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Abstract: This paper presents an efficient and compact Matlab code for 2D and 3D topology optimiza-
tion of multi-materials. We extend a classical 88-line-based educational code to the multi-material
problem using the mapping-based interpolation function, with which each material is modeled
equally and can obtain a clear 0, 1 result for each material of the optimized structures that can be man-
ufactured easily. A solution of topology optimization of multi-materials with minimum compliance
under volume constraints is documented, including the details of the optimization model, filtering,
projection, and sensitivity analysis procedures. Several numerical examples are also conducted to
demonstrate the effectiveness of the code, and the influence of the parameter on the optimized results
is also analyzed. Complete 2D and 3D Matlab codes are provided.

Keywords: topology optimization; multi-materials; a mapping-based interpolation function; Matlab

1. Introduction

Topology optimization of multi-materials is an extension of single-material-based
topology optimization and can be used in the structural optimization of components,
modules, and also mechanical systems, which has become a hot topic in recent years [1,2].
The challenge of topology optimization of multi-materials is exploring the appropriate
mathematical formulation of the interpolation function and the optimization model, which
enable each material in the design domain to be completely covered without overlapping,
thus being easily manufactured [3–6].

The density-based method is one of the widely used methods for topology opti-
mization of multi-materials, which extends Solid Isotropic Material with Penalization
(SIMP), Discrete Material Optimization (DMO), and other interpolation schemes for single
materials [7,8]. Sigmund and Torquato [9] first extended the SIMP interpolation method to
the multi-material problem and obtained microstructures with extreme thermal expansion.
Hvejsel and Lund [10] presented two multi-material interpolation formats that include an
arbitrary number of material phases based on the SIMP and Rational Approximation of
Material Properties (RAMP) methods [7]. In addition, Stegmann and Lund [11] proposed a
discrete material optimization method for the topology optimization of composite struc-
tures, which was first adopted for the topology optimization of multi-materials by Gao and
Zhang [12]. Bruyneel [13] proposed a shape function parameterization (SFP) method to
reduce the number of design variables in DMO. Zhang et al. [7] proposed a multi-material
formulation using the ground structure method (GSM) considering material nonlinearity
and further derived a ZPR update scheme for topology optimization of truss structures,
which is effective for handling multiple constraints of volume/mass. Both the SIMP- and
the DMO-based methods used multiple design variables to represent multi-materials, while
Yin and Ananthasuresh [14] proposed a peak function that used a linear combination of a
normal distribution function for the interpolation function, which only needs one design
variable for the topology optimization of multi-materials. Zuo and Saitou [15] proposed an
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ordered multi-material SIMP interpolation function that only used a single design variable,
and the corresponding Matlab code was given. As most of the conventional methods
have the problem of gray elements for the optimized structure, especially at the interface
between different materials, Yi [16] proposed a mapping-based interpolation function for
topology optimization of multi-materials to address these issues, which can obtain precise
0–1 results for each material.

Although many research results have been published for the topology optimization
of multi-materials, it is still difficult for new students and researchers to follow the work.
An example is the topology optimization of single materials, which was first introduced
by Bendsøe and Kikuchi [17] and has been widely used since the 99-line Matlab code was
published by Sigmund [18]. There have been many educational papers on single-material
topology optimization for different methods such as the SIMP method, the bi-directional
evolutionary structural optimization method (BESO), the level set method, the moving
morphable components (MMC) method, the homogenization method, and so on. For the
SIMP method, Andreassen et al. [19] presented a compact 88-line Matlab code based on the
99-line Matlab code, which improved the calculation speed through matrix operation and
also improved filtering strategies. Liu and Tovar [20] presented an efficient and compact
169-line Matlab code to solve three-dimensional topology optimization problems. Later,
Sigmund [21] presented new topology optimization Matlab codes for 2D and 3D minimum
compliance problems, consisting of 99 and 125 lines, respectively. For the BESO method,
Huang and Xie [22] gave a soft-kill BESO Matlab code that can be used to solve simple
2D stiffness optimization problems, which is developed based on the 99-line Matlab code.
For the level set method, Vivien and Challis [23] presented a 129-line Matlab code of the
level set method for topology optimization, which can be used for multiple load cases.
Wei et al. [24] presented an 88-line Matlab code for parameterized level set method-based
topology optimization using radial basis functions. For the MMC method, Zhang et al. [25]
proposed an ersatz material model and presented a 188-line Matlab code for a topology
optimization approach-based MMC framework. Du et al. [26] further extended it to 3D
and obtained an easy-to-extend 256-line Matlab code of the MMC method for the topology
optimization of 3D structures. For the homogenization method, Xia and Breitkopf [27]
presented a Matlab code for the topology optimization of materials with extreme properties
based on the 88-line Matlab code. Dong et al. [28] presented a 149-line Matlab code to solve
the topology optimization problem with the numerical homogenization method for 3D
cellular materials.

There are still more educational papers that we cannot review in this paper, and all
of these educational papers have significantly contributed to the development of topol-
ogy optimization [29]. However, there is little work in educational papers on topology
optimization of multi-materials, especially for 3D structures. Tavakoli and Mohseni [30]
combined the classical binary phase topology optimization algorithm and the block coordi-
nate descent algorithm and introduced a 115-line Matlab code for solving the multi-material
topology optimization problem. Sanders [31] adopted both the ZPR update scheme and
the DMO material interpolation scheme for the topology optimization of multi-materials
with compliance minimization under volume constraints and presented an educational
code named PolyMat by extending the educational code PolyTop. Gangl [32] proposed a
level set topology optimization algorithm for multi-materials. The evolution of the design
is guided by topological derivatives, which can effectively circumvent the problem of the
level set topology optimization method that requires the selection of a perforated initial
design. In addition, a Matlab code implementation of an academic multi-material topology
optimization problem is also given. However, these focused on 2D problems only, and they
are still complex for a new researcher to follow the work.

Hence, we extend the 88-line code for the topology optimization of multi-materials
by using the mapping-based interpolation function proposed by Yi [16] in this paper.
Implementation with 2D Matlab for the topology optimization of multi-materials with
minimum compliance under volume constraints is shown in detail, and compact and
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complete 2D and 3D Matlab codes are given in the Appendices A and B which will
contribute to educating about the topology optimization of multi-materials.

The remainder of this paper is organized as follows. In Section 2, the formulation
for topology optimization of multi-materials is described generally, including the filtering,
the projection, the mapping-based interpolation function, and the optimization model
procedures. A detailed implementation of 2D multi-material topology optimization with
Matlab code is presented in Section 3. Then, a number of examples are provided by
running the code, as shown in Section 4. An extension of the proposed method to the 3D
multi-material topology optimization problem and its numerical examples are presented
in Section 5. Finally, conclusions are drawn. Complete Matlab codes are given in the
Appendices A and B.

2. The Formulation of the Multi-Material Topology Optimization Problem
2.1. Design Variable

The formulation of the multi-material topology optimization problem based on the
mapping-based interpolation function is briefly introduced here for the completeness of
this paper. The design domain is usually discretized into finite elements, and each element
is assigned a density xe to determine the material distribution in the topology optimization
of continuum structures. Only one design variable is used for the single-material problem,
and it is easy to model the interpolation function. The design variable of single materials
can be expressed as x = [x1, x2, · · · xn−1, xn]

T , where n is the number of elements used to
discretize the design domain. While there are multiple materials that participate in the
structural design for multi-material topology optimization problems, the number of design
variables for multi-materials is equal to the number of materials multiplied by the number
of elements, which can be expressed as:

x =



x1
1 x1

2 · · · x1
NM−1 x1

NM

x2
1 x2

2 · · · x2
NM−1 x2

NM
...

xNE−1
1

xNE
1

...
xNE−1

2

xNE
2

· · ·
· · ·

...
xNE−1

NM−1

xNE
NM−1

...
xNE−1

NM

xNE
NM


(1)

where NE as the superscript of design variables denotes the number of finite elements and
NM as the subscript of design variables denotes the multiple materials.

2.2. Filtering and Projection

In order to resolve mesh-dependent and checker-board issues, a density filter is used
here [19], which is already provided in the 88-line code.

x̃e
i =

∑j∈Ne Hejx
j
i

∑j∈Ne Hej
(2)

where Ne is the neighborhood of an element xe
i , which is defined as Ne = {j : dist(e, j) ≤ R}.

R is the filter size. Hej is a weight factor, defined as Hej = max(0, R − dist(e, j)). x̃ is the
filtered density.

To avoid a gray element for the optimized structures and to ensure a 0–1 solution, the
tanh function-based projection function is used, which can be written as [33,34]:

x̃e
i =

tanh(βη) + tanh
(

β
(
x̃e

i − η
))

tanh(βη) + tanh(β(1 − η))
(3)

where parameter β is used to control the slope of the function; parameter η defines the
center of the smooth transition part of the function and is selected as 0.5 in this paper.
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2.3. The Mapping-Based Interpolation Function for Multi-Materials

The mapping-based interpolation function is formulated based on the ratio of the
p-norm to the 1-norm of the design variables, which was first proposed by Yi [16]. It is
simple and clear that the design variable assigned to each element can be directly used
as an indicator of whether the corresponding material appears. The Young’s moduli of
each material interpolated by the mapping-based interpolation function can be expressed
as follows:

E
(

x̃e
1, x̃e

2, · · · , x̃e
NM

)
= ∑NM

i=1 (ψi)
n(Ei − Evoid) + Evoid

ψi =
∥x̃e∥p−norm

∥x̃e∥1−norm + δ
x̃e

i (4)

∥x̃e∥p−norm = ((x̃e
1)

p + (x̃e
2)

p + · · ·+ (x̃e
NM)p)1/p

∥x̃e∥1−norm = x̃e
1 + x̃e

2 + · · ·+ x̃e
NM

where ψi is the interpolation function and δ is a very small value used to avoid the undefined
mathematical operation zero divided by zero. The larger the value of δ, the more it affects
the accuracy of the approximation. In application, it is set to be a small value δ = 1 × 10−9

to balance the accuracy and robustness. In addition, n is a penalization factor, which is
used to drive the design variable convergence to 0 or 1. Ei is Young’s modulus of the
ith material and Evoid is a very small value representing Young’s moduli of void regions.∥∥∥x̃e
∥∥∥

p−norm
and

∥∥∥x̃e
∥∥∥

1−norm
are the p-norm and the 1-norm of the projected design variables

x̃e
1(i = 1, · · · NM), respectively. The influence of the p-norm parameter p will be studied

in Section 5.2.
The volume or mass of the structure is often constrained in topology optimization.

Therefore, according to the mapping-based interpolation function, the volume or mass
constraint for each material can be obtained by the following formula:

Massi = ∑NE
e=1 x̃e

i (i = 1, · · · NM) (5)

2.4. Optimization Model

As usual, the topology optimization of multi-materials with compliance minimization
under volume or mass constraints for each material is considered in this paper, which can
be written in the following form:

min c = FTU

s.t. V(x̃)i ≤ V0
i , i = 1, · · · NM

K
(

x̃
)
U = F

x =



x1
1 x1

2
· · · x1

NM−1 x1
NM

x2
1 x2

2 · · · x2
NM−1 x2

NM
...

xNE−1
1

xNE
1

...
xNE−1

2

xNE
2

· · ·
· · ·

...
xNE−1

NM−1

xNE
NM−1

...
xNE−1

NM

xNE
NM


(6)

0 ≤ xmin ≤ x ≤ xmax ≤ 1

where c is the compliance; K, U, and F represent the stiffness matrix, the displacement, and
the force vectors, respectively. V

(
x̃
)

i(i = 1, · · · NM) is the volume of each material, and
V0

i (i = 1, · · · NM) is the allowed maximum volume of each material.
The optimization model is iteratively solved by using gradient-based optimization

methods such as the method of moving asymptotes (MMA) [35]. The derivations of the
sensitivities of the objective function and constraints are outlined in the next section.
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2.5. Sensitivity Analysis

The sensitivity of the objective function c with respect to the design variables x can be
obtained by the chain rule, which can be computed as follows:

∂c

∂xj
i

=
∂c
∂x̃e

i

∂x̃e
i

∂x̃e
i

∂x̃e
i

∂xj
i

(7)

where the derivative of the objective function c with respect to the projected design variable x̃ is:

∂c
∂x̃e

i
= −UT ∂K

∂x̃e
i
U

= −UT

(
∂

∂x̃e
i

(
NM

∑
i=1

(ψi)
n(Ei − Evoid) + Evoid

)
K0

)
U

= −UT
(

∑NM
i=1 n(ψi)

n−1 ∂ψi

∂x̃e
i
(Ei − Evoid)K0

)
U (8)

∂ψi

∂x̃e
i
=

((∑NM
j=1 (x̃e

j )
p)

1
p −1·(x̃e

i )
p + (∑NM

j=1 (x̃e
j )

p)
1
p )·(∑NM

j=1 x̃e
j + δ)− ((∑NM

j=1 (x̃e
j )

p)
1
p ·x̃e

i

(∑NM
j=1 x̃e

j + δ)2
(9)

Moreover, the sensitivity of the volume constraints with respect to the design variables
x can also be obtained by the chain rule as:

∂V
(

x̃
)

i

∂xj
i

=
∂V
(
x̃
)

i

∂x̃e
i

∂x̃e
i

∂x̃e
i

∂x̃e
i

∂xj
i

(10)

∂V
(

x̃
)

i

∂x̃e
i

= 1, (i = 1, · · · NM) (11)

In addition, the derivative of the projected density x̃e
i with respect to the intermediate

density x̃e
i is given by:

∂x̃
∂x̃

=
β(1 − tanh(β(x̃ − η)))2

tanh(βη) + tanh(β(1 − η))
(12)

The derivative of the filtered density x̃e
i with respect to the design variable xj

i is
calculated as:

∂x̃e
i

∂xj
i

=
Hej

∑j∈Ne Hej
(13)

3. Matlab Implementation

This section will detail the major modifications from the 88-line Matlab code [19] to 2D
multi-material topology optimization problems. Topology optimization of a half MBB beam
with three materials is used here to demonstrate the implementation with Matlab code,
and the complete 2D Matlab code is provided in Appendix A. The MMA method is imple-
mented with a MATLAB function (mmasub), which can be obtained by contacting Prof.
Krister Svanberg from KTH in Stockholm, Sweden (http://www.smoptit.se/ (accessed on
20 January 2023)).

3.1. Parameter Setting (Lines 1–10)

Lines 3–6 define the input parameters required by the program, where NumIter is the
maximum number of iterations of the algorithm. delta is a very small value used to avoid
the undefined mathematical operation zero divided by zero. nelx and nely are the numbers
of elements for the finite element method in the horizontal and vertical direction, respectively.
penal is the penalization factor, which is parameter n in Equation (4). rmin is the filter ra-

http://www.smoptit.se/
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dius, NMaterial is the number of materials, NDV is the total number of variables for multiple
materials of all the elements, and NDV3 is the number of elements for the finite element method.

Line 7 defines the input parameters required by the MMA algorithm and the projection
function. Movelimitis used to control the moving limit of the MMA algorithm. Beta is
the parameter that controls the slope of the projection function. Lines 8–10 define Young’s
modulus and Poisson’s ratio for the three materials.

3.2. Predefined (Lines 1–42)

The preparation of the finite element analysis and the filter is defined in lines 11–42 and
is the same as in the 88-line code. The design domain is assumed to be rectangular and
is discretized with square elements. The stiffness matrix lk of the four-node rectangular
element with unit Young’s modulus is computed by the code in lines 12–16. The node
number, the first-degree number of freedom, and the global degree number of freedom for
each element are organized in matrices nodenrs, edofvec, and edofMat, respectively, while
matrices ik and jk contain the rows and columns indices of nonzero entries in the global
stiffness matrix. Lines 22–42 are the preparation of the density filter, where the matrix H
contains the coefficients Hej and Hs are normalization constants.

3.3. Initialization (Lines 43–53)

loopbeta is a parameter related to the number of iterations, which is initialized to
0 in line 44 so as to adjust the threshold of the projection function according to the iteration
number. Design variables x are initially set equal to the prescribed volume fraction in line
45. The projected density x̃ corresponding to xPhys in line 49 is obtained by filtering and
projecting the design variables.

Lines 50–53 initialize some parameters required by the MMA algorithm. The setting
of a0, a, cc, and d is based on the mathematical model of this paper. Moreover, xmin and
xmax are the lower and the upper bounds for the variables in line 52, xold and xolder are
the design variable values of the former iterations, while low and upp are the lower and
upper values of the previous iteration in line 53.

3.4. Iterative Solution (Lines 54–137)

These lines are the process of iteratively solving the optimization model, which is the
critical part of the implementation. The finite element analysis, the computation of the
interpolation function, and the mass constraint for each material are carried out in lines
57–71, whereas the sparse global stiffness matrix is assembled in line 71, as shown in Box 1.
The formulation of each material ψi is stored in matrix post_x, and the constraints are
stored in matrix g.

Box 1. Finite element analysis code.

57 %% FE-ANALYSIS
58 [KE0] = lk; p=6;
59 for i=1:NMaterial
60 KE(:,:,i)=par.E(i)*KE0;
61 end
62 KE_test=zeros(64,nely*nelx); g=zeros(NMaterial,1);
63 r1=xPhys(:,:,1); r2=xPhys(:,:,2); r3=xPhys(:,:,3);
64 for j=1:NMaterial
65 post_x(1:nely,1:nelx,j)=(xPhys(:,:,j).*(r1.ˆp + r2.ˆp +

r3.ˆp ).ˆ(1/p))./(r1 + r2 + r3 + delta);
66 dr(1:nely,1:nelx,j)=(post_x(1:nely,1:nelx,j)).ˆpenal;
67 KE_test=reshape(KE(:,:,j),64,1)*reshape(dr(1:nely,1:nelx,j),1,nely*nelx)+KE_test;
68 g(j)=sum((sum(xPhys(:,:,j))’));
69 end
70 sK = reshape(KE_test,64*nelx*nely,1);
71 K = sparse(iK,jK,sK); K = (K+K’)/2;
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The boundary conditions and the load vector of the half MBB beam are defined in
lines 72–77. The objective function c is computed in lines 79–81, according to the global
stiffness matrix K and the load vector F. The sensitivities dc and dgdx_test of the objective
function and the volume constraints with respect to the projected density are computed in
lines 82–100, and then the sensitivities of the filtered and projected procedure are added in
lines 101–113, which are stored in dfdx and dgdx, as shown in Box 2.

Box 2. Sensitivity analysis code.

82 %% SENSITIVITY ANALYSIS
83 dc=zeros(nely,nelx,NMaterial);
84 dgdx_test=zeros(NMaterial,nely*nelx*NMaterial);
85 KES=reshape(sum(U(edofMat)*KE0.*U(edofMat),2),nely,nelx);
86 for n=1:NMaterial
87 for m=1:NMaterial
88 if m==n
89 dmdrn(1:nely,1:nelx,m)=penal.*post_x(1:nely,1:nelx,m).ˆ(penal - 1).*...
90 ((r1.ˆp + r2.ˆp + r3.ˆp).ˆ(1/p)./(r1 + r2 + r3 + delta) -

(xPhys(:,:,m).*(r1.ˆp + r2.ˆp + r3.ˆp).ˆ(1/p))./
(r1 + r2 + r3 + delta).ˆ2 + (xPhys(:,:,m).*xPhys(:,:,n).ˆ(p - 1).*
(r1.ˆp + r2.ˆp + r3.ˆp).ˆ(1/p - 1))./(r1 + r2 + r3 + delta));

91 mass_dmdrn=1;
92 else
93 dmdrn(1:nely,1:nelx,m)=penal.*post_x(1:nely,1:nelx,m).ˆ(penal - 1).*...
94 (((xPhys(:,:,m).*xPhys(:,:,n).ˆ(p - 1).*(r1.ˆp + r2.ˆp + r3.ˆp).

ˆ(1/p - 1))./(r1 + r2 + r3 + delta)- (xPhys(:,:,m).*(r1.ˆp +
r2.ˆp + r3.ˆp).ˆ(1/p))./(r1 + r2 + r3 + delta).ˆ2));

95 mass_dmdrn=0;
96 end
97 dgdx_test(m,1+(n-1)*NDV3:NDV3+NDV3*(n-1))=

repmat(mass_dmdrn,1,nelx*nely);
98 end
99 dc(:,:,n)=-dmdrn(:,:,1).*KES.*par.E(1)-dmdrn(:,:,2).

*KES.*par.E(2)-dmdrn(:,:,3).*KES.*par.E(3);
100 end
101 %% FILTERING/MODIFICATION OF SENSITIVITIES
102 filtereddc=[];dfdx=[];
103 for i=1:NMaterial
104 dxx = beta * (1-tanh(beta*(xTilde-0.5)).*tanh(beta*(xTilde-0.5)))/

(tanh(beta*0.5) + tanh(beta*(1-0.5)));
105 [filtereddc(:,:,i)] = H*(reshape(dc(:,:,i).

*dxx(:,:,i),NDV3,1)./Hs);
106 dfdx=[dfdx;filtereddc(:,:,i)];
107 g(i)=(g(i)/NDV3-0.5/3)*1;
108 dgdx1=(dgdx_test(i,:)/NDV3)*1;
109 for j=0:NMaterial-1
110 dgdx2=reshape(dgdx1(:,1+j*NDV3:NDV3+j*NDV3),nely,nelx);
111 dgdx(i,1+j*NDV3:NDV3+j*NDV3) =

H*(reshape(dgdx2(:,:).*dxx(:,:,i),NDV3,1)./Hs);
112 end
113 end

The objective function and its sensitivity are scaled to balance the objective and
constraints in line 115 if needed, and the movement limits of the MMA algorithm are
updated in lines 116–118. The MMA optimization is conducted in lines 119–123, and the
intermediate results are displayed in line 125. Parameters are updated in lines 127–136 for the
next iteration. The projection function threshold beta can be directly changed to a larger
value or be gradually increased from a small value. The influence of the two methods will
be discussed later. We start with beta = 1 and double its value after 50 iterations here.
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3.5. Image Display (Lines 138–145)

The final design is displayed in lines 139–144, and the optimized structures with
multiple materials are shown in different colors. Finally, the result is saved in line 145, as
shown in Box 3.

Box 3. Image Display code.

138 %% PLOT DENSITIES
139 xx=post_x(:,:,1);
140 for i=2:NMaterial
141 xx=xx+i*post_x(:,:,i);
142 end
143 imagesc(xx); axis equal; axis off;colorbar; hold on;
144 plot([0 nelx nelx 0 0]+0.5,[0 0 nely nely 0]+0.5, ‘k’);axis([-1 nelx+1 -1 nely+1])
145 saveas(figure(1), ‘result.png’);

3.6. Visualization of the Optimization Procedure

To demonstrate the usability of the code, Figure 1 shows the final design result as well
as the iteration details by calling the code in Appendix A. It can be found that the algorithm
can converge stably and quickly to a clear result.
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Figure 1. The iteration details of the half MBB beam with three materials.

To obtain the results of these intermediate optimization procedures, the code in Box 4
should be inserted after line 132 of the code in Appendix A. The code divides the figure
into four sections, with the first three sections showing the density distributions for each of
the three materials and the last section showing the results of the current optimized layout
of multi-materials.
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Box 4. Current image Display code.

%% PLOT CURRENT DENSIGN
figure(1);
subplot(2,2,1); imagesc(post_x(:,:,1)); axis equal; colorbar; hold on;
title(‘Material 1’)
subplot(2,2,2); imagesc(post_x(:,:,2)); axis equal; colorbar; hold
on;title(‘Material 2’)
subplot(2,2,3); imagesc(post_x(:,:,3)); axis equal; colorbar;hold
on;title(‘Material 3’)
subplot(2,2,4); xx=post_x(:,:,1);
for i=2:NMaterial
xx=xx+i*post_x(:,:,i);
end
imagesc(2.5); imagesc(xx); axis equal; colorbar; hold on; title(‘Material Index’)

4. Numerical Examples

Several numerical examples of the minimum compliance problem are used to illustrate
the running results of the Matlab code. The parameters of the above method will affect
the final solution similar to conventional methods for topology optimization of continuum
structure, and the effect of the parameters is also discussed in this section. The following
cases are conducted by using Matlab R2018a on a desktop computer with an Intel CPU
2.8 GHz and 8.0 GB of RAM (Manufacturer: HP, Beijing, China).

4.1. Example 1: The Number of Materials

The half MMB beam is taken as an example for the topology optimization of a contin-
uum structure with two, three, and five materials, respectively. The design domain and
boundary conditions of the half MBB beam are shown in Figure 2. A load F = −1 is applied
at the left upper side of the design domain, and it is simply supported at the bottom corners.
The design domain is discretized with 200 × 100 regular elements with Poisson’s ratio
µ = 0.3. The initial density of each material is set to 0.5.
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Figure 2. The design domain and boundary conditions of the half MBB beam.

The maximum number of iterations is set as NumIter = 300, the penalty factor is set
as penal = 3, the filter radius is set as rmin = 5, and the P-norm parameter p is set as p = 6.
The parameter for the projection function starts with beta = 1 and doubles its value after
50 iterations. The volume constraints of two, three, and five materials are set to 0.5/2, 0.5/3,
and 0.5/5 for each material, respectively. The Young’s modulus of each material for the
three cases is set as follows:

Case 1: two materials par.E(1) = 1; par.E(2) = 5;
Case 2: three materials par.E(1) = 1; par.E(2) = 2; par.E(3) = 5;
Case 3: five materials par.E(1) = 1; par.E(2) = 2; par.E(3) = 3; par.E(4) = 4; par.E(5) = 5;
Figure 3 shows the optimized structure and the converged history for topology op-

timization of different numbers of materials. It can be seen that the code can effectively
realize the topology optimization design of multiple materials and obtain clear boundaries
for each material. It can be found that the convergence history of the compliance varies
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little with the number of materials used for optimization, and they converge rapidly in the
first 50 iterations. The material volumes also converge rapidly with about 10 iterations. The
compliances of the optimized structures for all the cases are almost comparable, and the
one with five materials is better than the others, which means that the appropriate layout
of multiple materials can improve the stiffness of the optimized structure.
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Figure 3. The optimized structure and converge history for topology optimization of different
numbers of materials. (a) For two materials, the compliance is 0.249, where cyan and yellow are
the materials with E = 1 and E = 5, respectively. (b) For three materials, the compliance is 0.268,
where blue, green, and yellow are the materials with E = 1, E = 2, and E = 5, respectively. (c) For five
materials, the compliance is 0.242, where blue, cyan, green, orange, and yellow are the materials with
E = 1, E = 2, E = 3, E = 4, and E = 5, respectively.

4.2. Example 2: Different Values of Parameter p for the P-Norm

In order to show the influence of the parameter p on the interpolation function of
Young’s modulus, a diagram of the interpolated Young’s modulus E

(
x̃e

1, x̃e
2, · · · , x̃e

NM

)
as a function of parameter p is shown in Figure 4. Here it is assumed that NM = 2. The
Young’s modulus of each material is set as E1 = 1, E2 = 5, with penalty factor n = 3. It can
be found that it cannot work well when parameter p is small. As parameter p increases,
the interpolated Young’s modulus decreases rapidly at the correct part with both design
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variables equal to 1. Hence, it will drive the optimization model convergence to a clear
result of material 1 and material 2 to be voids or solids.
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To further explore the effect of parameter p on the optimization results, the topology
optimization of three materials with the half MMB beam using different P-norm values is
also studied. The values of parameter p are set as follows:

Case 1: p = 1;
Case 2: p = 6;
Case 3: p = 18;
Case 4: p = 32;
The Young’s modulus of each material is set as par.E(1) = 1; par.E(2) = 2; par.E(3) = 5.

The volume constraint is set to 0.5/3 for each material, and other parameters are the same
as those in Section 4.1. The optimized structures are shown in Figure 5. It can be found
that there are mixed materials at the boundary of the optimized structure when p = 1
because that p-norm function cannot approximate the maximum of the design variable
of Equation (4). By increasing the value of parameter p, the boundary of each material
becomes clear for the optimized structure, and the compliance of the optimized structures
is comparable. However, it will influence the stability of the optimizer with a very large
value of parameter p. Therefore, we choose p = 6 in the following examples to balance the
structural stiffness and the stability of the optimizer [29].
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5. Extension to 3D

The Matlab implementation described in Section 3 is remarkably easy to extend to 3D
problems, which can be found in Appendix B.

5.1. 3D Matlab Implementation

The 3D Matlab implementation is verified using a cantilever beam example here. The
boundary conditions and loading conditions for the cantilever beam are shown in Figure 4,
and the corresponding Matlab code is defined in lines 11–24. A notable modification
compared to the 2D Matlab code is the change in the discrete unit element from four-
node rectangle elements to eight-node cubic elements. The element stiffness matrix lk is
organized in lines 25–40, and the matrix edofMate containing the node IDs for each element
is obtained in lines 41–44. The iterative details for the three-material cantilever beam can
be obtained by calling the code in lines 157–163. The final design is displayed based on
the code top3d.m proposed by Liu [20] in lines 164–200, and the optimized structures with
multiple materials are shown in different colors.

5.2. 3D Numerical Examples
5.2.1. Example 1: The Number of Materials

The cantilever beam is taken as an example for the topology optimization of a 3D
continuum structure with two, three, and five materials, respectively. The design domain
and boundary conditions of the 3D cantilever beam are shown in Figure 6. The left part of
the design domain is fixed, and a distributed load F = −1 is applied at the lower right edge.
The design domain is discretized into 80 × 40 × 20 cubic elements with Poisson’s ratio
µ = 0.3. The initial density of each material is set to 0.5. All other parameters are the same
as those in Section 4.1.
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Figure 6. The design domain and boundary conditions of the 3D cantilever beam.

The optimized structure and the converged history for topology optimization of
different numbers of materials are shown in Figure 7. It can be found that the convergence
histories of the compliance are very similar under different numbers of materials, and
they converge rapidly in the first 50 iterations, which is similar to the 2D structures. The
compliances of the optimized structure with two materials and the optimized structure with
three materials are almost comparable, and the structure with five materials has a smaller
compliance value. This is a strong demonstration of the advantages of multiple materials
in increasing the stiffness of optimized structures from a three-dimensional perspective.
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Figure 7. The optimized structure and converge history for topology optimization of multi-materials
with 3D cantilever beam. (a) For two materials, the compliance is 432.94, where red and blue are
materials with E = 1 and E = 5, respectively. (b) For three materials, the compliance is 433.05, where
red, blue, and green are materials with E = 1, E = 2, and E = 5, respectively. (c) For five materials, the
compliance is 400.24, where red, blue, cyan, yellow, and green are materials with E = 1, E = 2, E = 3,
E = 4, and E = 5, respectively.

5.2.2. Example 2: Different Filter Radii

The topology optimization of the cantilever beam with three materials is taken to test
the performance of the code by considering different filter radii to further illustrate the
performance of the 3D Matlab code. The filter radii are set as follows:
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Case 1: rmin = 2
Case 2: rmin = 5
Case 3: rmin = 8
The Young’s moduli are set as par.E(1) = 1; par.E(2) = 2; par.E(3) = 5. The volume

constraint is set to 0.5/3 for each material. Other parameters are the same as those in
Section 5.2.1. The optimized structures are shown in Figure 8. The results show that
the code performs well for feature size control of the optimized structure for topology
optimization. Similarly, the topology and the objective function of the optimized structures
are changed at different filter radii. As the filter radius is reduced, the advantage of multi-
materials is fully utilized with smaller compliance values so that small features can be
constructed to get a better local minimum.
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6. Conclusions

In this paper, simple and efficient 2D and 3D Matlab codes are proposed simultane-
ously to reduce the barrier of the implementation of multi-material topology optimization.
Multi-material topology optimization with the map-based interpolation function pro-
posed by Yi [16] et al. is implemented. The density filter is used to resolve the issues of
mesh-dependent and checker-board problems. The projection function is used to ensure a
0–1 solution. The MMA algorithm is used to solve the minimum compliance problem under
volume constraints. The algorithm is an extension of the 88-line code for the SIMP-based
topology optimization of single materials, and we hope it can provide an educational
instrument for newcomers to the field of multi-material topology optimization. Numer-
ical examples of 2D structures with different materials and P-norm parameter p and 3D
structures with different materials and filter radii are given to prove the effectiveness of
the code.
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Abbreviations

The following abbreviations are used in this manuscript:

SIMP Solid Isotropic Material with Penalization
DMO Discrete Material Optimization
RAMP Rational Approximation of Material Properties
SFP Shape Function Parameterization
GSM Ground Structure Method

Appendix A. Multimaterial2d.m

1 %% LOOP PARAMETERS
2 clear;
3 NumIter = 300;delta=1e-9;
4 nelx=200; nely=100;
5 penal=3; rmin=5; NMaterial=3;
6 NCON=NMaterial; NDV=nelx*nely*NMaterial; NDV3=nelx*nely;
7 movelimit=0.1; beta = 1;
8 %% MATERIAL PROPERTIES
9 par.E(1)=1; par.E(2)=2; par.E(3)=5;
10 nu = 0.3;
11 %% PREPARE FINITE ELEMENT ANALYSIS
12 A11 = [12 3 -6 -3; 3 12 3 0; -6 3 12 -3; -3 0 -3 12];
13 A12 = [-6 -3 0 3; -3 -6 -3 -6; 0 -3 -6 3; 3 -6 3 -6];
14 B11 = [-4 3 -2 9; 3 -4 -9 4; -2 -9 -4 -3; 9 4 -3 -4];
15 B12 = [ 2 -3 4 -9; -3 2 9 -2; 4 9 2 3; -9 -2 3 2];
16 lk = 1/(1-nuˆ2)/24*([A11 A12;A12’ A11]+nu*[B11 B12;B12’ B11]);
17 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
18 edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
19 edofMat = repmat(edofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nelx*nely,1);
20 iK = reshape(kron(edofMat,ones(8,1))’,64*nelx*nely,1);
21 jK = reshape(kron(edofMat,ones(1,8))’,64*nelx*nely,1);
22 %% PREPARE FILTER
23 iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)ˆ2,1);
24 jH = ones(size(iH));
25 sH = zeros(size(iH));
26 k = 0;
27 for i1 = 1:nelx
28 for j1 = 1:nely
29 e1 = (i1-1)*nely+j1;
30 for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
31 for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
32 e2 = (i2-1)*nely+j2;
33 k = k+1;
34 iH(k) = e1;
35 jH(k) = e2;
36 sH(k) = max(0,rmin-sqrt((i1-i2)ˆ2+(j1-j2)ˆ2));
37 end
38 end
39 end
40 end
41 H = sparse(iH,jH,sH);
42 Hs = sum(H,2);
43 %% INITIALIZE ITERATION
44 loopbeta=0;
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45 x=ones(NDV,1)*0.5;
46 for i=0:NMaterial-1
47 xTilde(1:nely,1:nelx,i+1)=reshape(x(1+i*NDV3:NDV3+i*NDV3),nely,nelx);
48 end
49 xPhys = (tanh(beta*0.5) + tanh(beta*(xTilde-0.5)))/(tanh(beta*0.5) + tanh(beta*(1-0.5)));
50 %% MMA PARAMETER INITIALIZE
51 a0=0; a=zeros(NCON,1);cc=1.0e6*ones(NCON,1); d=0*ones(NCON,1);
52 xmin=1e-3*ones(NDV,1); xmax=1*ones(NDV,1);
53 xold=x; xolder=xold;low=0; upp=1;
54 %% START ITERATION
55 for iter=1:NumIter
56 loopbeta=loopbeta+1;
57 %% FE-ANALYSIS
58 [KE0] = lk; p=6;
59 for i=1:NMaterial
60 KE(:,:,i)=par.E(i)*KE0;
61 end
62 KE_test=zeros(64,nely*nelx); g=zeros(NMaterial,1);
63 r1=xPhys(:,:,1); r2=xPhys(:,:,2); r3=xPhys(:,:,3);
64 for j=1:NMaterial
65 post_x(1:nely,1:nelx,j)=(xPhys(:,:,j).*(r1.ˆp + r2.ˆp + r3.ˆp ).ˆ(1/p))./(r1 + r2 + r3 + delta);
66 dr(1:nely,1:nelx,j)=(post_x(1:nely,1:nelx,j)).ˆpenal;
67 KE_test=reshape(KE(:,:,j),64,1)*reshape(dr(1:nely,1:nelx,j),1,nely*nelx)+KE_test;
68 g(j)=sum((sum(xPhys(:,:,j))’));
69 end
70 sK = reshape(KE_test,64*nelx*nely,1);
71 K = sparse(iK,jK,sK); K = (K+K’)/2;
72 %% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
73 F = sparse(2*(nely+1)*(nelx+1),1); U = zeros(2*(nely+1)*(nelx+1),1);
74 F(2,1) = -0.1;
75 fixeddofs = union([1:2:2*(nely+1)],[2*(nelx+1)*(nely+1)]);
76 alldofs = [1:2*(nely+1)*(nelx+1)];
77 freedofs = setdiff(alldofs,fixeddofs);
78 %% SOLVING
79 U(freedofs,:) = K(freedofs,freedofs)\F(freedofs,:);
80 U(fixeddofs,:)= 0;
81 c=F’*U;
82 %% SENSITIVITY ANALYSIS
83 dc=zeros(nely,nelx,NMaterial);
84 dgdx_test=zeros(NMaterial,nely*nelx*NMaterial);
85 KES=reshape(sum(U(edofMat)*KE0.*U(edofMat),2),nely,nelx);
86 for n=1:NMaterial
87 for m=1:NMaterial
88 if m==n
89 dmdrn(1:nely,1:nelx,m)=penal.*post_x(1:nely,1:nelx,m).ˆ(penal -1).*...
90 ((r1.ˆp + r2.ˆp + r3.ˆp).ˆ(1/p)./(r1 + r2 + r3 + delta) -(xPhys(:,:,m).*

(r1.ˆp + r2.ˆp + r3.ˆp).ˆ(1/p))./(r1 + r2 + r3 + delta).ˆ2 +
(xPhys(:,:,m).*xPhys(:,:,n).ˆ(p -1).*(r1.ˆp + r2.ˆp + r3.ˆp).
ˆ(1/p -1))./(r1 + r2 + r3 + delta));

91 mass_dmdrn=1;
92 else
93 dmdrn(1:nely,1:nelx,m)=penal.*post_x(1:nely,1:nelx,m).ˆ(penal -1).*...
94 (((xPhys(:,:,m).*xPhys(:,:,n).ˆ(p -1).*(r1.ˆp + r2.ˆp + r3.ˆp).

ˆ(1/p -1))./(r1 + r2 + r3 + delta)- (xPhys(:,:,m).*(r1.ˆp + r2.ˆp + r3.ˆp).
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ˆ(1/p))./(r1 + r2 + r3 + delta).ˆ2));
95 mass_dmdrn=0;
96 end
97 dgdx_test(m,1+(n-1)*NDV3:NDV3+NDV3*(n-1))=repmat(mass_dmdrn,1,nelx*nely);
98 end
99 dc(:,:,n)=-dmdrn(:,:,1).*KES.*par.E(1)-dmdrn(:,:,2).*KES.*par.E(2)-dmdrn(:,:,3).*KES.*par.E(3);
100 end
101 %% FILTERING/MODIFICATION OF SENSITIVITIES
102 filtereddc=[];dfdx=[];
103 for i=1:NMaterial
104 dxx = beta* (1-tanh(beta*(xTilde-0.5)).*tanh(beta*(xTilde-0.5)))/

(tanh(beta*0.5) + tanh(beta*(1-0.5)));
105 [filtereddc(:,:,i)] = H*(reshape(dc(:,:,i).*dxx(:,:,i),NDV3,1)./Hs);
106 dfdx=[dfdx;filtereddc(:,:,i)];
107 g(i)=(g(i)/NDV3-0.5/3)*1;
108 dgdx1=(dgdx_test(i,:)/NDV3)*1;
109 for j=0:NMaterial-1
110 dgdx2=reshape(dgdx1(:,1+j*NDV3:NDV3+j*NDV3),nely,nelx);
111 dgdx(i,1+j*NDV3:NDV3+j*NDV3) = H*(reshape(dgdx2(:,:).*dxx(:,:,i),NDV3,1)./Hs);
112 end
113 end
114 %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
115 f=c*1e2; dfdx=dfdx*1e2; cons(iter,1)=g(1);cons(iter,2)=g(2);cons(iter,3)=g(3);
116 for j=1:length(x)
117 xmin(j)=max(1e-3,x(j)-movelimit); xmax(j)=min(1,x(j)+movelimit);
118 end
119 %% MMA OPTIZATION
120 [xnew, y, z, lamda, ksi, eta, mu, zeta, s, low, upp] = ...
121 mmasub(NCON,length(x), iter, ...
122 x, xmin, xmax, xold, xolder, ...
123 f, (dfdx), g, dgdx, low, upp, a0, a, cc, d);
124 %% PRINT RESULTS
125 disp(sprintf(‘Iter.:%3d Obj.: %8.4e max constraint: %6.3e’, iter, f,max(g)))
126 %% UPDATE PARAMETER
127 change=norm(abs(xnew-x));
128 xolder=xold; xold=x; x = xnew;
129 for i=0:NMaterial-1
130 xTilde(1:nely,1:nelx,i+1) = reshape((H*xnew(1+i*NDV3:NDV3+i*NDV3,:))./Hs,nely,nelx);
131 end
132 xPhys = (tanh(beta*0.5) + tanh(beta*(xTilde-0.5)))/(tanh(beta*0.5) + tanh(beta*(1-0.5)));
133 if beta < 100 && (loopbeta >= 50)
134 beta = 2*beta;loopbeta = 0;
135 fprintf(‘Parameter beta increased to %g.\n’,beta);
136 end
137 end
138 %% PLOT DENSITIES
139 xx=post_x(:,:,1);
140 for i=2:NMaterial
141 xx=xx+i*post_x(:,:,i);
142 end
143 imagesc(xx); axis equal; axis off;colorbar; hold on;
144 plot([0 nelx nelx 0 0]+0.5,[0 0 nely nely 0]+0.5,‘k’);axis([-1 nelx+1 -1 nely+1])
145 saveas(figure(1),‘result.png’);
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Appendix B. Multimaterial3d.m

1 %% LOOP PARAMETERS
2 clear;
3 NumIter = 300;delta=1e-9;
4 nelx=60; nely=30; nelz = 15;
5 penal=3; rmin=5; NMaterial=3;
6 NDV=nelx*nely*nelz*NMaterial; NDV3=nelx*nely*nelz;
7 movelimit=0.1; beta =1;
8 %% MATERIAL PROPERTIES
9 par.E(1)=1; par.E(2)=2; par.E(3)=5;
10 nu = 0.3;
11 %% USER-DEFINED LOAD DOFs
12 il = nelx; jl = 0; kl = 0:nelz;
13 loadnid = kl*(nelx+1)*(nely+1)+il*(nely+1)+(nely+1-jl);
14 loaddof = 3*loadnid(:) - 1;
15 %% USER-DEFINED SUPPORT FIXED DOFs
16 [jf,kf] = meshgrid(1:nely+1,1:nelz+1);
17 fixednid = (kf-1)*(nely+1)*(nelx+1)+jf;
18 fixeddofs = [3*fixednid(:); 3*fixednid(:)-1; 3*fixednid(:)-2];
19 %% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
20 nele = nelx*nely*nelz;
21 ndof=3*(nelx+1)*(nely+1)*(nelz+1);
22 F=sparse(loaddof,1,-1,ndof,1);
23 U=zeros(ndof,1);
24 freedofs=setdiff(1:ndof,fixeddofs);
25 %% PREPARE FINITE ELEMENT ANALYSIS
26 ke=1/(1+nu)/(2*nu-1)/144 *([-32;-6;-6;8;6;6;10;6;3;-4;-6;-3;-4;-3;-6;10;3;6;8;3;3;4;-3;-3;-32;-6;

-6;-4;-3;6;10;3;6;8;6;-3;-4;-6;-3;4;-3;3;8;3;...
27 3;10;6;-32;-6;-3;-4;-3;-3;4;-3;-6;-4;6;6;8;6;3;10;3;3;8;3;6;10;-32;6;6; -4;6;3;10;-6;-3;10;

-3;-6;-4;3;6;4;3;3;8;-3;-3;-32;-6;-6;8;6;-6;10;3;3;4;...
28 -3;3;-4;-6;-3;10;6;-3;8;3;-32;3;-6;-4;3;-3;4;-6;3;10;-6;6;8;-3;6;10;-3;3;8;-32;-6;6;8;6;-6;8;

3;-3;4;-3;3;-4;-3;6;10;3;-6;-32;6;-6;-4;3;3;8;-3;...
29 3;10;-6;-3;-4;6;-3;4;3;-32;6;3;-4;-3;-3;8;-3;-6;10;-6;-6;8;-6;-3;10;-32;6;-6;4;3;-3;8;-3;3;

10;-3;6;-4;3;-6;-32;6;-3;10;-6;-3;8;-3;3;4;3;3;-4;6;...
30 -32;3;-6;10;3;-3;8;6;-3;10;6;-6;8;-32;-6;6;8;6;-6;10;6;-3;-4;-6;3;-32;6;-6;-4;3;6;10;-3;6;8;

-6;-32;6;3;-4;3;3;4;3;6;-4;-32;6;-6;-4;6;-3;10;-6;3;...
31 -32;6;-6;8;-6;-6;10;-3;-32;-3;6;-4;-3;3;4;-32;-6;-6;8;6;6;-32;-6;-6;-4; -3;-32;-6;-3;-4;-32;

6;6;-32;-6;-32]+nu*[48;0;0;0;-24;-24;-12;0;-12;0;...
32 24;0;0;0;24;-12;-12;0;-12;0;0;-12;12;12;48;0;24;0;0;0;-12;-12;-24;0;-24;0;0;24;12;-12;12;0;

-12;0;-12;-12;0;48;24;0;0;12;12;-12;0;24;0;-24;-24;0;...
33 0;-12;-12;0;0;-12;-12;0;-12;48;0;0;0;-24;0;-12;0;12;-12;12;0;0;0;-24; -12;-12;-12;-12;0;0;48;

0;24;0;-24;0;-12;-12;-12;-12;12;0;0;24;12;-12;0;...
34 0;-12;0;48;0;24;0;-12;12;-12;0;-12;-12;24;-24;0;12;0;-12;0;0;-12;48;0;0;0;-24;24;-12;0;0;-12;

12;-12;0;0;-24;-12;-12;0;48;0;24;0;0;0;-12;0;-12;...
35 -12;0;0;0;-24;12;-12;-12;48;-24;0;0;0;0;-12;12;0;-12;24;24;0;0;12;-12;48;0;0;-12;-12;12;-12;

0;0;-12;12;0;0;0;24;48;0;12;-12;0;0;-12;0;-12;-12;...
36 -12;0;0;-24;48;-12;0;-12;0;0;-12;0;12;-12;-24;24;0;48;0;0;0;-24;24;-12;0;12;0;24;0;48;0;24;0;

0;0;-12;12;-24;0;24;48;-24;0;0;-12;-12;-12;0;-24;...
37 0;48;0;0;0;-24;0;-12;0;-12;48;0;24;0;24;0;-12;12;48;0;-24;0;12;-12;-12;48;0;0;0;-24;-24;48;0;

24;0;0;48;24;0;0;48;0;0;48;0;48]);
38 lk(tril(ones(24))==1)=ke’;
39 lk = reshape(lk,24,24 );
40 lk =lk + lk’- diag( diag( lk ) );
41 Num_node = (1+nely)*(1+nelx)*(1+nelz);
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42 nodenrs = reshape(1:Num_node,1+nely,1+nelx,1+nelz);
43 edofVec = reshape(3*nodenrs(1:end-1,1:end-1,1:end-1)+1,nelx*nely*nelz,1);
44 edofMat = repmat(edofVec,1,24)+ repmat([0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -1 3*(nely+1)*(nelx+1)+

[0 1 2 3*nely + [3 4 5 0 1 2] -3 -2 -1]],nele,1);
45 iK = reshape(kron(edofMat,ones(24,1))’,24*24*nele,1);
46 jK = reshape(kron(edofMat,ones(1,24))’,24*24*nele,1);
47 %% PREPARE FILTER
48 iH = ones(nele*(2*(ceil(rmin)-1)+1)ˆ2,1);jH = ones(size(iH));sH = zeros(size(iH));
49 k = 0;
50 for k1 = 1:nelz
51 for i1 = 1:nelx
52 for j1 = 1:nely
53 e1 = (k1-1)*nelx*nely + (i1-1)*nely+j1;
54 for k2 = max(k1-(ceil(rmin)-1),1):min(k1+(ceil(rmin)-1),nelz)
55 for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
56 for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
57 e2 = (k2-1)*nelx*nely + (i2-1)*nely+j2;
58 k = k+1;
59 iH(k) = e1;
60 jH(k) = e2;
61 sH(k) = max(0,rmin-sqrt((i1-i2)ˆ2+(j1-j2)ˆ2+(k1-k2)ˆ2));
62 end
63 end
64 end
65 end
66 end
67 end
68 H = sparse(iH,jH,sH);
69 Hs = sum(H,2);
70 %% INITIALIZE ITERATION
71 loopbeta=0;
72 x=ones(NDV,1)*0.5;
73 for i=0:NMaterial-1
74 xTilde(1:nely,1:nelx,1:nelz,i+1)=reshape(x(1+i*NDV3:NDV3+i*NDV3),nely,nelx,nelz);
75 end
76 xPhys = (tanh(beta*0.5) + tanh(beta*(xTilde-0.5)))/(tanh(beta*0.5) + tanh(beta*(1-0.5)));
77 %% MMA PARAMETER INITIALIZE
78 a0=0; a=zeros(NMaterial,1);cc=1.0e6*ones(NMaterial,1); d=0*ones(NMaterial,1);
79 xmin=1e-3*ones(NDV,1); xmax=1*ones(NDV,1);
80 xold=x; xolder=xold;low=0; upp=1;
81 %% START ITERATION
82 for iter=1:NumIter
83 loopbeta=loopbeta+1;
84 %% FE-ANALYSIS
85 KE0=lk; p=6;
86 for i=1:NMaterial
87 KE(:,:,i)=par.E(i)*KE0;
88 end
89 KE_test=zeros(24*24,nely*nelx*nelz); g=zeros(NMaterial,1);
90 r1=xPhys(:,:,:,1); r2=xPhys(:,:,:,2); r3=xPhys(:,:,:,3);
91 for j=1:NMaterial
92 post_x(1:nely,1:nelx,1:nelz,j)=(xPhys(:,:,:,j).*(r1.ˆp + r2.ˆp + r3.ˆp ).ˆ(1/p))./

(r1 + r2 + r3+delta);
93 dr(1:nely,1:nelx,1:nelz,j)=(post_x(1:nely,1:nelx,1:nelz,j)).ˆpenal;
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94 KE_test=reshape(KE(:,:,j),24*24,1)*reshape(dr(:,:,:,j),1,nely*nelx*nelz)+KE_test;
95 g(j)=sum(sum(sum(xPhys(:,:,:,j))));
96 end
97 sK = reshape(KE_test,24*24*nelx*nely*nelz,1);
98 K = sparse(iK,jK,sK);
99 K = (K+K’)/2;
100 %% SOLVING
101 U(freedofs,:) = K(freedofs,freedofs)\F(freedofs,:);
102 U(fixeddofs,:)= 0;
103 c=F’*U;
104 %% COMPUTE SENSITIVITIES
105 dc=zeros(nely,nelx,nelz,NMaterial);
106 dgdx_test=zeros(NMaterial,nely*nelx*nelz*NMaterial);
107 KES=reshape(sum(U(edofMat)*KE0.*U(edofMat),2),[nely,nelx,nelz]);
108 for n=1:NMaterial
109 for m=1:NMaterial
110 if m==n
111 drmdn(1:nely,1:nelx,1:nelz,m)=penal.*post_x(1:nely,1:nelx,1:nelz,m).ˆ(penal -1).*...
112 ((r1.ˆp + r2.ˆp + r3.ˆp).ˆ(1/p)./(r1 + r2 + r3+delta) -

(xPhys(:,:,:,m).*(r1.ˆp + r2.ˆp + r3.ˆp).ˆ(1/p))./(r1 + r2 + r3+delta).ˆ2 +
(xPhys(:,:,:,m).*xPhys(:,:,:,n).ˆ(p - 1).*(r1.ˆp + r2.ˆp + r3.ˆp).
ˆ(1/p - 1))./(r1 + r2 + r3+delta));

113 mass_drmdn=1;
114 else
115 drmdn(1:nely,1:nelx,1:nelz,m)=penal.*post_x(1:nely,1:nelx,1:nelz,m).ˆ(penal - 1).*...
116 (((xPhys(:,:,:,m).*xPhys(:,:,:,n).ˆ(p - 1).*(r1.ˆp + r2.ˆp + r3.ˆp).ˆ(1/p - 1))./

(r1 + r2 + r3+delta)- (xPhys(:,:,:,m).*(r1.ˆp + r2.ˆp + r3.ˆp).ˆ(1/p))./
(r1 + r2 + r3+delta).ˆ2));

117 mass_drmdn=0;
118 end
119 dgdx_test(m,1+(n-1)*NDV3:NDV3+NDV3*(n-1))=repmat(mass_drmdn,1,nelx*nely*nelz);
120 end
121 dc(:,:,:,n)=-drmdn(:,:,:,1).*KES.*par.E(1)-drmdn(:,:,:,2).*KES.

*par.E(2)-drmdn(:,:,:,3).*KES.*par.E(3);
122 end
123 %% FILTERING/MODIFICATION OF SENSITIVITIES
124 filtereddc=[];dfdx=[];
125 for i=1:NMaterial
126 dxx = beta * (1-tanh(beta*(xTilde-0.5)).*tanh(beta*(xTilde-0.5)))/

(tanh(beta*0.5) + tanh(beta*(1-0.5)));
127 [filtereddc(:,:,:,i)]= H*(reshape(dc(:,:,:,i).*dxx(:,:,:,i),NDV3,1)./Hs);
128 dfdx=[dfdx;filtereddc(:,:,:,i)];
129 g(i)=(g(i)/NDV3-0.5/NMaterial)*1;
130 dgdx1=(dgdx_test(i,:)/NDV3)*1;
131 for j=0:NMaterial-1
132 dgdx2=reshape(dgdx1(:,1+j*NDV3:NDV3+j*NDV3),nely,nelx,nelz);
133 dgdx(i,1+j*NDV3:NDV3+j*NDV3)=H*(reshape(dgdx2(:,:,:).*dxx(:,:,:,i),NDV3,1)./Hs);
134 end
135 end
136 %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES
137 for j=1:length(x)
138 xmin(j)=max(1e-3,x(j)-movelimit); xmax(j)=min(1,x(j)+movelimit);
139 end
140 %% MMA OPTIZATION
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141 [xnew, y, z, lamda, ksi, eta, mu, zeta, s, low, upp] = ...
142 mmasub(NMaterial,length(x), iter, ...
143 x, xmin, xmax, xold, xolder, ...
144 c, (dfdx), g*1e4, dgdx*1e4, low, upp, a0, a, cc, d);
145 %% PRINT RESULTS
146 disp(sprintf(‘Iter.:%3d Obj.: %8.4e max constraint: %6.3e’, iter,c ,max(g)))
147 %% UPDATE PARAMETER
148 change=norm(abs(xnew-x));
149 xolder=xold; xold=x; x = xnew;
150 for i=0:NMaterial-1
151 xTilde(1:nely,1:nelx,1:nelz,i+1)= reshape((H*xnew(1+i*NDV3:NDV3+i*NDV3,:))./Hs,nely,nelx,nelz);
152 end
153 xPhys = (tanh(beta*0.5) + tanh(beta*(xTilde-0.5)))/(tanh(beta*0.5) + tanh(beta*(1-0.5)));
154 if beta < 100 && (loopbeta >= 50)
155 beta = 2*beta;loopbeta = 0;
156 end
157 %% PLOT CURRENT MULTI-MATERIAL DENSITIES
158 figure(1);
159 subplot(2,2,1); display_3D(post_x,1,NMaterial);axis equal; hold on;title(‘Material 1’)
160 subplot(2,2,2); display_3D(post_x,2,NMaterial);axis equal; hold on;title(‘Material 2’)
161 subplot(2,2,3); display_3D(post_x,3,NMaterial);axis equal; hold on;title(‘Material 3’)
162 subplot(2,2,4); display_3D(post_x,4,NMaterial);axis equal; hold on;title(‘Material Index’)
163 end
164 %% PLOT DENSITIES
165 close all;
166 display_3D(post_x, NMaterial+1,NMaterial);axis equal; hold on;
167 %% 3D TOPOLOGY DISPLAY FUNCTION
168 function display_3D(post_x,NMat,Tolnmaterial)
169 if NMat<Tolnmaterial+1
170 NM=NMat;Nn=NMat;
171 else
172 NM=NMat-1;Nn=1;
173 end
174 for Nm=Nn:NM
175 [nely,nelx,nelz] = size(post_x(:,:,:,Nm));
176 hx = 1; hy = 1; hz = 1;
177 face = [1 2 3 4; 2 6 7 3; 4 3 7 8; 1 5 8 4; 1 2 6 5; 5 6 7 8];
178 for k = 1:nelz
179 z = (k-1)*hz;
180 for i = 1:nelx
181 x = (i-1)*hx;
182 for j = 1:nely
183 y = nely*hy - (j-1)*hy;
184 if (post_x(j,i,k,Nm) >0.5)
185 vert = [x y z; x y-hx z; x+hx y-hx z; x+hx y z; x y z+hx;x y-hx z+hx;

x+hx y-hx z+hx;x+hx y z+hx];
186 vert(:,[2 3]) = vert(:,[3 2]); vert(:,2,:) = -vert(:,2,:);
187 if Nm==1
188 patch(‘Faces’,face,’Vertices’,vert,’FaceColor’,’r’);
189 elseif Nm==2
190 patch(‘Faces’,face,’Vertices’,vert,’FaceColor’,’b’);
191 elseif Nm==3
192 patch(‘Faces’,face,’Vertices’,vert,’FaceColor’,’g’);
193 end
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194 end
195 end
196 end
197 end
198 end
199 axis equal; axis tight; axis off; box on; view([-45,30]); hold on;
200 end
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