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ABSTRACT We consider an uplink multiuser multiple-input multiple-output (MU-MIMO) system with
one-bit analog-to-digital converters (ADCs). In this system, the construction of a low-complexity detector is
quite challenging due to the non-linearity of an end-to-end channel transfer function. Recently, a supervised-
learning (SL) detector was proposed by modeling the complex non-linear function as a tractable Bernoulli-
mixture model. It achieves an optimal maximum-likelihood (ML) performance, provided the channel state
information (CSI) is perfectly known at a receiver. However, when a system-size is large, SL detector is
not practical because of requiring a large amount of labeled data (i.e., pilot signals) to estimate the model
parameters. We address this problem by proposing a semi-supervised learning (SSL) detector in which both
pilot signals (i.e., labeled data) and some part of data signals (i.e., unlabeled data) are used to estimate
them via expectation-maximization (EM) algorithm. We further extend the proposed detector for time-
varying channels, by leveraging the idea of online learning, which is called online-learning (OL) detector.
Simulation results demonstrate that the proposed SSL detector can achieve the almost same performance
of the corresponding SL detector with significantly lower pilot overhead. In addition, it is shown that the
proposed OL detector is more robust to channel variations compared with the existing detectors.

INDEX TERMS Massive MIMO, one-bit ADC, MIMO detection, machine learning, semi-supervised
learning, EM algorithm.

I. INTRODUCTION
One of promising technologies beyond the 5G cellular sys-
tem is a massive multi-input multi-output (MIMO) in which
many antennas at the base station (BS) improve the capac-
ity and energy-efficiency [2]. In contrast, hardware costs
and radio frequency (RF) circuit power consumption can be
significantly increased [3] by the use of a massive MIMO.
Specially, high-resolution analog-to-digital converter (ADC)
is a main problem since the power consumption of ADC
increases exponentially with the number of quantization bits
and linearly with the baseband bandwidth [4]. In order to
get over these challenges, the usage of low-resolution ADCs
(e.g., 1∼3 bits) in massive MIMO systems has been exten-
sively studied for decades. one-bit ADCs seem specifi-
cally appealing because they do not require automatic gain
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controllers, reducing hardware complexity [5] noteably.
In this situation, a simple zero-thresholding comparators
quantize the in-phase and quadrant components of an
observed signal which has continuous values separately. Even
if low-resolution ADCs provide benefits, it causes great
amount of technical problems in channel estimation and
MIMO detections.

In uplinkMU-MIMO systemswith one-bit ADCs, the opti-
mal ML detection was developed in [6] and the low-
complexity methods were proposed in [7], [8]. Inspired by
a coding theory, [9] proposed a weighted minimum dis-
tance (wMD) decoding, by viewing the MIMO detection as
the coding theory problem over the parallel binary discrete
symmetric channels (B-DMCs). Among recent researches,
supervised-learning (SL) detectors were presented in
[10], [11] by modeling a non-linear MIMO channel as
parameterized probabilistic models, where one is based on
Gaussian-mixture (GM) model [10] and the other is based
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FIGURE 1. Illustration of the communication procedures of the proposed SSL detector, which consists of
training, parameter-update, and data transmission phases for each coherence time.

on Bernoulli-mixture (BM) model [11]. Also, it was shown
in [11] that SL detector based on BM model can outper-
form the other methods. However, in order to estimate the
parameters in the model, it requires a great number of pilot
overhead. To successfully apply SL detector to practical
systems, it seems inevitable to cut down number of the pilot
overhead, which is the major goal of this paper.

We consider an uplink MU-MIMO system equipped with
a one-bit ADC at receive antennas K users with single-
transmit antenna communicate with a BS with Nr receive
antennas. Then, we assume that the BS does not know a
channel state information (CSI) as in pragmatic communica-
tion models. Therefore, it needs to be estimated through pilot
signals throughout the training phase (see Fig. 1). We first
assumed a block-fading channel to be static throughout the
coherence time Tc and shifts independently in block-to-block.
Also, the first Tt < Tc time slots are assigned to the chan-
nel training phase and the remaining Td = Tc − Tt time
slots are devoted to the data transmission phase as shown
in Fig. 1. In this system, our major contribution to alleivate
the pilot-overhead of the existing SL detector in [11] is to
develop a semi-supervised learning (SSL) detector motivated
by semi-supervised learning [12]. The key idea of the pro-
posed SSL detector lies in estimation of the parameters of
the underlying BMmodel leveraging an efficient expectation-
maximization (EM) algorithm. In this step, both pilot data
signals (i.e., labeled data) and some pieces of data signals
(i.e., unlabeled) data are contributed. Beyond the block-
fading channel (i.e., static channel during Tc time slots),
we propose an online-learning (OL) detector for time-varying
channels, where the main idea is to reform the conventional
EM algorithm into online EM algorithm and to assign a
decreasing weight on the out-of-date information. Via sim-
ulation results, we describe that the proposed SSL detector
can accomplish the comparable performance of the corre-
sponding SL detector with a fairly reduced pilot-overhead
(e.g., 75% overhead reduction). Furthermore, we will show

that the proposed OL detector is more robust to channel
variations.

This paper is organized as follows. In Section II, we explain
an uplink MU-MIMO system with one-bit quantized sig-
nals at receive antennas and briefly review the SL detector
proposed in [11]. In Section III, we propose a novel SSL
detector which achieve the comparable performance of the SL
detector with quite reduced pilot-overhead. For time-varying
channels, OL detector is proposed in Section IV by leveraging
the idea of online learning. Section V shows the simulation
results to demonstrate the supremacy of the proposed SSL
detector. Finally, Section VI provides conclusion.
Notation: column vectors and matrices are represented as

lower and upper boldface letters, respectively. Let [x : y] 1=
{x, x + 1, . . . , y} for any integers x and y > x, and when
x = 1, it can be further shortened as [y]. For any k ∈ [0 :
K − 1], we let g(k) = [y0, y1, . . . , yK−1]T represent the m-
ary expansion of k where k = y0m0

+ · · · + yK−1mK−1 for
yi ∈ [0 : m − 1]. Also, g−1(·) indicates its inverse function.
In a vector case, g(·) is applied element-wise. As such, in case
where a scalar function is applied to a vector, it will be applied
element-wise.Re(x) and Im(x) represent the real and complex
part of a complex vector x, respectively.

II. PRELIMINARIES
This section introduces the considered system model and
briefly reviews the concept of supervised-learning (SL)
detector proposed in [11].

A. SYSTEM MODEL
We consider a single-cell uplinkMU-MIMO systemwhereK
users with a single-antenna transmit binary signal to one BS
with an array of Nr > K antennas. Let wk ∈W = [0 : m−1]
denote the user k’s message for k ∈ [0 : K − 1], each
of which contains logm information bits. Also, m-ary con-
stellation set is denoted by S = {s0, . . . , sm−1} with power
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constraint as

1
m

m−1∑
i=0

|si|2 = Pt . (1)

At time slot t , the user k transmits the modulated symbol
x̃k [t] to send an information message wk [t]. When all the K
users transmit the symbols x̃[t] = [x̃1[t], . . . , x̃K [t]]T, the BS
receives the discrete-time complex-valued baseband signal
vector r̃[t] ∈ CNr , given by

r̃[t] = H̄ x̃[t]+ z̃[t], (2)

where H̃ ∈ CNr×K is the channel matrix between the BS and
the K users. For instance, the i-th row of H̃ is the channel
vector between the K users and the i-th receiver antenna at
the BS. Also, z̃[t] = [z̃1[t], . . . , z̃Nr [t]]

T
∈ CNr denotes

the noise vector whose elements are distributed as circularly
symmetric complex Gaussian random variables with zero-
mean and variance σ 2, i.e., z̃i[t] ∼ CN (0, σ 2). The signal-
to-noise ratio (SNR) is defined as

SNR =
Pt
σ 2 . (3)

In the MIMO system with one-bit ADCs, each receiver
antenna of the BS is equipped with RF chain followed by two
one-bit ADCs which are applied to each real and imaginary
part respectively. We define sign(·) : R → {−1, 1} as the
one-bit ADC quantizer function with r̂[t] = sign(r̃[t]) = 1
if r̃[t] ≥ 0, and r̂[t] = −1, otherwise. Then, the BS
receives the quantized output vector as r̂R[t] = sign(Re(r̃[t]))
and r̂I [t] = sign(Im(r̃[t])). For the ease of representation,
we reformulate the complex input-output relationship in (2)
into the equivalent real representation as

r[t] = sign (Hx(w[t])+ z[t]) , (4)

where r[t] = [r̂T
R [t], r̂

T
I [t]]

T, x(w[t]) = [Re(x̃[t])T,
Im(x̃[t])T]T, z[t] = [Re( ˜z[t])T, Im(z̃[t])T]T ∈ RN , and

H =
[
Re(H̃ ) −Im(H̃ )
Im(H̃ ) Re(H̃ )

]
∈ RN×2K ,

where N = 2Nr . This real system representation will be used
in the sequel.

B. EQUIVALENT N PARALLEL B-DMCs
In [9], it was verified that a real system representa-
tion (4) can be transformed into an identical N parallel
binary discrete memoryless channels (B-DMCs), from a
coding-theoretic viewpoint. In the corresponding N parallel
B-DMCs, the channel input/output and the channel transition
probabilities are char as follows.

1) AUTO-ENCODING FUNCTION
Given channel state matrix H , we can construct a spatial-
domain code C = [c0, . . . , cmK−1], each of which is given by

cj =
[
sign

(
hT
1 x(g(j))

)
, . . . , sign

(
hT
N x(g(j))

)]T
(5)

where hiT denotes a channel matrix between K users and
i−th receiver antenna and g(·) is defined in the notation in
Section I. Note that each codeword of C can be considered as
an output under noiseless channel in (4). The channel input q
of the equivalent channel is determined by the auto-encoding
function f (·) such as

q = f (w,H ) = cj. (6)

2) EFFECTIVE CHANNEL
Reference [9] showed that the effective channel is composed
of the N parallel BSCs with the channel input q and the
channel output r . This channel is detailed by the following
channel transition probabilities: For the n-th BSC, depending
on user’s message w = g(j) and the corresponding code-
word cj, the transition probability is defined as

P(rn[t]|qn = cj,n) =

{
εj,n if rn[t] 6= cj,n
1− εj,n if rnl[t] = cj,n

(7)

where the error-probability of the n-th BSC is computed as

εj,n
1
= Q

(
|hT
n x(g(j))|

)
, (8)

and where Q(x) = 1
2π

∫
∞

x exp
(
−u2/2

)
du.

Leveraging the equivalent channel, an optimal weighted
hamming distance decoding was proposed in [9], with the
assumption of full-knowledge on a channel matrix H . Also,
a more practical SL detector was proposed in [11], without
a priori knowledge on the channel matrix (see Section II-C).

C. OVERVIEW OF SL DETECTOR
In this section, we review the SL detector proposed in [11],
which is based on parameterized supervised learning. The
corresponding generative model for r[t] follows the equiv-
alent channel in Section II-B, which is fully described by the
parameter vector θ = [θ0, . . . , θmK−1] where θ j = [cj, εj],
such as

p(r[t]|j, θ j)
1
= P(r[t]|g−1(w[t]) = j, θ j))

=

N∏
n=1:rn[t] 6=cj,n

εj,n

N∏
n=1:rn[t]=cj,n

(1− εj,n), (9)

for j ∈ [0 : mK − 1]. The above model is referred to as
Bernoulli-mixture model. We remark that each class j has its
own probability distribution parameterized by θ j = [cj, εj].
In [11] SL detector performs with the two-phases during each
coherence time Tc.

1) PARAMETER ESTIMATION PHASE
The parameter vector θ is estimated using Tt pilot signals.
We first gather the labeled data L

L = {(r[1], 0), . . . , (r[T ], 0), . . . , (r[Tt ],mK − 1)}, (10)

where (r[t], jt ) is the pilot signal corresponding to the label jt .
Since for each codeword, redundant pilot signals that have
equivalent messages are transmitted over T times, the entire
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pilot-overhead is same as Tt = T · mK . Also, for t ∈ [Tt ],
the labels are determined as

jt
1
= b(t − 1)/T c ∈ [0 : mK − 1], (11)

b·c denotes the floor function. According to [11], from the
labeled data L, the parameter vector θ is estimated by the
optimal maximum-likelihood (ML) estimation as

ĉj,n = sign

 (j+1)·T∑
t=j·T+1

rn[t]

 (12)

ε̂j,n =
1
T

(j+1)·T∑
t=j·T+1

1{ĉj,n 6=rn[t]}, (13)

for n ∈ [N ] and j ∈ [0 : mK − 1]. However, when T is
trivial, ε̂ in (13) is likely to be zero, which is not equivalent
with true value ε. Furthermore, this yields detection error
since the detected probability in (9) is forced to be zero. Thus,
we propose the empirical estimation rule by the Laplace’s rule
of succession.

ε̂j,n =
1+

∑(j+1)·T
t=j·T+1 1{ĉj,n 6=rn[t]}
T + 2

. (14)

2) DATA DETECTION PHASE
Under the Bernoulli mixture model in (12) and (14), the ML
detection is applied to data detection as follows,

ĵ = argmax
j∈[0:mK−1]

p(r[t]|j, θ j). (15)

III. THE PROPOSED SSL DETECTOR
In spite of its superior performance, SL detector intro-
duced in [11] is not pragmatic as a large number of pilot
signals increases such that an empirical transition prob-
ability (13) approaches the true probability (8). Further-
more, this problem becomes severer as K increases since
the number of parameters grows exponentially with K
(see (12) and (13)). We solve this problem by propos-
ing a semi-supervised learning (SSL) detector. In the pro-
posed method, the parameter vector θ is updated by
leveraging detection information for both data signals
(i.e., unlabeled data U) and pilot signals (i.e., labeled data L).
Here, the unlabeled data U is collected during Tu time slots
(see Fig. 1) as follows

U = {r[Tt + 1], r[Tt + 2], . . . , r[Tt + Tu]}. (16)

Letting D = L ∪ U , the proposed SSL detector performs as
follows.

A. PARAMETER ESTIMATION PHASE
In this phase, the parameter vector θ = [θ0, . . . , θmK−1]
is updated using the given data D such that the conditional
probabilities of the observations (i.e., the received binary
signals) are maximized. This ML estimation is formulated as

θ̂ = argmax
θ

logP(D|θ ). (17)

Note that under the Bernoulli-mixture model, we know the
probability distribution p(r[t]|j, θ j) in (9) for the given param-
eter θ j, which will be used in the below. Also, the labels of the
labeled data ate given as {jt = b(t−1)/T c : t ∈ [Tt ]} in (11).
For any fixed parameter θ , the objective function in (17) is

represented as

logP(D|θ )

= log
Tt∏
t=1

P(r[t], g−1(w[t]) = jt |θ jt )
Tt+Tu∏
t=Tt+1

P(r[t]|θ )

=

Tt∑
t=1

logP(jt |θ jt )p(r[t]|jt , θ jt )

+

Tt+Tu∑
t=Tt+1

log

mK−1∑
j=0

p(r[t], j|θ j)

, (18)

where recall that p(r[t]|j, θ j) is defined in (9), and P(jt |θ jt ) =
1/mK since the users’ messages are assumed to be generated
uniformly and randomly. Clearly, the above objective func-
tion is non-convex especially due to the second-term with the
unlabeled data and thus, maximizing (17) is too complicated
to be solved. We thus can solve it applying Expectation-
Maximization (EM) algorithm [13].

The EMalgorithm comprises expectation-step (E-step) and
maximization-step (M-step), respectively: Given estimated
parameter vector θ i, this algorithm updates parameter vector
θ i+1 as following steps.
E-step: This step needs to compute the probability distri-

bution using the parameter vector θ i:

γj[t]
1
= P(g−1(w[t]) = j|r[t], θ ij). (19)

This is specified by considering the difference of the labeled
and unlabeled data as follows:
• (Labeled Data) For t ∈ [Tt ] and j ∈ [0 : mK − 1],

γj[t] = 1{j=jt }. (20)

• (Unlabeled Data) For t ∈ [Tt + 1 : Tt + Tu] and j ∈ [0 :
mK − 1],

γj[t] =
p(r[t]|j, θ ij)∑mK−1

j=0 p(r[t]|j, θ ij)
. (21)

M-step: This step estimates an updated parameter vector
θ i+1 with the γj[t] in (21) as follows:

θ i+1 = argmax
θ

ψ(θ |θ i), (22)

where the objective function ψ is characterized as

ψ(θ |θ i)

1
=

Tt+Tu∑
t=1

mK−1∑
j=0

γj[t] logP(r[t], g−1(w[t]) = j|θ j)

=

Tt+Tu∑
t=1

mK−1∑
j=0

γj[t](log p(r[t]|j, θ j)− K logm), (23)
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where the second equality comes from the Bayes rule and (9).
Note that γj[t] in the above is constant with respect to θ j. Also,
from the Bernoulli-mixture model in (9), the function ψ in
(23) can be specified as

ψ(θ |θ i) =
Tt+Tu∑
t=1

mK−1∑
j=0

− γj[t]K logm

+

mK−1∑
j=0

Tt+Tu∑
t=1

N∑
n=1

(
γj[t]1{rn[t]6=cj,n} log εj,n

+γj[t]1{rn[t]=cj,n}log (1− εj,n)
)
.

Since the first-term in the above is constant with respect to θ ,
the parameter vector θ is maximized by maximizing only the
second-term as follows:

(ε̂i+1, ĉi+1)

= argmax
(ε,c)

mK−1∑
j=0

N∑
n=1

Tt+Tu∑
t=1

(
γj[t]1{rn[t] 6=cj,n}log εj,n

+γj[t]1{rn[t]=cj,n} log (1− εj,n)
)
. (24)

Obviously, maximizing (24) can be viewed as maximizing
each term in (24): For fixed j and n, we have

(ε̂i+1j,n , ĉ
i+1
j,n ) = argmax

(εj,n,cj,n)

Tt+Tu∑
t=1

(
γj[t]1{rn[t]6=cj,n}log εj,n

+γj[t]1{re[t]=cj,n} log (1− εj,n)
)
. (25)

To estimate parameter ε̂, ĉ in (25), we introduce the useful
lemma in the below.
Lemma 1: Suppose a` ≥ 0 for 1 ≤ ` ≤ n, Then∑n
`=1 a` log p` is maximized over all probability vectors p =

(p1, . . . , pn) by p` =
a`∑n
i=1 ai

.

Proof: Note that
∑n
`=1 a` log p` is a concave function

of p over a region with linear constraints. Then we use a
Lagrange multiplier λ for the constraint

∑n
`=1 p` = 1 and

try to find the stationary point of the Lagrangian as follows:

L(p, λ) =
n∑
`=1

a` log p` − λ

(
−1+

n∑
`=1

p`

)
. (26)

The stationary point is the point where the partial derivatives
by the variables pi are all zero. Then, we have:

L
p`
=
a`
p`
− λ = 0, (27)

(27) which yields the p` =
a`
λ

for all `. Also, in order to
satisfy the linear constraint

∑n
`=1 p` = 1, the λ should be

equal to
∑n
`=1 p` = 1. This completes the proof.

First of all, we observe that the optimal cj,n should satisfy
the following constraint for any εj,n < 0.5:

Tt+Tu∑
t=1

γj[t]1{rn[t]6=cj,n} <
Tt+Tu∑
t=1

γj[t]1{rn[t]=cj,n}. (28)

Also, we can see that this constraint is satisfied by assigning
• ĉi+1j,n = 1 if

∑Tt+Tu
t=1 rn[t]γj[t] > 0;

• ĉi+1j,n = −1 if
∑Tt+Tu

t=1 rn[t]γj[t] < 0.
Equivalently, we obtain that

ĉi+1j,n = sign

(Tt+Tu∑
t=1

γj[t]rn[t]

)
for n ∈ [N ]. (29)

Next, applying Lemma 1 in the below to (25), the error-
probability εi+1j,n is optimized as

ε̂i+1j,n =

∑Tt+Tu
t=1 γj[t]1{rn[t] 6=ĉi+1j,n }∑Tt+Tu

t=1 γj[t]
. (30)

Finally, we can compute the log-likelihood (18) using the
updated parameter vector θ i+1 as

logP(D|θ i+1) =
Tt∑
t=1

log
1
mK

p(r[t]|jt , θ
i+1
jt )

+

Tt+Tu∑
t=Tt+1

log
1
mK

mK−1∑
j=0

p(r[t]|j, θ i+1j ),

(31)

from which we can check the convergence. The overall pro-
cedures are described in Fig. 2 and Algorithm 1 where
ε ≥ 0 denotes the pre-determined threshold for the stopping
criterion.

Algorithm 1 Parameter update of the proposed SSL detector
Input:
• Labeled data: L = {(r[t], jt ) : t ∈ [Tt ]}
• Unlabeled data: U = {r[t] : t ∈ [Tt + 1 : Tt + Tu]}

Output: θ̂
i+1

Estimate θ0 from L using (12) and (13)
Calculate log likelihood logP(D|θ0) from (31)
while logP(D|θ i+1)− logP(D|θ i) < ε do

for j = 0, . . . ,mK − 1 do
E-step: Update {γj[t] : t ∈ [Tt + 1 : Tt + Tu]} by (19)
M-step: Update θ i+1j by (29) and (30)
end for
Calculate log likelihood logP(D|θ i+1) from (31)
Set i = i+ 1

end while

B. DATA DETECTION
For t ∈ [Tt + 1 : Tt + Tu], the SSL detector performs using
the latest γj[t] in (19) as

ĵ = argmax
j∈[0:mK−1]

γj[t]. (32)

Also, for t ∈ [Tt + Tu + 1 : Tc], the detection of the SSL
detector has the equivalent process as (15) of the SL detector
in Section II-C. We remark that the performance-complexity
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FIGURE 2. Illustration of overall procedures of the proposed SSL detector when T = 3 and j ∈ [0 : 2].

Algorithm 2 Parameter update of the conventional OL
detector
Input:
• Labeled data: L = {(r[t], jt ) : t ∈ [Tt ]}
• Unlabeled data: U = {r[t] : t ∈ [Tt + 1 : Tt + Td ]}

Output: θ̂
i+1

Estimate θ0 from L using (12) and (13)
for j = 0, . . . ,mK − 1 do

E-step: Update {γj[t] : t ∈ [Tt + 1 : Tt + Td ]} by (19)

M-step: Update θ i+1j by (33) and (30)
end for

tradeoff of the proposed SSL detector is controlled by the
choice of Tu.
Remark 1: We describe the complexity of the parameter

update in SSL detectors. As seen in Algorithm 1 and Algo-
rithm 2, we consider the two parts which are respectively
expectation and maximization steps. First, the expectation
step requires theO((Tt+Tu)mK ·i) where i denotes the number
of iteration in EM algorithm. Then, the maximization step
requires theO(N (Tt +Tu)mK · i) without taking into account
the complexity of (9). For practical implementations, i is fixed
in advance for simulations in Section V. Also, i is also a
parameter which causes the performance degradation when
the number of iteration grows. This is because there are really
likely to be overfitting for the data signal from the parameter
update phase Tu. Then, the complexity to be exponential with
K could be cut down if the one-bit sphere decoding methods
[14], [15] are applied to detection and training phase.

IV. THE PROPOSED OL DETECTOR FOR
TIME-VARYING CHANNELS
In this section, we develop an online-learning (OL) detec-
tor by extending the proposed SSL detector for time-
varying channels. Unlike the static channel, during the data

FIGURE 3. Illustration of training and data transmission phases in
dynamic channel state.

Algorithm 3 Parameter update of the proposed OL detector
Input:
• Labeled data: L = {(r[t], jt ) : t ∈ [Tt ]}
• Unlabeled data: U = {r[t] : t ∈ [Tt + 1 : Tt + Td ]}

Output: θ̂
i+1

Estimate θ0 from L using (12) and (13)
for j = 0, . . . ,mK − 1 do

E-step: Update {γj[t] : t ∈ [Tt + 1 : Tt + Td ]} by (19)
M-step: Update ĉj[t] by (38) and (41), and ε̂j,n[t] by

(39), (40), and (42)
end for

transmission phase, channel state can change slowly with
some correlation to priori CSI (see Fig.3). The proposed OL
detector is constructed by transforming the update rules in
(29) and (30) into online versions, as in Algorithm 3. The
main traits of OL detector are as follows: i) Parameters are
being updated at every time slot during data transmission
phase; ii) OL detector can update parameters by exploiting
all the data signals during data transmission phase, which is
different from SSL detector because the SSL detector uses
data signals in the parameter update phase that is part of data
transmission phase. First of all, we change the (29) into an
incremental form so that the parameter update is available at
every time slot:

ĉj[t] = sign
(
r̄ j[t]

)
, t ∈ [Tt + 1 : Tt + Td ], (33)
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where

r̄ j[t] = r̄ j[t − 1]+ γj[t]r[t], (34)

with the initial value of r̄ j[t] is r̄ j[Tt ] =
∑(j+1)T

t=jT+1 r[t].
Accordingly, (30) can be changed. However, they should be
further improved in two points. The first point is that (30)
requires lots of memory and computation as the time goes on
since it should store all γj[t] and r[t] for t ∈ [1,Tt + Tu].
The second point is that we need to introduce a decaying
weight to the parameter corresponding to old information.
This is because as channel state is changing with correla-
tion for each time slot, channel also keeps losing its prior
information continuously. Since the incremental form of (29)
is provided in (33), we next focus on the incremental form
of (30). Toward this, we define two parameters, denoted by
Ns[t] and Nd[t]:

Nsj,n[t] =
t∑

τ=1

γj[τ ]1{rn[τ ]6=ĉj,n[t]}

Ndj,n[t] =
t∑

τ=1

γj[τ ]1{rn[τ ]=ĉj,n[t]}. (35)

Then, (35) can be decomposed into an incremental form
in two cases whether ĉ[t] is flipped or not, compared
with ĉ[t − 1].

Nsj,n[t]

=

{
Nsj,n[t−1]+γ [t]1{rn[t]6=ĉj,n[t]} if ĉi,n[t]= ĉi,n[t−1]

Ndj,n[t−1]+γ [t]1{rn[t]6=ĉj,n[t]} if ĉi,n[t] 6= ĉi,n[t−1]

(36)

Ndj,n[t]

=

{
Ndj,n[t−1]+γ [t]1{rn[t]=ĉj,n[t]} if ĉi,n[t]= ĉi,n[t−1]

Nsj,n[t−1]+γ [t]1{rn[t]=ĉj,n[t]} if ĉi,n[t] 6= ĉi,n[t−1]

(37)

Finally, taking the old and new information into account,
we allow to decay the old information by putting decaying
weighted factor δ into (33) and (35) as follows:

r̄ j[t]

= δr̄ j[t − 1]+ γj[t]r[t] (38)

Nsj,n[t]

=

{
δ·Nsj,n[t−1]+γ [t]1{rn[t]6=ĉj,n[t]} if ĉi,n[t]= ĉi,n[t−1]

δ·Ndj,n[t−1]+γ [t]1{rn[t] 6=ĉj,n[t]} if ĉi,n[t] 6= ĉi,n[t−1]

(39)

Ndj,n[t]

=

{
δ·Ndj,n[t−1]+γ [t]1{rn[t]=ĉj,n[t]} if ĉi,n[t]= ĉi,n[t−1]

δ·Nsj,n[t−1]+γ [t]1{rn[t]=ĉj,n[t]} if ĉi,n[t] 6= ĉi,n[t−1]

(40)

for 0 ≤ δ ≤ 1. To sum up, we present two parameter update
rules from (38), (39), and (40) as

ĉj[t] = sign
(
r̄ j[t]

)
, t ∈ [Tt + 1 : Tt + Td ] (41)

ε̂j,n[t] =
Nsj,n[t]

Nsj,n[t]+ Ndj,n[t]
(42)

It is remarkable that the above update roles can be viewed as
online EM algorithm proposed in [16], [17].

A. DATA DETECTION
Unlike the data detection of SSL detectors (32), an OL detec-
tor performs detection with updated parameters as the way of
(15) because a OL detector updates parameters at every time
slot during data transmission phase.

B. GENENRALIZATION
In fact, the OL detectors also can be employed on both
invariant channel and variant channel condition. In case of the
invariant channel, the OL detectors can allow the parameter to
update using single data signal, which is similar to stochastic
gradient descent in optimization. The OL detectors are a part
of the SSL detectors in that the OL detectors are constructed
by remodeling the conventional batch EM algorithm into
online EM algorithm [16], [17]. The objective of both detec-
tors is to enhance their performance continuously by utilizing
the data signal under the probabilistic generative models.

V. SIMULATION RESULTS
The average bit-error rate (BER) performances are evaluated
in the conventional SL detector, the proposed SSL detector
and OL detector. In the simulations, we consider a Rayleigh
fading channel where each element in a channel matrix H is
drawn from an independent and identically distributed (i.i.d.)
circularly symmetric complex gaussian random variable with
zero mean and unit variance. In this system, QPSK modu-
lation is applied and a user is assumed to send binary data
(i.e. m = 2). In the first and second simulations, we set
a block fading duration (i.e., coherence time interval) to be
Td = 512,Tu = 10·Tt and Tt = T ·mK . In the last simulation
where time-varying channel is used, initial parameters are
estimated during static training phase Tt . After the estimation,
dynamic data transmission phase is set to be Td = 2048.

Fig. 4 descibes the BER performances of the SSL detec-
tion, SL detection, andmaximum likelihood detection (MLD)
with channel state information at a receiver (CSIR) when
training duration varies. It is noteworthy that the performance
of proposed SSL detector surpasses that of the conventional
SL detector over the entire SNR regimes in equivalent pilot-
overhead condition. Particularly, in the case of T = 1,
the performance of the SSL detector nearly achieves that of
the SL detector trained for T = 4. This signifies that the
SSL detector can lessen training span (Tt ) noticeably with
maintaining performance, by utilizing information from data
signals in the generative model. In addition, when compared
with MLD under CSIR, this result shows that the proposed
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FIGURE 4. K = 2 and N = 8. Performance comparisons of the proposed
SSL detector (SSLD), the SL detector (SLD), and MLD with full CSIR.

FIGURE 5. K = 4 and N = 12. Performance comparisons of the proposed
SSL detector (SSLD) and SL detector (SLD).

method enables the empirical conditional probability to con-
verge into true conditional probability without increasing
pilot overheads.

Fig. 5 shows the BER performances of the SL detector and
the proposed SSL detectors under Bernoulli-mixture model
in a different situation from Fig. 4. T = 2 is used for the SSL
detector and T = 4, 8 and 16 are used for the SL detector.
We can observe that the SSL detector outperforms the SL
detectors. The SSL detector can alleviate the pilot overheads
of the SL detector by more than 1

8 .

Fig. 6 demonstrates the BER performances of the OL
detectors and SL detector for dynamic channel environment.
To construct the time-varying channel, we apply an order one
auto-regressive process,

H2[t] = ηH2[t − 1]+W[t], (43)

where η is the temporal correlation coefficient for the second-
hop channel fading and W[t] is a process noise matrix
whose (i, j) element has complex Gaussian distribution,
i.e, Wi,j∼CN (0, 1 − η2). According to the Jake’s model,

FIGURE 6. K = 4 and N = 16. Performance comparisons of the proposed
OL detector (OLD)and SL detector (SLD) for time-varying channels.

the temporal correlation coefficient is characterized as η =
J0(2π fdTs), where J0(·) denotes the Bessel function of the
first kind of order zero, fd is the maximumDoppler frequency
and Ts is the sampling time. In our simulation, we chose both
fd and Ts to be fdTs = 0.005. Assuming that the channel
is only variant during the data transmission phase set to
Td = 2048. In this condition, Fig. 6 shows that the proposed
dOL outperforms other machine learning detectors such as
the SL detector and the OL detector. This provides a hint that
the proposed decaying parameter rule makes detection more
accurate by forcing to reducing the weight on the old update
information term.

VI. CONCLUSION
In this paper, we proposed the two novel machine-learning
based detectors for an uplink MU-MIMO systems with one-
bit ADCs. The first one, named semi-supervised learning
(SSL) detector, can address the major drawback of the
existing SL detector, where some part of data signals are
employed to estimate model parameters via expectation-
maximization (EM) algorithm. Another one is referred to as
online-learning (OL) detector, which further improves the
robustness of the proposed SSL detector for channel vari-
ations. Via simulations, we demonstrated that the proposed
SSL detector can significantly outperform the existing SL
detector having a lower pilot-overhead. It was also verified
that the proposed OL detector can yield an attractive per-
formance for time-varying channels. As succeed in other
communications areas [18]–[22], the use of machine-learning
would be of attractive for the construction of future MIMO
detectors.
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