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Abstract

In this paper, we propose a soft actor–critic (SAC) algorithm with hindsight experience replay (HER), called SACHER, which is a class
of deep reinforcement learning (DRL) algorithm. SAC is an off-policy model-free DRL algorithm that outperforms earlier DRL algorithms
in terms of exploration and robustness. However, in SAC, maximizing the entropy-augmented objective degrades the optimality of learning
outcomes. We propose SACHER to improve the learning performance of SAC. We apply SACHER to the path planning and collision
avoidance control of unmanned aerial vehicles (UAVs). We demonstrate the effectiveness of SACHER in terms of the success rate, learning
speed, and collision avoidance performance of UAV operation.
© 2022 The Authors. Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Deep reinforcement learning; Soft actor–critic; Hindsight experience replay; UAV path planning; Collision avoidance and control
1. Introduction

In recent years, problems in the navigation and control
of unmanned aerial vehicles (UAVs) have been studied for
various applications such as target tracking, formation, and
collision avoidance [1,2]. Most recent studies on the navigation
and control of UAVs depend on the model accuracy and/or
prior knowledge regarding the operational environment. How-
ever, collecting accurate model and operation information is
challenging due to the lack of complete environmental infor-
mation. Deep reinforcement learning (DRL) is an alternative
approach to overcome these limitations, because it does not
require any UAV model information and can be applied in
various operational environments [3,4].

Soft actor–critic (SAC) is an off-policy DRL algorithm that
optimizes stochastic policy based on the maximum entropy
framework [5]. SAC is able to handle large continuous state
and action spaces, and has advantages in terms of exploration
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and robustness compared to other DRL algorithms. In other
words, SAC outperforms earlier DRL methods such as deep
deterministic policy gradient (DDPG) [6], twin delayed deep
deterministic policy gradient algorithm [7], and proximal pol-
icy optimization [8] in terms of learning speed and cumulative
reward [5]. Note that although SAC can learn various environ-
ments with advantages in terms of exploration and robustness,
the maximum entropy framework in SAC may degrade the
optimality of learning outcomes after reaching the steady-state
phase.

Recently, hindsight experience replay (HER) was proposed
in [9] to improve the learning performance of DDPG. Specif-
ically, HER is a sample-efficient experience replay method
that enhances the performance of off-policy DRL algorithms
by allowing the DRL agent to learn from both failures and
successes, similar to humans. By using the concept of goals,
HER provides a supplementary reward to the DRL agent,
which improves the optimality of learning outcomes even if the
goal is not achieved. Note that although DDPG with HER can
deal with environments with large continuous state and action
spaces, it still suffers from instability, i.e., it may converge to
unstable solutions or diverge as a result of its high sensitivity
to hyperparameters [10].
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In this paper, we propose a DRL algorithm called the soft
actor–critic (SAC) with hindsight experience replay (HER)
(SACHER). As mentioned previously, SAC outperforms ear-
lier DRL algorithms in terms of exploration, robustness, and
learning performance. However, in SAC, maximizing the
entropy-augmented objective function may degrade the opti-
mality of learning outcomes. We resolve this limitation by
proposing SACHER, which improves the learning perfor-
mance of SAC using HER. More precisely, SACHER achieves
the desired optimal outcomes faster and more accurately than
SAC because HER improves the sample efficiency of SAC.
Additionally, SACHER is able to avoid the instability observed
in DDPG with HER.

We apply SACHER to the path planning and collision
avoidance control problem of UAVs, where SACHER gen-
erates the optimal navigation path for UAVs under various
obstacles. Based on simulation benchmark results, we demon-
strate the effectiveness of SACHER in terms of the success
rate, learning speed, and collision avoidance performance of
UAV operation. Note that in UAV path planning and collision
avoidance control problems, SACHER can be applied to ar-
bitrary models of UAVs because it does not require specific
information regarding UAV models and types of controllers.

In summary, the main contributions of the paper can be
stated as follows:

(a) We apply HER to SAC and propose SACHER to im-
prove the learning performance of SAC;

(b) We apply SACHER to the design of a model-free path
planning and collision avoidance control system for
UAVs considering various obstacles.

It should be mentioned that [11,12] also studied the path
planning and control of robot manipulators using a technique
similar to that used in this paper. However, [11] requires spe-
cific assumptions in which the system must be fully actuated
and the associated Markov decision process (MDP) must be
designed for a specific robot manipulator. Moreover, [12] can
be applied to only specific types of sparse rewards and did not
provide a detailed analysis of the implementation and appli-
cation of the corresponding algorithm to the system. Unlike
the method from [11], the proposed SACHER can be applied
to under-actuated systems (e.g., UAVs) and uses the general
MDP framework. In addition, differently from [12], the pro-
posed SACHER considers both sparse and shaped rewards and
we provide a detailed analysis of the implementation of the
SACHER in a UAV system. We note that the problem setup,
approaches used, and main results of this study are completely
different from those of [11,12].

The remainder of this paper is organized as follows.
SACHER is presented in Section 2. The simulation setup
and environmental design of the SACHER-based UAV control
method are presented in Section 3. The simulation results are
presented in Section 4. We conclude this paper in Section 5.

2. SACHER: Soft Actor–Critic algorithm with Hindsight
Experience Replay

In this section, we first describe SAC [5] and HER [9]. We
then present SACHER and explain in detail.
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2.1. Soft Actor–Critic (SAC) algorithm

As studied in [5], SAC is a class of the maximum en-
tropy DRL algorithm that optimizes the following objective
function:

J (π ) =
T∑

t=0

E(st ,at )∼ρπ [r (st , at )+ αH(π (·|st ))] , (1)

here rt = r (st , at ) is the reward obtained when the agent
xecutes the action at ∈ A in the state st ∈ S, π is the
olicy, ρπ is the joint distribution over states and actions
nduced by the policy π , α is the temperature weight of
he entropy term H, and H(π (·|st )) = −Eπ [logπ (·|st )] =∫

A π (a|st ) logπ (a|st )da is the entropy. Here, A and S de-
ote action and state spaces, respectively.

The main objective of SAC is to find the optimal policy π∗

hat maximizes the entropy-augmented objective function J (π )
n (1), which requires soft policy iteration on soft Q-functions
nd state value functions. The soft Q-function satisfies the
ollowing soft Bellman equation:

Q(st , at ) := r (st , at )+ γEst+1∼p [V (st+1)] , (2)

here V (st ) := Eat∼π

[
Q(st , at )− α logπ (at |st )

]
is the soft

tate value function, and p = p(st+1|at , st ) is the state
ransition probability, which represents the probability density
f the next state st+1 ∈ S given the current state st ∈ S and
he action at ∈ A. We can evaluate the soft Q-value of a fixed
olicy π by applying the Bellman equation in (2) to each time
tep, which is so-called soft policy evaluation.

The objective function for updating the policy can be writ-
en as follows:

Jπ (π ) = Est∼p

[
DK L

(
π (·|st )

 exp
( 1
α

Q(st , ·)
)

Z (st )

)]
, (3)

here DK L denotes the Kullback–Leibler (KL) divergence,
and Z (st ) is the partition function used to normalize the
distribution. The minimization of the objective Jπ in (3) with
respect to the policy π is called soft policy improvement. We
an easily verify that the original maximization problem of
1) is equivalent to the minimization of (3) because of the
efinition of DK L [5].

Repeating soft policy evaluation and soft policy improve-
ment is called soft policy iteration. SAC can find the optimal
policy π∗ and the corresponding optimal Q-value through soft
policy iteration. Note that applying soft policy iteration di-
rectly to environments having large continuous state and action
spaces requires a certain type of practical approximation [5].

Instead of executing the policy iteration until convergence,
parameterized neural networks for the Q-function and policy
are used as function approximators. The soft Q-network is
parameterized by θ , and the parameter for the soft policy
network is denoted by φ. The soft Q-function parameters θ
are optimized by minimizing the squared soft Bellman residual
given by

JQ(θ ) = E(st ,at )∼D

[1
2

(Qθ (st , at )− (r (st , at ) (4)

+ γEs V ¯(st+1)))2
]
,
t+1 θ



M.H. Lee and J. Moon ICT Express 9 (2023) 403–408

w
f

a
p
K

i
a
t

t
b
u
G
t
o
t
v
H
t
e
w
u

r
a
l

O

here D denotes the replay buffer, and θ̄ is the target Q-
unction parameter. Note that the soft state value function

V is also parameterized by the soft Q-function parameter θ
ccording to its relationship with the Q-function in (2). Soft
olicy parameters φ are learned by minimizing the expected
L divergence in (3):

Jπ (φ) = Est∼D
[
Eat∼πφ

[
α logπφ(at |st )− Qθ (st , at )

]]
. (5)

Finally, the soft Q-networks, soft policy network, and tem-
perature weight α are optimized using the stochastic gradient
descent (SGD) method. For SGD, we use two soft Q-networks
parameterized by θ j , j = 1, 2, which are trained independently
to optimize the soft Bellman residual in (4). The minimum
of the two soft Q-functions is used for SGD to minimize the
loss functions in (4) and (5). In each gradient step of SGD,
the Q-function parameters θ1 and θ2, and policy parameters φ
are optimized to minimize the loss functions in (4) and (5),
respectively. The temperature weight α is optimized in each
gradient step of SGD to minimize the following objective:

J (α) = Eat∼π

[
−α logπ (at |st )− αH̄

]
, (6)

where H̄ denotes the desired target entropy. The target Q-
function parameters θ̄1 and θ̄2 are updated using the expo-
nential moving average method with the smoothing constant
δ. After sufficient iterations of the learning process, SACHER
gives the optimized soft Q-function parameters θ1 and θ2, and
the soft policy parameters φ.

2.2. Hindsight Experience Replay (HER)

The main idea of hindsight experience replay (HER) in [9]
is to allow DRL agents to learn from both failures and suc-
cesses, similar to humans. To achieve this, HER employs the
concept of a goal g ∈ G, which was used in [13], where g
represents the goal (or objective) that the DRL agent has to
achieve in the environment and G represents the corresponding
goal space. Then the modified reward function rt = r (st , at , g)
s defined as a function of not only the state and action, but
lso the goal. The closer the state st is to the goal g, the greater
he reward the DRL agent receives.

The detailed process of HER is as follows. First, we ini-
ialize an off-policy DRL algorithm A and empty the replay
uffer D. In each episode, an initial state s0 and a goal g are
niformly sampled from the state space S and the goal space
, respectively. Then, the DRL algorithm A interacts with

he environment during environment steps t = 1, 2, . . . , T to
btain the transition tuple (st , at , rt , st+1, g). After executing
he environment steps, HER has knowledge regarding the
isited states ζ = {s0, s1, . . . , sT }. Based on this knowledge,
ER stores every transition tuple (st , at , rt , st+1) together with

he original goal g in the replay buffer D. HER then stores
xtra transition tuples (st , at , r ′t , st+1) together with g′ ∈ ϕ,
here ϕ = {g′1, g′2, . . . , g′m} is a set of m additional goals
niformly sampled from the visited states ζ = {s0, s1, . . . , sT }.

Through this process, HER provides supplementary rewards
′
t = r (st , at , g′) to the DRL agent even if the goal g is not
chieved. This process enhances DRL algorithms in terms of

earning speed and the success rate of reaching the goal.
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Algorithm 1 SACHER

Input: θ1, θ2, φ
θ̄1 ← θ1,θ̄2 ← θ2, D← ∅
for episode k = 1, K do

Sample an initial state s0 ∈ S and a goal g ∈ G
for environment step t = 0, T do

at ∼ πφ(at |st , g)
st+1 ∼ p(st+1|at , st , g)

end for
for environment step t = 0, T do

rt := r (st , at , g)
D← D ∪ {(st , at , rt , st+1, g)}
Sample a set of additional goals ϕ from ζ

for g′ ∈ ϕ do
r ′t = r (st , at , g′)
D← D ∪ {(st , at , r ′t , st+1, g′)}

end for
end for
for gradient step n = 1, N do
θ j ← θ j − λQ∇̂θ j JQ(θ j ) for j ∈ {1, 2}
φ← φ − λπ ∇̂φ Jπ (φ)
α← α − λ∇̂α Jπ (α)
θ̄ j ← δθ̄ j + (1− δ)θ̄ j for j ∈ {1, 2}

end for
end for
uput: θ1, θ2, φ

2.3. SACHER: Soft Actor–Critic algorithm with Hindsight
Experience Replay

We apply HER to SAC and propose SACHER. The struc-
ture of SACHER is presented in Algorithm 1 and the detailed
process of SACHER follows from Sections 2.1 and 2.2. In
Algorithm 1, one remarkable change compared to Section 2.1
is that the entire framework of SACHER, including the policy
π , transition probability p, reward r , and Q-function, becomes
more complicated than that of SAC due to the implementation
of the goal g in HER (see Algorithm 1). These complex
procedures lead to intricacies when evaluating soft policy
iteration as well as SGD. In the practical implementation of
the SACHER algorithm, we resolve this difficulty by merging
the goal g into the state s because the goal g is fixed and does
not change during each training episode.

3. Simulation setup and environment design

In this section, we first describe the detailed simulation
setup for the SACHER-based path planning and collision
avoidance control problem for UAVs. Then, we design a UAV
environment with obstacles for the SACHER agent to learn
through interaction.

3.1. SACHER-based UAV path navigation and control

The entire framework of the SACHER-based UAV path
planning and collision avoidance control system is illustrated
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Fig. 1. Framework for SACHER-based UAV path planning and collision
avoidance control.

in Fig. 1. In the learning phase, SACHER learns the UAV
environment and then generates an optimal navigation path for
UAVs using Algorithm 1. After completing the learning phase,
the output of SACHER is considered as the reference path for
the UAV control system. Hence, SACHER can be regarded as
a path planning system for UAVs. In the UAV control system,
the tracking controller controls UAVs to follow the optimal
navigation path generated by SACHER.

In our simulations, the tilted-hexarotor UAV model in [14]
is adopted. Additionally, we design the standard backstep-
ping controller (see [15]) for the hexarotor to track the op-
timal navigation path generated by SACHER. Note that in
the learning phase, because SACHER is model-free and does
not require any information regarding UAV dynamics mod-
els (e.g., quadrotor, aircraft, or ground vehicles) or types
of controllers, any (optimal/nonoptimal) nonlinear (or lin-
ear) controllers (with appropriate design modifications) can
be used, as shown in Fig. 1, instead of the hexarotor and
backstepping controller.

3.2. Environment design: UAV collision avoidance under
obstacles

We consider a complex UAV operation in which the UAV
seeks to land in a given landing area (goal) by following
the shortest path while avoiding obstacles. To design this
environment, we use a simple position and angle updating
equation for the UAV. Specifically, let (x, y, z) be the position
oordinate in three-dimensional space, ψ and ψ̇ be the yaw
ngle and yaw angular speed, respectively, and τ be the yaw
orque of the UAV. Then, the position and angle updating
quation for the UAV can be written as follows:⎧⎪⎨⎪⎩

xt+1 = xt + v1 cos(ψt )∆t, ψt+1 = ψt + ψ̇t∆t,
yt+1 = yt + v1 sin(ψt )∆t, ψ̇t+1 = ψ̇t + τt∆t, (7)

zt+1 = zt − v2∆t,

406
Table 1
SACHER hyperparameters.

Hyperparameter Value

Learning rate for optimizer λQ , λπ , λ 3× 10−4

Discount factor γ 0.99
Number of hidden layers 2
Number of hidden units 256
Minibatch size 256
Target smoothing coefficient δ 0.005
Activation function ReLU
Replay buffer capacity 106

Number of additional goals (HER) m 4
Target entropy H̄ −1

where v1 and v2 are the updating rates for path generation
nd ∆t is the sampling time. While interacting with the
nvironment, the SACHER agent observes the updated state
= [x, y, z, ψ, ψ̇]⊤ in (7) and uses the yaw torque τ as an

ction (a = τ ).
The main objective of UAV path planning and collision

voidance control is to reach the landing area on the xy-plane.
e define g = [gx , gy]⊤ as the center of the landing area,
hich is the goal in the UAV environment. Because the goal

g is defined on the xy-plane, whether the goal is achieved
epends on states x and y, which are updated by (7).

Next, we consider N cylindrical obstacles in the UAV
nvironment. An individual cylindrical obstacle Oi , 1 ≤ i ≤

N , is represented by the following zero-sublevel set:

i := {h ∈ R3
| (x − xo,i )2

+ (y − yo,i )2
− r2

o,i ≤ 0}, (8)

here h = [x y z]⊤ is the location of the obstacle in xyz-
pace, ro,i is the radius of the obstacle, and (xo,i , yo,i ) is the
enter of the obstacle on the xy-plane.

The reward for each environmental step is defined as

(st , g) = r̄ (st , g)+
N∑

i=1

pi (st ), (9)

here r̄ = −k1
(
(xt − gx )2

+ (yt − gy)2
)
− k2(zt )2 and pi =

c1 if (xt − xo,i )2
+ (yt − yo,i )2

− r2
o,i ≤ c2 (otherwise, pi = 0)

ith positive constant weights k1 and k2 and penalty constants
1 and c2. The penalty constant c1 decreases the reward in
9) when the UAV collides with obstacles in (8). The other
enalty constant c2 acts as a margin that prevents the UAV
rom colliding with obstacles. Under the UAV environment
esigned in (7)–(9), SACHER seeks to find the optimal path
o reach the landing area without collisions by maximizing the
umulative reward R =

∑T
t=0 rt .

. Simulation results

We provide the simulation results for the SACHER-based
ath planning and collision avoidance control problem for the
exarotor UAV. The detailed simulation setup is described in
ection 3 and Fig. 1. To compare and validate the learning
erformance of SACHER, we also provide the simulation
esults of SAC [5] and DDPG [6] under the same simulation
ettings.
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Fig. 2. Success rate curves of SAC, DDPG and SACHER in the UAV
environment. The solid curve is the mean and the shaded area represents
the minimum and maximum success rates in four trials.

Fig. 3. Four optimal navigation paths of UAV generated by SACHER in
the UAV environment. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

The values of SACHER hyperparameters are listed in Ta-
ble 1. The values of the UAV environment parameters in (7)
and (9) are v1 = 2, v2 = 0.5, ∆t = 0.1, τt ∈ [−0.5, 0.5], k1 =

0−3, k2 = 10−4, c1 = 10, and c2 = 0.2. For (8), we consider a
ase where there are N = 9 obstacles with locations (xo,i , yo,i )

of {(5, 5), (5, 10), (5, 15), (10, 5), . . . , (15, 10), (15, 15)} with
the same radius of ro,i = 1.

Fig. 2 shows the success rate curves of SAC, DDPG,
and SACHER in the UAV environment during the learning
stage. We train each algorithm for 1000 epochs, and every
epoch includes 50 episodes. Each episode carries out 200
environmental steps. The results in Fig. 2 show that SACHER
outperforms SAC and DDPG in terms of learning speed and
performance. After sufficient learning, SACHER successfully
generates optimal paths for the UAV from random initial
positions to random goals with a 66.08% success rate, whereas
those of SAC and DDPG are only 56.15% and 43.30%,
respectively.

Fig. 3 shows four optimal paths generated by SACHER for
the UAV from random initial positions to random goals with
nine obstacles. The blue-colored line is the optimal path of
the UAV generated by SACHER, the green-colored circle is
the initial position of the UAV, the yellow-colored square is
the goal (landing area), and the red-colored circles represent
the locations of nine cylindrical obstacles. From Fig. 3, we
can see that SACHER generates various optimal paths for the
407
Fig. 4. Paths and tracking errors of the hexarotor UAV using the back-
stepping controller in the UAV control system. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)

UAV with randomly sampled initial position and goal pairs
while avoiding collision with obstacles.

The simulation results for the UAV control system with the
optimal path from SACHER are shown in Fig. 4. The paths
of the positions and yaw angle, and their tracking errors are
demonstrated in Fig. 4. The (red-colored) dotted line is the
optimal navigation path generated by SACHER. The (blue-
colored) solid line is the path of the hexarotor UAV controlled
by the backstepping controller. From Fig. 4, it can be seen
that the hexarotor UAV follows the optimal navigation path
generated by SACHER with negligible tracking errors.

5. Conclusions

In this paper, we have proposed a DRL algorithm called
SACHER. In SACHER, HER improves the sample efficiency
and learning performance of SAC by allowing SAC to learn
from both failures and successes when trying to achieve the
desired goal. SACHER has been applied to the path plan-
ning and collision avoidance control problem of UAVs, where
SACHER generates optimal navigation paths for UAVs. Note
that SACHER for UAV navigation and control problems can
be applied to arbitrary models of UAVs. The effectiveness
of SACHER has been validated through simulations. One
possible future work of this paper is to extend SACHER to
partial observation cases and apply it to UAV control problems.
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