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Abstract: The article presents a systematic approach to integrate Predictive Model Markup Language 

(PMML) with Asset Administration Shell (AAS) for manufacturing interoperability. The present system 

aims to exchange and share PMML, i.e., data analytics models, across AASs, i.e., asset representations of 

heterogeneous manufacturing assets. Furthermore, the present system is designed to automatically 

generate data analytics models on production machines, convert models into the PMML format, create 

AAS instances for the machines, and embed the PMML models onto the AAS instances. The article 

includes the design architecture, including a concept model, system architecture, information structure. 

An AAS client-server prototype is implemented to demonstrate the feasibility of the present system. In 

the prototype, a server creates and transmits the AAS that corresponds to a production machine and 

contains submodels associated with PMML-based energy prediction models derived by regression 

analysis and artificial neural network. A client receives and parses the AAS and its PMML models to 

predict energy consumed in the machine.  
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1. INTRODUCTION 

Smart manufacturing is recently reaching to the 

implementation phase over the design phase. Accordingly, 

relevant reference architectures have appeared to constitute 

and guide physical, functional, communication, and 

information structures needed to implement smart 

manufacturing. Among these, Reference Architecture Model 

Industrie 4.0 (RAMI 4.0) gains attention as one of the most-

popular architectures over the globe (Park et al., 2020). 

RAMI 4.0 was published to share a common understanding 

of terminologies, components, and use cases, while it 

emphasizes the interoperability integration to ensure 

compatibility between vertical and horizontal integrations. 

RAMI 4.0 proposes two important technologies for the 

interoperability integration, i.e., Open Platform 

Communications Unified Architecture (OPC UA) and I4.0 

component. OPC UA is regarded as a feasible technology for 

the communication layer through secure and reliable data 

exchange across heterogenous devices and applications 

(Sierla et al., 2022). In addition, RAMI 4.0 identifies a new 

component, i.e., I4.0 component, which refers to a combined 

object that comprises a real asset and its digital model 

(Wagner et al., 2017).  

Asset Administration Shell (AAS) corresponds to the digital 

model of an I4.0 component. The AAS is the standardized 

digital representation of an asset and the corner stone of the 

interoperability between the applications managing 

manufacturing systems (Platform Industries 4.0, 2020). AASs 

act as asset’s information containers to represent asset’s 

identification, communication, configuration, status, 

compliance, security, data, and technical functionality in a 

unified and standardized manner (Marcon et al., 2018). Thus, 

AASs facilitate the virtualization of individual manufacturing 

assets as well as the structurization of the manufacturing 

asset network that constitute vertical and horizontal 

integrations. 

Since the first release of the AAS specification, relevant 

applications show an increasing trend; however, they are 

limited to implement manufacturing intelligence through 

integrating AASs with data analytics. Manufacturing 

intelligence represents real-time understanding, reasoning, 

planning and management of manufacturing processes (Davis 

et al., 2012). Data analytics is a process of learning or mining 

real data collected during operations through statistics and 

machine learning. Data analytics can be applied to provide 

insight and foresight for productivity, quality, flexibility, and 

energy-efficiency in manufacturing (Ren et al., 2019). In this 

regard, manufacturing intelligence should endow individual 

manufacturing assets with creating and using data analytics 

models (hereafter, models) to gain insight and foresight for 

their data-driven decision making. Furthermore, 

manufacturing intelligence should consider the interoperable 

asset network where an asset’s models are exchanged and 

shared with other assets to embody collaborative decision 

making across heterogeneous devices and applications. 

Hence, AASs need to be integrated with models to implement 

asset-oriented manufacturing intelligence.  
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Meanwhile, the data science community has recognized a 

unified and standardized model representation as a significant 

issue owing to the necessity of exchanging and sharing 

models across computers. Data Mining Group (DMG) 

released Predictive Model Markup Language (PMML) as a 

model representation language. The PMML is an XML-based 

model interchange language to represent models as well as 

data pre/post-processing (Guazzelli et al., 2009). The PMML 

is a common language and currently available in multi-

purpose programming languages, such as Scala, Python, and 

R, and thus it is not specialized for manufacturing. An 

available data analysis tool has to be used by human 

manipulation or an encoder-and-decoder has to be 

implemented, when PMML is applied in manufacturing 

system. These requirements can incur inefficient model 

exchange and sharing across manufacturing assets. Hence, 

the PMML needs to be represented, exchanged, and shared 

with integrating asset information for the use in 

manufacturing devices and applications. This approach 

enables the implementation of model interoperability, which 

signifies the seamless exchange and sharing of models across 

heterogeneous manufacturing assets.  

This article presents the system design architecture to 

integrate the PMML with the AAS for manufacturing 

interoperability. In the article, we propose a concept model, 

system architecture, and information structure to specify 

functional and static perspective of the present system. We 

implement a prototype to demonstrate the feasibility of the 

present system. The prototype comprises a server and client. 

The server creates regression and Artificial Neural Network 

(ANN) -based energy prediction models using real data 

obtained from a heat tunnel machine, converts these models 

into the PMML format, creates and publishes the AAS that 

contains PMML models as submodels. The client requests 

and receives the AAS to predict energy consumed in the heat 

tunnel.  

The remainder of this article is organized as follows. Section 

2 summarizes AAS and PMML. Section 3 introduces the 

system design, and Section 4 describes the prototype 

implementation. Section 5 concludes the paper. 

2. AAS and PMML 

Sections 2.1 and 2.2 describe the information structures and 

literature reviews concerning AAS and PMML, respectively. 

2.1 AAS 

The AAS facilitates the deployment of a unified and 

homogeneous data interface for manufacturing 

interoperability, thereby aiding in reducing to M+N data 

interfaces, while M*N data interfaces were necessary across 

diverse and heterogeneous assets in the past (Grangel-

González et al., 2016).  

Fig. 1 illustrates the AAS information structure, which 

consists of a header and body section. The header identifies a 

real asset and its corresponding AAS to provide an access 

interface among I4.0 components. The body involves a set of 

submodels that contain data and functions specific for an 

asset (Marcon et al., 2018). The data indicate digital 

representation, such as drawing, sensory data, manual, 

function blocks, and so on. The functions describe the ability 

to achieve a purpose and generally serve as technical 

functionalities (Platform Industries 4.0, 2020).  

Each submodel comprises a set of submodel elements that 

contain various subtypes, such as a property, range, file, 

Binary Large Objects (Blob), operation, capability, entity, 

and event. The second version of the AAS specification 

identifies the available data formats that include XML, JSON, 

Resource Description Framework (RDF), Automation 

Markup Language, and OPC UA. 

Related studies that had appeared around the first release of 

the AAS specification mostly involved requirements, 

concepts, modelling and core technologies of AASs. 

(Grangel-González et al., 2016) presented an RDF-based 

approach to model and implement AASs. (Tantik and Anderl, 

2017) suggested a method to combine AASs and the object 

memory model to demonstrate their interoperability over the 

internet. (Wenger et al., 2018) connected Programmable 

Logic Controllers (PLCs) with their AASs for automatic 

device configuration. Accordingly, recent studies have shown 

a growing trend. They concentrate on the implementation of 

AAS systems or the integration of AASs with existing 

technologies. (Cavalieri et al., 2019) developed a method to 

map OPC UA information models with AAS entities. 

(Chilwant and Kulkarni, 2019) proposed an open framework 

to manage creation, ownership, maintenance, and usage of 

AASs in industrial systems. (Ye and Hong, 2019) suggested a 

common template to standardize the AAS information 

structure. (Motsch et al., 2021) presented an interface and 

submodels of electrical energy consumption on AASs in a 

modular skill-based production system. (Sakurada et al., 

2022) developed an agent based AAS approach to enhance a 

digitalization process for asset intelligence and collaboration. 

The related studies contribute to demonstrating the usability 

and practicality of AASs. However, they are limited to 

provide a practical method to deploy models into AASs for 

the model interoperability environment.  
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Fig. 1. AAS information structure (re-edited from (Ye and 

Hong, 2019)) 
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Meanwhile, the data science community has recognized a 

unified and standardized model representation as a significant 

issue owing to the necessity of exchanging and sharing 

models across computers. Data Mining Group (DMG) 

released Predictive Model Markup Language (PMML) as a 

model representation language. The PMML is an XML-based 

model interchange language to represent models as well as 

data pre/post-processing (Guazzelli et al., 2009). The PMML 

is a common language and currently available in multi-

purpose programming languages, such as Scala, Python, and 

R, and thus it is not specialized for manufacturing. An 

available data analysis tool has to be used by human 

manipulation or an encoder-and-decoder has to be 

implemented, when PMML is applied in manufacturing 

system. These requirements can incur inefficient model 

exchange and sharing across manufacturing assets. Hence, 

the PMML needs to be represented, exchanged, and shared 

with integrating asset information for the use in 

manufacturing devices and applications. This approach 

enables the implementation of model interoperability, which 

signifies the seamless exchange and sharing of models across 

heterogeneous manufacturing assets.  

This article presents the system design architecture to 

integrate the PMML with the AAS for manufacturing 

interoperability. In the article, we propose a concept model, 

system architecture, and information structure to specify 

functional and static perspective of the present system. We 

implement a prototype to demonstrate the feasibility of the 

present system. The prototype comprises a server and client. 

The server creates regression and Artificial Neural Network 

(ANN) -based energy prediction models using real data 

obtained from a heat tunnel machine, converts these models 

into the PMML format, creates and publishes the AAS that 

contains PMML models as submodels. The client requests 

and receives the AAS to predict energy consumed in the heat 

tunnel.  

The remainder of this article is organized as follows. Section 

2 summarizes AAS and PMML. Section 3 introduces the 

system design, and Section 4 describes the prototype 

implementation. Section 5 concludes the paper. 

2. AAS and PMML 

Sections 2.1 and 2.2 describe the information structures and 

literature reviews concerning AAS and PMML, respectively. 
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González et al., 2016).  
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common template to standardize the AAS information 

structure. (Motsch et al., 2021) presented an interface and 

submodels of electrical energy consumption on AASs in a 

modular skill-based production system. (Sakurada et al., 

2022) developed an agent based AAS approach to enhance a 

digitalization process for asset intelligence and collaboration. 

The related studies contribute to demonstrating the usability 

and practicality of AASs. However, they are limited to 

provide a practical method to deploy models into AASs for 

the model interoperability environment.  
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2.2 PMML 

The PMML is a computer-interpretable language for model 

processing, while it enables the transformation of models 

from mathematical equations to an XML-based structural and 

textual format.  

Fig. 2 presents the PMML information structure, which also 

comprises a header and body section. The body is divided 

into a data dictionary, data transformation, and mining 

schema, target, and model specifics (Guazzelli et al, 2009). 

Especially, the model specifics vary in terms of model types. 

For example, when a model is a regression model, its model 

specifics include intercepts, exponents, and coefficients in the 

model architecture. Meanwhile, the model specifics is 

designated to the ANN structure when a model is an ANN 

model.  

The PMML has been applied in manufacturing mainly for 

model representation and model validation. (O’Donovan et 

al., 2016) and (Lechevalier et al., 2018) applied PMML to 

represent a support vector machine model and an ANN model 

in air handling and milling machines, respectively. 

(O’Donovan et al., 2018) presented PMML-based models to 

be disseminated and executed by nodes in fog computing. 

(Park et al., 2017) designed a PMML schema for Gaussian 

process regression with validation of the schema in metal 

cutting. (Nannapaneni et al., 2018) designed and validated a 

PMML schema for Bayesian network in welding processes. 

(Shin, 2021) developed an OPC UA information model to 

implement compatibility between OPC UA and PMML. The 

related studies contribute to exhibiting the feasibility of the 

PMML in the manufacturing domain; however, they rarely 

discuss the integration of models with AASs for asset-

oriented manufacturing intelligence. In addition, they did not 

suggest system approaches to automate the data analytics 

procedure, comprising data collection and pre-processing, 

and model creation, validation and application. 
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Fig. 2. PMML information structure 

3. SYSTEM DESIGN 

Section 3 proposes the concept model, system architecture 

system design and information structure to identify functional 

and structural perspectives of the present system. A 

production machine is used as an example of an asset for 

clear understanding. 

3.1 Concept model 

Assume that an asset user is eager to implement 

manufacturing intelligence to improve the asset’s availability 

and productivity during the in-use phase. Essentially, an user 

would create models applicable for the asset. Accordingly, a 

technical challenge arises to concern how to create, use and 

exchange models on assets. It is because models were created 

and used by human. In addition, models were unable to be 

embedded to a part of an asset due to static and stationary 

natures of most available asset information models. Hence, it 

was not easy to integrate model information with asset 

information models because they were mutually 

heterogeneous. A feasible solution to integrate asset and 

model information is to embed model information into an 

asset’s information container as an object-oriented approach. 

In this regard, the AAS is one of the most-appropriate 

technology for the asset representation because it provides 

flexible and extensible capabilities, as explained in Section 

2.1. The AAS can act as a class for an asset, while it contains 

models with ‘a-part-of’ relationship. A model can be also a 

class and belong to a variable in the AAS class. Once a 

model is created, it can be subordinate to be a part of an asset. 

Then, the model can be used and exchanged by retrieving the 

model variable from the asset class. This asset-centric 

solution enables efficient and effective creation, use and 

exchange of models because an asset can contain models as 

its submodels. Such solution also facilitates the identification, 

encapsulation, and structurization of models through the 

relationship with an AAS as these functionalities are primary 

capabilities of the object-oriented approach. Meanwhile, 

PMML is one of the most-proper technology for model 

representation, as described in Section 2.2. PMML is 

machine-interpretable and, further, it can express models 

structurally and hierarchically. AASs can contain PMML 

models as submodels to achieve the asset-model integration. 

Furthermore, manufacturing intelligence can be 

implemented, independently of human intervention, if the 

asset-model integration is automated. 

Fig. 3 presents the concept model. Data are collected by data 

interfaces while machines run in a shop floor. Predictive 

models can be created through training data using machine 

learning and they are typically represented by mathematical 

equations. Such models need to be converted to a machine 

interpretable format so that computers understand contents 

and semantics of the mathematical equations. PMML 

documents are generated based on the PMML schema to be 

converted from mathematically represented models. 

Simultaneously, an AAS instance is created with assigning its 

AAS identifier. This AAS instance contains PMML 

documents in the form of submodels with assigning their 

model identifiers. Once AAS instances have been created, 

they can be accessed with other machines and systems. 

Inversely, PMML documents are parsed based on the PMML 

schema when they are used. Mathematical equations can be 

extracted from PMML documents, and they can be 

eventually used to predict target performance.  
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Fig. 3. Concept model 

3.2 System architecture 

Fig. 4 shows the system architecture to identify the structure 

and functions required to be implemented as a software 

system. This architecture is built on a server-client structure, 

where a server responds to the request, and a client requests 

and receives the relevant . The server and client can be 

connected based on a web service using Representational 

State Transfer (REST) Application Programming Interface 

(API). This web service enables the decoupling between a 

server and client. Thus, the web service can provide 

interoperability for system communication through fast and 

flexible interaction across heterogeneous systems. 
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Fig. 4. System architecture 

In the architecture, the server collects data from physical 

assets and/or legacy systems. The former provides the direct 

connection with assets using field-level data interfaces, such 

as OPC UA, and the latter provides the indirect connection 

with legacy systems that have processed and stored data. The 

server comprises model management, AAS management, and 

server registry modules. Model management involves: model 

creation to create models through the data analytics 

procedure and PMML conversion to convert models to 

PMML documents. AAS management includes: AAS creation 

to create AAS instances and assign their identifiers, PMML 

submodeling to embed PMML documents inside an AAS 

instance, and AAS compilation to complete generation of 

AAS instances. Server registry contains: AAS registration to 

register AAS instances, AAS repository to store AAS 

instances, and AAS response to transmit an AAS instance 

when a client requests. 

Meanwhile, the client connects with the server along with 

complying with the security and authentication procedure. 

The client requests and receives AAS instances from the 

server. It interprets and uses the AAS instances containing 

PMML models for certain purposes, like energy prediction 

for a production machine. 

3.3 Information structure 

Fig. 5 depicts the information structure, which is formalized 

by a class diagram in Unified Modeling Language. Basically, 

the information structure must follow the AAS specification 

because this is mandatory. Instead, the AAS specification 

allows the variety and extensibility of data and functions by 

imposing various types of data elements on submodels. A 

submodel can be either a data type or function type, as 

described in Section 2.1. Here, PMML documents can be 

represented as both property-type and file-type data elements, 

while the two elements are sub-classes of the data element 

abstract class. If a PMML document is a property-type data 

element, its instances exist in a memory. If the document is a 

file-type data element, it exists as an XML file in a hard disk.  

 

Fig. 5. Information structure 

The Identifiable, HasKind, HasSemantics, Qualifiable and 

HasDataSpecification attributes on top of a class are 

independent classes to specify whether the target class: has a 

globally unique identifier; is either a type or instance; has a 

semantic definition; can be qualified; and can be extended 

using data specification templates, respectively (Platform 

Industries 4.0, 2020). The following items explain the details 

of main classes.  

- AssetAdministrationShell: the top-level element associated 

with an AAS. It must have an identifier and correspond to a 

real asset. This element can contain multiple submodels.  

- AssetInformation: the element that includes the metadata of 

an asset. It denotes whether an AAS belongs to a type or 

instance.  
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3.2 System architecture 

Fig. 4 shows the system architecture to identify the structure 

and functions required to be implemented as a software 

system. This architecture is built on a server-client structure, 

where a server responds to the request, and a client requests 

and receives the relevant . The server and client can be 

connected based on a web service using Representational 

State Transfer (REST) Application Programming Interface 

(API). This web service enables the decoupling between a 

server and client. Thus, the web service can provide 

interoperability for system communication through fast and 

flexible interaction across heterogeneous systems. 
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In the architecture, the server collects data from physical 

assets and/or legacy systems. The former provides the direct 

connection with assets using field-level data interfaces, such 

as OPC UA, and the latter provides the indirect connection 

with legacy systems that have processed and stored data. The 

server comprises model management, AAS management, and 

server registry modules. Model management involves: model 

creation to create models through the data analytics 

procedure and PMML conversion to convert models to 

PMML documents. AAS management includes: AAS creation 

to create AAS instances and assign their identifiers, PMML 

submodeling to embed PMML documents inside an AAS 

instance, and AAS compilation to complete generation of 

AAS instances. Server registry contains: AAS registration to 

register AAS instances, AAS repository to store AAS 

instances, and AAS response to transmit an AAS instance 

when a client requests. 

Meanwhile, the client connects with the server along with 

complying with the security and authentication procedure. 

The client requests and receives AAS instances from the 

server. It interprets and uses the AAS instances containing 

PMML models for certain purposes, like energy prediction 

for a production machine. 

3.3 Information structure 

Fig. 5 depicts the information structure, which is formalized 

by a class diagram in Unified Modeling Language. Basically, 

the information structure must follow the AAS specification 

because this is mandatory. Instead, the AAS specification 

allows the variety and extensibility of data and functions by 

imposing various types of data elements on submodels. A 

submodel can be either a data type or function type, as 

described in Section 2.1. Here, PMML documents can be 

represented as both property-type and file-type data elements, 

while the two elements are sub-classes of the data element 

abstract class. If a PMML document is a property-type data 

element, its instances exist in a memory. If the document is a 

file-type data element, it exists as an XML file in a hard disk.  
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Industries 4.0, 2020). The following items explain the details 
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an asset. It denotes whether an AAS belongs to a type or 
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- Submodel: the element that contains digital representations 

and technical functionalities involved in 

AssetAdministrationShell.  

- SubmodelElement: the abstract element suitable for 

description and differentiation of an asset. This element has 

a composition relationship with Submodel, and contains 

DataElement, operation, event and entity data types.  

- DataElement: the abstract element that is inherited from 

SubmodelElement and inherits property, range, file, and 

Blob as sub-elements.  

- Property: the data element that has a single value. This 

element must declare valueType, such as boolean, integer, 

double, float, date, duration and string, and may have value 

(a value of the property instance) and valueId (a unique 

identifier of a coded value). A PMML document can be 

instantiated to value as a string value type within this 

property.  

- File: the data element that represents an address of a file. 

This element must define mimeType to state file extension 

and may have value to indicate a path and name of the 

referenced file. mimeType is formed to ‘type/subtype’ (e.g., 

application/xml). File provides the file path information 

regarding a PMML document in a hard disk or database 

with Multipurpose Internet Mail Extensions (MIME) types 

of XML file extensions.  Once a client requests the retrieval 

of a PMML document, a server accesses to its file path and 

transmits the document via a file transfer. 

The information structure allows the representation of an 

asset, data and models as primary components. Data can be 

included as a submodel in an AAS to keep training data and 

testing data for model creation and model validation, 

respectively. Data are sub-modelled into a file- or string 

property- type although the file-type is preferred to avoid 

memory overload. PMML models are sub-modelled, which 

can be represented using a string property or file- type. For 

example, a regression model can be represented by two 

submodels, which is a set of {(language, data element type) | 

(PMML, property-type), (PMML, file-type)}. These two 

disparate submodels provide a selective option for client’s 

preference in terms of a data type. 

4. PROTOTYPE IMPLEMENTATION 

Section 4 explains the scenario, architecture, and result of a 

prototype implementation.  

4.1 Implementation scenario 

We use an experimental facility (FESTO Industry 4.0 

Learning Factory) for a prototype implementation, as shown 

in Fig. 6. The facility consists of eight machines to produce 

simple smart phone cases. It connects with a Manufacturing 

Execution System (MES) to setup workplans by an operator 

and to conduct automated production. A PLC is attached to 

each machine to control the machine and collect operation 

data. Meanwhile, a power meter is attached to a power supply 

on each machine to collect power data. The operation data 

involve identification information regarding an assigned 

product, workplan, order, operation, and machine as well as 

start and end timestamps of an operation. The power data 

record a machine identifier, timestamp, and active power at 1 

second interval. The operation and power data are transmitted 

to the MES via OPC UA on the Ethernet, and they are 

separately stored in two different databases.  

Fig. 7 illustrates an implementation scenario. Among the 

eight machines, the heat tunnel machine is chosen as a target 

physical asset. In the scenario, an AAS server creates 

regression and ANN -based energy prediction models by 

learning data, and transmits an AAS instance that embeds 

PMML models as property and file data elements. 

Meanwhile, a client receives the AAS instance, interprets the 

two types of PMML models, while it acts as a Factory 

Energy Management System (FEMS). The client uses the 

models to predict the energy consumed in the heat tunnel by 

inputting process parameters, i.e., heating temperature and 

heating time.  
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Fig. 6. Experimental facility 
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Fig. 7. Implementation scenario 

Energy can vary depending on heating temperature and 

heating time because the former and the latter may affect 

active power and heating duration, respectively. Energy (E) is 

calculated from the integral of power (P) over time (t), or the 

mensuration-by-parts, as expressed in (1). E can be predicted 

by a statistical model or a machine learning model that are 

derived from training data. Equation (2) expresses a multiple 

linear regression-based energy prediction model. Equation (3) 

expresses an ANN-based energy prediction model, where an 

output neuron is calculated by a weighted summation over 

the output of hidden neurons to the process parameters. 

  (1) 

where, P(t) and Pi: a power value at a timestamp, T: an 

operation time, M: the number of power values, tc: the 

sensing time interval 

  (2) 
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where, Epred: a predicted energy, x: a process parameter, a0: 

an intercept, ak: a coefficient, ε: an error.  

  (3) 

where, oi: an output neuron, wij: a weight, θj: an activation 

function, L: the number of neurons, wbias,i: a bias. 

4.2 Implementation architecture 

Fig. 8 presents the implementation architecture for a protype. 

Table 1 lists the tools used for the implementation. This 

architecture is derived based on the system architecture 

presented in Fig. 4. The prototype is implemented on the Java 

environment. In the prototype, we endeavour to automate all 

functions in the server and client except the data acquisition. 

The data acquisition is unavoidably manually worked 

because of the unavailability of direct data access by the 

security firewall. The validity of PMML documents is 

confirmed using KNIME Analytics by checking whether 

PMML documents are opened and interpreted well in the 

PMML reader function. 
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Fig. 8. Implementation architecture 

Table 1.  Details of tools 

Tool Use in prototype 

OPC UA Data 

Hub 

A unified data interface to transmit operation data 

from PLCs and power data from power meters to 
MES and databases 

Microsoft Access 
A database to store, manage and retrieve operation 

data 

MariaDB A database to store and manage power data 

HeidiSQL (9.4.0) 
A query editor to retrieve power data by access to 

MariaDB 

Eclipse IDE 

(4.22.0) 

The Java-based programming platform to implement 

server and client applications 

BaSyx Java SDK 
(1.0.2) 

A Software Development Kit (SDK) to implement an 
AAS server and client 

Weka SDK 

(3.8.6) 

An SDK to pre-process data and to create regression 

and neural network models 

JPMML (1.6.3) 
A library to generate PMML documents in a server 
and to parse PMML documents in a client 

KNIME 

Analytics (4.5.2) 

A stand-alone software to validate conformance of 

PMML documents 

4.3 Implementation result 

(a) Server 

We apply Central Composite Design (CCD) as Design of 

Experiments for data generation. We gather operation and 

power data under the process parameters designated by the 

CCD (given by the two process parameters in the training 

type of Table 2). The sever starts to run once the two data are 

inputted to the server. Table2 lists a dataset used to create 

energy prediction models. Data integration is conducted to 

combine raw operation and power data into a dataset. This 

can be achieved by using start and end timestamps of an 

operation from the operation data. The power values in-

between the start and end timestamps become an actual net 

energy value because they are consumed to conduct to the 

operation. Data normalization is performed to align 

minimum-to-maximum ranges with an identical zero-to-one 

scale at the three individual attributes.  

Table 2.  Dataset 

Type 
Heating temperature 

(℃) 
Heating time 

(s) 
Actual energy 

(J) 

Training 

55.6 71.2 60719.2 

45.0 20.0 4533.8 

45.0 50.0 12711.1 

45.0 80.0 39409.0 

45.0 50.0 11895.3 

60.0 50.0 42900.0 

34.4 71.2 11910.9 

45.0 50.0 12046.1 

34.4 28.8 3720.2 

45.0 50.0 12016.1 

45.0 50.0 11726.9 

55.6 28.8 14507.6 

30.0 50.0 4662.9 

Testing 

30.0 50.0 4739.3 

37.4 65.0 12185.9 

45.0 80.0 39053.2 

52.5 65.0 38681.7 

60.0 50.0 70714.7 

52.5 35.0 10347.9 

45.0 20.0 4517.2 

37.5 35.0 4655.8 

 

The server creates regression and ANN models through 

learning the training dataset and measures the model 

performances using the testing dataset. The hyperparameter 

of the regression model is greedy as the attribution selection 

method; the hyperparameter parameters of the ANN model 

are 1 hidden layer, 4 neurons in the hidden layer, logistic 

activation function, 0.3 learning rate, 0.2 momentum, and 

500 epochs. Equation (4) expresses an regression-based 

energy prediction model. This regression model obtains 

0.121 Mean Absolute Error (MAE), 76.4% R2-adjusted,  and 

43.5% Relative Absolute Error (RAE). Meanwhile, the ANN 

model gains 0.110 MAE, 0.181 RMSE, and 39.4% RAE. 

Note that marginal model performances appear due to low 

relevance between the two process parameters and the 

energy; however, a discussion regarding the model 

performance is out-of-the scope of this article.  

 (4) 
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where, Epred: a predicted energy, x: a process parameter, a0: 

an intercept, ak: a coefficient, ε: an error.  

  (3) 

where, oi: an output neuron, wij: a weight, θj: an activation 

function, L: the number of neurons, wbias,i: a bias. 
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because of the unavailability of direct data access by the 
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Table 1.  Details of tools 

Tool Use in prototype 

OPC UA Data 

Hub 

A unified data interface to transmit operation data 

from PLCs and power data from power meters to 
MES and databases 

Microsoft Access 
A database to store, manage and retrieve operation 

data 

MariaDB A database to store and manage power data 

HeidiSQL (9.4.0) 
A query editor to retrieve power data by access to 

MariaDB 

Eclipse IDE 

(4.22.0) 

The Java-based programming platform to implement 

server and client applications 

BaSyx Java SDK 
(1.0.2) 

A Software Development Kit (SDK) to implement an 
AAS server and client 

Weka SDK 

(3.8.6) 

An SDK to pre-process data and to create regression 

and neural network models 

JPMML (1.6.3) 
A library to generate PMML documents in a server 
and to parse PMML documents in a client 

KNIME 

Analytics (4.5.2) 

A stand-alone software to validate conformance of 

PMML documents 

4.3 Implementation result 

(a) Server 

We apply Central Composite Design (CCD) as Design of 

Experiments for data generation. We gather operation and 

power data under the process parameters designated by the 

CCD (given by the two process parameters in the training 

type of Table 2). The sever starts to run once the two data are 

inputted to the server. Table2 lists a dataset used to create 

energy prediction models. Data integration is conducted to 

combine raw operation and power data into a dataset. This 

can be achieved by using start and end timestamps of an 

operation from the operation data. The power values in-

between the start and end timestamps become an actual net 

energy value because they are consumed to conduct to the 

operation. Data normalization is performed to align 

minimum-to-maximum ranges with an identical zero-to-one 

scale at the three individual attributes.  

Table 2.  Dataset 

Type 
Heating temperature 

(℃) 
Heating time 

(s) 
Actual energy 

(J) 

Training 

55.6 71.2 60719.2 

45.0 20.0 4533.8 

45.0 50.0 12711.1 

45.0 80.0 39409.0 

45.0 50.0 11895.3 

60.0 50.0 42900.0 

34.4 71.2 11910.9 

45.0 50.0 12046.1 

34.4 28.8 3720.2 

45.0 50.0 12016.1 

45.0 50.0 11726.9 

55.6 28.8 14507.6 

30.0 50.0 4662.9 
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30.0 50.0 4739.3 

37.4 65.0 12185.9 

45.0 80.0 39053.2 

52.5 65.0 38681.7 

60.0 50.0 70714.7 

52.5 35.0 10347.9 

45.0 20.0 4517.2 
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The server creates regression and ANN models through 

learning the training dataset and measures the model 

performances using the testing dataset. The hyperparameter 

of the regression model is greedy as the attribution selection 

method; the hyperparameter parameters of the ANN model 

are 1 hidden layer, 4 neurons in the hidden layer, logistic 

activation function, 0.3 learning rate, 0.2 momentum, and 

500 epochs. Equation (4) expresses an regression-based 

energy prediction model. This regression model obtains 

0.121 Mean Absolute Error (MAE), 76.4% R2-adjusted,  and 

43.5% Relative Absolute Error (RAE). Meanwhile, the ANN 

model gains 0.110 MAE, 0.181 RMSE, and 39.4% RAE. 

Note that marginal model performances appear due to low 

relevance between the two process parameters and the 

energy; however, a discussion regarding the model 

performance is out-of-the scope of this article.  
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The server converts the regression and ANN models 

individually to PMML documents based on the PMML 

format. Fig. 9 shows the PMML document of the regression 

model (note that only the regression model will be shown due 

to the page limitation).  

The server creates an AAS instance with assigning its 

identifier. The server subsequently instantiates the two 

PMML documents as submodels on the AAS instance. Fig. 

10 presents the AAS instance, represented by YAML (a 

format for easy-to-read JSON). The AAS instance involves 

the four submodels that are composed of a combinatorial set 

of a regression or ANN model and a property or file type. Fig. 

11 shows the submodel regarding the regression model with a 

string property-type, and Fig. 12 presents the submodel 

regarding the regression model with a file-type.  

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<PMML xmlns="http://www.dmg.org/PMML-4_2" xmlns:data="http://jpmml.org/jpmml-model/InlineTable" version="4.2">

<Header copyright="aml.hanyang.ac.kr" description="PMMLRegressionModelbyWeka">

<Extension name="SSJ"/>

<Application name="JPMML" version="1.4.9"/>

</Header>

<DataDictionary numberOfFields="3">

<DataField name="HeatingTemperature" optype="continuous" dataType="double">

<Interval closure="closedClosed" leftMargin="0.0" rightMargin="1.0"/>

</DataField>

<DataField name="HeatingTime" optype="continuous" dataType="double">

<Interval closure="closedClosed" leftMargin="0.0" rightMargin="1.0"/>

</DataField>

<DataField name="Energy" optype="continuous" dataType="double">

<Interval closure="closedClosed" leftMargin="0.0" rightMargin="1.0"/>

</DataField>

</DataDictionary>

<RegressionModel modelName="LinearRegression" functionName="regression" 

algorithmName="LinearRegression" modelType="linearRegression" targetFieldName="Energy" 

normalizationMethod="none">

<MiningSchema>

<MiningField name="HeatingTemperature" usageType="active" invalidValueTreatment="asIs"/>

<MiningField name="HeatingTime" usageType="active" invalidValueTreatment="asIs"/>

<MiningField name="Energy" usageType="predicted" invalidValueTreatment="asIs"/>

</MiningSchema>

<Output>

<OutputField name="Energy" optype="continuous" dataType="double" feature="predictedValue" value="Energy"/>

</Output>

<RegressionTable intercept="-0.351" targetCategory="Energy">

<NumericPredictor name="HeatingTemperature" exponent="1" coefficient="0.6"/>

<NumericPredictor name="HeatingTime" exponent="1" coefficient="0.548"/>

</RegressionTable>

</RegressionModel>

</PMML>  

Fig. 9. PMML document of regression model 

conceptDictionary: []

identification:

idType: Custom

id: eclipse.basyx.aas.heattunnel

idShort: heattunnel

dataSpecification: []

modelType:

name: AssetAdministrationShell

asset:

identification:

idType: Custom

id: eclipse.basyx.asset.heattunnel

idShort: heattunnelasset

kind: Instance

dataSpecification: []

modelType:

name: Asset

embeddedDataSpecifications: []

embeddedDataSpecifications: []

views: []

submodels:

- keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.regression

local: true

- keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.neuralnetwork

local: true

- keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.regression.file

local: true

- keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.neuralnetwork.file

local: true

 

Fig. 10. AAS instance of heat tunnel 

(b) Client 

The client requests the AAS instance using its identifier and 

receives it from the server. The client can interpret the AAS 

instance and parses the submodels associated with the PMML 

documents. The client can obtain the mathematical equations, 

such as Equation (4), because a PMML document provides 

the model specifics that include intercepts, exponents, and 

coefficients in the regression model architecture. Lastly, the 

client outputs a predicted energy value when an operator 

inputs a heating time and heating time. For example, the 

client predicts the consumption of 37597.1 J energy when 50 

℃ of a heating temperature and 70 sec of a heating time are 

inputted by an operator.  

parent:

keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

identification:

idType: Custom

id: eclipse.basyx.submodel.pmml.regression

idShort: pmmlregressionpropertysubmodel

kind: Instance

dataSpecification: []

modelType:

name: Submodel

embeddedDataSpecifications: []

submodelElements:

- parent:

keys:

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.regression

local: true

idShort: pmmlregressionproperty

kind: Instance

valueType: string

modelType:

name: Property

value: <?xml version="1.0" encoding="UTF-8" standalone="yes"?><PMML version="4.2"

xmlns="http://www.dmg.org/PMML-4_4" xmlns:data="http://jpmml.org/jpmml-model/InlineTable"><Header

copyright="aml.hanyang.ac.kr" description="PMMLRegressionModelbyWeka">

… (see the content in Figure 9)

<RegressionTable intercept="-0.351" targetCategory="Energy"><NumericPredictor name="HeatingTemperature"

exponent="1" coefficient="0.6"/><NumericPredictor name="HeatingTime" exponent="1"

coefficient="0.548"/></RegressionTable></RegressionModel></PMML>  

Fig. 11. Property-type submodel of regression model 

parent:

keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

identification:

idType: Custom

id: eclipse.basyx.submodel.pmml.regression.file

idShort: pmmlregressionfilesubmodel

kind: Instance

dataSpecification: []

modelType:

name: Submodel

embeddedDataSpecifications: []

submodelElements:

- parent:

keys:

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.regression.file

local: true

idShort: pmmlregressionfile

kind: Instance

modelType:

name: File

mimeType: application/pmml

value: ".. \\data\\output\\8_LinearRegressionModel.pmml"  

Fig. 12. File-type submodel of regression model 

5. CONCLUSION 

This article presented the design and implementation of 

integrating the PMML with AASs for interoperable 

manufacturing intelligence. This study contributes to 

integrate the two heterogeneous standards originated from the 

data science and manufacturing domains. The AAS becomes 

an essential technology for vertical and horizontal 

integrations. In this regard, this study demonstrated the 

feasibility and usability of AASs particularly for AAS-driven 

model interoperability. This study also contributes to 

automate data analytics and AAS modelling in a server-client 

architecture.  

However, the prototype was implemented for a single 

machine. This limited implementation lacks in demonstrating 

practicability in a full-scale shop floor. The prototype did not 

include the automation of data acquisition due to the 

unavailability of direct data access. Data acquisition needs to 

be fully automated because it is time consuming and labour 
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intensive. This study only embodied the PMML into the 

AAS. Because AASs can serve versatility and extensibility as 

an information container, more languages and formats need 

to be integrated with the AAS environment to improve 

feasibility and practicability of AASs. 
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