therefore,
the average travel speed profile is smoothed using a transfer
function model that represents the delay time of the FCHEB
system, including factors such as driver response and actuator
dynamics. The FCHEB is modeled as a first-order system,
which represents the delay time of the vehicle, to simplify the
calculation process [34], [35]. The PD controller is applied to
the first-order system to track the average travel speed profile.
The simplified FCHEB model with PD controller, which is
used in data pre-processing stage, is expressed as (16). The
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FIGURE 7. The result of calculating the reference power profile based on
the travel time using the reference speed profile.

average travel speed profile based on the travel time and the
smoothed reference speed profile are shown in Figure 6. G(s)
is the transfer function that takes the average travel speed and
generates a vehicle speed as output, kp is the P-gain of the PD
controller, kd is the D-gain of the PD controller, and τv is the
delay time of the FCHEB.

G(s) =
kd s2 + kps

s2(τvs+ 1) + (kd s2 + kps)
(16)

The third step is calculating the reference power trajectory
based on the reference speed profile and the road grade.
This trajectory represents the demandmotor power calculated
based on a reference speed and grade profile, as shown in
(17). Pref.mot is the reference power trajectory, vref is the
reference speed profile, and θref is the grade profile. The grade
profile is determined based on the map information and the
travel distance, which is calculated using the reference speed
profile.

Pref.mot = fpwr
{
ftrq(vref, θref), fspd(vref)

}
(17)

B. NONLINEAR MODEL PREDICTIVE CONTROL
The NMPC stage calculate the reference SOC trajectory
considering the reference power trajectory, BOP, and C-rate.
The objective of NMPC is to compute the reference SOC
trajectory that minimizes fuel consumption. This reference
SOC trajectory is used as an input by the A-ECMS to
determine the optimal control input. It is important that
NMPC computes accurate reference SOC trajectory over
longer time horizon within a reasonable computation time.

For NMPC to compute the reference SOC trajectory, the
OCP consists of a cost function and constraints, should be
formulated. The cost function is a mathematical representa-
tion of the optimization objective. The proposed NMPC aims
to minimize the fuel consumption, as shown in (18). Jnmpc is
the cost function for the NMPC.

Jnmpc =

tf∫
t0

ṁf (Pfc) (18)

The constraints are used to ensure that the NMPC
considers the physical characteristics of the FCHEB, which
are represented by the state equation. Therefore, the proposed
NMPC includes equality constraints on the state equation
for the battery SOC, as shown in (19). The state equation
incorporates the battery power, which is calculated based on
the reference power trajectory obtained from the data pre-
processing stage. The reference power trajectory serves as
a constraint that the battery power and fuel cell power must
satisfy. This trajectory represents the demand power required
by the motor. When utilizing the fuel cell power, it is essential
to consider the power consumed by the BOP and the DC/DC
converter to maintain durability. Therefore, the formula used
for the battery power determination needs to include terms
accounting for the BOP and the DC/DC converter, as shown
in (20). The state equation is discretized using the Euler
method, as shown in (21). The initial values play a crucial
role in model prediction using the state equation. Therefore,
the initial value for the battery SOC is set as a constraint,
as shown in (22). xnmpc is the state of the prediction model
in NMPC, fnmpc is the state equation for the NMPC, k is the
step, tstep is the step time or step size for the NMPC, t0 is the
initial time, and SOC0 is the initial value of SOC.

ẋnmpc = fnmpc =
Voc −

√
V 2
oc − 4RintPbat
2Rint

(19)

Pbat = Pref.mot + a3P3fc + a2P2fc + (a1 − ηdc)Pfc
(20)

xnmpc
[
k + 1

]
= xnmpc

[
k
]
+ tstepfnmpc (21)

xnmpc
[
t0

]
= SOC0 (22)

The constraints ensure that the NMPC can operate within
certain limits of inputs and states variables. The proposed
NMPC includes inequality constraints on the state variables,
state derivatives, input variables, and input derivatives. If the
SOC remains too low or too high, it can lead to capacity
degradation and reduced battery lifespan. Therefore, the
NMPC includes inequality constraints to maintain the SOC
within a certain range during the control horizon, as shown
in (23). Typically, the SOC is kept between 20% and 80%
throughout the control horizon. However, to ensure energy
reserve and prepare for unexpected situations, in the last
time of the control horizon, NMPC needs to maintain the
SOC above a specific value, such as 60%, as shown in (24).
SOCmin is the minimum boundary for the SOC, SOCmax is the
maximum boundary for the SOC, SOCfin.min is the minimum
boundary for the SOC at the final time, SOCfin.max is the
maximum boundary for the SOC at the final time, and tf is
the final time.

SOCmin <= xnmpc
[
k
]
<= SOCmax (23)

SOCfin.min <= xnmpc
[
tf

]
<= SOCfin.max (24)

If the battery is charged or discharged with a current
exceeding its maximum limit, it can result in performance
degradation and safety issues. Therefore, the NMPC includes
inequality constraints on the current used for charging or
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FIGURE 8. Comparison of the travel distance-based reference speed
profile. The blue line indicates the real-driving speed profile used by DP
to calculate the reference SOC trajectory. The red line indicates the
average travel speed profile used by NMPC to calculate the reference SOC
trajectory.

discharging. Since the proposed NMPC does not directly
consider the battery current as a state variable, it limits the
maximum current by performing differential on the SOC,
as shown in (25). The maximum/minimum rate of SOC
change is determined by the maximum current, which is
calculated based on the C-rate. 1SOCmin is the minimum
rate of change of the SOC, 1SOCmax is the maximum rate
of change of the SOC, and 1xnmpc is the rate of change of the
state.

1SOCmin <= xnmpc
[
k
]
<= 1SOCmax (25)

The fuel cell stack of the FCHEB is limited in its maximum
power value and the rate of change of power. Therefore,
the proposed NMPC includes inequality constraints on the
inputs to ensure that the fuel cell power remains within
a specified range during the control horizon, as shown
in (26). Additionally, the fuel cell stack has a relatively
slower response time compared to the battery. Therefore, the
proposed NMPC includes inequality constraints on fuel cell
power rate change, as shown in (27). Pfc.max is the maximum
power of the fuel cell,1Pfc.min is the minimum rate of change
of the fuel cell power, and 1Pfc.max is the maximum rate of
change of the fuel cell power.

0 <= Pfc
[
k
]

<= Pfc.max (26)

1Pfc.min <= 1Pfc
[
k
]

<= 1Pfc.max (27)

The OCP for the proposed NMPC, which considers the
BOP and C-rate to maintain the durability of the fuel cell
and battery, is summarized by (28). The cost function aims
to minimize fuel consumption, while the state equation for
the battery SOC, which takes the fuel cell power as an input,
is utilized in the prediction model. The OCP is transformed
into a nonlinear problem (NLP), using the direct multiple
shooting method. And, the NLP is solved by an NLP solver,
using the interior point method (IPM) [36], [37], [38]. x∗ is
the optimal control state, which includes battery SOC. u∗ are
the optimal control inputs, which includes fuel cell power and

FIGURE 9. Comparison of the travel distance-based reference SOC
trajectory. The blue line represents the DP result based on the real driving
speed profile. The red line represents the NMPC result based on the
average travel speed profile.

battery power.

min
x∗u∗

Jnmpc = min

th.f∫
th.0

ṁf (Pfc)

s.t.



xnmpc[k + 1] − (xnmpc[k] + tstepfnmpc) = 0
xnmpc[t0] − SOC0 = 0
SOCmin <= xnmpc[k] <= SOCmax

SOCfin.min <= xnmpc[tf ] <= SOCfin.max

1SOCmin <= 1xnmpc[tf ] <= 1SOCmax

0 <= Pfc[k] <= Pfc.max

1Pfc.min <= 1Pfc[k] <= 1Pfc.max

(28)

The reference SOC trajectory which is calculated by the
NMPC is a time-based profile because it is calculated by
the time-based reference power profile. The travel time,
represented by the x-axis of the reference SOC trajectory,
is estimated based on road length and the average speed
profile. However, reference SOC trajectorymust be converted
into a distance-based map which uses road length as a basis,
when it is utilized in A-ECMS.
The reference SOC trajectory obtained by the NMPC is

shown in Figure 8 and Figure 9. The DP result calculates the
reference SOC trajectory based on the real driving scenario,
which is acquired by the RT3100 device. The real driving
speed profile is characterized by reflecting frequent starts
and stops due to traffic environment and the presence of
bus stations along the route. The NMPC result computes the
reference SOC trajectory by considering the average travel
speed, which is computed through the data pre-processing
stage. The average travel speed profile represents the speed of
traffic flow, which is the average speed of the vehicles on the
road. Unlike the real driving speed, the average travel speed
changes in a step-like manner based on the road segments,
without any stopping periods. The NMPC results exhibit
similarity to that of DP, depending on the road segments.
This indicates that the reference SOC trajectory is close to
the global optimal solution calculated by the DP.
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C. ADAPTIVE EQUIVALENT CONSUMPTION
MINIMIZATION STRATEGY
The A-ECMS stage determines the optimal control input
considering the reference SOC trajectory. The objective of
A-ECMS is to determine the optimal control input that
minimize the equivalent fuel consumption. The equivalent
fuel consumption is the sum of the energy consumption of the
fuel cell and the battery, considering the equivalent factor. The
equivalent factor, which quantifies the energy cost difference
between the fuel cell and the battery, depends on the traffic
conditions and vehicle states.

The A-ECMS formulates an instantaneous cost function
based on equivalent fuel consumption, as shown in (29). The
grid of fuel cell power is used to determine the optimal control
inputs that minimize the instantaneous cost function. The
grid consists of a set of fuel cell power candidates used to
determine the optimal control input. It contains a total of
181 elements, considering the maximum fuel cell power of
180 kW, as shown in (30). Jecms is the cost function for the
A-ECMS, Seq is the equivalent factor, Pbat.grd is the battery
power calculated for the grid, Pfc.grd is the fuel cell power
calculated for the grid, and ugrd is the input grid used in the
A-ECMS.

Jecms = SeqPbat.grd + Pfc.grd (29)

ugrd = Pfc = [0, 1, · · · , 179, 180]181×1 (30)

The instantaneous cost function for the candidates included
in the input grid is calculated based on the fuel cell power
and battery power at each moment, considering the demand
power. The demand power is calculated based on the driver’s
accelerator pedal signal (APS) and brake pedal signal (BPS),
as shown in (31). The fuel cell power for the grid is calculated
by considering the fuel consumption and lower heating value
(LHV) with respect to the input grid, as shown in (32). The
BOP power for the grid is calculated based on the input
grid and the BOP power map represented by a polynomial
function, as shown in (33). The battery power for the grid
is calculated based on the demand power, efficiency of the
DC/DC converter, fuel cell power for the grid, and BOP
power for the grid, as show in (34). Pecms is the instantaneous
demand power considered by A-ECMS, QLHV is the lower
heating value of the fuel cell, and Pbop.grd is the BOP power
calculated for the grid.

Pecms = Pmot = fpwr(Tmot(APS,BPS), ωmot) (31)

Pfc.grd = QLHVṁfc(ugrd) (32)

Pbop.grd = a3u3grd + a2u2grd + a1ugrd (33)

Pbat.grd = Pecms + Pbop.grd − ηdcPfc.grd (34)

The equivalent factor is regulated based on the reference
SOC trajectory generated byNMPC. The PI controller is used
to adjust the equivalent factor [39]. It calculates the equivalent
factor based on the gap between the reference SOC trajectory
and the current SOC state of the FCHEB, as shown in (35) and
(36). SOCerr is the SOC error, SOCref is the reference SOC

TABLE 2. Comparison of NMPC and the two DP methods for calculating
reference SOC trajectory.

trajectory, SOCk is the current SOC state of the FCHEB, S0
is the initial equivalent factor,Kp is the proportional gain, and
Ki is the integral gain.

SOCerr = SOCref − SOCk (35)

Seq = S0 + KpSOCerr + Ki

∫
SOCerr (36)

The proposed A-ECMS aims to determine the optimal
input from the input grid that minimize the instantaneous cost
function, as shown in (37). This cost function is calculated
based on the equivalent fuel consumption, which considers
the demand power, battery power, reference SOC trajectory,
fuel cell power, and BOP.

min Jecms = min
{
SeqPbat.grd + Pfc.grd

}
(37)

IV. SIMULATION RESULT
In this section, the performance of the proposed NMPC-
based A-ECMS is validated by comparing it with the results
of two different DP approaches in the model-in-the-loop
simulation (MILS). The NMPC-based A-ECMS generates
the reference SOC trajectory and controls the FCHEB based
on the average speed profile of the road segments, which
is included in the FCHEB route. The comparison between
the NMPC, which generates the reference SOC trajectory of
NMPC-basedA-ECMS, and the twoDPmethods is presented
in Table 2.

The first DP approach, DP(1), determines the reference
SOC trajectory based on the accurate speed profile, which is
obtained when precise future driving information is provided.
The accurate speed profile used in the DP(1) is obtained by
collecting real-world driving data using an RT3100 device.
Therefore, the results obtained from the first DP approach can
represent a global optimal solution since the precise future
driving information, such as the speed profile and grade
profile, is known in advance.

The second DP approach, DP(2), determines the reference
SOC trajectory based on the average speed profile of the road
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FIGURE 10. Simulation model for the FCHEB. The FCHEB simulation
model is established using MATLAB, SIMULINK, and Autonomie.

segments. The second DP approach determines the reference
SOC trajectory based on the average speed information over
the same control horizon, which is used in the NMPC-based
A-ECMS. Therefore, the result obtained by the second DP
approach can be used to verify the performance of NMPC.
The NMPC-based A-ECMS utilizes a control horizon of
500 steps, which corresponds with the increments in travel
distance based on the average speed profile [40].

However, since DP is an offline optimization method,
direct comparison is not possible. Therefore, DP-based A-
ECMSwas utilized, which controls the battery of the FCHEB
to track the reference SOC trajectory calculated by DP,
in order to evaluate and compare its performance with the
NMPC-based A-ECMS.

The simulation model that incorporates the FCHEB model
and NMPC-based A-ECMS is established using Autonomie,
which is a forward-looking simulation tool developed by
Argonne [41]. The FCHEB simulation model is illustrated
in Figure 10. The desktop computer used for simulation and
validation has an AMD Ryzen 5 5600X 6-core processor
(3.70 GHz) and 16 GB of RAM.

The simulations are performed with real road data-based
driving scenarios. The acquired data contains the driving
information obtained from the bus routes utilized in the
public transportation system within Seoul, South Korea.
These scenarios capture the real driving environment in Seoul
city, considering factors such as traffic conditions and road
characteristics.

In the proposed NMPC-based A-ECMS, average travel
speed is used to generate reference SOC trajectory, which
is utilized when adjusting equivalent factor. The use of
the average speed profile to generate the reference SOC
trajectory is based on a macroscopic approach, that the
driving pattern of target vehicle, FCHEB, adheres to the
traffic flow and adopts a pattern similar to the average speed
profile. Traffic flow on roads is influenced by various factors
such as traffic congestion and driver behavior, leading to
changes in traffic characteristics over different time periods.
In other words, the NMPC-based A-ECMS is validated
against a diverse driving scenarios measured for the target
routes at different time periods.

A. DRIVING ROUTE (1): INTRA-CITY BUS
The first driving route used in the simulation is one of
the intra-city bus routes in Seoul. These are the mainline
buses that operate on major routes connecting main roads

FIGURE 11. The driving route of the intra-city bus applied to the driving
scenarios (1-1) and (1-2). This route starts in Gangdong-gu, Seoul and
ends in Seocho-gu, Seoul.

and transportation centers. These buses typically cover
longer distances and have more bus stops along their routes
compared to other bus lines. The target bus in the first
scenario covers a total distance of 20.34 km and includes
56 bus stops, as shown in Figure 11. The driving scenarios
(1-1) and (1-2) are derived from the data collected during
morning and lunch time periods.

1) SCENARIO (1-1): MORNING (LIGHT TRAFFIC)
The first driving scenario for the intra-city bus’s route is
constructed using the speed profile acquired from 6:30 to
7:53. This scenario (1-1) is measured during themorning time
period, covering a total travel time of 5033 s and a distance
of 20276.5 m.

The real-driving speed profile and the average travel speed
profile for scenario (1-1) are presented in Figure 12. The
reference SOC trajectory generated by DP(1), DP(2), and
NMPC is shown in Figure 13. The NMPC result does not
precisely match with the global optimal solution of DP(1).
This is because NMPC relies on an average speed profile
and does not have precise knowledge of detailed driving
patterns such as stops or accelerations. However, NMPC
generates the reference SOC trajectory that takes into account
several factors, such as road gradient and traffic flow speed,
by considering the driving power profile calculated based on
the average travel speed profile. This allows NMPC to exhibit
similar trends with that of DP(1).

The results of the DP(1)-based A-ECMS are presented
in Figure 14. The results of the DP(2)-based A-ECMS are
presented in Figure 15. The results of the NMPC-based
A-ECMS are shown in Figure 16. It is evident that all
three A-ECMS variants effectively track the reference SOC
trajectories computed by DP(1), DP(2) and NMPC. It is
important to note that the reference SOC trajectory shown
in the simulation results is not based on travel distance, but
based on travel time, as indicated in Figure 13.

The fuel cell power utilized during the simulations of
Figure 14, Figure 15 and Figure 16 is presented in Figure 17.
It demonstrates that both the NMPC-based A-ECMS and
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FIGURE 12. Comparison of the travel distance-based speed profile,
measured during the morning time period, and the average travel speed
profile in driving scenario (1-1). The blue and red lines represent the real
driving speed profile and the average travel speed profile.

FIGURE 13. Comparison of travel distance-based reference SOC trajectory
for driving scenario (1-1). The blue line represents the DP(1) result based
on the real driving speed profile. The green and red lines represent the
DP(2) result and NMPC result based on the average travel speed profile.

the DP(2)-based A-ECMS utilize excessive fuel cell power
compared to the DP(1)-based A-ECMS. This is attributed to
the utilization of a reference SOC trajectory that is calculated
based on an average speed profile, which is an inaccurate
speed profile.

The fuel consumption results and computation time
results of DP(1)-based A-ECMS, DP(2)-based A-ECMS, and
NMPC-based A-ECMS for scenario (1-1) are presented in
Table 3. The rule-based EMS is a controller provided by
Autonomie. Even though the rule-based EMS is not a suitable
comparison target for the optimal control-based EMS, it is
used simply to compare the fuel consumption reduction ratio
between DP(1)-based A-ECMS, DP(2)-based A-ECMS, and
NMPC-based A-ECMS.

The proposed NMPC-based A-ECMS achieved 0.022 kg
higher fuel consumption compared to DP(1). The reason why
the fuel consumption of NMPC-based A-ECMS hasn’t been
minimized as much as the global optimal solution of DP(1)
is due to the gap between the average speed profile and the
real-driving speed profile.

The proposed NMPC-based A-ECMS resulted in
0.0027 kg higher fuel consumption compared to the results of
DP(2), which is generated by considering the same average
speed profile and control horizon as NMPC. The reason

FIGURE 14. Simulation results of battery SOC for DP(1)-based A-ECMS in
driving scenario (1-1). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
DP(1)-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by DP(1).

FIGURE 15. Simulation results of battery SOC for DP(2)-based A-ECMS in
driving scenario (1-1). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
DP(2)-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by DP(2).

FIGURE 16. Simulation results of battery SOC for NMPC-based A-ECMS in
driving scenario (1-1). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
NMPC-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by NMPC.

NMPC-based A-ECMS consumed slightly more fuel than the
results of DP(2) is due to final SOC was higher at the end of
simulation in NMPC-based A-ECMS, amouting to 0.07%.
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FIGURE 17. Simulation results of fuel cell power for DP(1)-based A-ECMS,
DP(2)-based A-ECMS, and NMPC-based A-ECMS in driving scenario (1-1).
The blue, green, and red lines represent the simulation results for
DP(1)-based A-ECMS, DP(2)-based A-ECMS, and NMPC-based A-ECMS,
respectively.

TABLE 3. Comparison of fuel consumption performance in driving
scenario (1-1): DP-based A-ECMS and NMPC-based A-ECMS.

Noteworthy result is that the NMPC-based A-ECMS only
requires a computation time of 0.26 s, signifying a substantial
reduction in computation time compared to that of both
DP(1) and DP(2). Through these results, it was validated that
the proposed NMPC-based A-ECMS effectively generates
the optimal control inputs for the FCHEB within short
computation time.

2) SCENARIO (1-2): LUNCH (CONGESTED TRAFFIC)
The second driving scenario for the intra-city bus’s route is
designed using the speed profile measured during the lunch
time period from 13:05 to 14:28. This driving scenario has
a total travel time of 5588 s and covers a travel distance
of 20320.2 m. Scenario (1-2) involves a travel time that is
600 s longer than scenario (1-1). In other words, scenario
(1-2) includes more congested traffic conditions compared to
scenario (1-1).

The real-driving speed profile and the average travel
speed profile for scenario (1-2) are presented in Figure 18.
The reference SOC trajectory generated by DP(1), DP(2),
and NMPC is shown in Figure 19. The NMPC results for
scenario (1-2) exhibit a similar trend with the global optimal
solution ofDP(1). However, the deviation between theNMPC
and DP(1) results is larger in scenario (1-2) compared to

FIGURE 18. Comparison of the travel distance-based speed profile,
measured during the lunch time period, and the average travel speed
profile in driving scenario (1-2). The blue and red lines represent the real
driving speed profile and the average travel speed profile.

FIGURE 19. Comparison of travel distance-based reference SOC trajectory
for driving scenario (1-2). The blue line represents the DP(1) result based
on the real driving speed profile. The green and red lines represent the
DP(2) result and NMPC result based on the average travel speed profile.

FIGURE 20. Simulation results of battery SOC for DP(1)-based A-ECMS in
driving scenario (1-2). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
DP(1)-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by DP(1).

scenario (1-1). This is because traffic congestion is heavier
in scenario(1-2) than scenario(1-1).

The results of the DP(1)-based A-ECMS are presented
in Figure 20. The results of the DP(2)-based A-ECMS are
presented in Figure 21. The results of the NMPC-based
A-ECMS are shown in Figure 22. It is evident that all
three A-ECMS variants effectively track the reference SOC
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FIGURE 21. Simulation results of battery SOC for DP(2)-based A-ECMS in
driving scenario (1-2). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
DP(2)-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by DP(2).

FIGURE 22. Simulation results of battery SOC for NMPC-based A-ECMS in
driving scenario (1-2). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
NMPC-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by NMPC.

trajectories computed by DP(1), DP(2) and NMPC. It is
important to note that the reference SOC trajectory shown in
the simulation results is based on travel time, not on the travel
distance, as indicated in Figure 19.

The fuel cell power utilized during the simulations of
Figure 20, Figure 21 and Figure 22 is presented in Figure 23.
It demonstrates that both the NMPC-based A-ECMS and
the DP(2)-based A-ECMS utilize excessive fuel cell power
compared to the DP(1)-based A-ECMS. This is attributed to
the utilization of a reference SOC trajectory that is calculated
based on an average speed profile, which is an inaccurate
speed profile.

The fuel consumption and computation time used by
DP(1)-based A-ECMS, DP(2)-based A-ECMS, and NMPC-
based A-ECMS for scenario (1-2) are presented in Table 4.
The proposed NMPC-based A-ECMS achieved 0.0267 kg
higher fuel consumption compared to DP(1). In other words,
there is a slightly larger difference between the results
of NMPC-based A-ECMS and the results of DP(1) in
scenario (1-2), compared to scenario (1-1). This is because
traffic congestion was incorporated in scenario (1-2), leading

FIGURE 23. Simulation results of fuel cell power for DP(1)-based A-ECMS,
DP(2)-based A-ECMS, and NMPC-based A-ECMS in driving scenario (1-2).
The blue, green, and red lines represent the simulation results for
DP(1)-based A-ECMS, DP(2)-based A-ECMS, and NMPC-based A-ECMS.

TABLE 4. Comparison of fuel consumption performance in driving
scenario (1-2): DP(1)-based A-ECMS, DP(2)-based A-ECMS, and
NMPC-based A-ECMS.

increase of deviation in the reference SOC trajectory from the
global optimal solution.

The proposed NMPC-based A-ECMS resulted in
0.0007 kg less fuel consumption compared to the results of
DP(2), which is generated by considering the same average
speed profile and control horizon as NMPC. The reason
DP(2)-based A-ECMS consumed slightly more fuel than
the result of NMPC-based A-ECMS is due to the higher
final SOC at the simulation end in DP(2)-based A-ECMS,
amounting to 0.01%.

Noteworthy result is that the NMPC-based A-ECMS
requires a computation time of 0.28 s, signifying a substantial
reduction in computational time compared to both DP(1)
and DP(2). Through these results, it was validated that
the proposed NMPC-based A-ECMS effectively generates
the optimal control inputs for the FCHEB within short
computation time.

B. DRIVING ROUTE (1): BRANCH-LINE BUS
The second driving route used in this simulation is one of the
branch-line bus routes in Seoul. These buses operate within
local routes connecting smaller areas within the city, such
as residential neighborhoods. These buses generally travel
shorter distances and have fewer bus stops along their routes.
The target bus in the second scenario covers a total distance of

VOLUME 11, 2023 102617



J. Lee, H. Lee: NMPC Based Adaptive Equivalent Consumption Minimization Strategy

FIGURE 24. The driving route of the branch-line bus applied to the
driving scenario (2-1) and (2-2). This route starts in Geumcheon-gu, Seoul
and ends at the express bus terminal in Seocho-gu, Seoul.

FIGURE 25. Comparison of the travel distance-based speed profile,
measured during the morning time period, and the average travel speed
profile in driving scenario (2-1). The blue and red lines represent the real
driving speed profile and the average travel speed profile.

17.56 km and includes 43 bus stops, as shown in Figure 24.
The driving scenarios (2-1) and (2-2) are derived from the
data collected during morning and lunch time periods.

1) SCENARIO (2-1): MORNING RUSH HOUR (HEAVY
TRAFFIC)
The first driving scenario for the branch-line bus’s route
is constructed using the speed profile measured during the
morning time period from 8:00 to 9:30. This driving scenario
has a total travel time of 4884 s and covers a travel distance
of 17757.11 m.

The real-driving speed profile and the average travel speed
profile for scenario (2-1) are presented in Figure 25. The
reference SOC trajectory generated by DP(1), DP(2), and
NMPC is shown in Figure 26. The results indicate that NMPC
can generate a reference SOC trajectory that exhibits a similar
trend with that of DP(1), as demonstrated in driving route (1).

As in driving route (1), the performance of the proposed
NMPC-based A-ECMS is validated by comparing it to
the DP(1)-based A-ECMS and DP(2)-based A-ECMS. The
results of the DP(1)-based A-ECMS are presented in
Figure 27. The results of the DP(2)-based A-ECMS are
presented in Figure 28. The results of the NMPC-based
A-ECMS are shown in Figure 29. It is evident that all
three A-ECMS variants effectively track the reference SOC

FIGURE 26. Comparison of travel distance-based reference SOC trajectory
for driving scenario (2-1). The blue line represents the DP(1) result based
on the real driving speed profile. The green and red lines represent the
DP(2) result and NMPC result based on the average travel speed profile.

FIGURE 27. Simulation results of battery SOC for DP(1)-based A-ECMS in
driving scenario (2-1). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
DP(1)-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by DP(1).

FIGURE 28. Simulation results of battery SOC for DP(2)-based A-ECMS in
driving scenario (2-1). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
DP(2)-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by DP(2).

trajectories computed by DP(1), DP(2) and NMPC. It is
important to note that the reference SOC trajectory shown in
the simulation results is based on travel time, not on the travel
distance, as indicated in Figure 26.

The fuel cell power utilized during the simulations of
Figure 27, Figure 28 and Figure 29 is presented in Figure 30.
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FIGURE 29. Simulation results of battery SOC for NMPC-based A-ECMS in
driving scenario (2-1). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
NMPC-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by NMPC.

FIGURE 30. Simulation results of fuel cell power for DP(1)-based A-ECMS,
DP(2)-based A-ECMS, and NMPC-based A-ECMS in driving scenario (2-1).
The blue, green, and red lines represent the simulation results for
DP(1)-based A-ECMS, DP(2)-based A-ECMS, and NMPC-based A-ECMS.

It demonstrates that both the NMPC-based A-ECMS and
the DP(2)-based A-ECMS utilize excessive fuel cell power
compared to the DP(1)-based A-ECMS, as demonstrated in
driving scenario (1-1) and (1-2).

The fuel consumption and computation time used by
DP(1)-based A-ECMS, DP(2)-based A-ECMS, and NMPC-
based A-ECMS for scenario (2-1) are presented in Table 5.
The proposed NMPC-based A-ECMS achieved 0.0105 kg
higher fuel consumption compared to DP(1). The reason why
better performance was shown in scenario (2-1) compared to
scenario (1-1) and (1-2) is that it has shorter driving distances
and encounters fewer bus stops compared to driving route (1).
The proposed NMPC-based A-ECMS resulted in

0.0081 kg less fuel consumption compared to the results of
DP(2), which is generated by considering the same average
speed profile and control horizon as NMPC. The reason
DP(2)-based A-ECMS consumed slightly more fuel than
the result of NMPC-based A-ECMS is due to the higher
final SOC at the simulation end in DP(2)-based A-ECMS,
amounting to 0.19%.

Noteworthy result is that the NMPC-based A-ECMS
requires a computation time of 0.27 s, signifying a substantial
reduction in computational time compared to both DP(1)

TABLE 5. Comparison of fuel consumption performance in driving
scenario (2-1): DP-based A-ECMS and NMPC-based A-ECMS.

FIGURE 31. Comparison of the travel distance-based speed profile,
measured during the lunch time period, and the average travel speed
profile in driving scenario (2-2). The blue and red lines represent the real
driving speed profile and the average travel speed profile.

FIGURE 32. Comparison of travel distance-based reference SOC trajectory
for driving scenario (2-2). The blue line represents the DP(1) result based
on the real driving speed profile. The green and red lines represent the
DP(2) result and NMPC result based on the average travel speed profile.

and DP(2). Through these results, it was validated that
the proposed NMPC-based A-ECMS effectively generates
the optimal control inputs for the FCHEB within short
computation time.

2) SCENARIO (2-2): LUNCH (MEDIUM TRAFFIC)
The second driving scenario for the branch-line bus’s route
is constructed using the speed profile measured during the
lunch time period from 13:30 to 14:43. This driving scenario
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FIGURE 33. Simulation results of battery SOC for DP(1)-based A-ECMS in
driving scenario (2-2). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
DP(1)-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by DP(1).

FIGURE 34. Simulation results of battery SOC for DP(2)-based A-ECMS in
driving scenario (2-2). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
DP(2)-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by DP(2).

FIGURE 35. Simulation results of battery SOC for NMPC-based A-ECMS in
driving scenario (2-2). The blue, green, and red lines represent travel-time
based reference SOC trajectories generated by DP(1), DP(2), and NMPC,
respectively. The magenta line represents the simulation results of
NMPC-based A-ECMS, which controls the SOC of the FCHEB to track the
reference SOC trajectory generated by NMPC.

has a total travel time of 4420 s and covers a travel distance
of 17555.6 m.

The real-driving speed profile and the average travel speed
profile for scenario (2-2) are presented in Figure 31. The

FIGURE 36. Simulation results of fuel cell power for DP(1)-based A-ECMS,
DP(2)-based A-ECMS, and NMPC-based A-ECMS in driving scenario (2-2).
The blue, green, and red lines represent the simulation results for
DP(1)-based A-ECMS, DP(2)-based A-ECMS, and NMPC-based A-ECMS.

reference SOC trajectory generated by DP(1), DP(2), and
NMPC is shown in Figure 32. The NMPC results for scenario
(2-2) exhibit a similar trend with that of DP(1). Furthermore,
the difference between the NMPC and DP(1) results is
comparatively smaller for scenario (2-2) than for scenario (2-
1). This difference is because traffic congestion is lighter in
scenario (2-2) compared to scenario (2-1).

As in driving route (1), the performance of the proposed
NMPC-based A-ECMS is validated by comparing it to
the DP(1)-based A-ECMS and DP(2)-based A-ECMS. The
results of the DP(1)-based A-ECMS are presented in
Figure 33. The results of the DP(2)-based A-ECMS are
presented in Figure 34. The results of the NMPC-based
A-ECMS are shown in Figure 35. It is evident that all
three A-ECMS variants effectively track the reference SOC
trajectories computed by DP(1), DP(2) and NMPC. It is
important to note that the reference SOC trajectory shown in
the simulation results is based on travel time, not on the travel
distance, as indicated in Figure 32.

The fuel cell power utilized during the simulations of
Figure 33, Figure 34 and Figure 35 is presented in Figure 36.
It demonstrates that both the NMPC-based A-ECMS and
the DP(2)-based A-ECMS utilize excessive fuel cell power
compared to the DP(1)-based A-ECMS, as demonstrated in
driving scenario (1-1), (1-2), and (2-1).

The fuel consumption and computation time used by
DP(1)-based A-ECMS, DP(2)-based A-ECMS, and NMPC-
based A-ECMS for scenario (2-2) are presented in Table 6.
The proposed NMPC-based A-ECMS achieved 0.0099 kg
higher fuel consumption compared to DP(1), which generates
the global optimal solution by considering the complete
driving information in advance.

The proposed NMPC-based A-ECMS resulted in
0.0012 kg higher fuel consumption compared to the results of
DP(2), which is generated by considering the same average
speed profile and control horizon as NMPC. The reason
NMPC-based A-ECMS consumed slightly more fuel than
the results of DP(2) is due to the higher final SOC at the
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TABLE 6. Comparison of fuel consumption performance in driving
scenario (2-2): DP-based A-ECMS and NMPC-based A-ECMS.

simulation end in NMPC-based A-ECMS, amounting to
0.03%.

Noteworthy result is that the NMPC-based A-ECMS
requires a computation time of 0.25 s, signifying a substantial
reduction in computational time compared to both DP(1)
and DP(2). Through these results, it was validated that
the proposed NMPC-based A-ECMS effectively generates
the optimal control inputs for the FCHEB within short
computation time.

V. CONCLUSION AND FUTURE WORK
In this paper, an EMS for the FCHEB that operate as urban
public transportation is proposed. The two distinctive features
of this EMS are as follows. First, the average speed profiles
of road segments included in route of the FCHEB is utilized.
Second, the C-rate of battery and the BOP of fuel cell are
considered to maintain the durability of the FCHEB. The
EMS is based on the NMPC-based A-ECMS, which consists
of threemain stages: the data pre-processing stage, theNMPC
stage, and the A-ECMS stage.

The proposed NMPC-based A-ECMS has been validated
in a simulation environment based on four real data-based
driving scenarios that incorporate driving speed profiles,
average speed profiles, and road gradient profiles obtained
from two actual bus routes. And the results of the NMPC-
based A-ECMS are compared with those of DP(1) and DP(2).
The NMPC-based A-ECMS demonstrated a performance
ranging from 95.91% to 98.63% compared to DP(1)’s
global optimal solution. Additionally, it achieved equal or
superior performance to 99.7% of DP(2)’s optimal solution,
which employs the same average driving speed profile
and control horizon length used in the NMPC-based A-
ECMS. Furthermore, the NMPC-based A-ECMS exhibited
a significantly shorter computation time, ranging from 0.25s
to 0.27s, in comparison to DP(1) and DP(2). In order words,
the proposed NMPC-based A-ECMS effectively generates
the optimal control inputs for the FCHEB using the average
speed profile within short computation time.

Despite above advantages, the NMPC-based A-ECMS
includes one pain points. This issue should be addressed
in future work. The issue is use of ideal computational

environment. In this paper, The NMPC-based A-ECMS is
tested on a computer with abundant computational resources.
There is a need for research on how to make NMPC-based
A-ECMS work on embedded systems, rather than just in
simulation environments. One potential solution could be
usingAI to learn and operate NMPC-basedA-ECMSon these
embedded systems.

REFERENCES
[1] A. Chatzipanagi, J. Pavlovic, M. A. Ktistakis, D. Komnos, and G. Fontaras,

‘‘Evolution of European light-duty vehicle CO2 emissions based on
recent certification datasets,’’ Transp. Res. D, Transp. Environ., vol. 107,
Jun. 2022, Art. no. 103287.

[2] Y. Wang and Z. Huang, ‘‘Optimization-based energy management strategy
for a 48-V mild parallel hybrid electric power system,’’ J. Energy Resour.
Technol., vol. 142, no. 5, May 2020, Art. no. 052002.

[3] M. D. Russo, K. Stutenberg, and C. M. Hall, ‘‘Analysis of uncertainty
impacts on emissions and fuel economy evaluation for chassis dynamome-
ter testing,’’ IEEE Trans. Veh. Technol., vol. 72, no. 4, pp. 4236–4251,
Apr. 2023.

[4] V. Vodovozov, Z. Raud, and E. Petlenkov, ‘‘Fuel cell city buses: Grey
shadows of green energy,’’ in Proc. 18th Biennial Baltic Electron. Conf.
(BEC), Oct. 2022, pp. 1–6.

[5] L. M. Fernandez, P. Garcia, C. A. Garcia, and F. Jurado, ‘‘Hybrid electric
system based on fuel cell and battery and integrating a single DC/DC
converter for a tramway,’’ Energy Convers. Manage., vol. 52, no. 5,
pp. 2183–2192, May 2011.

[6] H.-B. Yuan, W.-J. Zou, S. Jung, and Y.-B. Kim, ‘‘A real-time rule-based
energy management strategy with multi-objective optimization for a fuel
cell hybrid electric vehicle,’’ IEEE Access, vol. 10, pp. 102618–102628,
2022.

[7] H. Yang, J. Chen, G. Li, and C. Xiao, ‘‘Power optimization of hydrogen
fuel cell vehicle based on genetic and fuzzy algorithm,’’ in Proc. 40th Chin.
Control Conf. (CCC), Jul. 2021, pp. 5853–5856.

[8] Y. Wang, Y. Zhang, C. Zhang, J. Zhou, D. Hu, F. Yi, Z. Fan, and T. Zeng,
‘‘Genetic algorithm-based fuzzy optimization of energy management
strategy for fuel cell vehicles considering driving cycles recognition,’’
Energy, vol. 263, Jan. 2023, Art. no. 126112.

[9] D. Fares, R. Chedid, F. Panik, S. Karaki, and R. Jabr, ‘‘Dynamic
programming technique for optimizing fuel cell hybrid vehicles,’’
Int. J. Hydrogen Energy, vol. 40, no. 24, pp. 7777–7790,
Jun. 2015.

[10] S. Tao, W. Chen, R. Gan, L. Li, G. Zhang, Y. Han, and Q. Li, ‘‘Energy
management strategy based on dynamic programming with durability
extension for fuel cell hybrid tramway,’’ Railway Eng. Sci., vol. 29, no. 3,
pp. 299–313, Sep. 2021.

[11] L. Xu, M. Ouyang, J. Li, and F. Yang, ‘‘Dynamic programming algorithm
for minimizing operating cost of a PEM fuel cell vehicle,’’ in Proc. IEEE
Int. Symp. Ind. Electron., May 2012, pp. 1490–1495.

[12] C. Liu and L. Liu, ‘‘Optimal power source sizing of fuel cell hybrid vehicles
based on Pontryagin’s minimum principle,’’ Int. J. Hydrogen Energy,
vol. 40, no. 26, pp. 8454–8464, Jul. 2015.

[13] P. Li, Y. Huangfu, C. Tian, S. Quan, Y. Zhang, and J. Wei, ‘‘An improved
energy management strategy for fuel cell hybrid vehicles based on the
Pontryagin’s minimum principle,’’ in Proc. IEEE Ind. Appl. Soc. Annu.
Meeting (IAS), Oct. 2021, pp. 1–6.

[14] X. Sun, Y. Zhou, L. Huang, and J. Lian, ‘‘A real-time PMP energy
management strategy for fuel cell hybrid buses based on driving
segment feature recognition,’’ Int. J. Hydrogen Energy, vol. 46, no. 80,
pp. 39983–40000, Nov. 2021.

[15] C. Zheng, S. W. Cha, Y.-I. Park, W. S. Lim, and G. Xu, ‘‘PMP-based
power management strategy of fuel cell hybrid vehicles considering
multi-objective optimization,’’ Int. J. Precis. Eng. Manuf., vol. 14, no. 5,
pp. 845–853, May 2013.

[16] Y. Zhang, M. Chen, S. Cai, S. Hou, H. Yin, and J. Gao, ‘‘An online energy
management strategy for fuel cell hybrid vehicles,’’ in Proc. 40th Chin.
Control Conf. (CCC), Jul. 2021, pp. 6034–6039.

[17] H. Hemi, J. Ghouili, and A. Cheriti, ‘‘A real time energy management for
electrical vehicle using combination of rule-based and ECMS,’’ in Proc.
IEEE Electr. Power Energy Conf., Aug. 2013, pp. 1–6.

VOLUME 11, 2023 102621



J. Lee, H. Lee: NMPC Based Adaptive Equivalent Consumption Minimization Strategy

[18] H. Li, A. Ravey, A. N’Diaye, and A. Djerdir, ‘‘Online adaptive equivalent
consumption minimization strategy for fuel cell hybrid electric vehicle
considering power sources degradation,’’ Energy Convers. Manage.,
vol. 192, pp. 133–149, Jul. 2019.

[19] Q. Jiang, O. Bethoux, F. Ossart, E. Berthelot, and C. Marchand, ‘‘A-ECMS
and SDP energy management algorithms applied to a fuel cell electric
scooter,’’ in Proc. IEEE Vehicle Power Propuls. Conf. (VPPC), Dec. 2017,
pp. 1–5.

[20] X. Lin, X. Xu, andH. Lin, ‘‘Predictive-ECMS based degradation protective
control strategy for a fuel cell hybrid electric vehicle considering uphill
condition,’’ eTransportation, vol. 12, May 2022, Art. no. 100168.

[21] B. Geng, J. K. Mills, and D. Sun, ‘‘Two-stage energy management control
of fuel cell plug-in hybrid electric vehicles considering fuel cell longevity,’’
IEEE Trans. Veh. Technol., vol. 61, no. 2, pp. 498–508, Feb. 2012.

[22] X. Li, Y. Wang, D. Yang, and Z. Chen, ‘‘Adaptive energy management
strategy for fuel cell/battery hybrid vehicles using Pontryagin’s minimal
principle,’’ J. Power Sources, vol. 440, Nov. 2019, Art. no. 227105.

[23] J. Guo, H. He, Z.Wei, and J. Li, ‘‘An economic driving energymanagement
strategy for the fuel cell bus,’’ IEEE Trans. Transport. Electrific., early
access, Jun. 22, 2022, doi: 10.1109/TTE.2022.3185215.

[24] D. F. Pereira, F. D. C. Lopes, and E. H. Watanabe, ‘‘Nonlinear model
predictive control for the energy management of fuel cell hybrid electric
vehicles in real time,’’ IEEE Trans. Ind. Electron., vol. 68, no. 4,
pp. 3213–3223, Apr. 2021.

[25] H. Chen, J. Chen, H. Lu, C. Yan, and Z. Liu, ‘‘A modified MPC-
based optimal strategy of power management for fuel cell hybrid vehi-
cles,’’ IEEE/ASME Trans. Mechatronics, vol. 25, no. 4, pp. 2009–2018,
Aug. 2020.

[26] H. He, S. Quan, F. Sun, and Y.-X. Wang, ‘‘Model predictive control
with lifetime constraints based energy management strategy for proton
exchange membrane fuel cell hybrid power systems,’’ IEEE Trans. Ind.
Electron., vol. 67, no. 10, pp. 9012–9023, Oct. 2020.

[27] C. Ziogou, S. Voutetakis, M. C. Georgiadis, and S. Papadopoulou,
‘‘Model predictive control (MPC) strategies for PEM fuel cell systems—A
comparative experimental demonstration,’’Chem. Eng. Res. Des., vol. 131,
pp. 656–670, Mar. 2018.

[28] T. Li, H. Liu, H. Wang, and Y. Yao, ‘‘Multiobjective optimal predictive
energy management for fuel cell/battery hybrid construction vehicles,’’
IEEE Access, vol. 8, pp. 25927–25937, 2020.

[29] X. Lin, Z. Wang, S. Zeng, W. Huang, and X. Li, ‘‘Real-time optimization
strategy by using sequence quadratic programming with multivariate
nonlinear regression for a fuel cell electric vehicle,’’ Int. J. Hydrogen
Energy, vol. 46, no. 24, pp. 13240–13251, Apr. 2021.

[30] M. Yan, G. Li, M. Li, H. He, H. Xu, and H. Liu, ‘‘Hierarchical predictive
energy management of fuel cell buses with launch control integrating
traffic information,’’ Energy Convers. Manage., vol. 256, Mar. 2022,
Art. no. 115397.

[31] M. Salem, M. Elnaggar, M. S. Saad, and H. A. A. Fattah, ‘‘Energy
management system for fuel cell-battery vehicles using multi objective
online optimization,’’ IEEE Access, vol. 10, pp. 40629–40641, 2022.

[32] J. Díaz-Ramirez, N. Giraldo-Peralta, D. Flórez-Ceron, V. Rangel,
C. Mejía-Argueta, J. I. Huertas, and M. Bernal, ‘‘Eco-driving key factors
that influence fuel consumption in heavy-truck fleets: A Colombian case,’’
Transp. Res. D, Transp. Environ., vol. 56, pp. 258–270, Oct. 2017.

[33] J. Gao, H. Chen, Y. Li, J. Chen, Y. Zhang, K. Dave, and Y. Huang,
‘‘Fuel consumption and exhaust emissions of diesel vehicles in worldwide
harmonized light vehicles test cycles and their sensitivities to eco-driving
factors,’’ Energy Convers. Manage., vol. 196, pp. 605–613, Sep. 2019.

[34] C. Flores, P. Merdrignac, R. de Charette, F. Navas, V. Milanés, and
F. Nashashibi, ‘‘A cooperative car-Following/Emergency braking system
with prediction-based pedestrian avoidance capabilities,’’ IEEE Trans.
Intell. Transp. Syst., vol. 20, no. 5, pp. 1837–1846, May 2019.

[35] H. S. Bae and J. C. Gerdes, ‘‘Command modification using input shaping
for automated highway systems with heavy trucks,’’ in Proc. Amer. Control
Conf., vol. 1, 2003, pp. 54–59.

[36] L. T. Biegler and V. M. Zavala, ‘‘Large-scale nonlinear programming
using IPOPT: An integrating framework for enterprise-wide dynamic
optimization,’’ Comput. Chem. Eng., vol. 33, no. 3, pp. 575–582,
Mar. 2009.

[37] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
‘‘CasADi: A software framework for nonlinear optimization and optimal
control,’’Math. Program. Comput., vol. 11, no. 1, pp. 1–36, Mar. 2019.

[38] H. Liu, R. Liu, R. Xu, L. Han, and S. Ruan, ‘‘Hierarchical energy
management strategy considering switching schedule for a dual-mode
hybrid electric vehicle,’’ Proc. Inst. Mech. Eng. D, J. Automobile Eng.,
vol. 236, no. 5, pp. 938–949, Apr. 2022.

[39] J. T. B. A. Kessels, M. W. T. Koot, P. P. J. van den Bosch, and D. B. Kok,
‘‘Online energy management for hybrid electric vehicles,’’ IEEE Trans.
Veh. Technol., vol. 57, no. 6, pp. 3428–3440, Nov. 2008.

[40] T. Ghandriz, B. Jacobson, N. Murgovski, P. Nilsson, and L. Laine, ‘‘Real-
time predictive energy management of hybrid electric heavy vehicles
by sequential programming,’’ IEEE Trans. Veh. Technol., vol. 70, no. 5,
pp. 4113–4128, May 2021.

[41] Argonne National Laboratory. (2018). Autonomie. Accessed: Jul. 20, 2023.
[Online]. Available: https://www.anl.gov/

JOOIN LEE received the B.S. degree in mechani-
cal engineering from Soongsil University, Seoul,
South Korea, in 2015. He is currently pursuing
the Ph.D. degree in electrical engineering with
Hanyang University, Seoul. His current research
interests include model predictive control, optimal
hybrid powertrain control, fault-tolerant control,
and applications to vehicle control.

HYEONGCHEOL LEE (Member, IEEE) received
the B.S. and M.S. degrees from Seoul National
University, Seoul, South Korea, in 1988 and
1990, respectively, and the Ph.D. degree from the
University of California at Berkeley, Berkeley,
CA, USA, in 1997. He is currently a Professor with
the Department of Electrical and Biomedical Engi-
neering, Hanyang University, Seoul. His research
interests include adaptive and nonlinear control,
embedded systems, applications to vehicle control,

and vehicle dynamics.

102622 VOLUME 11, 2023

http://dx.doi.org/10.1109/TTE.2022.3185215

