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ABSTRACT In this paper, we proposed two simple refinement segmentation algorithms that can provide
options to improve the computational complexity of the Video-based Point Cloud Compression (V-PCC)
encoder. The patch image generation process in the encoding process is the most time-consuming and
computationally intensive, accounting for about 70% of the encoder’s self-running time in TMC2 v13.0.
Since the real-time encoding of V-PCC is within the requirement of industry, it is highly necessary to
research methods that can achieve good compression performance with low computational complexity.
The grid-based refinement segmentation is one of the most computationally intensive processes in V-PCC.
We found that the computational complexity can be reduced by further reducing the refinement segmentation
process. Therefore, we propose to change the grid-based refinement segmentation loop process, thereby
reducing the computational complexity by reducing some computational processes when the projection plane
index of the neighboring grid point does not change. In the experiment, the compression performance of some
sequences is improved by 0.1% to 0.9%, and the refinement segmentation time used is 79.21% and 79.53%
of the anchor.

INDEX TERMS Video-based point cloud compression, MPEG, fast encoding, low complexity.

I. INTRODUCTION

Point cloud data is in the spotlight for emerging 3D immersive
services, such as Virtual Reality (VR), Augmented Reality
(AR), and Metaverse [1]. Most dynamic point cloud objects
require a huge data storage and transmission time like uncom-
pressed video data. Typically, the dynamic objects used in
the MPEG core experiments have 700,000 to 2,900,000 3D
points per frame, and each point stores 10- or 11-bit geometry
precision information, and 8-bit color (RGB) information [2].
A maximum of 4.5 Gbps of bandwidth and a minimum
of 378 Mbps are required to transmit such point cloud data
at a frame rate of 30 fps without compression. Therefore, it is
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necessary to compress the point cloud data for better services
in immersive applications.

As an answer to such requirements in the market, the
V-PCC standard from MPEG was standardized as an interna-
tional standard for point cloud compression in 2021. V-PCC
adopted a video-codec based compression on point cloud
data, which requires a transformation of 3D point cloud data
structure into 2D maps of occupancy, geometry, and attributes
(e.g., color) [3]. Therefore, V-PCC consists of two main
encoding processes as shown in Fig.1: patch video generation
(PVG) and video coding [3]. In the PVG process, there are
patch generation and patch packing steps. Because the PVG
process precedes the video coding process and cannot be
performed in parallel with video coding, PVG is a criti-
cal point in the V-PCC encoding process in computational
complexity.
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FIGURE 1. V-PCC encoding processes.

In PVG, the patch generation process is the most
time-consuming one because it needs to group 3D geometry
points into patches that share the similar surface normals. The
surface normal computation is usually done by measuring the
common surface normals of the current point and neighboring
pixels. Once the normal data of points are collected, the next
step is to group the points with similar normals into a single
patch. The main objective of patch generation is to produce
an appropriate number of patches for video compression. The
number of patches directly affects the encoding time and
compression efficiency. If the number of patches is small,
the patch packing process will be fast, but the resulting
compression efficiency may not be good, since each patch
may contain non-neighboring, distant points containing more
empty regions in a 2D patch. If the number of patches is large,
on the other hand, the patch packing process will consume
more time proportional to the number of patches. The result-
ing patch image may be small because the unoccupied area
in each 2D patch becomes smaller [3]. In the report of the
V-PCC encoder complexity utilizing TMC2 software, it took
an average of six days to complete the analysis execution for
a single test condition [5]. In this respect, the complexity of
the V-PCC encoder is a key area for substantial improvement
in the future.

In the V-PCC encoder, the patch segmentation process is
the biggest cause of high complexity which accounts for
about 70% of the encoder self-runtime in the test model for
category 2 (TMC?2) software [6]. The patch segmentation
refers to converting a 3D point cloud frame on a given projec-
tion plane into 2D patches. This process is mainly composed
of three procedures of initial segmentation, grid-based refine
segmentation, and patch generation. In TMC2, what the patch
segmentation process pursues is to generate the minimum
number of patches with smooth boundaries, and when recon-
structing the 3D point cloud frame with these patches, there
is as little reconstruction error as possible compared to the
original 3D point cloud frame [7].

In the process of segmentation refinement, the process of
dividing and indexing smooth points on the point cloud sur-
face has high complexity. In 2019, a grid-based partitioning
(GBR) method was proposed to smooth the partition index of
point cloud surface points [8], which reduces the complexity
of the V-PCC encoder by dividing the coordinate space into
refined segments. The final experimental results show that
using this method can reduce the self-running time of the
current version of the encoder by about 80% in V-PCC test
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model 5.0 (TMC2 v5) [9]. Moreover, this method has been
implemented on the V-PCC test model v6.0 (TMC2 v6) [9].

Recently, a new approach has been proposed to solve
the problem of high complexity of the patch segmentation
process. Kim et al propose a fast grid-based refining segmen-
tation (FGM) method which can reduce the complexity of
V-PCC encoders by adaptively selecting voxels [10]. Instead
of complex operations, the FGM selects a few voxels that
require a refinement step based on a simple uniformity index
of the initial projection plane index (PPI) distribution. This
method of adaptively classifying voxels efficiently reduces
the computational complexity of the V-PCC encoder in the
3D domain. Under random access (RA) and full intra (AI)
configurations, the FGM can reduce the self-time of the
refinement steps by an average of 60.7% and 62.5% without
loss of coding efficiency [10]. At present, this method has
outstanding performance in reducing the complexity of the
V-PCC encoder, and it is also a relatively advanced method.
However, the manner in which the voxels are selected using
the uniformity index of the voxels results in that FGM may
affect voxels with non-uniform PPI distribution.

In this paper, we proposed two simple grid-based refine
segmentation algorithms to optimize the V-PCC encoder. The
first proposed algorithm is skipping the step of calculating the
PPI of a point in the loop when the PPI of the neighboring grid
point does not change. This algorithm reduces the self-time
of the fast grid-based refine segmentation while providing
compression performance similar to the V-PCC test model
15.0 (TMC2 v15) [11]. The second proposed algorithm by
stopping the grid-based refinement segmentation loop when
the number of grid points whose PPI changed and the total
number of points constituting a point cloud frame reaches a
certain ratio. Although the self-time of the grid-based refine
segmentation is slightly increased compared to the result
of the fast G-RS, it improves compression performance in
almost all experimental conditions.

In the following parts of the paper, we will introduce
some related work in Section II. Then we showed the
detailed description of our proposed method in Section III.
In Section IV we will present the results and discussions of
both proposed algorithms. At last, we will conclude the paper
in Section V.

Il. RELATED WORK

A. V-PCC PATCH GENERATION

The main goal of patch generation is to obtain the minimum
number of segments while minimizing errors that will occur
during reconstruction. After loading a frame of the point
cloud object, the process of forming a patch is shown in Fig. 2.
The figure illustrates a process of reconstructing a 3D object
into a patch segment.

In this process, three procedures are the critical ones
that determine the performance and computational complex-
ity: initial segmentation, grid-based refine segmentation, and
patch generation [6]. In the initial segmentation procedure,

VOLUME 12, 2024



Q. Jia et al.: Simple Grid-Based Refinement Segmentation Algorithm for MPEG V-PCC

IEEE Access

Point-to-

Normal Initial
Voxel

Estimation Segmentation

Conversion

FIGURE 2. The processes of Patch Generation.

the points are clustered based on the directional proximity of
their normal vectors to the normal vectors of the projection
planes. Afterwards, in the grid-based refine segmentation
procedure, the partitioning indices of points are smoothed out
over the surface of the point cloud. Finally, in the patch gener-
ation procedure, the points are segmented into patches and all
patch parameters such as width, height, occupancy map, and
depth values are calculated [12]. Through this process, the
3D object is normalized and converted into an image having
occupancy information, geometric information, and attribute
information [3].

The patch segmentation process is a method of generat-
ing 2D patches by projecting points of each frame onto a
projection plane. During the process, the 3D information of
the projected points is converted into 2D information. The
basic goal of this process is to generate a minimal number of
patches with closely located points. In this way, the number
of patches to be processed and compressed is reduced.

Fig. 3 shows the process of creating a piece by projecting
points of a 3D object onto a 2D plane in the form of a patch.
Point cloud objects composed of 3D coordinates are reclassi-
fied into points representing one surface to form a segment.
A segment classifies points within a certain distance into one
piece through normal information on a plane consisting of
arbitrary points and neighboring points.

A patch segment is transformed by orthographic projec-
tion, which consists of objects composed of 3D information
divided into several 2D segments. Each patch piece can usu-
ally be projected into 6 planes (i.e, XY, YZ,ZX, YX, ZY, and
XZ). The projected points cluster with nearby neighboring
points by measuring the distance from other points in the 3D
space where the object is located. The 3D information of each
point that forms a cluster exists at a point (X, y, z) in space,
and when this point is projected at a right angle on an arbitrary
plane, the point is projected at a point (X, y, 0) on the plane [3].

The bounding box is a boundary value calculated for each
frame of the point cloud data so that the point cloud, which is
3D information, can subdivide the depth value normalized in
the process of projecting into the 2D plane [3].

In this process, a number of repetitive tasks such as
calculating the distance and normal line between points
are performed, increasing the computational complexity.
Stopping the classification of segments early can avoid
computational complexity, but it will increase the number
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of segments. Especially the number of points in the piece
increases, which is not good for compression efficiency and
computational complexity [16].

B. GRID-BASED PARTITIONING

During the initial segmentation, points are clustered based on
the directional proximity of their normal vectors to the normal
vector of the projection plane. Then, during the refinement
segmentation process, the partition index of the points is
smoothed over the surface of the point cloud. Therefore,
some methods have been proposed to reduce the complexity
of the encoder to speed up patch segmentation in TMC2
encoder [17].

Among them, Grid-based partitioning (GBR) is a method
of smoothing [8] the partition index of points on the surface
of a point cloud. The GBR method significantly reduces
the running time of the refinement segmentation process
by dividing the coordinate space into refinement segments,
thereby reducing the total runtime of the TMC2 encoder.
At the same time, it also reduces memory usage and provides
some gains in BDBR rates.

In the GBP method, the coordinate space is divided into
a voxel grid, and filled voxels are found in the grid. The
fraction of each filled voxel associated with each projection
plane is then calculated by counting the number of points
in the voxel that converge to that projection plane through
the initial segmentation process. Next, K-D tree [18] parti-
tioning is used to find the nearest neighboring filled voxels
of each filled voxel. The values of adjacent filled voxels
are then added to calculate the final value for each filled
voxel. A normal score is calculated for each point associated
with each projection plane. This normal score and the final
score for each point associated with each projection plane
are calculated as a weighted linear combination. Finally, each
point is clustered to the projection plane with the highest
final score. Then they repeated the above steps for several
iterations.

In past techniques [19], the complexity of the nearest
neighbor search routine using K-D tree partitioning increased
significantly as the maximum number of neighboring points,
N, increased. However, for the same value of N, N neighbor-
ing points in the GBP method may reside in M voxels, and
M is always many times smaller than N. So the GBP method
has lower complexity.
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FIGURE 4. The processes of patch segmentation of GRS.

C. GRID-BASED REFINE SEGMENTATION

In order to make good patches out of the given point cloud
set, all points had to be calculated to determine the nearest
neighboring points for every single point. This can be a
major factor in increasing the memory usage and encoding
time of the encoder. One way to reduce complexity is to
reduce the number of points involving the neighboring point
computation. Grid-based refine segmentation [10] has been
introduced to reduce the computational complexity by seg-
menting an object based on a filled voxel of each grid by
dividing a coordinate space into a grid. A point cloud object is
divided into grids having a predetermined size based on the
coordinate space. In each divided grid, the 3D coordinates
expressed in points are converted into voxel to determine
whether they are filled or empty in each voxel space. The
filled voxel is used for clustering between adjacent points

23698

Find filled voxels

>

Patch,3D
bounding box

TilkPatch3dOffsetl #| TilePatch3dOffsetD | )L
o

W
>~

TilePatch3dOffsetV

0[0,0,0] v o

Calculate a smooth score

l

Find the nearest- > Patch generation
neighboring filled voxels

|

Cluster each point to the
projection plane having the
highest final score

I

by scoring ‘“smooth”. Among the voxels projected on the
plane, those with sufficiently high scores are clustered to
generate patches. Fig. 4 briefly illustrates the processing
of GRS.

The coordinate space divided into voxels is searched using
the K-D tree partitioning method [20]. It searches and clus-
ters any search radius or proximity voxels of the maximum
neighboring voxel in the filled voxel. The smooth score for
each filled voxel related to each projection plane is calculated
through the clustered voxels. The final score of the points
related to the projection plane is calculated by applying a
weighted linear combination to the smooth score. Finally, the
G-RS is clustered on the projection plane with the highest
final score calculated at each point based on the sum of the
normal vectors of each 3D point and the PPI of neighboring
voxels [5].
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FIGURE 6. Visualization of point cloud data: (a) Classification after fast
grid-based segmentation and (b) Difference before and after fast
grid-based segmentation.

D. FAST GRID-BASED REFINE SEGMENTATION
In the patch generation process, G-RS, a grid-based voxel
classification scheme, was able to significantly reduce its
complexity compared to conventional methods of exploring
all points. G-RS classifies non-uniform voxels by segmenting
PPIs to perform a more accurate patch segmentation process.
Fig. 5 shows the proposed voxel classification scheme. The
voxels located at the edges are classified as direct edge voxels
(DE-V), and others are classified as no edge voxels (NE-V).
In voxels not located at the edge, voxels with unequal PPI
distribution are clustered as discontinuous PPIs from their
neighbors and are denoted by IDE-V. Voxels with uniform

VOLUME 12, 2024

TABLE 1. The first frame of the loot sequence for comparison.

Iteration Numberpefore Numberaer Reduction Ratio[%)]
0 73159 73159 0.00
1 61526 58889 4.29
2 58553 55739 4.81
3 59424 54839 7.72
4 57737 53407 7.50
5 58662 52521 10.47
6 57205 52097 8.93
7 58065 50111 13.70
8 56941 46948 17.55
9 57913 45007 22.29
10 56861 42509 25.24
11 57847 38391 33.63
12 56792 35739 37.07
13 57792 32681 43.45
14 56738 31276 44.88
15 57751 29111 49.59
16 56752 26566 53.19
17 57719 24717 57.18
18 56738 23075 59.33
19 57673 20822 63.90
20 56695 18717 66.99

Total 1228543 866321 29.48

PPI distribution within the nearest neighborhood to voxels
not located at the edge are considered uniform regions and
are denoted NE-V. The three classified types of voxels use an
optional G-RS procedure that is treated differently. Among
them, voxels with non-uniform PPI distributions are likely to
be affected by G-RS, and voxels with uniform PPI distribu-
tions will not be affected by G-RS. Therefore, in the case of a
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FIGURE 7. Flowchart of the existing refine segmentation procedure: (a) Grid-based refine segmentation and (b) Fast grid-based refine segmentation.

voxel having uniform PPI distribution, the FGM method may
be omitted.

G-RS has been able to reduce the total runtime that time of
the encoder by about 60% by adding segmentation procedures
from existing methods [10]. Since the fast G-RS method
(FGM) is not affected by G-RS in the case of voxels with
uniform PPI distribution, the processing step for voxels with
uniform PPI distribution is omitted using the uniformity index
of voxels to reduce complexity in the encoding process. In the
VPCC encoder, the complexity of the Lossy-Al and Lossy-
RA conditions is 41% of the average saving time considering
the self-time of G-RS compared to the FGM method, and 28%
of the average saving time considering the self-time of V-PCC
compared to FGM [15].

lll. PROPOSED METHOD

A. BASIC CONCEPT

Building on the existing method, we propose our method such
that the computational complexity can be reduced by fur-
ther skipping the refinement segmentation process for some
points. We visualized each point according to the classifica-
tion of voxels after the fast grid-based refine segmentation
procedure was completed as shown in Fig. 6(a). The points
visualized in yellow are of the NE-V classification. The
parts visualized in red and blue represent points belonging
to the DE-V classification, while the parts visualized in
black represent points belonging to the IDE-V classification.
Furthermore, we visualized each point according to the dif-
ference in PPI before and after the fast grid-based refine
segmentation, as shown in Figure 6(b). The parts visualized
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in white mean points where the PPI remains unchanged.
While the parts visualized in black mean points where the
PPI changes. We found that the part visualized in black
in Fig. 6(b) is larger than the part visualized in yellow in
Fig. 6(a).

We used the first frame of the loot sequence for comparison
and recorded the data in Table 1. In iteration O, the number
of voxels that performed the calculations is identical before
(NumberBefore) and after (NumberAfter) our proposed fur-
ther classification. In the first iteration, the number of voxels
that performed the calculations was reduced by 4.29%; in the
10th iteration, it was reduced by 25.24%; in the 20th iteration,
it was reduced by 63.27%. So, the computational complexity
can be reduced by further skipping the refinement segmen-
tation process. After 20 iterations, the cumulative reduction
ratio is 29.48%.

The G-RS [10] and the FGM algorithm [15] commonly go
through steps 1 to 3 in a single loop, as shown in Fig. 7(a).
G-RS differs from the fast grid-based refine segmentation in
that it skips the refine segmentation procedures for the voxels
of which PPI distribution is uniform NE-V.

B. ALGORITHM 1

Fig. 8 shows the modified part of the fast algorithm and the
proposed simple algorithm 1 in the loop of grid-based refine
segmentation. The basic concept of the fast algorithm and the
proposed simple algorithm 1 is to skip the process of steps 1 to
3 under certain conditions in a single loop. Simple algorithm
1 goes through the following steps.

VOLUME 12, 2024



Q. Jia et al.: Simple Grid-Based Refinement Segmentation Algorithm for MPEG V-PCC

IEEE Access

Step 1 : Calculate a seoreNormal
score for each filled voxel

i
| 2nd voxel classification : IDE-V ‘
[

—
Step 2.1 : Calculate a scoreNormal
score for each peint in filled voxel

Step 2.2 : Calculate final score
for each point in filled voxel
]

Algorithm 1 : Calculate PPI values

for cach point in filled voxel

numOfUpdates =0

Algorithm 1 : Sct flag as
NoUpdateFiag for each point
in filled voxel

No
Yes Set 1l
et flag as
Set flag as .
NoUpdateFlag L) rmTFmg

¥

NEW Step 3 : Calculate a voxScoreSmooth
score for only voxels with changes in PPIL

FIGURE 8. Flowchart of the Algorithm 1.

After step 2, the projection plane index values determined
in the previous and current loops are compared for each point
existing in a voxel. If the number of points that are different
from each other is 0, the PPI of all points in the voxel is set
to no change. If the project plane index of the neighboring
voxels of the current voxel does not change before step 1,
the process from step 1 to 3 is skipped in the loop. In step 3,
voxScoreSmooth scores are not calculated for all voxels, but
only voxels with changes in PPIL.

C. ALGORITHM 2

As shown in Fig. 9, stopping the loop of existing grid-based
refine segmentation is determined by the iterationCount value
read from the configuration file. Fig. 9 shows the modi-
fied part of the proposed simple algorithm 2 in the loop
of grid-based refine segmentation. Simple algorithm 2 goes
through the following steps.

In step 3, the number of points of voxels with changes in
PPI is obtained. It stops the loop when the ratio of the number
obtained in 1 above to the total number of points constituting
a point cloud frame is 0.001.

IV. RESULTS AND DISCUSSIONS

A. RESULT COMPARISON OF ONE FRAME

As shown in Fig. 10, we compared the computational com-
plexity of grid-based segmentation of the existing and pro-
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posed methods. The x-axis of the chart represents the iteration
number of the refinement segmentation, while the y-axis
denotes the number of voxels that underwent calculations
during steps 1 to 3 in each cycle of grid-based refinement seg-
mentation. To compare computational complexity, we used
the first frame of the loot sequence. In addition, we investi-
gated the number of voxels that performed the calculations
from steps 1 to 3 in each loop of grid-base refine segmen-
tation. If the number of voxels that do not skip steps 1 to
3 for each loop is large, the computational complexity of
grid-based segmentation is high. First, TMC2 v13 is V-PCC
reference software to which fast algorithms are not applied.
Second, TMC2 v15 is V-PCC reference software to which
fast algorithms are applied. Third, p1 is V- PCC reference
software to which fast algorithm and simple algorithm p1 are
applied. Fourth, p2 is V-PCC reference software to which fast
algorithm, simple algorithm p1, and simple algorithm p2 are
applied. Finally, v15’ is V-PCC reference software with a fast
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algorithm applied like v15, but the number of loops is the
same as p2.
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TABLE 2. Test point cloud.

Geometry

Class Sequence Pts - fps Frames
precision
loot ~780,000 10-bit 30 300
A redandblack ~ ~700,000 10-bit 30 300
soldier ~1,500,000 10-bit 30 300
queen ~1,000,000 10-bit 50 250
B longdress ~800,000 10-bit 30 300
basketball .
~2,900,000 11-bit 30 64
C player
dancer ~2,600,000 11-bit 30 64

As shown in Fig. 10, pl with simple algorithm 1 has
lower computational complexity than v15 with fast algorithm.
In addition, p2 with simple algorithm 2 has lower compu-
tational complexity than v15° without simple algorithm p2.
This trend of computational complexity was also seen in
the Category 2 test sequences such as redandblack, soldier,
queen, longdress, basketball player, and dancer. Therefore,
it can be addressed that simple algorithms pl and p2 lower
the computational complexity than the existing methods.

B. RESULT COMPARISON

We tested HEVC-based V-PCC using the proposed method
and compared the coding efficiency under four conditions
as follows: C2-all-intra (AI), CW-all-intra (AI), CW-low-
delay (LD) and C2-inter random-access (RA) [21]. In the
experiments, we used class A, B, and C sequences as test
data. The sequence points, geometry precision, fps and frame
number information used in the experiment are shown in
Table 2 [5].

We used TMC2 version 15.0 in our Windows 10 devel-
opment environment. The test PC has an i7-10700K CPU
and 32 GB memory. In the development of our algorithms,
we utilized Visual Studio (version 2019) as our integrated
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TABLE 3. The refinement segmentation time comparison result between
anchor and algorithms 1&2 of 32 frames in C2 ai.

Class Sequence pl p2

loot 99.19% 115.54%

A redandblack 99.67% 122.67%
soldier 100.20% 125.41%

queen 97.65% 109.89%

B longdress 80.04% 80.42%

C basketball player 92.29% 98.65%
dancer 91.44% 98.96%
Average 94.35% 107.36%

TABLE 4. The refinement segmentation time comparison result between
anchor and algorithms 1&2 of 32 frames in condition CW ai.

Class Sequence pl p2

loot 100.05% 115.01%

A redandblack 99.02% 123.30%
soldier 99.58% 126.37%

queen 97.99% 111.76%

B longdress 79.69% 81.56%

C basketball player 92.56% 98.15%
dancer 93.94% 99.34%
Average 94.69% 107.93%

TABLE 5. The refinement segmentation time comparison result between
anchor and algorithms 1&2 of 32 frames in condition CW Id.

Class Sequence pl p2

loot 99.31% 117.06%

A redandblack 100.19% 122.16%
soldier 99.35% 125.39%

queen 97.68% 113.64%

B longdress 80.80% 80.53%

C basketball player 90.78% 98.08%
dancer 92.35% 98.29%

Average 94.35% 107.88%

TABLE 6. The Refinement Segmentation Time Comparison Result
Between Anchor and Algorithms 1&2 OF 32 FRAMES IN condition C2 ra.

Class Sequence pl p2

loot 99.03% 116.10%

A redandblack 99.37% 122.62%
soldier 99.96% 125.02%

queen 97.29% 109.74%

B longdress 80.07% 80.51%

c basketball player 91.45% 98.71%
dancer 90.78% 98.14%

Average 93.99% 107.26%

development environment and C++ as our primary program-
ming language. We chose TMC?2 version 15.0, which already
uses the FGM method, as the baseline. We then created two
new versions of TMC2, pl and p2, by applying Algorithm
1 and Algorithm 2, respectively. The experimental environ-
ment and other conditions were kept consistent for all three
versions. Finally, we compared the refining segmentation
time of the three methods for different sequences.
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TABLE 7. The Refinement Segmentation Time Comparison Result
Between Anchor and Algorithms 1&2 OF ALL FRAMES IN condition C2 ai.

Class Sequence pl p2

loot 99.19% 116.10%

A redandblack 99.53% 123.62%
soldier 99.80% 124.59%

queen 97.62% 111.48%

B longdress 79.21% 79.53%

C basketball player 91.65% 99.52%
dancer 91.67% 99.48%

Average 94.10% 107.76%

TABLE 8. The refinement segmentation time comparison result between
anchor and algorithms 1&2 of all frames in condition CW ai.

Class Sequence pl p2

loot 99.00% 116.58%

A redandblack 100.11% 124.86%
soldier 99.98% 124.90%

queen 97.39% 111.10%

B longdress 79.58% 80.06%

C basketball player 93.19% 99.29%
dancer 91.68% 100.51%
Average 94.42% 108.19%

TABLE 9. The refinement segmentation time comparison result between
anchor and algorithms 1&2 of all frames in condition CW Id.

Class Sequence pl p2

loot 99.04% 117.52%

A redandblack 98.73% 123.52%
soldier 100.02% 124.96%

queen 97.02% 111.01%

B longdress 79.36% 80.12%

c basketball player 90.68% 98.60%
dancer 91.39% 101.70%

Average 93.75% 108.20%

TABLE 10. The refinement segmentation time comparison result between
anchor and algorithms 1&2 of all frames in condition C2 ra.

Class Sequence pl p2

loot 84.95% 99.46%

A redandblack 99.62% 124.00%
soldier 100.08% 124.88%

queen 97.52% 111.34%

B longdress 79.38% 79.58%

c basketball player 91.49% 99.52%
dancer 91.58% 99.47%
Average 92.09% 105.47%

Tables 3 through 6 show the computational complex-
ity evaluation with encoder refinement segmentation time
between the anchor and proposed algorithms in C2 Al,
CW AL, CW LD, and C2 RA conditions of 32 frames, respec-
tively. As we anticipated, algorithm p1 shows its advantage in
further complexity reduction over the anchor. Nevertheless,
algorithm p2 can be utilized for further compression effi-
ciency while increasing the computational complexity. The
average results of 32 frames for all sequences of algorithm
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TABLE 11. The compression performance result between anchor and algorithms 1 in condition C2 ai.

lossy geometry, lossy attributes [all intra]
Geom. BD-TotGeomRate

C2_ai (%] End-to-End BD-AttrRate [%)] Geom. BD-TotalRate [%] End-to-End BD-TotalRate [%]
Dl D2 Luma Chroma Cb_ Chroma Cr Dl D2 Luma Chroma Cb_ Chroma Cr
Class A average 0.0% 0.1% 0.0% 0.1% -0.1% -0.1% 0.0% 0.0% 0.1% 0.0%
Class B average 0.2% 0.1% 0.0% -0.1% 0.1% 0.2% -0.1% 0.0% 0.0% 0.1%
Class C average -0.3% -0.4% -0.1% 0.0% -0.2% -0.1% -0.1% -0.2% -0.2% -0.4%
Overall average -0.1% -0.1% 0.0% 0.0% -0.1% 0.0% 0.0% -0.1% 0.0% -0.1%
TABLE 12. The compression performance result between anchor and algorithms 1 IN condition CW ai.
lossless geometry, lossless attributes [all intra]
CW_ai bpip ratio [%]
Tot.Geom Colour Total
Class A average 100.0% 99.8% 99.8%
Class B average 100.0% 100.0% 100.0%
Class C average 100.0% 100.0% 100.0%
Overall average 100.0% 99.9% 99.9%
TABLE 13. The compression performance result between anchor and algorithms 1 IN condition CW Id.
lossless geometry, lossless attributes [inter, low delay]
CW_1d bpip ratio [%]
Tot.Geom Colour Total
Class A average 100.0% 100.0% 100.0%
Class B average 100.0% 100.0% 100.0%
Class C average 100.0% 100.0% 100.0%
Overall average 100.0% 100.0% 100.0%

TABLE 14. The compression performance result between anchor and algorithms 1 IN condition C2 ra.

lossy geometry, lossy attributes [inter, random access]

Geom. BD-TotGeomRate Geom. BD-TotalRate [%]

C2 ra End-to-End BD-AttrRate [%]

End-to-End BD-TotalRate [%]

[%]
D1 D2 Luma Chroma Cb Chroma Cr DI D2 Luma Chroma Cb  Chroma Cr
Class A average 0.2% 0.2% 0.4% 1.1% 0.1% 0.1% 0.4% -0.4% 0.9%
Class B average 0.5% 0.3% -0.2% 0.1% 0.8% 0.5% -0.1% 0.0% 0.1%
Class C average -0.3% -0.4% 0.1% 1.5% 0.0% -0.1% -0.2% -1.1% 0.7%
Overall average 0.1% 0.0% 0.3% 1.1% 0.2% 0.1% 0.2% -0.5% 0.7%

TABLE 15. The compression performance result between anchor and algorithms 2 IN condition C2 ai.

lossy geometry, lossy attributes [all intra]

Geom. BD-TotGeomRate

C2_ai %] End-to-End BD-AttrRate [%] Geom. BD-TotalRate [%] End-to-End BD-TotalRate [%)]
D1 D2 Luma Chroma Cb  Chroma Cr D1 D2 Luma Chroma Cb  Chroma Cr
Class A average -0.3% -0.3% 0.3% 0.4% 0.5% 0.2% 0.3% 0.0% 0.0% 0.1%
Class B average 0.0% -0.3% -0.2% -0.2% -0.1% 0.0% -0.4% -0.2% -0.2% -0.1%
Class C average -0.8% -0.9% -0.2% -0.4% 0.2% -0.4% -0.4% -0.5% -0.7% -0.3%
Opverall average -0.4% -0.5% 0.1% 0.1% 0.3% 0.0% 0.0% -0.2% -0.2% 0.0%

pl and algorithm p2 compared with the anchor under four
conditions are shown in Fig. 11.

Tables 7-10 show the computational complexity of the
encoder refinement segmentation time between the anchor
and proposed algorithms in C2 AI, CW AIl, CW LD, and
C2 RA conditions for all frames. As expected, algorithm pl
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shows its advantage in further complexity reduction over the
anchor. However, algorithm p2 can be used to further improve
compression efficiency, albeit at the cost of increased compu-
tational complexity. The average results of all frames for all
sequences of algorithm pl and algorithm p2 compared with
the anchor under four conditions are shown in Fig. 12.
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TABLE 16. The compression performance result between anchor and algorithms 2 IN condition CW ai.

lossless geometry, lossless attributes [all intra]

CW_ai bpip ratio [%]
Tot.Geom Colour Total
Class A average 99.3% 99.6% 99.5%
Class B average 100.0% 100.0% 100.0%
Class C average 99.5% 99.9% 99.9%
Opverall average 99.5% 99.8% 99.8%

TABLE 17. The compression performance result between anchor and algorithms 2 IN condition CW Id.

lossless geometry, lossless attributes [inter, low delay]

CW_Id bpip ratio [%]
Tot.Geom Colour Total
Class A average 99.6% 100.1% 100.1%
Class B average 100.0% 100.0% 100.0%
Class C average 99.5% 99.9% 99.9%
Overall average 99.6% 100.0% 100.0%

TABLE 18. The compression performance result between anchor and algorithms 2 IN condition C2 ra.

lossy geometry, lossy attributes [inter, random access]

Geom. BD-TotGeomRate

C2 ra (%] End-to-End BD-AttrRate [%] Geom. BD-TotalRate [%] End-to-End BD-TotalRate [%]
Dl D2 Luma Chroma Cb_ Chroma Cr Dl D2 Luma Chroma Cb__ Chroma Cr
Class A average 2.9% 2.7% 4.2% 1.5% 4.8% 3.4% 3.1% 3.2% 1.6% 3.5%
Class B average 0.3% 0.1% 0.0% 0.2% 0.2% 0.5% 0.2% 0.0% 0.1% 0.2%
Class C average -0.4% -0.5% 1.1% -1.5% 1.7% 0.2% 0.1% 0.0% -1.5% 0.5%
Overall average 1.6% 1.4% 2.7% 0.5% 3.3% 2.0% 1.8% 1.9% 0.5% 2.2%

Tables 11 - 14 show the compression performance between
the anchor and proposed algorithm pl in C2 Al, CW Al,
CW LD, and C2 RA conditions, respectively. And Tables 15
through 18 show the compression performance between the
anchor and proposed algorithm p2 in C2 AI, CW AI, CW LD,
and C2 RA conditions, respectively.

V. CONCLUSION

Overall, our experimental results show that our introduced
algorithms, pl and p2, have exhibited significant reductions
in computational complexity and improvements in com-
pression performance within the V-PCC encoder. In our
experiments, these algorithms achieved reductions in refine-
ment segmentation time by 79.21% and 79.53%, respectively,
relative to the existing grid-based fast refinement segmenta-
tion method.

Furthermore, we observed enhanced compression perfor-
mance ranging from 0.1% to 0.9%, particularly under the
C2 AI condition. These findings underscore the substan-
tial potential of our research in simplifying the V-PCC
encoder while simultaneously enhancing its performance.
However, to ensure result accuracy and consistency, fur-
ther research and validation are needed to fully harness
the potential of these algorithms and advance the efficiency
of V-PCC.
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