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ABSTRACT This paper presents an approach for enhancing indoor localization accuracy using a hybrid
quantum deep neural network model (H-QDNN). To improve the accuracy of indoor localization based
on contemporary techniques, we employ the combined strengths of quantum computing (QC) and deep
neural networks (DNN). The strengths of QC, which accelerates the training process and enables efficient
handling of complex data representations through quantum superposition and entanglement, were combined
with DNN, known for its ability to extract meaningful features and learn complex patterns from data. The
proposed model can be trained using small datasets, reducing the need for extensive data, particularly useful
in indoor localization, where data collection can be time-consuming and resource-intensive. To evaluate the
effectiveness of our proposed approach, we conduct extensive experiments and comparisons with existing
state-of-the-art methods. The results demonstrate that the H-QDNN model significantly improves indoor
localization accuracy compared to traditional techniques. Additionally, we provide insights into the factors
contributing to enhanced performance, such as the quantum-inspired algorithms utilized and the integration
of mixed fingerprints.

INDEX TERMS Indoor localization, fingerprinting, quantum computing, QNN, DNN.

I. INTRODUCTION
Indoor localization techniques have been extensively studied
to address the challenges associated with complex indoor
environments. One such technique is fingerprinting, which
relies on offline data for accurate online location estimation
[1]. Various fingerprinting-based techniques have been
proposed, utilizing different signals such as Wi-Fi fine
time measurements (FTM) [2], time of arrival (TOA) [3],
received signal strength (RSS) [4], ultra-wideband (UWB)
[5], and channel state information (CSI) [6], [7]. However,
the accuracy of these techniques can fluctuate due to sensor

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

errors, noise, multipath effects, signal interference, and
channel inconsistencies [8]. Researchers have explored the
use of machine learning (ML) algorithms to improve the
accuracy of fingerprinting-based techniques [2], [6], [9], [10],
[11], [12], [13], [14], [15]. Deep neural networks (DNNs)
have shown promising results in enhancing localization
accuracy among ML algorithms.

DNNs can learn intricate spatial and temporal relationships
in the data, enabling accurate positioning [15]. However,
classical DNNs face challenges such as the vanishing gradient
problem and overfitting when applied to non-linear data
such as signal fingerprint dataset [16], [17]. In order to
learn effectively and establish robust models, DNNs usually
demand extensive sets of fingerprint data, a task made
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complex by the difficulty of collecting such data in busy
environments [18]. Quantum computing (QC) [19], [20] has
emerged as a potential solution to the limitations of DNNs.
Specifically, quantum neural network (QNN) [20], [21] can
leverage the quantum parallelism and quantum entanglement
principles of QC to solve problems beyond the reach of
classical DNNs [19], [22]. Some potential benefits of QNN
to fingerprint-based scenarios include learning from fewer
data, improved computational speed and run-time, and better
coping with noisy data [23].

A. RELATED WORKS
DNN-based algorithms [2], [6], [9], [10], [11], [12], [13],
[14], [15], [24], [25] have exhibited significant improvements
in fingerprinting-based localization accuracy. This progress
can be attributed to the effective management of the finger-
printing dataset through multiple layers of representation.
However, the requirement of large amounts of data by
DNNs could pose a significant challenge when dealing
with limited fingerprint datasets. Limited fingerprint data
might not represent the entire indoor environment diversity;
while data augmentation and transfer learning are effective
strategies for working with limited datasets, they come
with some drawbacks [26], [27]. Recently, there has been
an interest in the introduction of quantum ML (QML)
algorithms aimed at accelerating specific ML tasks and
dealing with more complex structures with fewer real-time
datasets [20], [21].

QML algorithms such as variational quantum classifier
(VQC) [28], quantum support vector machine (QSVM) [29],
and QNN [20] have numerous contributions in coping with
the classification and regression problems. The use of QML
for sensing and localization is in its initial exploratory
stages. QNNs have been studied for decades but are now
being considered intensely as applications of near-term
QC hardware. The concept of quantum entanglement can
help prevent over-fitting by preventing the network from
becoming too specialized for the training data [20]. Addition-
ally, Quantum parallelism allows QNN to perform multiple
calculations simultaneously, accelerating the training process
and reducing the need for extensive data [21].
QNN has the potential to alter how computation is

performed to address previously untenable problems in
fingerprinting-based localization scenarios, including better
generalization and representation of the fingerprint dataset.
Unlike classical DNNs, which often require large amounts
of data and epochs to reach a threshold accuracy and
converge to a stationary point, QNN offers the potential for
faster convergence with fewer amounts of data. In addition,
hybrid algorithms combining DNN and QNN have also
been developed to optimize various tasks, such as prediction
[30], [31], [32], [33], image generation and recognition [34],
[35], and cost function optimization [36]. These algorithms
have showcased their significance in addressing issues lever-
aging quantum supremacy, parallelism, and entanglement
principles. By merging QC with DNN, it becomes inherently

feasible to address challenges characterized by complex input
correlations, which might be exceedingly challenging for
conventional computing systems [37].

Leveraging the recent advancements in QC [20], [22],
[32], [35], this study is intended as an earlier attempt to
integrate QC to improve the feature extraction capacity
and learning capacity of DNN with a limited fingerprint
dataset. This research aims to construct a fully connected
hybrid quantum deep neural network (H-QDNN) model
for enhancing localization accuracy. Our proposed model
employs a method based on QCs, diminishing complexity
by minimizing the count of variational parameters. We can
further reduce the model’s complexity by applying multiple
qubit gates to neighboring qubits to uncover the hidden state
and specifically apply the NOT gate operation. To evaluate
the effectiveness of our proposal, we conduct experiments
using a real environment comprising a limited time of flight
(TOF) and RSS fingerprints collected with low-cost devices.

B. CONTRIBUTIONS
The key contributions of this study are as follows.
1) Motivated by the latest progress in QNNs [20], [22],

[32], [35], this study represents one of the preliminary
efforts to employ QNN approaches in localization
contexts. To the best of our knowledge, this paper
is the first to introduce the concept of H-QDNN in
fingerprinting indoor localization.

2) We propose an H-QDNN model that improves the
DL feature extraction capacity, which is highly desired
for better generalization and representation of the
fingerprint dataset. The proposed H-QDNN is designed
to leverage the superposition capability of QNN in both
the preparation of input states and the representation
of DNN feature mapping. This approach effectively
minimizes the utilization of quantum bit resources.

3) We developed two different architectures of H-QDNN.
A multi-layered H-QDNN was initially constructed,
drawing inspiration from [38]. Subsequently, we incor-
porated a gradient descent mechanism, based on insights
from [39], to optimize the model. This model could
potentially obviate the necessity for large fingerprint
data while maintaining impressive trainability. Remark-
ably, it achieves rapid convergence, surpassing specified
accuracy benchmarks within a minimal epoch count.

The remainder of this paper is organized as follows:
Sec.II provides a comprehensive review of preliminaries on
quantum computing. Sec.III presents the methodology and
framework of our proposed model. Sec.IV describes the
experimental setup. Sec.V presents the results and discusses
the findings, highlighting the advantages of QNNs in indoor
localization. Finally, Sec.VI concludes the paper and suggests
potential avenues for future research.

1) NOTATIONS
The trace operator is represented as tr(·), while the Hadamard
product is symbolized by ⊙. The symbols |·| and ∡·
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correspond to amplitude and angle, in that order. In the
context of quantum computation, the quantum state vector
within a Hilbert space uses the Dirac [40] notation, given
by |·⟩. The Kronecker product operation is signified by ⊗.
The expected value of an operator 2 in the quantum state
|ψ⟩ is expressed as ⟨ψ |2|ψ⟩. Bold lowercase letters depict
vectors, while bold uppercase letters represent matrices. The
component found at the intersection of the i-th row and j-th
column in the matrix A is denoted by [A]i,j. Similarly, [p]i
points to the i-th component of the vector p. The sub-indices
i, j cover all elements from i to j. By default, all vectors are
considered column vectors unless specified differently.

II. PRELIMINARIES
Quantum computing (QC) represents a transformative change
in the realm of ML, offering capabilities beyond traditional
ML systems. Gaining a deep insight into QC requires a solid
grasp of its fundamental concepts. In this section, we will
review some preliminaries to understand the concept of QC.

A. BASIC CONCEPTS OF QC
1) QUANTUM BIT
In QC, the fundamental unit for information storage and
processing is the quantum bit, or qubit, analogous to the
binary bit in traditional computation. A qubit possesses two
primary states, denoted as |0⟩ and |1⟩. These states correspond
to a two-level quantum system’s ground and excited states.
However, unlike the classical bit that can only take one value
at any time, qubits state can be |0⟩ or |1⟩, and a probabilistic
mixture of |0⟩ and |1⟩, called superposition [22].

|ψ⟩ = α|0⟩ + β|1⟩ (1)

Given that α and β belong to the set of complex numbers,
denoted as C, and they satisfy the equation |α|

2
+ |β|

2
= 1.

By choosing {|0⟩, |1⟩} as the basis, any single qubit state |ψ⟩

can be represented as a complex vector,

|ψ⟩ =

[
α

β

]
∈ C2 (2)

For a set of n isolated qubits with quantum states (QS)
represented as

∣∣ψ1
〉
, . . . , |ψn⟩, the QS of the combined

system of these n qubits can be represented as |9⟩ =
∣∣ψ1

〉
⊗

. . .⊗ |ψn⟩. Typically, this is abbreviated as
∣∣ψ1 . . . ψn

〉
. The

vector space of any n-qubit QS |9⟩ has a foundational basis
of {|00 . . . 0⟩, |00 . . . 1⟩, |11 . . . 1⟩}. Any QS |9⟩ within this
space can be shown in its superposition form as follows

|9⟩ =

2n−1∑
i=0

αi|i⟩, αi ∈ C (3)

where |i⟩ represents the QS characterized by the binary
representation of i.

2) QUANTUM ENTANGLEMENT
Quantum entanglement refers to the fact that two quantum
particles can become linked so that their states depend on each

other, even if large distances separate them. Suppose we have
two qubits, labeled as qubit A and qubit B. The state of a
single qubit can be represented using the Dirac notation as
|ψA⟩ = α|0⟩ + β|1⟩ and |ψB⟩ = γ |0⟩ + δ|1⟩. Where α, β,
γ , and δ are complex probability amplitudes that determine
the quantum state of each qubit. Entanglement occurs when
the combined state of the two qubits cannot be factored into
separate states for each qubit. This joint state is represented
as:

|ψAB⟩ =
1

√
2
(|00⟩ + |11⟩) (4)

Equation (4) illustrates the mathematical representation of
quantum entanglement and its implications on the behavior
of entangled particles. This state indicates that qubits A and
B are in a superposition of both being in the |0⟩ state and
simultaneously being in the |1⟩ state.

3) QUANTUM GATES
Quantum gates are the operations performed on qubits to
manipulate their states [32]. Given a QS |ψ⟩ and a quantum
circuit with a sequence of gates represented by the unitary
operators U1,U2, . . . ,Um, the evolution of the state through
the circuit can be written as,

|ψ ′
⟩ = UmUm−1 . . .U2U1|ψ⟩ (5)

where |ψ ′
⟩ is the final state of the circuit. Further

details of commonly used quantum gates are presented in
APPENDIX A VI, on page 13.

B. QUANTUM MEASUREMENT
To extract this information in QC, quantum measurements
must be executed [38]. Consider, for instance, undertaking a
projective measurement on a qubit in state |φ⟩ = α|0⟩+β|1⟩
using the observable M. This results in outcomes of 1 with
a probability of p(1) = |α|

2 and −1 with a probability
of p(−1) = |β|

2. Post-measurement, the QS transitions
instantaneously to |0⟩ or |1⟩. It’s crucial to understand that
these measurement outcomes are inherently probabilistic; a
single measurement yields only one potential result in line
with its associated likelihood. Hence, multiple measurements
are essential to attain a more comprehensive understanding
of the state. The expected value for a particular measurement
observableM on the state |φ⟩ can be defined as:

⟨M⟩|φ⟩ ≡ ⟨φ|M|φ⟩ = |α|
2
− |β|

2, (6)

whereM ≡

[
1 0
0 −1

]
.

C. DATA ENCODING
This section presents two classical data encoding methods
in QC.

1) ANGLE ENCODING
Referred to as qubit, tensor product, or angle encoding, this
method facilitates efficient operations due to its inherent
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parallel processing capabilities, which operate consistently
regardless of data volume [20]. Nevertheless, the number of
qubits needed scales with the data size, with each input vector
component demanding a single qubit. Such an encoding
strategy is highly advantageous, given that it necessitates
the rotation of only one qubit. The most commonly used
method in some literature is applying a feature map xi →

cos
( xi
2

)
|0⟩+ sin

( xi
2

)
|1⟩ using the RY (θ ) rotation operator as

shown as in (7),

RY (xi) |0⟩ = e(−iYxi/2)|0⟩

=

[
cos

( xi
2

)
− sin

( xi
2

)
sin

( xi
2

)
cos

( xi
2

)
] [

1
0

]

= cos
(xi
2

)
|0⟩ + sin

(xi
2

)
|1⟩ (7)

2) AMPLITUDE ENCODING
The amplitude encoding approach offers the benefit of
requiring only n = log(N ) qubits to represent an input with
N features. By doing so, this method effectively reduces
the number of qubits and subsequently decreases the circuit
parameters. For example, given a classical vector, x =

[x0, x1, · · · , x2n−1]T , amplitude encoding can be employed
to encode the classical vector into an n qubit QS expressed
as:

|x⟩=x0|00 · · · 0⟩+x1|00 · · · 1⟩+· · ·+x2n−1|11 · · · 1⟩ (8)

III. PROPOSED H-QDNN FOR FINGERPRINTING-BASED
LOCALIZATION METHOD
In this section, we outline the procedure to realize the pro-
posed Hybrid Quantum-Deep Neural Network (H-QDNN)
as depicted in Figure 1. The H-QDNN is designed with a
focus on refining fingerprinting-based indoor positioning,
integrating QNN and DNN techniques for superior results.

A. MEASUREMENT MODEL
Considering a 2-dimensional indoor environment that con-
sists of L transmitter, also known as anchors, and an unknown
receiver device operating on an IEEE 802.15.4 Wi-Fi card,
otherwise known as tags. We have defined the true and
known location of the anchors as l l ∈ R2×1, l = 1, . . .,L
where the true but unknown location of tag is defined as
p ∈ R2×1. Generally, the measurement techniques in the
anchor-tag communication system are classified as ranging,
timing, and/or the RSS between the anchors and tag [41]. This
paper considers the fusion of TOF and RSS fingerprints in
constructing our dataset. The measurement procedure starts
with a normal TWR exchange comprising a poll and response
messages.

After obtaining the response message, the tag returns a
concluding message to the anchor. The response delays,
denoted as τ , are constants established beforehand. The
round-trip time (RTT), represented by γ , is derived from the

timestamps of the recorded messages. Therefore, the Time of
Flight (TOF) is determined as outlined in [42].

0l =

[
γlγt − τtτl

γl + τt + γt + τl

]
(9)

where 0l denote the measured TOF of the l-th anchor. τl and
τt are the reply delays of the l-th anchor and tag respectively,
while γl and γt represents the RTT of the l-th anchor and tag
respectively. The ranging measurement between the tag and
an l-th anchor is modeled as,

4l = 0l · λ+ ωl (10)

where λ denotes the speed of light, and ωl the ranging noise
corresponding to the l-th anchor with a zero mean Gaussian
distribution, ωl ∼ N

(
0, σ 2

ωl

)
.

On the other hand, RSS ranging is based on the principle
that the greater the distance between the anchor and tag, the
weaker their relative received signals. The measured RSS is
modeled as,

8l = po − 10ρ log10
dl
d0

+ εl + ϕl, l = 1, . . .,L, (11)

where 8l denote the recorded RSS between the l-th anchor
and tag. po signifies the power received at a reference span
d0. The true distance between the tag and the l-th anchor is
represented by dl = ||p−l l ||. The term εl captures the extra
path loss due to Non-Line-Of-Sight (NLOS) propagation.
The path-loss exponent is given by ρ. Lastly, the inaccuracies
in measurements, which follow a Gaussian distribution with
zero mean, are denoted by ϕl .

B. FINGERPRINTING
The fingerprinting process is conventionally divided into two
stages: the offline and the online phases. To construct the
dataset, signal readings are used to produce the feature vector
xk at every reference point k . Specifically, for K reference
points (RPs), xk stores the features corresponding to the
location coordinates of the reference point pk = [xk , yk ]T

for k = 1, . . . ,K , i.e.,

xk = [4k,1,8k,1, 4k,2,8k,2, . . . , 4k,L ,8k,L ,]T, (12)

where 4k,l and 8k,l are the ranging measurement corre-
sponding to reference TOF and RSS between the tag and an
l-th anchor at the k-th reference point from l = 1, . . . ,L
anchors. During the online phase, we measure a signal at an
unknown location with the characteristics,

x = [41,81, 42,82, . . . , 4L ,8L]T, (13)

where4l , and8l are the measurements corresponding to the
TOF andRSS taken at an unknown tag location for l = 1 . . . L
anchors.
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FIGURE 1. Architecture of the proposed H-QDNN fingerprinting-based localization method.

C. HYBRID QUANTUM DEEP NEURAL NETWORK
In analogy to a classical DNN’s fundamental structure,
the proposed H-QDNN’s learning architecture is depicted
in Figure 1. Both the classical and quantum computers
collaboratively carry out the entirety of the forward pass and
the training regimen of the H-QDNN. This work designs
three primary sub-models: the quantum state preparation
model, H-QDNN layers, and the Optimization model.
Notably, the first two are quantum-based, while the latter
is classical. The quantum state preparation model begins
by accepting the classical fingerprint vector as described in
(12), then proceeds to encode this data into the quantum
state |x⟩, as previously elucidated in II. The H-QDNN
layers comprise a series of quantum circuits, which facilitate
the transformation and extraction of features encapsulated
in the quantum states, with further details available in II.
Conclusively, the quantum measurement segment produces
expectation values, denoted as ⟨M⟩, which serve as the
classification outputs. Operating on a classical computer, the
optimization model refines the parameters of the H-QDNN
model by evaluating the discrepancies between the genuine
labels and the derived classification outcomes.

1) STATE PREPARATION
State preparation stands pivotal when leveraging QML
algorithms for classical data manipulation. A pair of distinct
encoding strategies are described in II. Inspired by the
approach presented in [43], we designed a state preparation
model, trainable to nearly encode any given vector. This
model encompasses simulation training and reconstruction

FIGURE 2. Classical data (fingerprint) state preparation model.

circuits, visually represented in Figure 2. Compared to the
basis encoding technique, the amplitude encoding method,
delineated in II-C2, offers superior qubit efficiency. Given
its prevalence in many contemporary QML algorithms,
as evidenced in [34] and [44], our research chose to adopt
the amplitude encoding technique.

In the initial phase of state preparation, as depicted in
Figure 2, the task is to instruct the simulation circuit to
metamorphose the starting state |xin⟩ into |1⟩⊗n. It’s crucial
to highlight that this operation unfolds within a classical
simulation. For any provided state |xk ⟩, this results in a
distinct assortment of gate parameters, denoted by θ . The
corresponding loss function is articulated as

f (θ ) =
1
n

n∑
i=1

⟨Mi⟩U (θ )|xk ⟩ , (14)
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FIGURE 3. Schematic diagram of the end-to-end QNN model.

where ⟨Mi⟩ represents the expectation of theM measurement
taken on the i-th qubit. Hence, the training process entails an
iterative assessment of the loss function, adjusting parameters
through a gradient descent approach to minimize (14).

Suppose the loss function is minimized to a value of −1.
This would indicate that all measurement expectation values
equal −1, ensuring that the circuit’s final QS, right before
measurements, is eiφ |1⟩⊗n. This observation elucidates that
the circuit undertakes the transformation: U

(
θ∗

)
|xk ⟩ =

eiφ |1⟩⊗n. In the subsequent phase, we employ the parameters
θ∗ to design a reverse circuit on a quantum processor, with
P(φ) denoting the phase gate. This reverse circuit enacts the
transformation U ′(θ ) = U

(
θ∗

)†
·
(
I⊗n−1

⊗ P(φ)
)
· X⊗n on

the initial state |0⟩, leading to the production of the desired
quantum state |xk ⟩.

2) LEARNING AND OPTIMIZATION OF H-QDNN
This section elucidates the methodology for constructing
QNN layers employing the hybrid quantum-classical frame-
work prevalent in numerous NISQ quantum algorithms
[30], [34], [45]. The H-QDNN algorithm is segmented into
two main components: the quantum and the classical. The
quantum component utilizes parameterized quantum circuits
(PQCs) to prepare quantum states via quantum processors.
Conversely, the classical part optimizes the parameters
of the PQCs through classical computers. The proposed
H-QDNN model illustrated in Figure 3 incorporates five
pivotal components: data preparation, data encoding, unitary
transformation, entangled state measurement, and classical
postprocessing. Further details can be found in Appendix VI.
A unitary transformation is applied after the input data has

been encoded via the state preparation process, as detailed
in Sec. III-C1. This transformation, which constitutes the
third part of our model in Figure 3, makes use of Hadamard
gates, single-qubit rotation gates, and entanglement gates.
These gates are instrumental in completing the quantum
states’ transformation and entanglement. Following the
measurement of the quantum state, the expectation values
of certain Hamiltonians are obtained and then transferred
into the post-processing component of the model. The
learning procedure of the proposed H-QDNN is summa-
rized in Algorithm 1. To train the H-QDNN, we use the

Algorithm 1 Learning and Optimization Algorithm
Input : TOF and RSS signal

1 Initialize: Fingerprinting radiomap;
2 TOF and RSS signal collection for each RP;
3 Amplitude encoding |xk⟩ to |1⟩⊗n (Sec. III-C1);
4 Apply PQC to the input quantum state to produce new

entangled state |xk⟩ = U (θ ) |xk⟩;
5 Define L(θ ), such that θ∗ = argminθ (L(θ )), where

F(θ ) is the expected value of some Hamiltonian,
|xk⟩ (θ )|M| |xk⟩ (θ )⟩;

6 Then L(θ ) may be evaluated by repeatedly preparing
|xk⟩ (θ )⟩ and measuring M;

7 Loss function computation using (15);
8 Perform gradient descent using (16);
9 Repeat the procedure until θ converges;

mean-square-error (MSE) as a cost function to measure the
discrepancy between the model predictions and the true
outputs,

MSE =
1
K

K∑
k=1

(fθ (xk ) − pk )2 (15)

where fθ (xk ) is the model output for input x, and pk is
reference k-th location, for k = 1, . . . ,K RPs.
We then optimized the weights of the model using gradient

descent. We updated the weights in the direction of the
negative gradient of the cost function,

θ t+1 = θ t − η∇θMSE(θ t ) (16)

where η is the learning rate and t is the training epoch.
To compute the gradient of the cost function, we use the
parameter-shift rule, which allows us to estimate the gradient
using only circuit evaluations. Specifically, we evaluated the
circuit U (θ +

π
2 v) and U (θ −

π
2 v), where v is a binary vector

that specifies which weight to shift. The gradient can then be
estimated as,

∇θiMSE(θ) ≈
1
2

(
MSE(θ +

π

2
vi) − MSE(θ −

π

2
vi)

)
(17)

where vi is a binary vector with a 1 in the i-th position.
We repeat this process until the cost function converges to
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TABLE 1. Parameter setting.

a minimum, indicating that the H-QDNN has learned to
accurately predict the outputs for the given fingerprinting
inputs. The H-QDNN parameters setting as implemented are
summarized in Table 1.

IV. EXPERIMENT DESCRIPTION
This section provides a detailed overview of the experimental
design, highlighting the equipment used, the configurations
set, and the methodologies employed during our signal
fingerprint acquisition phase.

A. MEASUREMENT CAMPAIGNS
The experiments were conducted at Hanyang University,
Korea, spanning multiple locations and structures to ensure
comprehensive data collection. The first experiment was
conducted at the Wireless Systems Laboratory (WSL),
popularly known as the 5G/Unmanned Vehicle Convergence
Technology Research Center. The experiment was conducted
in a controlled indoor environment during working hours,
where there were normal human activities to emulate real-
world scenarios. The WSL environment in Figure 4 has
a dimension of 15.7m by 12.4m. Obstacles and potential
non-line-of-sight (NLOS) elements, such as furniture and
walls, are visually represented within the testbed area. The
setup in WSL included six Pozyx UWB-based creator kit
anchors (APs) and a tag for reference data collection. The
anchors and tag were mounted at 2.8m and 1.14m above
the floor respectively. These heights were carefully chosen
to minimize interference and optimize signal propagation
for reliable distance measurements. The RPs were spaced at
regular intervals of 1.2m to ensure comprehensive coverage
and accuracy.

Another phase of the experiment was conducted on the
8-th floor of the Information Technology & Bio-Technology
building. This location, referred to as ITBT in this study,
was selected based on its distinct structural attributes. With
a vision for realism, we meticulously mapped out the testbed,
considering the exact locations of walls, doors, and other
potential barriers. The research was extended to the 5th floor
of the Fusion Tech Center building, denoted as FTC in this
work. Like the ITBT location, the FTC floor was chosen after
a thorough assessment of its architectural nuances. Both the
ITBT and FTC environments are particularly active during
working hours, with regular humanmovements and activities,

FIGURE 4. Fingerprinting layout of WSL site.

FIGURE 5. Fingerprinting layout of ITBT site.

ensuring a dynamic testing ground. The ITBT and FTC
measurement sites are depicted in Figure 5 and 6 respectively.

B. DATASETS
We collected datasets following predetermined trajectories
during the measurement campaigns, for the RPs illustrated
in Figure 4, Figure 5, and Figure 6. A set of paper tags
were positioned on the floor to establish a set of RPs.
A total of three distinct datasets from three different locations
were collected in his work. The data samples comprised
a timestamp, tag, and detected APs IDs represented by
their MAC addresses, RSS values, TOF values, and radio
channel numbers. Each data sample was also associated with
a corresponding ground truth position obtained from the Tag’s
accurate positioning. The inclusion of the ground truth posi-
tion served as an RP for determining the localization accuracy
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FIGURE 6. Fingerprinting layout of FTC site.

of the system. To ensure the reliability and generalization of
theML localizationmodel, separate trajectories were used for
training and testing. Furthermore, 75% of the total training
data was used to train the model, while the remaining 25%
was set aside for validation. This approach is commonly
employed to assess the model’s performance on unseen data
and accurately verify its ability to estimate positions in real-
world scenarios.

1) WSL DATASET
TheWSL dataset was compiled by accumulating 100 samples
at each RP, resulting in approximately 4920 total samples
from all six Pozyx APs. These samples were gathered
using a diminutive trolley that was manually maneuvered
along the trajectories at an average pedestrian velocity of
approximately 1m s−1. A specially crafted Python program
was used to collect data samples. The layout of the WSL
as depicted in Figure 4 has 66 RPs for training data, and
18 testing points (TPs) for testing data, involving someRP/TP
overlapped points.

2) ITBT AND FTC DATASET
The setup in ITBT included six BLE beacons sourced from
Estimote Inc. and an additional eight BLE beacons sourced
from Hyunseung Korea Inc. These beacons served as anchors
(APs) for transmitting signals across the testbed, and a tag
for reference data collection. Similarly, the set-up in the FTC
site included eleven BLE beacons sourced from Hyunseung
Korea Inc. SamsungGalaxy S8+ (referred to as SAMSG) and
LG G8 ThinQ (referred to as LG) smartphone devices were
used as tags for RSSI data collection in the ITBT and FTC
datasets in order to build a more robust dataset. To facilitate
the collection of RSSI data, a proprietary application was
developed by the researchers in this work. As shown in
Figure 5, a total of 126 RPs and 57 TPs were established
during the data collection process in ITBT. While the FTC
measurement featured 327 and 69 RPs and TPs, respectively.
The key parameters of our measurement set-up used in this
work are summarized in Table 2.

TABLE 2. Measurement campaigns parameter settings.

FIGURE 7. Training and validation loss.

V. RESULTS AND DISCUSSIONS
In this section, we detail the experimental results and subse-
quently analyze their broader implications and relevance to
this research.

A. HYPER-PARAMETER TUNING
An essential aspect of optimizing the performance of the
model is hyperparameter tuning. Hyperparameter tuning
involves systematically adjusting these parameters to find the
combination that yields the best performance for the given
task. Our investigation focused on several key hyperparame-
ters, including validation and training loss, test loss, and test
accuracy. We trained the H-QDNN model with parameters
summarised in Table 1. In the first set of iterations, the
hyperparameters of Adam are set to be η = 0.01, β1 =

0.9, β2 = 0.999. In the later iterations, we change η to 0.001.
The loss function values on the training set and validation set
are shown in Figure 7.
The accurate rate of this H-QDNN on the test set rises to

97.29% after training. Figure 7 verifies the convergence of
the H-QDNN network and that the training and validation
costs decrease with the training epoch. The loss for the
H-QDNN model starts to stabilize after 15 epochs. This
stabilization can be attributed to the swift convergence of the
QNN. It requires fewer epochs to stabilize its loss function,
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FIGURE 8. Comparison of testing accuracy of all models.

enhancing accuracy. Validation and training loss are critical
indicators of our model’s performance and convergence
during training. By carefully adjusting parameters related
to these losses, we trade-off between preventing overfitting
(high training loss, low validation loss) and underfitting
(low training loss, high validation loss). After obtaining
validation accuracy curves, we can easily calculate the
average validation accuracy curve for our proposal and
baseline models. The effective epochs for the DNN, DNN
with dropout, and H-QDNN models are 5, 15, and 20,
respectively. This is because the models’ accuracy does
not increase beyond a certain point and remains constant,
as shown in Figure 8.

Figure 8 proved that H-QDNNs have more representation
power than classical DNNs and still keep most of the
advantages of the classical DNNs. The models depicted
in Figure 8 were initially executed using three distinct
learning rates and separate batch sizes. Optimal results were
achieved using a learning rate of 0.001 and a batch size
of 10. The training was conducted on the designated training
dataset, saving weights corresponding to the minimal training
loss. Subsequently, the performance was assessed using the
labeled test dataset. Due to the utilization of a classical
simulator on a desktop PC for quantum computation, only
H-QDNNs with a limited number of qubits can be employed,
thus limiting the demonstration to simpler examples.

The peak testing accuracy attained by H-QDNN was
97.29%, whereas DNN and DNN with dropouts achieved
testing accuracies of 81.01% and 85.29%, respectively. The
comparison of the computed loss values can be seen in
Figure 9. It is evident from the results that the proposed
H-QDNN model boasts the least training loss at 0.02,
followed by DNN with dropout at 0.18, and the DNN
model at 0.21. Given that the H-QDNN records the highest
test accuracy and the minimal test loss, it is evident that
the quantum algorithm is more proficient in regression
tasks compared to its classical counterpart, especially when
working with constrained datasets.

FIGURE 9. Comparison of testing loss of all models.

B. LOCALIZATION PERFORMANCE
This section compares the proposed H-QDNN model, which
employs RSS and TOF measurement, against three state-
of-the-art localization techniques. The classical DNN [16],
classical DNN with dropouts [46], and the Euclidean-based
K-Nearest Neighbour (ED-KNN) [47] were chosen as bench-
mark localization methods. Each of these methods offers a
distinct approach to both the measurement process and the
subsequent localization. For our simulations, we assume the
absence of quantum noise for simplicity. Multiple rounds of
data collection were conducted. To ensure a fair comparative
analysis, the benchmarkmethodswere fed the samemeasured
dataset as that used by our proposed model for location
estimation. Specifically, we used the fingerprint dataset
acquired in the same measurement round to train and validate
the models. As for assessing the performance efficacy of
these models, data from a subsequent measurement round
was employed for testing.

1) EMPIRICAL LOCALIZATION ERROR
We describe our findings regarding the empirical cumulative
distribution function (CDF) of positioning MSE and the
1-σ (68%) and 2-σ (95%) error values, commonly utilized
in indoor positioning research as important performance
measures. For the WSL dataset, the empirical CDFs of
localization errors using RSS-standalone, TOF-standalone,
and fusion of RSS and TOF, as well as the performance
of the baseline method, are shown in Figure 10. The
TOF-standalone fingerprint performed better for the clas-
sical DNN and DNN with dropouts, indicating that the
TOF information played a more critical role in enhancing
the localization performance than the RSS measurements.
On the other hand, the measurement fusion of RSS and
TOF fingerprints resulted in the best estimation results for
the ED-KNN and the proposed H-QDNN. These findings
provide valuable insights into the strengths and weaknesses
of each measurement and shed light on their compatibility
with different localization techniques.

Figure 11 compares the performance of various algorithms
in terms of best-performing measurement. The best case for
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FIGURE 10. Localization error with standalone and combined fingerprints for WSL dataset.

the ED-KNN was obtained with the fusion of RSS and TOF
but for the ED-KNN algorithm. ED-KNN, when employing
both RSS and TOF, performs slightly below the proposed
method but still showcases a strong result. The standalone
TOF measurements using both the Classical DNN and the
Classical DNN with dropout show similar performance, with
the dropout variant being slightly less effective. Despite
the relatively good performance of the classical DNNs, our
Proposal using the fusion of RSS & TOF offers the best
performance, with the most rapid rise in CDF, implying the
lowest localization errors for a significant portion of the
data points. From the results shown in Figure 11, fusion
measurements, particularly the combination of RSS and TOF,
seem to offer superior performance compared to standalone
measurements.

To ensure accurate context and facilitate meaningful
comparisons, we have condensed the outcomes, juxtaposing
the localization accuracy of the optimal fingerprints with the
estimations derived from Figure 10, as depicted in Figure 11.

FIGURE 11. CDF of localization error.

We equally summarized the results for better context in
Table 3. In comparison with the best baseline methods for the
1-σ and the 2-σ localization error, the H-QDNN improved
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FIGURE 12. Localization error in FTC and ITBT.

TABLE 3. Comparison between the 1-σ and 2-σ error WSL.

the localization accuracy by approximately 61% and 64%
respectively.

The H-QDNN method, combining RSS and TOF fin-
gerprints, outperformed all baseline methods, delivering
a remarkable 1-σ localization error of 0.71m and a of
1.20m. The results further demonstrate the advantages of
measurement fusion of RSS and direct and robust TOF
measurements with temporal information in the location.
Figure 12 presents the empirical CDFs of localization errors
from both ITBT and FTC datasets. It also displays the
performance of the baseline methods. We benchmarked our

proposal against the classical DNN [16], classical DNN with
dropouts [46], and the ED-KNN [47] localization methods.
For each method, four results are illustrated, representing
different environments and data collection devices: FTC-LG,
ITBT-LG, FTC-SAMSG, and ITBT-SAMSG.

As shown in Figure 12, using the ED-KNN method, the
CDF of the FTC-LG stands out when compared with the
FTC-SAMSG for the same dataset, indicating that the LG
device achieves a lower error than the Samsung device. For
the ITBT dataset, the ITBT-SAMSG performed better than
the ITBT-LG which lagged behind across different MSE
values.Moving on to the analysis of the other methods (DNN,
DNN with dropout, and our proposed method), a similar
trend with the ED-KNN regarding the performance of the
datasets is established. Since the FTC-LG dataset and the
ITBT-LG dataset had the best performance for the two
locations, we then show the performance comparison of all
the algorithms with the FTC-LG and ITBT-LG datasets in
Figure 13.
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FIGURE 13. CDF of localization error FTC-LG.

From the results shown in Figure 13, for the FTC-LG
dataset and ITBT-LG dataset, our proposal Shows a rapid
increase, indicating good performance with low error rates
for many data points. DNN with dropout, classical DNN,
and the ED-KNN follow behind our proposed method in
that order. Our Proposal performs exceptionally well in both
FTC-LG and ITBT-LG scenarios, the ED-KNN consistently
ranks last in terms of performance among the given methods.
Our proposed method seems to be quite effective, with
the performance hierarchy remaining consistent across both
scenarios (FTC-LG and ITBT-LG). We summarized the
results for better context in Table 4.

2) EFFECT OF SAMPLE SIZE
Finally, we analyze the impact of different sample sizes on the
localization error. We focus on investigating how varying the
number of samples affects the accuracy and precision of our
model in comparison with baseline methods. This analytical
approach provides a more intricate comprehension of the
intricate relationship between training sample counts and the
resultant accuracy achieved. To achieve this, we conducted
a thorough examination across a range of sample sizes,
specifically analyzing the effects at 25%, 50%, 75%, and
100% of the training data. Figure 14 and 15 offers a
comprehensive visual representation of our performance
evaluation across varying training samples. A consistent trend
can be seen in Figure 14 and 15, revealing a direct correlation
between the augmentation of training sample quantities and
the subsequent enhancement in localization accuracy.

Among the compared models, Our-Proposal often exhibits
the lowest MSE especially when fewer percentage of the
training samples, suggesting it is the most accurate. The DNN
with dropout model performs competitively, particularly at
100% training samples. The inclusion of dropout, a regu-
larization technique, appears to enhance the model’s ability
to generalize, evident when juxtaposed against the Classical
DNN. This analysis not only emphasizes the pivotal role of
sample training data but also accentuates how the choice

FIGURE 14. Effect of different number of samples on WSL.

of model and incorporated techniques, such as dropout, can
profoundly impact performance. Increasing the number of
training samples typically results in improved localization
accuracy, contributing to the refinement and quality of the
model being learned. As depicted in Figure 14 and 15, the
H-QDNNmodel outperformed the baseline methods in terms
of localization error, even with just 25% of the training data.

The proposed H-QDNN method, which showed its ability
to adapt to different fingerprint types, and fewer amount
of training samples, holds great promise for achieving
high localization accuracy. The superiority of our proposal
in terms of localization accuracy highlights the signifi-
cance of leveraging quantum entanglement and parallelism,
accelerating the training process and reducing the need
for extensive data. Our findings further underscore the
distinct advantages that quantum techniques bring to indoor
localization. This performance makes H-QDNN a suitable
candidate for data-driven localization scenarios where the
complex and dynamic nature of the environment requires
robust and accurate techniques.

VOLUME 11, 2023 142287



Paulson Eberechukwu N et al.: Fingerprinting-Based Indoor Localization With Hybrid Quantum-DNN

TABLE 4. Comparison between the 1-σ and 2-σ error on FTC and ITBT.

FIGURE 15. Effect of different number of samples on FTC and ITBT.

VI. CONCLUSION
In our study, we introduced a hybrid quantum deep neural
network model aimed at enhancing the precision of indoor
fingerprinting-based localization. Our proposed method was
implemented using standalone measurements and fusion of
the RSS and TOF datasets generated from low-cost devices.
The advantage of using QML over classical ML algorithms
is its ability to take advantage of quantum parallelism, which
can lead to faster and more efficient training and inference
times. The proposed H-QDNN model can be trained using
small datasets, particularly useful in indoor localization,
where data collection can be time-consuming and resource-
intensive. However, some challenges still need to be
addressed, including the large-scale deployment concerns
and environmental effects on accuracy. Converting classical
data to quantum might lose information due to expressive-
ness limits and complex superposition state formulation.
The quantum network’s backward-forward mechanism and
this paper’s gradient descent can be enhanced, with QCs
potentially boosting convergence.

APPENDIX A
QUANTUM GATES
In this section, we describe several prevalent quantum gates.
Generally, quantum gates are represented by unitarymatrices,

which are a category of square matrices that possess an
inverse equivalent to their complex conjugate.
1) NOT gate: Functioning as a logical inversion operation,

the NOT gate is denoted by T. The NOT gate
operates through matrix multiplication and its matrix
representation is characterized as,

T =

[
0 1
1 0

]
(18)

2) Hadamard (H) gate: The Hadamard gate, symbolized
as H , is a unitary transformation that remaps the basis
states |0⟩ and |1⟩ of an individual qubit to ((|0⟩ +

|1⟩)/
√
2) and ((|0⟩ − |1⟩)/

√
2), respectively,

H =
1

√
2

[
1 1
1 −1

]
(19)

3) Pauli Gates: The Pauli-X, Pauli-Y, and Pauli-Z gates,
represented by three sets of distinct matrices that are
both Hermitian {X,Y,Z},

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(20)

4) Controlled Gates: Controlled gates act on two or more
qubits, wherein some qubits dictate the subsequent
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operations. For instance, ifU is a gate applied to a single
qubit:

U =

[
u00 u01
u10 u11

]
(21)

Then, the controlled- U gate on two qubits uses the first
qubit as the control of the other qubit, following:

|00⟩ 7→ |00⟩

|01⟩ 7→ |01⟩

|10⟩ 7→ |1⟩ ⊗ U |0⟩ = |1⟩ ⊗ (u00|0⟩ + u10|1⟩)

|11⟩ 7→ |1⟩ ⊗ U |1⟩ = |1⟩ ⊗ (u01|0⟩ + u11|1⟩) . (22)

APPENDIX B
PARAMETERIZED QUANTUM CIRCUIT
PQC [48] functions in a way that resembles a conventional
DNN, featuring adjustable parameters embedded within the
circuits. Just as a traditional DNN consists of numerous
layers, a PQC can be constructed by repeating a unit layer
several times. A PQC can be expressed as a trainable
unitary operation Uθ on an n qubit state, enacted upon
a reference state |φ⟩, generally represented as |0⟩⊗n. The
trained variable is |φθ ⟩ = Uθ |φ⟩, where θ symbolizes
a vector encompassing a polynomial number of circuit
parameters. In this arrangement, a single-layer unit comprises
single-qubit tasks followed by entangling actions involving
two qubits. The overall unitary structure employs small and
effective local gates like CNOT, CZ, and rotation gates as its
foundational elements, with the circuit parameters governing
the phases of rotation gates. A PQC, designedwith parametric
gates, assumes the form:

U (θ ) =

l∏
j=1

Uj
(
θj

)
(23)

where Uj
(
θj

)
symbolizes a rotation gate defined as

exp
(
−i θj2Hj

)
, and Hj corresponds to either a 1-qubit or

2-qubits gate.

APPENDIX C
SGD OPTIMIZATION
As gradient-focused optimization methods are used for
traditional DNNs, we introduced an SGD algorithm [48]
tailored for our H-QDNNmodel. Similar to adjusting weights
in standard DNNs, the quantum gate parameters within the
H-QDNN model need tuning. The main objective of SGD
for H-QDNN is to modify these parameters using the loss
function’s gradients to achieve the right mappings. To under-
take this optimization, it’s imperative to determine the loss
function gradients with respect to quantum gate parameters.
Subsequently, a quantum-oriented SGD approach can be
utilized. The analytical gradients for quantum circuits can
be derived using both the chain rule and the parameter-shift
principles [49].

Assuming the loss function, denoted as ℓθ , depends
on the expectation values represented as{⟨k⟩θ }

K
k=1. The

chain rule allows us to write the partial derivative ∂ℓθ
∂θj

in
terms of these expectation values and their corresponding
derivatives, ∂⟨µk ⟩θ

∂θj
. The parameter-shift principle suggests

that in qubit-based quantum computing, the derivatives
related to quantum expectation values can be illustrated as
a mix of expectation values from related quantum circuits:

∂ ⟨µk ⟩θ

∂θj
=

⟨µk ⟩θ+
π
2
ej− ⟨µk ⟩ θ −

π
2 ej

2
. (24)

The term ⟨µk ⟩ θ ±
π
2 ej signifies a modification in the i-th

parameter of the primary circuit by a value of π2 to obtain its
matching expectation value. This technique of calculation is
not only precise but also compatible with NISQ devices. Once
gradients are available, the SGD optimization process can be
structured. Throughout each cycle, a sample from the training
data is chosen to evaluate the loss function, after which the
parameters are updated based on learning rates and gradient
values.
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