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Abstract
The increasing need for precise dietary monitoring across various health scenarios has led to innovations in wearable sensing 
technologies. However, continuously tracking food and fluid intake during daily activities can be complex. In this study, we present a 
machine-learning-powered smart neckband that features wireless connectivity and a comfortable, foldable design. Initially 
considered beneficial for managing conditions such as diabetes and obesity by facilitating dietary control, the device’s utility extends 
beyond these applications. It has proved to be valuable for sports enthusiasts, individuals focused on diet control, and general health 
monitoring. Its wireless connectivity, ergonomic design, and advanced classification capabilities offer a promising solution for 
overcoming the limitations of traditional dietary tracking methods, highlighting its potential in personalized healthcare and wellness 
strategies.
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Significance Statement

This research unveils a cutting-edge smart neckband, leveraging machine learning to facilitate comfortable, noninvasive, and real- 
time tracking of food and fluid consumption, a vital aspect in controlling chronic conditions, such as diabetes and obesity. In contrast 
to existing methodologies, our device precisely distinguishes between bodily movements, speech, and eating or drinking events, 
thereby greatly enhancing the precision of activity categorization, even amid simultaneous activities. Preliminary studies with hu-
man subjects validate its effectiveness, positioning it as a noteworthy improvement over current technologies. This innovation is a 
major leap forward in managing chronic diseases and holds the promise of mitigating related health complications on a global scale.
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Introduction
The escalating demand for meticulous dietary tracking under-
scores its significance in maintaining comprehensive health and 
wellness, especially within the spheres of sports nutrition and 
dietary control (1). This necessity distinctly contributes to ad-
vancements in wearable sensing technologies tailored for diverse 
health contexts. Our proof-of-concept tool offers a versatile solu-
tion for accurately tracking food and fluid intake, overcoming the 
limitations of traditional methods, such as self-journaling and 
meal photography, which are prone to inaccuracies due to poten-
tial over- or underreporting (2, 3). While the tool’s utility spans a 

wide range of applications, it is particularly beneficial for individ-

uals with diabetes or obesity. By providing a reliable means to 

monitor general food and fluid intake, it aids in the meticulous 

management of these conditions. For individuals with diabetes, 

precise tracking assists in optimizing insulin dosage and dietary 

adjustments, critical for blood sugar control (4). Similarly, for 

those dealing with obesity, it supports weight management strat-

egies by ensuring dietary intake aligns with nutritional goals. This 

approach not only facilitates personalized dietary strategies but 

also enhances disease management by enabling better adherence 

to recommended dietary practices.
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Recent advancements in wearable sensing technologies— 
equipped with cameras, microphones, piezoelectric sensors, radio 
frequency modules, and electrophysiological recording units— 
have made strides in continuously monitoring swallowing events 
(3, 5, 6). However, these systems face challenges in accuracy, prac-
ticality, and reliability, especially when differentiating between 
bodily movements, speech, and fluid and food intake (5, 7). 
Classifying food intake within dietary habits is further compli-
cated by factors such as muscle signals, movements, body activ-
ities, and environmental conditions present during both fluid 
and food consumption (3, 8, 9). These complexities significantly 
impact the accuracy of activity classification, particularly when 
the wearer is walking. Therefore, there is a continuing need for a 
solution that is reliable, noninvasive, comfortable, and capable 
of real-time tracking of food and fluid intake without user inter-
vention. This is crucial for better management of chronic condi-
tions, such as diabetes and obesity (10).

In this study, we introduce a machine learning (ML)-enabled 
smart neckband, ergonomically designed to comfortably wrap 
around the neck for continuous monitoring of food and fluid in-
take throughout daily activities. Engineered for precision, the 
smart neckband adeptly differentiates among body movements, 
speech, and fluid and food intake. Its internal sensor module is a 
custom assembly that harmoniously combines a surface electro-
myography (sEMG) sensor, a three-axis accelerometer, and a 
microphone. This configuration is optimized to capture muscle 

activation patterns in the thyrohyoid muscle of the neck, along 
with body movements and acoustic signals. Our device leverages 
a stretchable, twistable, breathable, mesh-structured textile 
neckband to minimize the common issue of skin delamination 
seen with small patch devices, offering enhanced user comfort. 
By avoiding adhesives for an adjustable hook-and-loop fastening 
system, we ensure a customizable, secure fit, thereby eliminating 
discomfort and the risk of detachment, making our solution su-
perior for continuous, reliable dietary monitoring and increasing 
user adherence to monitoring protocols. For data analytics, the 
smart neckband employs an advanced ML algorithm that 
combines a random forest (RF) classifier with the Label 
Powerset algorithm for optimal decision-making (11–14). Pilot 
studies involving human subjects confirmed its efficacy in con-
tinuous monitoring of food and fluid intake, achieving an impres-
sive accuracy rate of 96.04 ± 1.35% for individual activities and 
89.26 ± 0.77% for concurrent activities. Recent advancements in 
soft mechanoacoustic sensors and standalone stretchable device 
platforms are reflected in the integration of in-sensor adaptive 
ML, enhancing the accuracy and functionality of wearable tech-
nology for activity recognition. As demonstrated in the present 
work, our device achieves state-of-the-art accuracy for concur-
rent activities using an RF model (89.26%), with the sEMG, the ac-
celerometer, and the microphone sensors, pointing to future 
opportunities for further refinement and application in real-world 
monitoring systems (Table S1).

Results
Overall system design with enhanced user 
comfort
Figure 1A presents schematic representations of the smart neck-
band, ergonomically designed for continuous monitoring of food 
and fluid intake in both stationary and walking states. Its internal 
sensor module is constructed using a flexible printed circuit board 
(fPCB) combined with a total of 47 active and passive components, 
including: (i) an ultra-low noise microelectronic mechanical sys-
tem microphone (ICS-40720; TDK InvenSense) to offer a 70-dB 
signal-to-noise ratio (SNR); (ii) a three-axis digital accelerometer 
(BMI 160; Bosch) to provide motion measurements with a 
1,600 Hz sampling frequency, 16-bit resolution, 0–1,600 Hz band-
width, and a dynamic range of ±2g, where g represents the gravi-
tational acceleration of 9.8 m s−2; (iii) a custom-designed sEMG 
amplifier (INA333 and OPA2335; Texas Instruments), featuring 
a 10- to 400-Hz bandwidth and a gain of 5,000; (iv) a Bluetooth 
low-energy (BLE) system-on-chip (SoC; nRF52840; Nordic 
Semiconductor) for data acquisition from the accelerometer, 
sEMG amplifier, and microphone; (v) a rechargeable 150 mAh 
lithium-ion polymer battery (ASR00003; TinyCircuits; 20 mm ×  
20 mm × 5 mm) supported by a charging circuit (MCP73831T; 
Microchip Technology); (vi) a power management circuit 
equipped with a regulator (AP2112; Diodes Incorporated) to transit 
the battery output from 3.7 V to the essential 3.3 V for the sensor 
module components; and (vii) the conductive hydrogels for sEMG 
electrodes (RE-D, Electrode Store). Figure S1A displays the com-
plete layout of the fPCB schematic, along with a detailed block dia-
gram of the electronic subsystems depicted in Fig. S1B. This 
configuration enables wireless data transmission to a smartphone 
using BLE protocols, as demonstrated in Movie S1. It also offers 
>18 h of battery life before requiring a recharge, with an average 
current of 8.08 mA and a battery capacity of 150 mAh.

The internal sensor module of the smart neckband is set in 
a three-layer, precurved surface at 45°, and shielded by a soft, 

Fig. 1. Overall system design with enhanced user comfort. A) Schematic 
illustration of dietary intake classification via the smart neckband (left). 
The detailed view showcases a three-layer fPCB, including electronic 
components on three interconnected layers, serpentine interconnects, 
the neckband embedded between the first and second layers, and 
conductive hydrogels for sEMG measurements (right). B) The sensor 
module, positioned on the thyrohyoid muscle, features a 45° precurved 
design and soft, waterproof encapsulation. C) Images of the smart 
neckband being stretched (left) and twisted (right).
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waterproof elastomer, offering resistance to sweat, and enhanced 
skin comfort (Fig. 1B). A mesh textile neckband (58673V; Conair) is 
situated between the first and second layers of the fPCB (Fig. 1A). 
This is paired with a 10-cm adjustable hook-and-loop strap (VC2 
15; Strenco; Fig. S2A). This neckband is designed to fit a range of 
neck circumferences from 29.9 to 54.0 cm, allowing for a minimal 
stretch of <15% (15). With the ability to stretch and twist freely, 
the neckband offers improved comfort and ease of use (Fig. 1C). 
Commercial neckbands come in various mesh sizes, shapes, col-
ors, and materials, including acrylic, rayon, and polyester, cater-
ing to diverse neck sizes and textile preferences (Fig. S2B). The 
design, which combines the soft-packaged, precurved sensor 
module with the stretchable mesh textile neckband, aims to min-
imize the physical mismatch between the smart neckband and 
the skin, ensuring a comfortable fit (16, 17).

Mechanical characterizations
Shrinking the internal sensor module in overall size is essential for 
both precise data collection and user comfort, especially consider-
ing the anatomical limitations of the thyroid cartilage and the 
requirement for accurate placement over the thyrohyoid muscle 
(3, 8, 17). To achieve this, our design features three 20 mm ×  
20 mm “device islands” linked by four “serpentine interconnectors,” 

each with a width of about 200 µm and an arc angle of 270° (18, 19). 
This arrangement allows the device islands to fold (Fig. 2A, top 
panel). Electronic components are positioned on these islands for 
mechanical isolation upon folding (19). Finite-element analysis 
(FEA) results, shown in Fig. 2A (bottom panel), indicate that the 
folded, three-layer sensor module undergoes a principal strain 
not exceeding 3.5% in the folded areas. Movie S2 further illustrates 
the changes in principal strain as the device islands fold into this 
three-layer configuration.

Figure 2B highlights the 45° precurved surface of the sensor 
module, which is designed to reconcile the curvature discrepancy 
between the module and the natural contour of the neck. Given 
that neck circumferences can vary widely—from 29.9 to 54.0 cm 
(15)—a potential curvature gap of 26° to 47° may occur when 
aligning the sensor module with the skin. This gap could lead to 
bending stresses, resulting in user discomfort, the potential de-
lamination of the device, or even skin irritation due to excessive 
pressure (17). Figure S3 presents FEA results comparing sensor 
modules with 30°, 35°, 40°, and 45° precurved surfaces. When ap-
plied to skin curvatures of 26° and 47°, the 30° precurved design 
exhibited principal strains of 6.5 and 30.0%. In contrast, the 35° 
precurved design exhibited principal strains of 12.7 and 13.8%, 
the 40° precurved design showed strains of 13.4 and 7.6%, and 
the 45° precurved design exhibited strains of only 16.7 and 5.7%, 
respectively. Additional FEA data, provided in Movie S3, indicate 
that the sensor module, featuring a 45° precurved configuration, 
exhibited a von Mises stress of 14.2 MPa and a negligible principal 
strain of 0.2%. Therefore, the 45° precurved design more closely 
follows the natural curvature of the neck, effectively reducing 
the curvature gap and improving mechanical compatibility with 
the skin.

Figure 2C displays FEA results that illustrate the mechanical 
durability of the smart neckband under conditions of 60% stretch-
ing and simultaneous twisting. These conditions take into ac-
count both the up to 29% strain experienced by the skin during 
dynamic activities and its potential for up to 15% stretch to ac-
commodate variations in neck circumference (20). Movie S4
shows the real-time changes in strain throughout the FEA. 
Figure 2D presents the corresponding FEA results, which detail 
the maximum strain variations within the sensor module under 
these conditions. These findings indicate that the sensor module 
experiences <1% of the principal strain, highlighting its durability 
and appropriateness for practical use.

Figure 2E provides a visual representation of the mechanical 
assessments for the sensor modules in two distinct sizes, 20 ×  
20 mm2 and 20 × 40 mm2, when subjected to a 60% stretch. The 
results demonstrate that the compact sensor module has an 
elastic modulus of 393 kPa, roughly 50% less than the 590 kPa 
modulus of the larger one. Moreover, under identical stretching 
conditions, the smaller sensor module endured a stress of 
147 kPa. In contrast, the larger sensor module and the bare neck-
band recorded stresses of 158 and 72 kPa, respectively. Figure 2F 
illustrates that, when subjected to strains of up to 120%, the larger 
sensor module experienced a more significant increase in stress 
compared with the smaller one. These observations highlight 
the mechanical benefits and stress resilience of miniaturized sen-
sor modules, particularly in terms of stress alleviation within the 
smart neckband.

Comprehensive benchtop evaluations
To assess the performance of the smart neckband in practical 
uses, we conducted comprehensive benchtop tests evaluating 

Fig. 2. Mechanical characterizations. A) Image of the sensor module (top). 
FEA results show strain in interconnectors during folding (bottom). 
B) Image of the sensor module with a 45° precurved design (top). FEA 
results detail strain on the first layer of the fPCB in this configuration. C) 
FEA results highlight its mechanical durability under 60% stretching (top) 
and twisting (bottom). D) FEA data on maximum strain variations in the 
sensor module under 60% stretching and simultaneous twisting. 
E) Stress–strain curves for different sensor module sizes and the 
corresponding bare neckband, displaying mechanical moduli. F) Stress– 
strain curves for these sensor module sizes and the bare neckband, 
displaying fracture strain.
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its response to factors, such as vibration, saline solution exposure, 
skin contact pressure, temperature fluctuations, and skin irrita-
tion. We focused on the typical sub-2 Hz natural vibration fre-
quency of the human body while walking to analyze the signal 
characteristics from the sensor module under a 2-Hz vibration 
(8, 21). Figure 3A illustrates that the smaller sensor module 
(20 × 20 mm2) maintained a consistent vibration recording, in 
stark contrast to the larger module (20 × 40 mm2), which dis-
played irregular waveforms. These dynamics of the real-time vi-
bration tests are further illustrated in Movie S5. We noted the 
SNR of 32.77 dB for the smaller module, a figure substantially 
higher than the 15.87 dB recorded for the larger module. 
Figure 3B presents further insights from a fast Fourier transform 
(FFT) analysis, revealing a clear 2 Hz signal from the smaller mod-
ule compared with the substantial noise exhibited by the larger 
module. The variations in the mechanical resonance frequencies 
were also notable: around 30 Hz for the smaller module and 50 Hz 
for the larger module. These variations are attributable to the 
changes in physical properties as the overall size of the module in-
creases, including a weight increase of 87% from 12.03 to 22.52 g. 
This enlargement not only necessitates a greater amount of en-
capsulating polymer but also expands the module area, affecting 
its elastic modulus. These results underscore the benefits of redu-
cing the module’s size and weight to improve its sensitivity to bod-
ily vibrations.

To verify its resilience to potential sweat exposure during use, 
we conducted saline solution tests (22, 23). The results, shown 
in Fig. 3C and Movie S5, demonstrate its sustained functionality 
under a continuous flow of saline solution (37-6240, McKesson). 
These tests underscore its reliability in scenarios that are likely 
to induce sweat, such as prolonged usage, engagement in physical 
activity, and exposure to high environmental temperatures. We 
additionally explored the potential pressure-related risks, notably 
the danger of tissue ischemia, which could occur if the pressure 
between the sensor and the skin exceeds 4.0 kPa (24). Testing 
demonstrated that the smart neckband maintains pressures 
substantially below this threshold—0.97 and 2.49 kPa for the pre-
curved and noncurved sensor modules, respectively (Fig. 3D)— 
highlighting the ischemia-safe nature of our design, with the 
precurved format further minimizing skin pressure. Addressing 
concerns of potential low-temperature burns from prolonged 
skin exposure (25), our evaluations revealed that the temperature 
increment peaked at just 1.4 °C throughout an 18-h period of con-
tinuous wear, ensuring temperatures did not exceed 31.7 °C 
(Fig. 3E). Figure S4A offers a detailed visualization of temperature 
variations on both the sensor module surface and the adjacent 
skin areas over the 18-h period, attesting to its safety in averting 
burn risks. Figure 3F presents the measurement results for the 
average hemoglobin content in the skin, indicative of skin irrita-
tion, under various experimental conditions: a baseline control 

Fig. 3. Comprehensive benchtop evaluations. A) Experimental 
comparison of perpendicular vibration responses across different sensor 
module sizes. B) Fast Fourier-transformed signals from the sensor 
modules. C) Tests on the saline waterproofing solution. D) Measurements 
of skin contact pressure for both precurved and noncurved sensor 
modules. E) Skin temperature variations over an 18-h period, captured at 
six measurement points, both surrounding and within the sensor module. 
F) Average skin hemoglobin content under various conditions: baseline 
control (bare skin), wearing the smart neckband, and using commercial 
physiological electrodes (2,560 by 3M and H124SG by Cardinal Health).

Fig. 4. Sensor analysis in a stationary state. A) Photographs of a subject 
wearing the smart neckband in a stationary state: stationary pose, 
speaking, fluid intake, and food intake. B) Time series data of sEMG, 
three-axis acceleration, and microphone recordings captured over a 105-s 
interval, with the subject engaging in activities such as sitting at rest, 
speaking, and consuming fluid and food. C) Comprehensive analysis of 
each activity using a spectrogram for the stationary pose, an FFT for 
speech, and sensor fusion approaches for fluid and food intake.
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state with nothing attached, a state while wearing the smart neck-
band, and a state when using commercial physiological electrodes 
(2560, 3M, and H124SG; Cardinal Health). The results affirm the 
comprehensive safety of the smart neckband, with no signs of 
skin irritation noted throughout the testing period. Details of the 
hemoglobin distribution maps, along with their corresponding 
RGB (red, green, blue) images, are shown in Fig. S4B.

Sensor analysis in a stationary state
Figure 4A depicts a stationary experiment with a healthy 32-y-old 
male subject who consumes 17 oz of water and potato chips while 
engaging in activities, such as speaking, and fluid and food intake. 
Figure 4B illustrates the signals captured by three types of sensors 
—including the sEMG amplifier, a three-axis accelerometer, and a 
microphone—strategically positioned on the thyrohyoid muscle. 
These signals represent the preliminary 5-s baseline state, indica-
tive of a resting phase with no activity, followed by a 20-s station-
ary state (with natural breathing) before the initiation of each 
activity. Further data, including details on speech, fluid, and 
food intake, were collected at 5-s intervals. These measurements 
clearly delineate distinctive characteristics identifiable in time- 
domain and frequency-domain analyses, providing a rich dataset 
concerning deglutition patterns during stationary phases. 
Figure 4C presents a granular view of the specific signal patterns 
associated with distinct physiological events. In a stationary state, 

subtle amplitude signals ∼10−2g were documented on the z axis of 
acceleration. Addressing speech dynamics, pronounced ampli-
tude signals were observable in sound recordings, with the 
FFT of these signals showcasing a heightened intensity in the 
85–255 Hz frequency band, a characteristic markedly absent in 
other recorded activities (8). During the investigation into the 
swallowing activity associated with fluid intake, a burst in signal 
patterns was observed in both the sEMG and the x axis of acceler-
ation. A two-pronged insight was offered: the contraction of the 
thyrohyoid muscle was captured by the sEMG, while muscle 
movements occurring during the swallowing process were logged 
by the x axis. This provided a valuable metric for differentiating 
swallowing activities. Furthermore, the mastication process pre-
ceding food intake registered lower amplitude movements in the 
sEMG, paving the way to a higher frequency ringdown associated 
with swallowing. This stage marked a distinct shift in the activity 
spectrum. Furthermore, we investigated the properties of signals 
produced during the consumption of liquids with varying viscos-
ities, including water and yogurt. Figure S5 illustrates that the 
consumption of liquids with higher viscosities resulted in a larger 
magnitude of y-axis acceleration, attributable to the augmented 
exertion necessary for initiating and maintaining the swallowing 
process. Concurrently, there was a notable increase in the inten-
sity of the low-frequency band within the FFT.

Sensor analysis in various activities
Figure 5A depicts the experimental setup where the subject was 
engaged in activities, such as speaking, consuming liquids, and 
consuming solids while walking around with a steady stride. 
The activities were carried out under conditions meticulously 
controlled to mirror those when the subject was stationary, ac-
counting for factors, such as the age of the subject, the type of li-
quid consumed, and the food ingested. Figure 5B showcases the 
data captured from the sEMG amplifier, the three-axis accelerom-
eter, and the microphone during this period. This phase of the ex-
periment followed the same sequence as its stationary 
counterpart. Figure 5C reveals the specific quantitative attributes 
of the signal patterns associated with individual physiological 
events during these activities. Upon examining the z-axis acceler-
ation when the subject was walking (with natural breathing), we 
observed signals with larger amplitudes, ∼3 × 10−1g. The spectro-
gram analysis corroborates the periodic presence of high- 
intensity, high-frequency signals under walking states, enhancing 
our understanding of body dynamics and dietary habits during 
movement. Regarding speech activities, the sound signals exhib-
ited considerable amplitude fluctuations. Moreover, FFT analyses 
revealed a higher concentration of intensity within the 85–255 Hz 
bandwidth compared with other engagements. A notable obser-
vation was the marked increase in power within the lower fre-
quency band during walking states compared with stationary 
phases, a phenomenon likely influenced by movement. Focusing 
on swallowing during fluid intake, we observed a burst pattern 
in both the sEMG and x-axis acceleration readings, segmented 
into two unique parts. The first highlighted the contraction of 
the thyrohyoid muscle, a detail captured by the sEMG, while the 
second, recorded in the x-axis acceleration, showcased the 
muscle movements occurring throughout the swallowing phase. 
This distinct signal profile does not appear in data concerning gen-
eral bodily motions and speech, facilitating precise identification 
of swallowing maneuvers. When analyzing mastication associ-
ated with food intake, initial small-amplitude masticatory actions 
were detectable in the sEMG readings before the higher frequency 

Fig. 5. Sensor analysis in various activities. A) Photographs of a subject 
wearing the smart neckband during various activities: walking, speaking, 
and fluid and food intake. B) Time series data from sEMG, three-axis 
acceleration, and microphone recordings over a 105-s span, capturing 
activities such as walking, speaking, and fluid and food intake. C) 
Comprehensive analysis of activities using various approaches: a 
spectrogram for walking, an FFT for speech, and sensor fusion for fluid 
and food intake.

Park et al. | 5
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/3/5/pgae156/7664048 by H
anyang U

niv Lib user on 29 M
ay 2024

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae156#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae156#supplementary-data


ringdown observed during swallowing. We further analyzed the 
signal properties generated during the walking state while con-
suming liquids of differing viscosities, including water and yogurt. 
Figure S6 shows that the ingestion of high-viscosity liquids neces-
sitates enhanced movement during the swallowing process, as 
evidenced by an increased amplitude of x-axis acceleration. 
Simultaneously, a significant rise in the intensity of the low- 
frequency bands was detected in the FFT analysis. Importantly, 
despite the minimal signal magnitudes experienced while at-
tached to the neck, all these signals maintained high reliability, 
exhibiting SNR values of 13.18 dB for sEMG, 17.18 dB for x-axis ac-
celeration, 12.21 dB for y-axis acceleration, 15.80 dB for z-axis ac-
celeration, and 13.27 dB for the microphone (26–28).

ML algorithm for activity recognition
Figure 6A outlines the signal processing pipeline and highlights 
the critical role the optimization of the parameters of the RF clas-
sifier had a significant role in our study. The system utilizes sEMG, 
three-axis acceleration, and microphone data with the RF classi-
fier and the Label Powerset algorithm for training and prediction, 
facing challenges in hyperparameter optimization and memory 
demand. The complexity of managing numerous label combina-
tions requires significant memory, potentially limiting deploy-
ment in devices with constrained resources. Optimizing these 
aspects is crucial for maintaining performance and feasibility. 
This optimization scrutinized two key parameters: the number 

of trees in the forest and the frame length, which corresponds to 
the data capture time window. The number of trees profoundly af-
fects the classifier’s efficiency; a forest that is too sparse might 
overlook essential data patterns, while an overly dense one can 
risk overfitting, compromising performance on unseen data (29). 
Through careful calibration using k-fold cross-validation (CV) 
and analyzing between 20 and 100 trees, we determined that a for-
est of 50 trees offers the optimal balance for peak performance 
(Fig. S7A). Frame length emerged as another pivotal parameter, 
with its choice being directly consequential to the amount of in-
formation available for classification. A 2-s frame was identified 
as optimal (Fig. S7B), skillfully avoiding the issues of information 
scarcity seen with shorter frames and the unnecessary complex-
ity longer frames introduce without substantial performance im-
provement. Additional fine-tuning was achieved by altering the 
frame count to assess the classifier’s responsiveness to dataset 
size, finding the best results with 1,120 frames for individual activ-
ities and 940 for concurrent activities (Fig. S7C). Equipped with a 
refined RF classifier, utilizing 50 trees and a 2-s frame length, we 
conducted a 10-fold CV on a substantial, healthy training dataset 
to assess its effectiveness. This classifier, applied to data gathered 
from subjects performing a wide range of tasks, including both in-
dividual and concurrent activities, established a stringent bench-
mark for our system. Our assessment metrics—subset accuracy 
and SD, which measure the precise alignment of predicted and 
true labels and the classifier’s consistency, respectively—revealed 
an impressive average accuracy rate of 96.04% for individual ac-
tivities and 89.26% for concurrent activities (Fig. S8). While prom-
ising, a more detailed analysis, available in Table S2, is essential to 
fully appreciate the model’s efficacy across various activities.

Figure 6B displays the confusion matrix, offering a detailed ac-
count of the accuracy attained for each activity during concurrent 
activities. A counterpart matrix for individual activities is shown 
in Fig. S9. In the results of our study, F1 scores for individual activ-
ities—stationary (0.859), walking (0.862), fluid intake (0.891), food 
intake (0.751), and speech (1.00)—demonstrate high classification 
accuracy, highlighting the effectiveness of our model in distin-
guishing between these distinct activities (Fig. S10A). For concur-
rent activities, the model also shows strong performance, with F1 
scores for stationary (0.839), walking (0.892), fluid intake (0.891), 
food intake (0.888), speech (0.9), walking and fluid intake (0.751), 
walking and food intake (0.796), and walking and speech (0.9), in-
dicating robustness in recognizing complex, simultaneous behav-
iors (Fig. S10B). In statistical testing, the mean accuracy of our 
model was found not to be significantly different from the hy-
pothesized value of 0.97 (P = 0.0599; T = −2.151). Furthermore, 
Cohen’s kappa scores for individual activities (0.9475) and concur-
rent activities (0.8827) confirm an almost perfect level of agree-
ment in the classification tasks.

These matrices affirm the high precision with which our model 
can categorize both complex individual and concurrent activities. 
We extended our analysis to evaluate the impact of various input 
signals on the efficiency of the model, which leveraged inputs in-
cluding audio, sEMG, and data from a three-axis accelerometer. 
Notably, the accelerometer data emerged as a pivotal factor in 
predicting both individual and concurrent activities, underlining 
its central role in activity recognition (Fig. 6C). This underscores 
the significance of integrating audio, sEMG, and accelerometer 
data to boost the performance of activity recognition systems. 
Hyperparameter adjustments, especially in the number of trees, 
have a notable impact on our model’s performance, reflecting 
meaningful improvements across different activity types. For in-
dividual activities, the accuracy enhancement of 2% (from 

Fig. 6. ML algorithm for activity recognition. A) Preprocessed and 
segmented datasets into frames using a 2-s window. Features were 
extracted from each frame. Using these features, an RF classifier was 
trained on the training frames. B) A confusion matrix for classifying eight 
types of concurrent activities. C) Evaluation of model accuracy based on 
input signals: sEMG and microphone, three-axis acceleration, and a 
combination of all inputs. Acc.—Accuracy.
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0.9396 to 0.9604) not only demonstrates statistical significance but 
also translates into practical reliability in real-world applications. 
For concurrent activities, the 4% improvement in accuracy (from 
0.8529 to 0.8926) and the associated decrease in SD (−0.66%) 
highlight the model’s enhanced capability to handle complex 
scenarios, underscoring the practical significance of tailored hy-
perparameter tuning. In the RF model, diversity was introduced 
by training each decision tree on a random subset of data and fea-
tures, enabling the model to capture the unique characteristics of 
concurrent activities. Despite some overlap, activities such as flu-
id intake and walking possess distinct features, allowing the RF al-
gorithm to accurately differentiate and predict these complex 
behaviors. Additionally, we conducted a comparative analysis, 
juxtaposing our approach with those documented in other stud-
ies, as also summarized in Table S1. Our methodology not only ex-
cels in offering the most pragmatic form factor for real-world 
application, achieving unmatched accuracy for individual activ-
ities but also successfully realizes high precision in distinguishing 
concurrent activities, a milestone yet unreached in other research 
initiatives.

Discussion
Limitations of the study
In the pursuit of advancing dietary monitoring technologies, our 
smart neckband represents a significant step forward, although 
it is accompanied by certain constraints that provide opportun-
ities for future research. While the device is designed with an ad-
justable strap to accommodate various neck circumferences, 
ensuring comfort across diverse body types remains an ongoing 
endeavor. Feedback from a wider user base will inform iterative 
enhancements to meet a broader range of personal preferences 
and ergonomic requirements. Additionally, the current scope of 
testing did not include data from patients with diabetes or obesity. 
Future studies are anticipated to bridge this gap, enhancing the 
device’s algorithmic accuracy through exposure to more complex 
dietary patterns and management needs specific to these popula-
tions. The types of food that the device has been tested with are 
currently limited, but this represents a starting point from which 
the device can learn and adapt, with plans to expand the range in 
subsequent research phases. While a closed-loop system integrat-
ing continuous glucose monitors (CGMs) and insulin pumps for 
comprehensive dietary management based on blood sugar levels 
is not yet within the scope of the current model, this concept 
opens an avenue for multidisciplinary collaboration and techno-
logical innovation.

Conclusion
This study explores the potential of a smart neckband equipped 
with an sEMG sensor, a three-axis accelerometer, and a micro-
phone sensor for monitoring food and liquid intake. Positioned 
on the thyrohyoid muscle, the neckband aims to monitor degluti-
tion patterns by analyzing the data collected through ML algo-
rithms, specifically an RF classifier. Featuring a foldable, 
precurved design and constructed from breathable mesh textile, 
the neckband is meticulously designed for comfort and efficient 
signal capture. It underwent rigorous testing for various parame-
ters, including vibration sensitivity, sweat resistance, and its im-
pact on skin pressure, temperature, and irritation, thereby 
demonstrating its suitability for prolonged use. The device holds 
promise for aiding in behavioral modifications essential for weight 
management and is versatile enough to support a wide range of 

applications, including sports nutrition and general health 
improvement.

It holds the potential to analyze eating habits and physical 
movements, which can be synthesized into actionable insights 
through a prospective smartphone healthcare app, thereby en-
couraging healthier behaviors. For instance, identifying patterns, 
such as frequent eating while walking, could inform personalized 
interventions. This capability extends beyond traditional health 
management to encompass applications in sports performance 
and daily wellness, highlighting its utility as a proof-of-concept 
tool for broader dietary monitoring. Importantly, the device’s po-
tential to assist in calculating insulin dosages for diabetic pa-
tients, by identifying meal timings, exemplifies its specific 
benefit in disease management. Its primary function—facilitating 
a comprehensive understanding of an individual’s dietary and ac-
tivity patterns—makes it an invaluable tool for anyone seeking to 
optimize their health and dietary habits, particularly those with 
diabetes or obesity. Future integration with CGMs could offer a 
more comprehensive perspective on blood sugar management, 
enhance guidance for insulin dosing, and deepen our understand-
ing of the relationship between food intake and glycemic levels 
(30). Currently, challenges persist, especially concerning the un-
certainties of meal timing in the context of insulin administration 
for diabetic patients (31). While CGMs are adept at tracking insulin 
usage, they do not elucidate the reasoning behind specific doses. 
The neckband’s capability to identify meal occasions might help 
fill this gap, potentially leading to more precise insulin dosing 
guidelines. Finally, this study establishes a solid foundation for 
further research and development in dietary monitoring and gen-
eral health management. It signals a move toward more informed 
and personalized healthcare solutions, with the neckband serving 
as a novel dietary monitoring wearable tool to enhance data inter-
pretation and inform behavioral modifications, supporting a 
broad spectrum of health and wellness goals.

Materials and methods
Fabrication of the smart neckband
Commercial software (Autodesk Eagle Version 9.6.2) was used to 
generate schematic diagrams and layouts for the fPCB. The smart 
neckband was designed with a three-layer-stacked, three-island 
fPCB, incorporating commercially available electronic compo-
nents. The first island housed the three-axis digital accelerom-
eter, a custom-designed sEMG amplifier, and a microphone. The 
circuits responsible for battery charging and voltage regulation 
were located on the second island, while the third island housed 
the BLE SoC and LEDs. The thyrohyoid sEMG signal measurements 
employed a small diameter (6 mm) and interelectrode distance 
(20 mm) to reduce detection volume and minimize crosstalk ef-
fects, consistent with the sEMG for the noninvasive assessment 
of muscles (Seniam) guidelines (32). Customized firmware was up-
loaded to the BLE SoC. After the various surface-mount compo-
nents were placed, they were soldered to the fPCB, and the 
system was folded, marking the completion of the electronics’ 
fabrication. Solder paste (SMDLTLFP10T5; Chip Quik) was used 
to attach the various surface-mount components to the fPCB, fa-
cilitated by a heat gun (Int866; Aqyue) and hot plate (MHP30; 
Miniware). Once soldering was completed, the fPCB was covered 
with a silicon conformal coating (422C-55MLCA; MG Chemicals) 
to strengthen the solder bonding (Fig. S11). An off-the-shelf 
mesh textile neckband (58673V; Conair) was then placed between 
the first and second layers of the fPCB to integrate the neckband. 
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The entire structure was subsequently encapsulated with a soft, 
waterproof elastomer (Ecoflex 00-35; Smooth-On) to shield the 
system from external factors and offer a sturdy, long-lasting 
interface for manipulation. To guarantee a secure attachment of 
the neckband to the skin, the skin interface layer was made of a 
conductive hydrogel (RE-D; Electrode Store) for the sEMG electro-
des (Fig. S12). This layer was shaped using a 6-mm round hole 
punch (K003; Kucaa) to match the electrode layout of the 
neckband.

Encapsulation of the sensor module
A mold was designed using commercial 3D CAD software 
(Autodesk Fusion 360 Version 2.0) and was printed using a stereo-
lithography 3D printer (Form3; Formlabs). Before starting the en-
capsulation process, a silicone release agent (Ease Release 200; 
Mann Release Technologies) was applied. The encapsulation 
was carried out with a fully fabricated sensor module and a textile 
neckband positioned within the mold. A soft elastomer gel 
(Ecoflex 00-35; Smooth-On) was utilized as the encapsulation 
layer.

Characterization of mechanical reliability
Mechanical analysis was conducted using FEA through a commer-
cial software package, Abaqus, to investigate the stress and strain 
levels applied to the sensor module by folding, bending, stretch-
ing, and twisting, as well as the interfacial strain on human skin 
when the sensor module was attached. The developed sensor 
module was modeled, comprising a polyimide (PI) frame covered 
with an Ecoflex 00-35 body through which a textile line passed. 
Linear elasticity was applied to the PI frame, brass alloy electrode, 
and human skin with elastic moduli of 7.1 GPa, 97 GPa, and 
10 kPa, and Poisson’s ratios of 0.30, 0.31, and 0.48, respectively. 
A hyperfoam material model was applied to the textile based on 
uniaxial testing data. A Neo-Hookean hyperelastic model was ap-
plied to Ecoflex 00-35 with coefficients, C10 of 0.0113 and D1 of 
1.96. Displacement and rotation boundary conditions were set 
for the edges of the PI frame, surfaces of Ecoflex 00-35, and the 
electrode. An embedded region constraint was applied to the PI 
frame, textile, and brass alloy electrode with Ecoflex 00-35 se-
lected as the host material. Self-contact interaction was set for 
the textile, and surface contact interaction was set for the bottom 
surfaces of the brass alloy electrodes with the skin surface to ana-
lyze interfacial deformation. Subsequent to the computational 
work, an experimental study was conducted using a motorized 
force tester (ESM303, Mark-10), where the smart neckband was 
subjected to stretching conditions.

Comprehensive benchtop tests
In analyzing the inherent vibrational response of the sensor mod-
ule, we used a vibration generator (1000701; 3B Scientific) and an 
arbitrary waveform generator (3390; Keithley) to produce the tar-
geted vibration. The waveform parameters were set to 2 Hz, 
square wave, 4 VPeak-Peak, with an 80% duty cycle. To assess the 
sweatproof performance of the sensor module, we repeatedly ex-
posed it to external 0.9% saline solution (37-6240; McKesson) for 
20 s. The sensor module was observed functioning normally 
under flowing saline solution, successfully transmitting sensor 
data via Bluetooth. To measure the pressure between the skin 
and the sensor module, we evaluated both the precurved and non-
curved sensor modules using a miniaturized pressure sensor 
(CSU8-1N; SingleTact). The impedance assessment, shown in 
Fig. S13A, was conducted using a potentiostat (SP-200; BioLogic) 

in a two-electrode setup, spaced 2.5 cm apart center-to-center. 
For comparative purposes, we used commercial Ag/AgCl electro-
des as both the reference/counter electrode (RE/CE) and the work-
ing electrode. These were evaluated against the sEMG electrode 
integrated into the sensor module. The surface area of the com-
mercial Ag/AgCl electrode was 1.77 cm2, while that of the sensor 
module electrode was 0.28 cm2. Additionally, through experimen-
tal validation, we confirmed the variations in impedance observed 
when the hydrogel electrode was exposed to air for intervals of 
0, 3, 6, and 9 h (Fig. S13B). All tests were performed on the thyro-
hyoid muscle, using potentiometric mode and applying a sinus-
oidal signal with a 1-mV amplitude. The frequency range for the 
measurements spanned from 1 to 800 Hz (33). To monitor tem-
perature changes when the sensor module was operational on 
the skin for 18 h, we used a high-resolution science grade long- 
wave infrared camera (A655sc; FLIR).

RF classifier methodology
The RF classifier was employed to automatically identify a range 
of activities. This tool constructs multiple decision trees from dif-
ferent subsets of the dataset and amalgamates their predictions 
to determine a final outcome. Its versatility allows it to detect 
complex patterns in the data, rendering it ideal for multifaceted 
classification tasks. The RF classifier was fine-tuned using k-fold 
CV, wherein 90% of the data were allocated for training and the re-
maining 10% for testing in each iteration, a process repeated for 10 
iterations. The classification results were then averaged across 
these iterations. For the individual activities, the total dataset 
size was 5,600 frames. For concurrent activities, the total dataset 
size was set to 7,520 frames. Following the sampling and subse-
quent concatenation of the five signals, the final dimension for 
each frame was established at (1, 19,000).

Human subject study
This study involved healthy volunteers and was conducted with 
Institutional Review Board (IRB) approvals (#IRB-2023-1002 and 
#HYUIRB-202212-009-3) at Purdue University and Hanyang 
University. The participant pool consisted of six volunteers, with 
an age range of 29–34 years and an equal distribution of male 
and female subjects. Selection criteria were as follows: (i) being 
aged between 18 and 55 years, (ii) the capacity to understand 
and give informed consent, and (iii) a willingness to fully partici-
pate in the study procedures, including wearing the wearable de-
vice for the activity-rest cycles. Prior to the main procedures, 
participants attended an orientation session to familiarize them-
selves with the study’s expectations. An eligibility survey was ad-
ministered to determine if participants met the study criteria. 
Those who qualified received a comprehensive consent form out-
lining the study’s objectives, participant responsibilities, and eth-
ical considerations, such as potential risks and benefits. Before 
wearing the smart neckband, participants were briefed on its pur-
pose and functionality. The sensor module was fitted on each par-
ticipant’s thyrohyoid muscle. The experimental protocol 
consisted of alternating cycles of 20-s rest and 20-s activity inter-
vals, repeated 20 times for an approximate total of 13 min. This 
cycle was conducted four times, each for different activities: 
body movement, fluid intake, food intake, and speech. Thus, 
each session took an estimated 54 min to complete. The proced-
ure described above was carried out under two conditions: sta-
tionary and walking (striding at a comfortable pace), with the 
total duration being ∼108 min per session.
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