
IFAC PapersOnLine 56-2 (2023) 9823–9830

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2023.10.402

10.1016/j.ifacol.2023.10.402 2405-8963

Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Integrating Predictive Model Markup Language with Asset Administration Shell

Seung-Jun Shin*. Jumyung Um**

*School of Interdisciplinary Industrial Studies, Hanyang University, Seoul, Republic of Korea

(Tel: 82-02-2220-2358; e-mail: sjshin@hanyang.ac.kr).

**Department of Industrial & Management Systems Engineering, Kyung Hee University, Yongin, Republic of Korea

(e-mail: jayum@khu.ac.kr)

Abstract: The article presents a systematic approach to integrate Predictive Model Markup Language

(PMML) with Asset Administration Shell (AAS) for manufacturing interoperability. The present system

aims to exchange and share PMML, i.e., data analytics models, across AASs, i.e., asset representations of

heterogeneous manufacturing assets. Furthermore, the present system is designed to automatically

generate data analytics models on production machines, convert models into the PMML format, create

AAS instances for the machines, and embed the PMML models onto the AAS instances. The article

includes the design architecture, including a concept model, system architecture, information structure.

An AAS client-server prototype is implemented to demonstrate the feasibility of the present system. In

the prototype, a server creates and transmits the AAS that corresponds to a production machine and

contains submodels associated with PMML-based energy prediction models derived by regression

analysis and artificial neural network. A client receives and parses the AAS and its PMML models to

predict energy consumed in the machine.

Keywords: Asset Administration Shell, Predictive Model Markup Language, Interoperability, Smart

Factory, Manufacturing Intelligence, Energy Prediction

1. INTRODUCTION

Smart manufacturing is recently reaching to the

implementation phase over the design phase. Accordingly,

relevant reference architectures have appeared to constitute

and guide physical, functional, communication, and

information structures needed to implement smart

manufacturing. Among these, Reference Architecture Model

Industrie 4.0 (RAMI 4.0) gains attention as one of the most-

popular architectures over the globe (Park et al., 2020).

RAMI 4.0 was published to share a common understanding

of terminologies, components, and use cases, while it

emphasizes the interoperability integration to ensure

compatibility between vertical and horizontal integrations.

RAMI 4.0 proposes two important technologies for the

interoperability integration, i.e., Open Platform

Communications Unified Architecture (OPC UA) and I4.0

component. OPC UA is regarded as a feasible technology for

the communication layer through secure and reliable data

exchange across heterogenous devices and applications

(Sierla et al., 2022). In addition, RAMI 4.0 identifies a new

component, i.e., I4.0 component, which refers to a combined

object that comprises a real asset and its digital model

(Wagner et al., 2017).

Asset Administration Shell (AAS) corresponds to the digital

model of an I4.0 component. The AAS is the standardized

digital representation of an asset and the corner stone of the

interoperability between the applications managing

manufacturing systems (Platform Industries 4.0, 2020). AASs

act as asset’s information containers to represent asset’s

identification, communication, configuration, status,

compliance, security, data, and technical functionality in a

unified and standardized manner (Marcon et al., 2018). Thus,

AASs facilitate the virtualization of individual manufacturing

assets as well as the structurization of the manufacturing

asset network that constitute vertical and horizontal

integrations.

Since the first release of the AAS specification, relevant

applications show an increasing trend; however, they are

limited to implement manufacturing intelligence through

integrating AASs with data analytics. Manufacturing

intelligence represents real-time understanding, reasoning,

planning and management of manufacturing processes (Davis

et al., 2012). Data analytics is a process of learning or mining

real data collected during operations through statistics and

machine learning. Data analytics can be applied to provide

insight and foresight for productivity, quality, flexibility, and

energy-efficiency in manufacturing (Ren et al., 2019). In this

regard, manufacturing intelligence should endow individual

manufacturing assets with creating and using data analytics

models (hereafter, models) to gain insight and foresight for

their data-driven decision making. Furthermore,

manufacturing intelligence should consider the interoperable

asset network where an asset’s models are exchanged and

shared with other assets to embody collaborative decision

making across heterogeneous devices and applications.

Hence, AASs need to be integrated with models to implement

asset-oriented manufacturing intelligence.

Integrating Predictive Model Markup Language with Asset Administration Shell

Seung-Jun Shin*. Jumyung Um**

*School of Interdisciplinary Industrial Studies, Hanyang University, Seoul, Republic of Korea

(Tel: 82-02-2220-2358; e-mail: sjshin@hanyang.ac.kr).

**Department of Industrial & Management Systems Engineering, Kyung Hee University, Yongin, Republic of Korea

(e-mail: jayum@khu.ac.kr)

Abstract: The article presents a systematic approach to integrate Predictive Model Markup Language

(PMML) with Asset Administration Shell (AAS) for manufacturing interoperability. The present system

aims to exchange and share PMML, i.e., data analytics models, across AASs, i.e., asset representations of

heterogeneous manufacturing assets. Furthermore, the present system is designed to automatically

generate data analytics models on production machines, convert models into the PMML format, create

AAS instances for the machines, and embed the PMML models onto the AAS instances. The article

includes the design architecture, including a concept model, system architecture, information structure.

An AAS client-server prototype is implemented to demonstrate the feasibility of the present system. In

the prototype, a server creates and transmits the AAS that corresponds to a production machine and

contains submodels associated with PMML-based energy prediction models derived by regression

analysis and artificial neural network. A client receives and parses the AAS and its PMML models to

predict energy consumed in the machine.

Keywords: Asset Administration Shell, Predictive Model Markup Language, Interoperability, Smart

Factory, Manufacturing Intelligence, Energy Prediction

1. INTRODUCTION

Smart manufacturing is recently reaching to the

implementation phase over the design phase. Accordingly,

relevant reference architectures have appeared to constitute

and guide physical, functional, communication, and

information structures needed to implement smart

manufacturing. Among these, Reference Architecture Model

Industrie 4.0 (RAMI 4.0) gains attention as one of the most-

popular architectures over the globe (Park et al., 2020).

RAMI 4.0 was published to share a common understanding

of terminologies, components, and use cases, while it

emphasizes the interoperability integration to ensure

compatibility between vertical and horizontal integrations.

RAMI 4.0 proposes two important technologies for the

interoperability integration, i.e., Open Platform

Communications Unified Architecture (OPC UA) and I4.0

component. OPC UA is regarded as a feasible technology for

the communication layer through secure and reliable data

exchange across heterogenous devices and applications

(Sierla et al., 2022). In addition, RAMI 4.0 identifies a new

component, i.e., I4.0 component, which refers to a combined

object that comprises a real asset and its digital model

(Wagner et al., 2017).

Asset Administration Shell (AAS) corresponds to the digital

model of an I4.0 component. The AAS is the standardized

digital representation of an asset and the corner stone of the

interoperability between the applications managing

manufacturing systems (Platform Industries 4.0, 2020). AASs

act as asset’s information containers to represent asset’s

identification, communication, configuration, status,

compliance, security, data, and technical functionality in a

unified and standardized manner (Marcon et al., 2018). Thus,

AASs facilitate the virtualization of individual manufacturing

assets as well as the structurization of the manufacturing

asset network that constitute vertical and horizontal

integrations.

Since the first release of the AAS specification, relevant

applications show an increasing trend; however, they are

limited to implement manufacturing intelligence through

integrating AASs with data analytics. Manufacturing

intelligence represents real-time understanding, reasoning,

planning and management of manufacturing processes (Davis

et al., 2012). Data analytics is a process of learning or mining

real data collected during operations through statistics and

machine learning. Data analytics can be applied to provide

insight and foresight for productivity, quality, flexibility, and

energy-efficiency in manufacturing (Ren et al., 2019). In this

regard, manufacturing intelligence should endow individual

manufacturing assets with creating and using data analytics

models (hereafter, models) to gain insight and foresight for

their data-driven decision making. Furthermore,

manufacturing intelligence should consider the interoperable

asset network where an asset’s models are exchanged and

shared with other assets to embody collaborative decision

making across heterogeneous devices and applications.

Hence, AASs need to be integrated with models to implement

asset-oriented manufacturing intelligence.

Integrating Predictive Model Markup Language with Asset Administration Shell

Seung-Jun Shin*. Jumyung Um**

*School of Interdisciplinary Industrial Studies, Hanyang University, Seoul, Republic of Korea

(Tel: 82-02-2220-2358; e-mail: sjshin@hanyang.ac.kr).

**Department of Industrial & Management Systems Engineering, Kyung Hee University, Yongin, Republic of Korea

(e-mail: jayum@khu.ac.kr)

Abstract: The article presents a systematic approach to integrate Predictive Model Markup Language

(PMML) with Asset Administration Shell (AAS) for manufacturing interoperability. The present system

aims to exchange and share PMML, i.e., data analytics models, across AASs, i.e., asset representations of

heterogeneous manufacturing assets. Furthermore, the present system is designed to automatically

generate data analytics models on production machines, convert models into the PMML format, create

AAS instances for the machines, and embed the PMML models onto the AAS instances. The article

includes the design architecture, including a concept model, system architecture, information structure.

An AAS client-server prototype is implemented to demonstrate the feasibility of the present system. In

the prototype, a server creates and transmits the AAS that corresponds to a production machine and

contains submodels associated with PMML-based energy prediction models derived by regression

analysis and artificial neural network. A client receives and parses the AAS and its PMML models to

predict energy consumed in the machine.

Keywords: Asset Administration Shell, Predictive Model Markup Language, Interoperability, Smart

Factory, Manufacturing Intelligence, Energy Prediction

1. INTRODUCTION

Smart manufacturing is recently reaching to the

implementation phase over the design phase. Accordingly,

relevant reference architectures have appeared to constitute

and guide physical, functional, communication, and

information structures needed to implement smart

manufacturing. Among these, Reference Architecture Model

Industrie 4.0 (RAMI 4.0) gains attention as one of the most-

popular architectures over the globe (Park et al., 2020).

RAMI 4.0 was published to share a common understanding

of terminologies, components, and use cases, while it

emphasizes the interoperability integration to ensure

compatibility between vertical and horizontal integrations.

RAMI 4.0 proposes two important technologies for the

interoperability integration, i.e., Open Platform

Communications Unified Architecture (OPC UA) and I4.0

component. OPC UA is regarded as a feasible technology for

the communication layer through secure and reliable data

exchange across heterogenous devices and applications

(Sierla et al., 2022). In addition, RAMI 4.0 identifies a new

component, i.e., I4.0 component, which refers to a combined

object that comprises a real asset and its digital model

(Wagner et al., 2017).

Asset Administration Shell (AAS) corresponds to the digital

model of an I4.0 component. The AAS is the standardized

digital representation of an asset and the corner stone of the

interoperability between the applications managing

manufacturing systems (Platform Industries 4.0, 2020). AASs

act as asset’s information containers to represent asset’s

identification, communication, configuration, status,

compliance, security, data, and technical functionality in a

unified and standardized manner (Marcon et al., 2018). Thus,

AASs facilitate the virtualization of individual manufacturing

assets as well as the structurization of the manufacturing

asset network that constitute vertical and horizontal

integrations.

Since the first release of the AAS specification, relevant

applications show an increasing trend; however, they are

limited to implement manufacturing intelligence through

integrating AASs with data analytics. Manufacturing

intelligence represents real-time understanding, reasoning,

planning and management of manufacturing processes (Davis

et al., 2012). Data analytics is a process of learning or mining

real data collected during operations through statistics and

machine learning. Data analytics can be applied to provide

insight and foresight for productivity, quality, flexibility, and

energy-efficiency in manufacturing (Ren et al., 2019). In this

regard, manufacturing intelligence should endow individual

manufacturing assets with creating and using data analytics

models (hereafter, models) to gain insight and foresight for

their data-driven decision making. Furthermore,

manufacturing intelligence should consider the interoperable

asset network where an asset’s models are exchanged and

shared with other assets to embody collaborative decision

making across heterogeneous devices and applications.

Hence, AASs need to be integrated with models to implement

asset-oriented manufacturing intelligence.

Integrating Predictive Model Markup Language with Asset Administration Shell

Seung-Jun Shin*. Jumyung Um**

*School of Interdisciplinary Industrial Studies, Hanyang University, Seoul, Republic of Korea

(Tel: 82-02-2220-2358; e-mail: sjshin@hanyang.ac.kr).

**Department of Industrial & Management Systems Engineering, Kyung Hee University, Yongin, Republic of Korea

(e-mail: jayum@khu.ac.kr)

Abstract: The article presents a systematic approach to integrate Predictive Model Markup Language

(PMML) with Asset Administration Shell (AAS) for manufacturing interoperability. The present system

aims to exchange and share PMML, i.e., data analytics models, across AASs, i.e., asset representations of

heterogeneous manufacturing assets. Furthermore, the present system is designed to automatically

generate data analytics models on production machines, convert models into the PMML format, create

AAS instances for the machines, and embed the PMML models onto the AAS instances. The article

includes the design architecture, including a concept model, system architecture, information structure.

An AAS client-server prototype is implemented to demonstrate the feasibility of the present system. In

the prototype, a server creates and transmits the AAS that corresponds to a production machine and

contains submodels associated with PMML-based energy prediction models derived by regression

analysis and artificial neural network. A client receives and parses the AAS and its PMML models to

predict energy consumed in the machine.

Keywords: Asset Administration Shell, Predictive Model Markup Language, Interoperability, Smart

Factory, Manufacturing Intelligence, Energy Prediction

1. INTRODUCTION

Smart manufacturing is recently reaching to the

implementation phase over the design phase. Accordingly,

relevant reference architectures have appeared to constitute

and guide physical, functional, communication, and

information structures needed to implement smart

manufacturing. Among these, Reference Architecture Model

Industrie 4.0 (RAMI 4.0) gains attention as one of the most-

popular architectures over the globe (Park et al., 2020).

RAMI 4.0 was published to share a common understanding

of terminologies, components, and use cases, while it

emphasizes the interoperability integration to ensure

compatibility between vertical and horizontal integrations.

RAMI 4.0 proposes two important technologies for the

interoperability integration, i.e., Open Platform

Communications Unified Architecture (OPC UA) and I4.0

component. OPC UA is regarded as a feasible technology for

the communication layer through secure and reliable data

exchange across heterogenous devices and applications

(Sierla et al., 2022). In addition, RAMI 4.0 identifies a new

component, i.e., I4.0 component, which refers to a combined

object that comprises a real asset and its digital model

(Wagner et al., 2017).

Asset Administration Shell (AAS) corresponds to the digital

model of an I4.0 component. The AAS is the standardized

digital representation of an asset and the corner stone of the

interoperability between the applications managing

manufacturing systems (Platform Industries 4.0, 2020). AASs

act as asset’s information containers to represent asset’s

identification, communication, configuration, status,

compliance, security, data, and technical functionality in a

unified and standardized manner (Marcon et al., 2018). Thus,

AASs facilitate the virtualization of individual manufacturing

assets as well as the structurization of the manufacturing

asset network that constitute vertical and horizontal

integrations.

Since the first release of the AAS specification, relevant

applications show an increasing trend; however, they are

limited to implement manufacturing intelligence through

integrating AASs with data analytics. Manufacturing

intelligence represents real-time understanding, reasoning,

planning and management of manufacturing processes (Davis

et al., 2012). Data analytics is a process of learning or mining

real data collected during operations through statistics and

machine learning. Data analytics can be applied to provide

insight and foresight for productivity, quality, flexibility, and

energy-efficiency in manufacturing (Ren et al., 2019). In this

regard, manufacturing intelligence should endow individual

manufacturing assets with creating and using data analytics

models (hereafter, models) to gain insight and foresight for

their data-driven decision making. Furthermore,

manufacturing intelligence should consider the interoperable

asset network where an asset’s models are exchanged and

shared with other assets to embody collaborative decision

making across heterogeneous devices and applications.

Hence, AASs need to be integrated with models to implement

asset-oriented manufacturing intelligence.

Integrating Predictive Model Markup Language with Asset Administration Shell

Seung-Jun Shin*. Jumyung Um**

*School of Interdisciplinary Industrial Studies, Hanyang University, Seoul, Republic of Korea

(Tel: 82-02-2220-2358; e-mail: sjshin@hanyang.ac.kr).

**Department of Industrial & Management Systems Engineering, Kyung Hee University, Yongin, Republic of Korea

(e-mail: jayum@khu.ac.kr)

Abstract: The article presents a systematic approach to integrate Predictive Model Markup Language

(PMML) with Asset Administration Shell (AAS) for manufacturing interoperability. The present system

aims to exchange and share PMML, i.e., data analytics models, across AASs, i.e., asset representations of

heterogeneous manufacturing assets. Furthermore, the present system is designed to automatically

generate data analytics models on production machines, convert models into the PMML format, create

AAS instances for the machines, and embed the PMML models onto the AAS instances. The article

includes the design architecture, including a concept model, system architecture, information structure.

An AAS client-server prototype is implemented to demonstrate the feasibility of the present system. In

the prototype, a server creates and transmits the AAS that corresponds to a production machine and

contains submodels associated with PMML-based energy prediction models derived by regression

analysis and artificial neural network. A client receives and parses the AAS and its PMML models to

predict energy consumed in the machine.

Keywords: Asset Administration Shell, Predictive Model Markup Language, Interoperability, Smart

Factory, Manufacturing Intelligence, Energy Prediction

1. INTRODUCTION

Smart manufacturing is recently reaching to the

implementation phase over the design phase. Accordingly,

relevant reference architectures have appeared to constitute

and guide physical, functional, communication, and

information structures needed to implement smart

manufacturing. Among these, Reference Architecture Model

Industrie 4.0 (RAMI 4.0) gains attention as one of the most-

popular architectures over the globe (Park et al., 2020).

RAMI 4.0 was published to share a common understanding

of terminologies, components, and use cases, while it

emphasizes the interoperability integration to ensure

compatibility between vertical and horizontal integrations.

RAMI 4.0 proposes two important technologies for the

interoperability integration, i.e., Open Platform

Communications Unified Architecture (OPC UA) and I4.0

component. OPC UA is regarded as a feasible technology for

the communication layer through secure and reliable data

exchange across heterogenous devices and applications

(Sierla et al., 2022). In addition, RAMI 4.0 identifies a new

component, i.e., I4.0 component, which refers to a combined

object that comprises a real asset and its digital model

(Wagner et al., 2017).

Asset Administration Shell (AAS) corresponds to the digital

model of an I4.0 component. The AAS is the standardized

digital representation of an asset and the corner stone of the

interoperability between the applications managing

manufacturing systems (Platform Industries 4.0, 2020). AASs

act as asset’s information containers to represent asset’s

identification, communication, configuration, status,

compliance, security, data, and technical functionality in a

unified and standardized manner (Marcon et al., 2018). Thus,

AASs facilitate the virtualization of individual manufacturing

assets as well as the structurization of the manufacturing

asset network that constitute vertical and horizontal

integrations.

Since the first release of the AAS specification, relevant

applications show an increasing trend; however, they are

limited to implement manufacturing intelligence through

integrating AASs with data analytics. Manufacturing

intelligence represents real-time understanding, reasoning,

planning and management of manufacturing processes (Davis

et al., 2012). Data analytics is a process of learning or mining

real data collected during operations through statistics and

machine learning. Data analytics can be applied to provide

insight and foresight for productivity, quality, flexibility, and

energy-efficiency in manufacturing (Ren et al., 2019). In this

regard, manufacturing intelligence should endow individual

manufacturing assets with creating and using data analytics

models (hereafter, models) to gain insight and foresight for

their data-driven decision making. Furthermore,

manufacturing intelligence should consider the interoperable

asset network where an asset’s models are exchanged and

shared with other assets to embody collaborative decision

making across heterogeneous devices and applications.

Hence, AASs need to be integrated with models to implement

asset-oriented manufacturing intelligence.

Integrating Predictive Model Markup Language with Asset Administration Shell

Seung-Jun Shin*. Jumyung Um**

*School of Interdisciplinary Industrial Studies, Hanyang University, Seoul, Republic of Korea

(Tel: 82-02-2220-2358; e-mail: sjshin@hanyang.ac.kr).

**Department of Industrial & Management Systems Engineering, Kyung Hee University, Yongin, Republic of Korea

(e-mail: jayum@khu.ac.kr)

Abstract: The article presents a systematic approach to integrate Predictive Model Markup Language

(PMML) with Asset Administration Shell (AAS) for manufacturing interoperability. The present system

aims to exchange and share PMML, i.e., data analytics models, across AASs, i.e., asset representations of

heterogeneous manufacturing assets. Furthermore, the present system is designed to automatically

generate data analytics models on production machines, convert models into the PMML format, create

AAS instances for the machines, and embed the PMML models onto the AAS instances. The article

includes the design architecture, including a concept model, system architecture, information structure.

An AAS client-server prototype is implemented to demonstrate the feasibility of the present system. In

the prototype, a server creates and transmits the AAS that corresponds to a production machine and

contains submodels associated with PMML-based energy prediction models derived by regression

analysis and artificial neural network. A client receives and parses the AAS and its PMML models to

predict energy consumed in the machine.

Keywords: Asset Administration Shell, Predictive Model Markup Language, Interoperability, Smart

Factory, Manufacturing Intelligence, Energy Prediction

1. INTRODUCTION

Smart manufacturing is recently reaching to the

implementation phase over the design phase. Accordingly,

relevant reference architectures have appeared to constitute

and guide physical, functional, communication, and

information structures needed to implement smart

manufacturing. Among these, Reference Architecture Model

Industrie 4.0 (RAMI 4.0) gains attention as one of the most-

popular architectures over the globe (Park et al., 2020).

RAMI 4.0 was published to share a common understanding

of terminologies, components, and use cases, while it

emphasizes the interoperability integration to ensure

compatibility between vertical and horizontal integrations.

RAMI 4.0 proposes two important technologies for the

interoperability integration, i.e., Open Platform

Communications Unified Architecture (OPC UA) and I4.0

component. OPC UA is regarded as a feasible technology for

the communication layer through secure and reliable data

exchange across heterogenous devices and applications

(Sierla et al., 2022). In addition, RAMI 4.0 identifies a new

component, i.e., I4.0 component, which refers to a combined

object that comprises a real asset and its digital model

(Wagner et al., 2017).

Asset Administration Shell (AAS) corresponds to the digital

model of an I4.0 component. The AAS is the standardized

digital representation of an asset and the corner stone of the

interoperability between the applications managing

manufacturing systems (Platform Industries 4.0, 2020). AASs

act as asset’s information containers to represent asset’s

identification, communication, configuration, status,

compliance, security, data, and technical functionality in a

unified and standardized manner (Marcon et al., 2018). Thus,

AASs facilitate the virtualization of individual manufacturing

assets as well as the structurization of the manufacturing

asset network that constitute vertical and horizontal

integrations.

Since the first release of the AAS specification, relevant

applications show an increasing trend; however, they are

limited to implement manufacturing intelligence through

integrating AASs with data analytics. Manufacturing

intelligence represents real-time understanding, reasoning,

planning and management of manufacturing processes (Davis

et al., 2012). Data analytics is a process of learning or mining

real data collected during operations through statistics and

machine learning. Data analytics can be applied to provide

insight and foresight for productivity, quality, flexibility, and

energy-efficiency in manufacturing (Ren et al., 2019). In this

regard, manufacturing intelligence should endow individual

manufacturing assets with creating and using data analytics

models (hereafter, models) to gain insight and foresight for

their data-driven decision making. Furthermore,

manufacturing intelligence should consider the interoperable

asset network where an asset’s models are exchanged and

shared with other assets to embody collaborative decision

making across heterogeneous devices and applications.

Hence, AASs need to be integrated with models to implement

asset-oriented manufacturing intelligence.

9824 Seung-Jun Shin et al. / IFAC PapersOnLine 56-2 (2023) 9823–9830

Meanwhile, the data science community has recognized a

unified and standardized model representation as a significant

issue owing to the necessity of exchanging and sharing

models across computers. Data Mining Group (DMG)

released Predictive Model Markup Language (PMML) as a

model representation language. The PMML is an XML-based

model interchange language to represent models as well as

data pre/post-processing (Guazzelli et al., 2009). The PMML

is a common language and currently available in multi-

purpose programming languages, such as Scala, Python, and

R, and thus it is not specialized for manufacturing. An

available data analysis tool has to be used by human

manipulation or an encoder-and-decoder has to be

implemented, when PMML is applied in manufacturing

system. These requirements can incur inefficient model

exchange and sharing across manufacturing assets. Hence,

the PMML needs to be represented, exchanged, and shared

with integrating asset information for the use in

manufacturing devices and applications. This approach

enables the implementation of model interoperability, which

signifies the seamless exchange and sharing of models across

heterogeneous manufacturing assets.

This article presents the system design architecture to

integrate the PMML with the AAS for manufacturing

interoperability. In the article, we propose a concept model,

system architecture, and information structure to specify

functional and static perspective of the present system. We

implement a prototype to demonstrate the feasibility of the

present system. The prototype comprises a server and client.

The server creates regression and Artificial Neural Network

(ANN) -based energy prediction models using real data

obtained from a heat tunnel machine, converts these models

into the PMML format, creates and publishes the AAS that

contains PMML models as submodels. The client requests

and receives the AAS to predict energy consumed in the heat

tunnel.

The remainder of this article is organized as follows. Section

2 summarizes AAS and PMML. Section 3 introduces the

system design, and Section 4 describes the prototype

implementation. Section 5 concludes the paper.

2. AAS and PMML

Sections 2.1 and 2.2 describe the information structures and

literature reviews concerning AAS and PMML, respectively.

2.1 AAS

The AAS facilitates the deployment of a unified and

homogeneous data interface for manufacturing

interoperability, thereby aiding in reducing to M+N data

interfaces, while M*N data interfaces were necessary across

diverse and heterogeneous assets in the past (Grangel-

González et al., 2016).

Fig. 1 illustrates the AAS information structure, which

consists of a header and body section. The header identifies a

real asset and its corresponding AAS to provide an access

interface among I4.0 components. The body involves a set of

submodels that contain data and functions specific for an

asset (Marcon et al., 2018). The data indicate digital

representation, such as drawing, sensory data, manual,

function blocks, and so on. The functions describe the ability

to achieve a purpose and generally serve as technical

functionalities (Platform Industries 4.0, 2020).

Each submodel comprises a set of submodel elements that

contain various subtypes, such as a property, range, file,

Binary Large Objects (Blob), operation, capability, entity,

and event. The second version of the AAS specification

identifies the available data formats that include XML, JSON,

Resource Description Framework (RDF), Automation

Markup Language, and OPC UA.

Related studies that had appeared around the first release of

the AAS specification mostly involved requirements,

concepts, modelling and core technologies of AASs.

(Grangel-González et al., 2016) presented an RDF-based

approach to model and implement AASs. (Tantik and Anderl,

2017) suggested a method to combine AASs and the object

memory model to demonstrate their interoperability over the

internet. (Wenger et al., 2018) connected Programmable

Logic Controllers (PLCs) with their AASs for automatic

device configuration. Accordingly, recent studies have shown

a growing trend. They concentrate on the implementation of

AAS systems or the integration of AASs with existing

technologies. (Cavalieri et al., 2019) developed a method to

map OPC UA information models with AAS entities.

(Chilwant and Kulkarni, 2019) proposed an open framework

to manage creation, ownership, maintenance, and usage of

AASs in industrial systems. (Ye and Hong, 2019) suggested a

common template to standardize the AAS information

structure. (Motsch et al., 2021) presented an interface and

submodels of electrical energy consumption on AASs in a

modular skill-based production system. (Sakurada et al.,

2022) developed an agent based AAS approach to enhance a

digitalization process for asset intelligence and collaboration.

The related studies contribute to demonstrating the usability

and practicality of AASs. However, they are limited to

provide a practical method to deploy models into AASs for

the model interoperability environment.

I4.0

Component

Asset Administration Shell (AAS)

Header

Body

Asset identification

AAS identification

Submodel 1

Submodel lD 1

Submodel element

Data

Security

Relationship …

Submodel 2

Submodel lD 2

Submodel element

Technical functionality

Submodel 3

Submodel lD 3

Submodel element

Capability

Submodel 4

Submodel lD 4

Submodel element

Availability

Submodel n-1

Submodel lD n-1

Submodel element

Lifecycle

Submodel n

Submodel lD n

Submodel element

Predictive model

AAS

Asset
(e.g., heat

tunnel)

Informal formatFormal format

Runtime data (from asset)

Access on data and

functions (by API)

Fig. 1. AAS information structure (re-edited from (Ye and

Hong, 2019))

 Seung-Jun Shin et al. / IFAC PapersOnLine 56-2 (2023) 9823–9830 9825

Meanwhile, the data science community has recognized a

unified and standardized model representation as a significant

issue owing to the necessity of exchanging and sharing

models across computers. Data Mining Group (DMG)

released Predictive Model Markup Language (PMML) as a

model representation language. The PMML is an XML-based

model interchange language to represent models as well as

data pre/post-processing (Guazzelli et al., 2009). The PMML

is a common language and currently available in multi-

purpose programming languages, such as Scala, Python, and

R, and thus it is not specialized for manufacturing. An

available data analysis tool has to be used by human

manipulation or an encoder-and-decoder has to be

implemented, when PMML is applied in manufacturing

system. These requirements can incur inefficient model

exchange and sharing across manufacturing assets. Hence,

the PMML needs to be represented, exchanged, and shared

with integrating asset information for the use in

manufacturing devices and applications. This approach

enables the implementation of model interoperability, which

signifies the seamless exchange and sharing of models across

heterogeneous manufacturing assets.

This article presents the system design architecture to

integrate the PMML with the AAS for manufacturing

interoperability. In the article, we propose a concept model,

system architecture, and information structure to specify

functional and static perspective of the present system. We

implement a prototype to demonstrate the feasibility of the

present system. The prototype comprises a server and client.

The server creates regression and Artificial Neural Network

(ANN) -based energy prediction models using real data

obtained from a heat tunnel machine, converts these models

into the PMML format, creates and publishes the AAS that

contains PMML models as submodels. The client requests

and receives the AAS to predict energy consumed in the heat

tunnel.

The remainder of this article is organized as follows. Section

2 summarizes AAS and PMML. Section 3 introduces the

system design, and Section 4 describes the prototype

implementation. Section 5 concludes the paper.

2. AAS and PMML

Sections 2.1 and 2.2 describe the information structures and

literature reviews concerning AAS and PMML, respectively.

2.1 AAS

The AAS facilitates the deployment of a unified and

homogeneous data interface for manufacturing

interoperability, thereby aiding in reducing to M+N data

interfaces, while M*N data interfaces were necessary across

diverse and heterogeneous assets in the past (Grangel-

González et al., 2016).

Fig. 1 illustrates the AAS information structure, which

consists of a header and body section. The header identifies a

real asset and its corresponding AAS to provide an access

interface among I4.0 components. The body involves a set of

submodels that contain data and functions specific for an

asset (Marcon et al., 2018). The data indicate digital

representation, such as drawing, sensory data, manual,

function blocks, and so on. The functions describe the ability

to achieve a purpose and generally serve as technical

functionalities (Platform Industries 4.0, 2020).

Each submodel comprises a set of submodel elements that

contain various subtypes, such as a property, range, file,

Binary Large Objects (Blob), operation, capability, entity,

and event. The second version of the AAS specification

identifies the available data formats that include XML, JSON,

Resource Description Framework (RDF), Automation

Markup Language, and OPC UA.

Related studies that had appeared around the first release of

the AAS specification mostly involved requirements,

concepts, modelling and core technologies of AASs.

(Grangel-González et al., 2016) presented an RDF-based

approach to model and implement AASs. (Tantik and Anderl,

2017) suggested a method to combine AASs and the object

memory model to demonstrate their interoperability over the

internet. (Wenger et al., 2018) connected Programmable

Logic Controllers (PLCs) with their AASs for automatic

device configuration. Accordingly, recent studies have shown

a growing trend. They concentrate on the implementation of

AAS systems or the integration of AASs with existing

technologies. (Cavalieri et al., 2019) developed a method to

map OPC UA information models with AAS entities.

(Chilwant and Kulkarni, 2019) proposed an open framework

to manage creation, ownership, maintenance, and usage of

AASs in industrial systems. (Ye and Hong, 2019) suggested a

common template to standardize the AAS information

structure. (Motsch et al., 2021) presented an interface and

submodels of electrical energy consumption on AASs in a

modular skill-based production system. (Sakurada et al.,

2022) developed an agent based AAS approach to enhance a

digitalization process for asset intelligence and collaboration.

The related studies contribute to demonstrating the usability

and practicality of AASs. However, they are limited to

provide a practical method to deploy models into AASs for

the model interoperability environment.

I4.0

Component

Asset Administration Shell (AAS)

Header

Body

Asset identification

AAS identification

Submodel 1

Submodel lD 1

Submodel element

Data

Security

Relationship …

Submodel 2

Submodel lD 2

Submodel element

Technical functionality

Submodel 3

Submodel lD 3

Submodel element

Capability

Submodel 4

Submodel lD 4

Submodel element

Availability

Submodel n-1

Submodel lD n-1

Submodel element

Lifecycle

Submodel n

Submodel lD n

Submodel element

Predictive model

AAS

Asset
(e.g., heat

tunnel)

Informal formatFormal format

Runtime data (from asset)

Access on data and

functions (by API)

Fig. 1. AAS information structure (re-edited from (Ye and

Hong, 2019))

2.2 PMML

The PMML is a computer-interpretable language for model

processing, while it enables the transformation of models

from mathematical equations to an XML-based structural and

textual format.

Fig. 2 presents the PMML information structure, which also

comprises a header and body section. The body is divided

into a data dictionary, data transformation, and mining

schema, target, and model specifics (Guazzelli et al, 2009).

Especially, the model specifics vary in terms of model types.

For example, when a model is a regression model, its model

specifics include intercepts, exponents, and coefficients in the

model architecture. Meanwhile, the model specifics is

designated to the ANN structure when a model is an ANN

model.

The PMML has been applied in manufacturing mainly for

model representation and model validation. (O’Donovan et

al., 2016) and (Lechevalier et al., 2018) applied PMML to

represent a support vector machine model and an ANN model

in air handling and milling machines, respectively.

(O’Donovan et al., 2018) presented PMML-based models to

be disseminated and executed by nodes in fog computing.

(Park et al., 2017) designed a PMML schema for Gaussian

process regression with validation of the schema in metal

cutting. (Nannapaneni et al., 2018) designed and validated a

PMML schema for Bayesian network in welding processes.

(Shin, 2021) developed an OPC UA information model to

implement compatibility between OPC UA and PMML. The

related studies contribute to exhibiting the feasibility of the

PMML in the manufacturing domain; however, they rarely

discuss the integration of models with AASs for asset-

oriented manufacturing intelligence. In addition, they did not

suggest system approaches to automate the data analytics

procedure, comprising data collection and pre-processing,

and model creation, validation and application.

Header

Data
Dictionary

Data
Transformation

Model

Mining
Schema

Targets

Model
Specifics

• Copyright
• Description and model version
• Application name and version
• Timestamp

• Data fields (field name, category and data type)
• Taxonomy
• Valid, invalid and missing values

• Normalization, discretization, value mapping
• Text indexing, data aggregation
• Functions

• Mining field (field name, category,
usage type)

• Outlier and missing value treatment

• Target value (field name, category)
• Scaling of target values

• Model name, type and function name
• Model architecture and attributes

D
o

c
u

m
e

n
t

Fig. 2. PMML information structure

3. SYSTEM DESIGN

Section 3 proposes the concept model, system architecture

system design and information structure to identify functional

and structural perspectives of the present system. A

production machine is used as an example of an asset for

clear understanding.

3.1 Concept model

Assume that an asset user is eager to implement

manufacturing intelligence to improve the asset’s availability

and productivity during the in-use phase. Essentially, an user

would create models applicable for the asset. Accordingly, a

technical challenge arises to concern how to create, use and

exchange models on assets. It is because models were created

and used by human. In addition, models were unable to be

embedded to a part of an asset due to static and stationary

natures of most available asset information models. Hence, it

was not easy to integrate model information with asset

information models because they were mutually

heterogeneous. A feasible solution to integrate asset and

model information is to embed model information into an

asset’s information container as an object-oriented approach.

In this regard, the AAS is one of the most-appropriate

technology for the asset representation because it provides

flexible and extensible capabilities, as explained in Section

2.1. The AAS can act as a class for an asset, while it contains

models with ‘a-part-of’ relationship. A model can be also a

class and belong to a variable in the AAS class. Once a

model is created, it can be subordinate to be a part of an asset.

Then, the model can be used and exchanged by retrieving the

model variable from the asset class. This asset-centric

solution enables efficient and effective creation, use and

exchange of models because an asset can contain models as

its submodels. Such solution also facilitates the identification,

encapsulation, and structurization of models through the

relationship with an AAS as these functionalities are primary

capabilities of the object-oriented approach. Meanwhile,

PMML is one of the most-proper technology for model

representation, as described in Section 2.2. PMML is

machine-interpretable and, further, it can express models

structurally and hierarchically. AASs can contain PMML

models as submodels to achieve the asset-model integration.

Furthermore, manufacturing intelligence can be

implemented, independently of human intervention, if the

asset-model integration is automated.

Fig. 3 presents the concept model. Data are collected by data

interfaces while machines run in a shop floor. Predictive

models can be created through training data using machine

learning and they are typically represented by mathematical

equations. Such models need to be converted to a machine

interpretable format so that computers understand contents

and semantics of the mathematical equations. PMML

documents are generated based on the PMML schema to be

converted from mathematically represented models.

Simultaneously, an AAS instance is created with assigning its

AAS identifier. This AAS instance contains PMML

documents in the form of submodels with assigning their

model identifiers. Once AAS instances have been created,

they can be accessed with other machines and systems.

Inversely, PMML documents are parsed based on the PMML

schema when they are used. Mathematical equations can be

extracted from PMML documents, and they can be

eventually used to predict target performance.

9826 Seung-Jun Shin et al. / IFAC PapersOnLine 56-2 (2023) 9823–9830

Asset Administration Shell

Header

Body

Asset ID

AAS ID

Data collection

Modeling

Data interface

(e.g., OPC UA, PLCopen)

Data analytics tool

(e.g., Weka, KNIME,

Python, R)

Other SubmodelsOther SubmodelsSubmodel

Model conversion

PMML schema

Submodel ID

Dataset
(e.g., Training data or Testing data)

PMML model (XML-based)

Data analytics model

Other SubmodelsOther SubmodelsSubmodel

Submodel ID

Data analytics model
(e.g., Energy prediction model)

Data

Training data
timeStamp resourceID meterID activePower reactivePower apparentPower

2021-02-05 16:55:50 1 1 -157887 130091 -213919

2021-02-05 16:55:50 2 1 -94033 61952 -119135

2021-02-05 16:55:50 3 1 -69444 59673 -97010

2021-02-05 16:55:50 4 1 -201198 171655 -281535

2021-02-05 16:55:50 5 1 -69587 56173 -96871

2021-02-05 16:55:50 6 1 -103884 64571 -128632

2021-02-05 16:55:50 7 1 -65302 63302 -94458

2021-02-05 16:55:50 8 1 -74322 38230 -89920

2021-02-05 16:55:51 1 1 -158015 130091 -213678

2021-02-05 16:55:51 2 1 -93796 61978 -118771

2021-02-05 16:55:51 3 1 -69460 59367 -96957

2021-02-05 16:55:51 4 1 -201221 171655 -281442

2021-02-05 16:55:51 5 1 -69648 56239 -96801

2021-02-05 16:55:51 6 1 -104223 64575 -128198

2021-02-05 16:55:51 7 1 -65187 63220 -94386

2021-02-05 16:55:51 8 1 -74176 37989 -89929

Fig. 3. Concept model

3.2 System architecture

Fig. 4 shows the system architecture to identify the structure

and functions required to be implemented as a software

system. This architecture is built on a server-client structure,

where a server responds to the request, and a client requests

and receives the relevant . The server and client can be

connected based on a web service using Representational

State Transfer (REST) Application Programming Interface

(API). This web service enables the decoupling between a

server and client. Thus, the web service can provide

interoperability for system communication through fast and

flexible interaction across heterogeneous systems.

Physical

asset

Asset

Administration

Shell

server

Asset

Administration

Shell client

Legacy

system
MES SCADA

Data

repository
Simulator

Model management

Data

acquisition

Data

preprocessing

Model

creation

Model

V&V

PMML

conversion

AAS management

AAS

creation

AAS

compilation

Submodel

creation

PMML

submodeling

Data

instancing

Server registry

AAS

registration
AAS

repository

Client

connection

AAS

search

Server

connection

AAS

request

AAS

receipt

AAS

interpretation

Model

utilization

Field-level data interface (OPC UA, PLCopen, Fieldbus, …)

Application-level data interface (HTTP-REST, …)

AAS

response

Field-level data

System data

AAS instances

Fig. 4. System architecture

In the architecture, the server collects data from physical

assets and/or legacy systems. The former provides the direct

connection with assets using field-level data interfaces, such

as OPC UA, and the latter provides the indirect connection

with legacy systems that have processed and stored data. The

server comprises model management, AAS management, and

server registry modules. Model management involves: model

creation to create models through the data analytics

procedure and PMML conversion to convert models to

PMML documents. AAS management includes: AAS creation

to create AAS instances and assign their identifiers, PMML

submodeling to embed PMML documents inside an AAS

instance, and AAS compilation to complete generation of

AAS instances. Server registry contains: AAS registration to

register AAS instances, AAS repository to store AAS

instances, and AAS response to transmit an AAS instance

when a client requests.

Meanwhile, the client connects with the server along with

complying with the security and authentication procedure.

The client requests and receives AAS instances from the

server. It interprets and uses the AAS instances containing

PMML models for certain purposes, like energy prediction

for a production machine.

3.3 Information structure

Fig. 5 depicts the information structure, which is formalized

by a class diagram in Unified Modeling Language. Basically,

the information structure must follow the AAS specification

because this is mandatory. Instead, the AAS specification

allows the variety and extensibility of data and functions by

imposing various types of data elements on submodels. A

submodel can be either a data type or function type, as

described in Section 2.1. Here, PMML documents can be

represented as both property-type and file-type data elements,

while the two elements are sub-classes of the data element

abstract class. If a PMML document is a property-type data

element, its instances exist in a memory. If the document is a

file-type data element, it exists as an XML file in a hard disk.

Fig. 5. Information structure

The Identifiable, HasKind, HasSemantics, Qualifiable and

HasDataSpecification attributes on top of a class are

independent classes to specify whether the target class: has a

globally unique identifier; is either a type or instance; has a

semantic definition; can be qualified; and can be extended

using data specification templates, respectively (Platform

Industries 4.0, 2020). The following items explain the details

of main classes.

- AssetAdministrationShell: the top-level element associated

with an AAS. It must have an identifier and correspond to a

real asset. This element can contain multiple submodels.

- AssetInformation: the element that includes the metadata of

an asset. It denotes whether an AAS belongs to a type or

instance.

 Seung-Jun Shin et al. / IFAC PapersOnLine 56-2 (2023) 9823–9830 9827

Asset Administration Shell

Header

Body

Asset ID

AAS ID

Data collection

Modeling

Data interface

(e.g., OPC UA, PLCopen)

Data analytics tool

(e.g., Weka, KNIME,

Python, R)

Other SubmodelsOther SubmodelsSubmodel

Model conversion

PMML schema

Submodel ID

Dataset
(e.g., Training data or Testing data)

PMML model (XML-based)

Data analytics model

Other SubmodelsOther SubmodelsSubmodel

Submodel ID

Data analytics model
(e.g., Energy prediction model)

Data

Training data
timeStamp resourceID meterID activePower reactivePower apparentPower

2021-02-05 16:55:50 1 1 -157887 130091 -213919

2021-02-05 16:55:50 2 1 -94033 61952 -119135

2021-02-05 16:55:50 3 1 -69444 59673 -97010

2021-02-05 16:55:50 4 1 -201198 171655 -281535

2021-02-05 16:55:50 5 1 -69587 56173 -96871

2021-02-05 16:55:50 6 1 -103884 64571 -128632

2021-02-05 16:55:50 7 1 -65302 63302 -94458

2021-02-05 16:55:50 8 1 -74322 38230 -89920

2021-02-05 16:55:51 1 1 -158015 130091 -213678

2021-02-05 16:55:51 2 1 -93796 61978 -118771

2021-02-05 16:55:51 3 1 -69460 59367 -96957

2021-02-05 16:55:51 4 1 -201221 171655 -281442

2021-02-05 16:55:51 5 1 -69648 56239 -96801

2021-02-05 16:55:51 6 1 -104223 64575 -128198

2021-02-05 16:55:51 7 1 -65187 63220 -94386

2021-02-05 16:55:51 8 1 -74176 37989 -89929

Fig. 3. Concept model

3.2 System architecture

Fig. 4 shows the system architecture to identify the structure

and functions required to be implemented as a software

system. This architecture is built on a server-client structure,

where a server responds to the request, and a client requests

and receives the relevant . The server and client can be

connected based on a web service using Representational

State Transfer (REST) Application Programming Interface

(API). This web service enables the decoupling between a

server and client. Thus, the web service can provide

interoperability for system communication through fast and

flexible interaction across heterogeneous systems.

Physical

asset

Asset

Administration

Shell

server

Asset

Administration

Shell client

Legacy

system
MES SCADA

Data

repository
Simulator

Model management

Data

acquisition

Data

preprocessing

Model

creation

Model

V&V

PMML

conversion

AAS management

AAS

creation

AAS

compilation

Submodel

creation

PMML

submodeling

Data

instancing

Server registry

AAS

registration
AAS

repository

Client

connection

AAS

search

Server

connection

AAS

request

AAS

receipt

AAS

interpretation

Model

utilization

Field-level data interface (OPC UA, PLCopen, Fieldbus, …)

Application-level data interface (HTTP-REST, …)

AAS

response

Field-level data

System data

AAS instances

Fig. 4. System architecture

In the architecture, the server collects data from physical

assets and/or legacy systems. The former provides the direct

connection with assets using field-level data interfaces, such

as OPC UA, and the latter provides the indirect connection

with legacy systems that have processed and stored data. The

server comprises model management, AAS management, and

server registry modules. Model management involves: model

creation to create models through the data analytics

procedure and PMML conversion to convert models to

PMML documents. AAS management includes: AAS creation

to create AAS instances and assign their identifiers, PMML

submodeling to embed PMML documents inside an AAS

instance, and AAS compilation to complete generation of

AAS instances. Server registry contains: AAS registration to

register AAS instances, AAS repository to store AAS

instances, and AAS response to transmit an AAS instance

when a client requests.

Meanwhile, the client connects with the server along with

complying with the security and authentication procedure.

The client requests and receives AAS instances from the

server. It interprets and uses the AAS instances containing

PMML models for certain purposes, like energy prediction

for a production machine.

3.3 Information structure

Fig. 5 depicts the information structure, which is formalized

by a class diagram in Unified Modeling Language. Basically,

the information structure must follow the AAS specification

because this is mandatory. Instead, the AAS specification

allows the variety and extensibility of data and functions by

imposing various types of data elements on submodels. A

submodel can be either a data type or function type, as

described in Section 2.1. Here, PMML documents can be

represented as both property-type and file-type data elements,

while the two elements are sub-classes of the data element

abstract class. If a PMML document is a property-type data

element, its instances exist in a memory. If the document is a

file-type data element, it exists as an XML file in a hard disk.

Fig. 5. Information structure

The Identifiable, HasKind, HasSemantics, Qualifiable and

HasDataSpecification attributes on top of a class are

independent classes to specify whether the target class: has a

globally unique identifier; is either a type or instance; has a

semantic definition; can be qualified; and can be extended

using data specification templates, respectively (Platform

Industries 4.0, 2020). The following items explain the details

of main classes.

- AssetAdministrationShell: the top-level element associated

with an AAS. It must have an identifier and correspond to a

real asset. This element can contain multiple submodels.

- AssetInformation: the element that includes the metadata of

an asset. It denotes whether an AAS belongs to a type or

instance.

- Submodel: the element that contains digital representations

and technical functionalities involved in

AssetAdministrationShell.

- SubmodelElement: the abstract element suitable for

description and differentiation of an asset. This element has

a composition relationship with Submodel, and contains

DataElement, operation, event and entity data types.

- DataElement: the abstract element that is inherited from

SubmodelElement and inherits property, range, file, and

Blob as sub-elements.

- Property: the data element that has a single value. This

element must declare valueType, such as boolean, integer,

double, float, date, duration and string, and may have value

(a value of the property instance) and valueId (a unique

identifier of a coded value). A PMML document can be

instantiated to value as a string value type within this

property.

- File: the data element that represents an address of a file.

This element must define mimeType to state file extension

and may have value to indicate a path and name of the

referenced file. mimeType is formed to ‘type/subtype’ (e.g.,

application/xml). File provides the file path information

regarding a PMML document in a hard disk or database

with Multipurpose Internet Mail Extensions (MIME) types

of XML file extensions. Once a client requests the retrieval

of a PMML document, a server accesses to its file path and

transmits the document via a file transfer.

The information structure allows the representation of an

asset, data and models as primary components. Data can be

included as a submodel in an AAS to keep training data and

testing data for model creation and model validation,

respectively. Data are sub-modelled into a file- or string

property- type although the file-type is preferred to avoid

memory overload. PMML models are sub-modelled, which

can be represented using a string property or file- type. For

example, a regression model can be represented by two

submodels, which is a set of {(language, data element type) |

(PMML, property-type), (PMML, file-type)}. These two

disparate submodels provide a selective option for client’s

preference in terms of a data type.

4. PROTOTYPE IMPLEMENTATION

Section 4 explains the scenario, architecture, and result of a

prototype implementation.

4.1 Implementation scenario

We use an experimental facility (FESTO Industry 4.0

Learning Factory) for a prototype implementation, as shown

in Fig. 6. The facility consists of eight machines to produce

simple smart phone cases. It connects with a Manufacturing

Execution System (MES) to setup workplans by an operator

and to conduct automated production. A PLC is attached to

each machine to control the machine and collect operation

data. Meanwhile, a power meter is attached to a power supply

on each machine to collect power data. The operation data

involve identification information regarding an assigned

product, workplan, order, operation, and machine as well as

start and end timestamps of an operation. The power data

record a machine identifier, timestamp, and active power at 1

second interval. The operation and power data are transmitted

to the MES via OPC UA on the Ethernet, and they are

separately stored in two different databases.

Fig. 7 illustrates an implementation scenario. Among the

eight machines, the heat tunnel machine is chosen as a target

physical asset. In the scenario, an AAS server creates

regression and ANN -based energy prediction models by

learning data, and transmits an AAS instance that embeds

PMML models as property and file data elements.

Meanwhile, a client receives the AAS instance, interprets the

two types of PMML models, while it acts as a Factory

Energy Management System (FEMS). The client uses the

models to predict the energy consumed in the heat tunnel by

inputting process parameters, i.e., heating temperature and

heating time.

Heat tunnel

Power

meter

PLC

Fig. 6. Experimental facility

Heat tunnel

AAS Server AAS Client

(e.g., Factory Energy

Management System)Energy predictive

modeling

Regression

model

Neural

network

model

Model wrapping AAS instancing

AAS

Machine
PMMLPMML

PMMLPMML PFA

Energy prediction

Property

type
File

type

Heat tunnelOperation

data

Power

data

Fig. 7. Implementation scenario

Energy can vary depending on heating temperature and

heating time because the former and the latter may affect

active power and heating duration, respectively. Energy (E) is

calculated from the integral of power (P) over time (t), or the

mensuration-by-parts, as expressed in (1). E can be predicted

by a statistical model or a machine learning model that are

derived from training data. Equation (2) expresses a multiple

linear regression-based energy prediction model. Equation (3)

expresses an ANN-based energy prediction model, where an

output neuron is calculated by a weighted summation over

the output of hidden neurons to the process parameters.

 (1)

where, P(t) and Pi: a power value at a timestamp, T: an

operation time, M: the number of power values, tc: the

sensing time interval

 (2)

9828 Seung-Jun Shin et al. / IFAC PapersOnLine 56-2 (2023) 9823–9830

where, Epred: a predicted energy, x: a process parameter, a0:

an intercept, ak: a coefficient, ε: an error.

 (3)

where, oi: an output neuron, wij: a weight, θj: an activation

function, L: the number of neurons, wbias,i: a bias.

4.2 Implementation architecture

Fig. 8 presents the implementation architecture for a protype.

Table 1 lists the tools used for the implementation. This

architecture is derived based on the system architecture

presented in Fig. 4. The prototype is implemented on the Java

environment. In the prototype, we endeavour to automate all

functions in the server and client except the data acquisition.

The data acquisition is unavoidably manually worked

because of the unavailability of direct data access by the

security firewall. The validity of PMML documents is

confirmed using KNIME Analytics by checking whether

PMML documents are opened and interpreted well in the

PMML reader function.

Production

equipment

Asset

Administration

Shell

Server

Asset

Administration

Shell

Client

Database

Field-level

data interface

Application-level

data interface

FESTO Industry 4.0 Learning Factory

ASRS Measuring Drilling Assembly Inspection Magazine Press Heat tunnel

OPC UA Data Hub

HeidiSQL
- Power data retrieval

MS Access
- Operation data storage

MariaDB
- Power data storage

Weka SDK
- Data preprocessing

- Model creation

- Model validation

JPMML
- PMML encoding

- PMML file generation

BaSyx SDK - Server
- AAS creation & registration

- Submodel instancing

- Server execution

PMML

AAS

AssetAAS

AssetAAS

AssetAAS

AssetAAS

Asset

Operation data

Power data

HTTP/REST (localhost)

JPMML
- PMML decoding

- PMML evaluation

BaSyx SDK - Client
- Server connection

- AAS receipt & retrieval

- AAS interpretation

KNIME Analytics
- PMML validation

Energy

prediction
PMML

AAS

AssetAAS

AssetAAS

AssetAAS

AssetAAS

Asset

Model management

AAS management & Server registry

Java IDE

Java IDE

Fig. 8. Implementation architecture

Table 1. Details of tools

Tool Use in prototype

OPC UA Data

Hub

A unified data interface to transmit operation data

from PLCs and power data from power meters to
MES and databases

Microsoft Access
A database to store, manage and retrieve operation

data

MariaDB A database to store and manage power data

HeidiSQL (9.4.0)
A query editor to retrieve power data by access to

MariaDB

Eclipse IDE

(4.22.0)

The Java-based programming platform to implement

server and client applications

BaSyx Java SDK
(1.0.2)

A Software Development Kit (SDK) to implement an
AAS server and client

Weka SDK

(3.8.6)

An SDK to pre-process data and to create regression

and neural network models

JPMML (1.6.3)
A library to generate PMML documents in a server
and to parse PMML documents in a client

KNIME

Analytics (4.5.2)

A stand-alone software to validate conformance of

PMML documents

4.3 Implementation result

(a) Server

We apply Central Composite Design (CCD) as Design of

Experiments for data generation. We gather operation and

power data under the process parameters designated by the

CCD (given by the two process parameters in the training

type of Table 2). The sever starts to run once the two data are

inputted to the server. Table2 lists a dataset used to create

energy prediction models. Data integration is conducted to

combine raw operation and power data into a dataset. This

can be achieved by using start and end timestamps of an

operation from the operation data. The power values in-

between the start and end timestamps become an actual net

energy value because they are consumed to conduct to the

operation. Data normalization is performed to align

minimum-to-maximum ranges with an identical zero-to-one

scale at the three individual attributes.

Table 2. Dataset

Type
Heating temperature

(℃)
Heating time

(s)
Actual energy

(J)

Training

55.6 71.2 60719.2

45.0 20.0 4533.8

45.0 50.0 12711.1

45.0 80.0 39409.0

45.0 50.0 11895.3

60.0 50.0 42900.0

34.4 71.2 11910.9

45.0 50.0 12046.1

34.4 28.8 3720.2

45.0 50.0 12016.1

45.0 50.0 11726.9

55.6 28.8 14507.6

30.0 50.0 4662.9

Testing

30.0 50.0 4739.3

37.4 65.0 12185.9

45.0 80.0 39053.2

52.5 65.0 38681.7

60.0 50.0 70714.7

52.5 35.0 10347.9

45.0 20.0 4517.2

37.5 35.0 4655.8

The server creates regression and ANN models through

learning the training dataset and measures the model

performances using the testing dataset. The hyperparameter

of the regression model is greedy as the attribution selection

method; the hyperparameter parameters of the ANN model

are 1 hidden layer, 4 neurons in the hidden layer, logistic

activation function, 0.3 learning rate, 0.2 momentum, and

500 epochs. Equation (4) expresses an regression-based

energy prediction model. This regression model obtains

0.121 Mean Absolute Error (MAE), 76.4% R2-adjusted, and

43.5% Relative Absolute Error (RAE). Meanwhile, the ANN

model gains 0.110 MAE, 0.181 RMSE, and 39.4% RAE.

Note that marginal model performances appear due to low

relevance between the two process parameters and the

energy; however, a discussion regarding the model

performance is out-of-the scope of this article.

 (4)

 Seung-Jun Shin et al. / IFAC PapersOnLine 56-2 (2023) 9823–9830 9829

where, Epred: a predicted energy, x: a process parameter, a0:

an intercept, ak: a coefficient, ε: an error.

 (3)

where, oi: an output neuron, wij: a weight, θj: an activation

function, L: the number of neurons, wbias,i: a bias.

4.2 Implementation architecture

Fig. 8 presents the implementation architecture for a protype.

Table 1 lists the tools used for the implementation. This

architecture is derived based on the system architecture

presented in Fig. 4. The prototype is implemented on the Java

environment. In the prototype, we endeavour to automate all

functions in the server and client except the data acquisition.

The data acquisition is unavoidably manually worked

because of the unavailability of direct data access by the

security firewall. The validity of PMML documents is

confirmed using KNIME Analytics by checking whether

PMML documents are opened and interpreted well in the

PMML reader function.

Production

equipment

Asset

Administration

Shell

Server

Asset

Administration

Shell

Client

Database

Field-level

data interface

Application-level

data interface

FESTO Industry 4.0 Learning Factory

ASRS Measuring Drilling Assembly Inspection Magazine Press Heat tunnel

OPC UA Data Hub

HeidiSQL
- Power data retrieval

MS Access
- Operation data storage

MariaDB
- Power data storage

Weka SDK
- Data preprocessing

- Model creation

- Model validation

JPMML
- PMML encoding

- PMML file generation

BaSyx SDK - Server
- AAS creation & registration

- Submodel instancing

- Server execution

PMML

AAS

AssetAAS

AssetAAS

AssetAAS

AssetAAS

Asset

Operation data

Power data

HTTP/REST (localhost)

JPMML
- PMML decoding

- PMML evaluation

BaSyx SDK - Client
- Server connection

- AAS receipt & retrieval

- AAS interpretation

KNIME Analytics
- PMML validation

Energy

prediction
PMML

AAS

AssetAAS

AssetAAS

AssetAAS

AssetAAS

Asset

Model management

AAS management & Server registry

Java IDE

Java IDE

Fig. 8. Implementation architecture

Table 1. Details of tools

Tool Use in prototype

OPC UA Data

Hub

A unified data interface to transmit operation data

from PLCs and power data from power meters to
MES and databases

Microsoft Access
A database to store, manage and retrieve operation

data

MariaDB A database to store and manage power data

HeidiSQL (9.4.0)
A query editor to retrieve power data by access to

MariaDB

Eclipse IDE

(4.22.0)

The Java-based programming platform to implement

server and client applications

BaSyx Java SDK
(1.0.2)

A Software Development Kit (SDK) to implement an
AAS server and client

Weka SDK

(3.8.6)

An SDK to pre-process data and to create regression

and neural network models

JPMML (1.6.3)
A library to generate PMML documents in a server
and to parse PMML documents in a client

KNIME

Analytics (4.5.2)

A stand-alone software to validate conformance of

PMML documents

4.3 Implementation result

(a) Server

We apply Central Composite Design (CCD) as Design of

Experiments for data generation. We gather operation and

power data under the process parameters designated by the

CCD (given by the two process parameters in the training

type of Table 2). The sever starts to run once the two data are

inputted to the server. Table2 lists a dataset used to create

energy prediction models. Data integration is conducted to

combine raw operation and power data into a dataset. This

can be achieved by using start and end timestamps of an

operation from the operation data. The power values in-

between the start and end timestamps become an actual net

energy value because they are consumed to conduct to the

operation. Data normalization is performed to align

minimum-to-maximum ranges with an identical zero-to-one

scale at the three individual attributes.

Table 2. Dataset

Type
Heating temperature

(℃)
Heating time

(s)
Actual energy

(J)

Training

55.6 71.2 60719.2

45.0 20.0 4533.8

45.0 50.0 12711.1

45.0 80.0 39409.0

45.0 50.0 11895.3

60.0 50.0 42900.0

34.4 71.2 11910.9

45.0 50.0 12046.1

34.4 28.8 3720.2

45.0 50.0 12016.1

45.0 50.0 11726.9

55.6 28.8 14507.6

30.0 50.0 4662.9

Testing

30.0 50.0 4739.3

37.4 65.0 12185.9

45.0 80.0 39053.2

52.5 65.0 38681.7

60.0 50.0 70714.7

52.5 35.0 10347.9

45.0 20.0 4517.2

37.5 35.0 4655.8

The server creates regression and ANN models through

learning the training dataset and measures the model

performances using the testing dataset. The hyperparameter

of the regression model is greedy as the attribution selection

method; the hyperparameter parameters of the ANN model

are 1 hidden layer, 4 neurons in the hidden layer, logistic

activation function, 0.3 learning rate, 0.2 momentum, and

500 epochs. Equation (4) expresses an regression-based

energy prediction model. This regression model obtains

0.121 Mean Absolute Error (MAE), 76.4% R2-adjusted, and

43.5% Relative Absolute Error (RAE). Meanwhile, the ANN

model gains 0.110 MAE, 0.181 RMSE, and 39.4% RAE.

Note that marginal model performances appear due to low

relevance between the two process parameters and the

energy; however, a discussion regarding the model

performance is out-of-the scope of this article.

 (4)

The server converts the regression and ANN models

individually to PMML documents based on the PMML

format. Fig. 9 shows the PMML document of the regression

model (note that only the regression model will be shown due

to the page limitation).

The server creates an AAS instance with assigning its

identifier. The server subsequently instantiates the two

PMML documents as submodels on the AAS instance. Fig.

10 presents the AAS instance, represented by YAML (a

format for easy-to-read JSON). The AAS instance involves

the four submodels that are composed of a combinatorial set

of a regression or ANN model and a property or file type. Fig.

11 shows the submodel regarding the regression model with a

string property-type, and Fig. 12 presents the submodel

regarding the regression model with a file-type.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<PMML xmlns="http://www.dmg.org/PMML-4_2" xmlns:data="http://jpmml.org/jpmml-model/InlineTable" version="4.2">

<Header copyright="aml.hanyang.ac.kr" description="PMMLRegressionModelbyWeka">

<Extension name="SSJ"/>

<Application name="JPMML" version="1.4.9"/>

</Header>

<DataDictionary numberOfFields="3">

<DataField name="HeatingTemperature" optype="continuous" dataType="double">

<Interval closure="closedClosed" leftMargin="0.0" rightMargin="1.0"/>

</DataField>

<DataField name="HeatingTime" optype="continuous" dataType="double">

<Interval closure="closedClosed" leftMargin="0.0" rightMargin="1.0"/>

</DataField>

<DataField name="Energy" optype="continuous" dataType="double">

<Interval closure="closedClosed" leftMargin="0.0" rightMargin="1.0"/>

</DataField>

</DataDictionary>

<RegressionModel modelName="LinearRegression" functionName="regression"

algorithmName="LinearRegression" modelType="linearRegression" targetFieldName="Energy"

normalizationMethod="none">

<MiningSchema>

<MiningField name="HeatingTemperature" usageType="active" invalidValueTreatment="asIs"/>

<MiningField name="HeatingTime" usageType="active" invalidValueTreatment="asIs"/>

<MiningField name="Energy" usageType="predicted" invalidValueTreatment="asIs"/>

</MiningSchema>

<Output>

<OutputField name="Energy" optype="continuous" dataType="double" feature="predictedValue" value="Energy"/>

</Output>

<RegressionTable intercept="-0.351" targetCategory="Energy">

<NumericPredictor name="HeatingTemperature" exponent="1" coefficient="0.6"/>

<NumericPredictor name="HeatingTime" exponent="1" coefficient="0.548"/>

</RegressionTable>

</RegressionModel>

</PMML>

Fig. 9. PMML document of regression model

conceptDictionary: []

identification:

idType: Custom

id: eclipse.basyx.aas.heattunnel

idShort: heattunnel

dataSpecification: []

modelType:

name: AssetAdministrationShell

asset:

identification:

idType: Custom

id: eclipse.basyx.asset.heattunnel

idShort: heattunnelasset

kind: Instance

dataSpecification: []

modelType:

name: Asset

embeddedDataSpecifications: []

embeddedDataSpecifications: []

views: []

submodels:

- keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.regression

local: true

- keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.neuralnetwork

local: true

- keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.regression.file

local: true

- keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.neuralnetwork.file

local: true

Fig. 10. AAS instance of heat tunnel

(b) Client

The client requests the AAS instance using its identifier and

receives it from the server. The client can interpret the AAS

instance and parses the submodels associated with the PMML

documents. The client can obtain the mathematical equations,

such as Equation (4), because a PMML document provides

the model specifics that include intercepts, exponents, and

coefficients in the regression model architecture. Lastly, the

client outputs a predicted energy value when an operator

inputs a heating time and heating time. For example, the

client predicts the consumption of 37597.1 J energy when 50

℃ of a heating temperature and 70 sec of a heating time are

inputted by an operator.

parent:

keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

identification:

idType: Custom

id: eclipse.basyx.submodel.pmml.regression

idShort: pmmlregressionpropertysubmodel

kind: Instance

dataSpecification: []

modelType:

name: Submodel

embeddedDataSpecifications: []

submodelElements:

- parent:

keys:

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.regression

local: true

idShort: pmmlregressionproperty

kind: Instance

valueType: string

modelType:

name: Property

value: <?xml version="1.0" encoding="UTF-8" standalone="yes"?><PMML version="4.2"

xmlns="http://www.dmg.org/PMML-4_4" xmlns:data="http://jpmml.org/jpmml-model/InlineTable"><Header

copyright="aml.hanyang.ac.kr" description="PMMLRegressionModelbyWeka">

… (see the content in Figure 9)

<RegressionTable intercept="-0.351" targetCategory="Energy"><NumericPredictor name="HeatingTemperature"

exponent="1" coefficient="0.6"/><NumericPredictor name="HeatingTime" exponent="1"

coefficient="0.548"/></RegressionTable></RegressionModel></PMML>

Fig. 11. Property-type submodel of regression model

parent:

keys:

- idType: Custom

type: AssetAdministrationShell

value: eclipse.basyx.aas.heattunnel

local: true

identification:

idType: Custom

id: eclipse.basyx.submodel.pmml.regression.file

idShort: pmmlregressionfilesubmodel

kind: Instance

dataSpecification: []

modelType:

name: Submodel

embeddedDataSpecifications: []

submodelElements:

- parent:

keys:

- idType: Custom

type: Submodel

value: eclipse.basyx.submodel.pmml.regression.file

local: true

idShort: pmmlregressionfile

kind: Instance

modelType:

name: File

mimeType: application/pmml

value: ".. \\data\\output\\8_LinearRegressionModel.pmml"

Fig. 12. File-type submodel of regression model

5. CONCLUSION

This article presented the design and implementation of

integrating the PMML with AASs for interoperable

manufacturing intelligence. This study contributes to

integrate the two heterogeneous standards originated from the

data science and manufacturing domains. The AAS becomes

an essential technology for vertical and horizontal

integrations. In this regard, this study demonstrated the

feasibility and usability of AASs particularly for AAS-driven

model interoperability. This study also contributes to

automate data analytics and AAS modelling in a server-client

architecture.

However, the prototype was implemented for a single

machine. This limited implementation lacks in demonstrating

practicability in a full-scale shop floor. The prototype did not

include the automation of data acquisition due to the

unavailability of direct data access. Data acquisition needs to

be fully automated because it is time consuming and labour

9830 Seung-Jun Shin et al. / IFAC PapersOnLine 56-2 (2023) 9823–9830

intensive. This study only embodied the PMML into the

AAS. Because AASs can serve versatility and extensibility as

an information container, more languages and formats need

to be integrated with the AAS environment to improve

feasibility and practicability of AASs.

ACKNOWLEDGEMENT

This research was supported by the Ministry of SMEs and

Startups, Republic of Korea, under ‘Continuous Process

Manufacturing Standardization of Shared Data between

Facilities/Factories/Businesses in Characteristic Industries’ in

‘Smart Manufacturing Innovation R&D Program’ (RS-2022-

00140694). This work was also supported by Institute of

Information & Communications Technology Planning &

Evaluation (IITP) grant funded by the Korea government

(MSIT) (No.RS-2022-00155911, Artificial Intelligence

Convergence Innovation Human Resources Development

(Kyung Hee University)).

REFERENCES

Cavalieri, S., Mulé, S., Salafia, M.G. (2019) OPC UA-based

Asset Administration Shell. 45th Annual Conference of

the IEEE Industrial Electronics Society, 2982-2989,

Lisbon, Portugal.

Chilwant, N., Kulkarni, M.S. (2019) Open Asset

Administration Shell for industrial systems.

Manufacturing Letters, 20, 15–21.

Davis, J., Edgar, T., Porter, J., Bernaden, J., Sarli, M. (2012)

Smart manufacturing, manufacturing intelligence and

demand-dynamic performance. Computers and Chemical

Engineering, 47, 145– 156.

Grangel-González, I., Halilaj, L., Coskun, G., Auer, S.,

Collarana, D., Hoffmeister, M. (2016) Towards a

semantic administrative shell for Industry 4.0

components. IEEE 10th International Conference on

Semantic Computing, 230-237, Laguna Hills, U.S.A.

Guazzelli, A., Zeller, M., Lin, W.C., Williams., G. (2009)

PMML: An open standard for sharing models. The R

Journal, 1(2), 60-65.

Lechevalier, D., Narayanan, A., Rachuri, S., Foufou, S.

(2018) A methodology for the semi-automatic generation

of analytical models in manufacturing. Computers in

Industry, 95, 54–67.

Marcon, P., Diedrich, C., Zezulka, F., Schröder, T., Belyaev,

A., Arm, J., Benesl, T., Bradac, Z., Vesely., I. (2018)

The asset administration shell of operator in the platform

of Industry 4.0. 18th International Conference on

Mechatronics, Brno, Czech Republic.

Motsch, W., Sidorenko, A., David, A., Rübel, P., Wagner, A.,

Ruskowski, M. (2021) Electrical energy consumption

interface in modular skill-based production systems with

the Asset Administration Shell. Procedia Manufacturing,

55, 535–542.

Nannapaneni, S., Narayanan, A., Ak, R., Lechevalier, D.,

Sexton, T., Mahadevan, S., Lee, Y.T.T. (2018)

Predictive Model Markup Language (PMML)

representation of Bayesian networks: An application in

manufacturing. Smart and Sustainable Manufacturing

Systems, 2(1), 87-113.

O’Donovan, P., Bruton, K., O’Sullivan, D.T. (2016) Case

study: the implementation of a data-driven industrial

analytics methodology and platform for smart

manufacturing. International Journal of Prognostics and

Health Management, 7026.

O’Donovan, P., Gallagher, C., Bruton, K., O’Sullivan, D.T.J.

(2018) A fog computing industrial cyber-physical system

for embedded low-latency machine learning Industry 4.0

applications. Manufacturing Letters, 15, 139–142.

Park, J., Lechevalier, D., Ak, R., Ferguson, M., Law, K.H.,

Lee, Y.T.T., Rachuri, S. (2017) Gaussian process

regression representation in Predictive Model Markup

Language (PMML). Smart and Sustainable

Manufacturing Systems, 1(1), 121–141.

Park, K.T., Yang, J., Noh, S.D. (2020). VREDI: Virtual

representation for a digital twin application in a

work‑center‑level asset administration shell. Journal of

Intelligent Manufacturing, 32, 501-544.

Platform Industries 4.0. (2020) Details of the Asset

Administration Shell: Part 1 - The exchange of

information between partners in the value chain of

Industrie 4.0. Specification, version 3.0RC01.

Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D.,

Almeida., C.M.V.B. (2019) A comprehensive review of

big data analytics throughout product lifecycle to support

sustainable smart manufacturing: A framework,

challenges and future research directions. Journal of

Cleaner Production, 210, 1343-1365.

Sakurada, L., Leitao, P., De la Prieta, F. (2022) Agent-based

asset administration shell approach for digitizing

industrial assets. IFAC PapersOnLine, 55(2), 193–198.

Shin, S.J. (2021) An OPC UA-compliant interface of data

analytics models for interoperable manufacturing

intelligence. IEEE Transactions on Industrial

Informatics, 17(5), 3588-3598.

Sierla, S., Azangoo, M., Rainio, K., Papakonstantinou, N.,

Fay, A., Honkamaa, P., Vyatkin, V. (2022) Roadmap to

semi-automatic generation of digital twins for brownfield

process plants. Journal of Industrial Information

Integration, 27, 1050282.

Tantik, E., Anderl, R. (2017) Integrated data model and

structure for the asset administration shell in Industrie

4.0. Procedia CIRP, 60, 86–91.

Wagner, C., Grothoff, J., Epple, U., Drath, R., Malakuti, S.,

Grüner, S., Hoffmeister, M., Zimermann, P. (2017) The

role of the Industry 4.0 asset administration shell and the

digital twin during the life cycle of a plant. 22nd IEEE

International Conference on Emerging Technologies and

Factory Automation, Limassol, Cyprus.

Wenger, M., Zoitl, A., Müller, T. (2018) Connecting PLCs

with their Asset Administration Shell for automatic

device configuration. IEEE 16th International

Conference on Industrial Informatics, 74-79, Porto,

Portugal.

Ye, X., Hong, S.H. (2019) Toward Industry 4.0 components:

Insights into and implementation of Asset

Administration Shells. IEEE Industrial Electronics

Magazine, 13(1), 13-25.

