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1 Introduction

Study on strongly interacting system has been the frontier of physics for more than half century.
It has been the continuous source of motivation for a new theoretical framework. Along this
line, the gravity dual picture [1–6] has been suggested as a new paradigm to understand strange
metals [7, 8] and quantum critical points (QCP) [9–11] of strongly coupled systems. A few
experimental data were also compared with the theory showing agreements, especially in quark
gluon plasma [12], in clean graphene [13–17] and surface of topological insulators [18, 19].

On the other hand, QCP itself is a phenomena at zero temperature taking a measure zero
sector of the phase diagram. Therefore for the theory to be compared with experiment, it is
essential to consider the symmetry broken phases as well as the unbroken phase in the neigh-
borhood the QCP. Such symmetry breaking is an essential step for new collective phenomena
because a phenomenon associated with many-body collective phenomena is possible only when
we have an order that leads to a gap which protect the new ground state from the excitations
causing disorder. Otherwise, we will only have Fermi Liquid. While gap calculation is usually
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a consequence of a mean-field theory, which seeks the value of the condensation corresponding
to the certain fermion bilinear, its validity is limited to weakly interacting cases. Therefore a
dream for theorists is to develop a mean field theory which is valid for the strongly interacting
system maintaining the spirit of Landau-Ginzburg and Wilson.

The strongly coupled systems share many similarities with the gravity system in the
sense that both have an unreasonable speed of equilibration: the Plankian dissipation near
the QCP is very similar to the exponentially fast scrambling power [20, 21] of black hole
horizon. Therefore, it is not surprising to expect a mean-field theory for a strongly interacting
system based on the gravity dual description. While it is hard to find the exact gravity
dual of a given system, it is reasonable to assume the presence of approximate dual theory
for a strongly interacting system. It can serve as a representative theory for the purpose
of studying various types of the gaps and condensations as well as the singularity types of
the Green functions for the strongly interacting systems.

Notice that in the holographic superconductor theory [22, 23], the gap calculation was
exemplified by considering scalar-vector-gravity theory, which is an important ingredient of
the holographic mean field theory (MFT). However, the heart of the MFT is to study the gap
creation and the fermion spectrum together, which has not yet been done systematically for
different types of condensations. Furthermore, because the holographic theory as a continuum
field theory does not encode the condensed matter system’s detail, it is useful to study all
possible types of interactions together and classify their spectral behavior to match the
physical system’s spectral pattern. In ref. [24] we put forwarded a step to such direction
by considering all possible couplings of the bulk fermion bilinears with the various tensorial
fields representing the different condensations in holographic set-up, which is analogue of the
femion bilinear coupled to the Hubbard-Stratonovich field in the usual mean field theory.

In our previous work [24], the fermion spectral function (SF) [25–28] of each broken
symmetry phase was calculated and classified. Subsequently, we realized that [29] the gapless
mode in the scalar coupling is the AdS analogue of the surface mode of topological insulator
whose topological stability might be related to amazing stability of the Fermi Liquid. The
holographic mean field theory has universal structure so that it has the power to accommodate
various different phenomena in the same fashion. Just as the superconductivity is described
by the condensation of itinerant electrons ∆S ∼ cc, one may also expect a new quantum
ground state of manybody coming from the condensation of the itinerant-localized electrons
with spin. Such many Kondo phenomena would be also described by considering the scalar
condensation ∆K ∼ f †c if the mean field theory works for strongly interacting case like Kondo
system. Recently, we realized such idea in the holographic set-up [30] by finding that the
Kondo condensation ∆K produces a gap, which was also observed experimentally [30].

However, the ref. [24] has several limitations: i) it is completely numerical so that it is hard
to characterize the singularity types of the spectral functions. ii) the back reaction was not
taken care of. iii) it was confined to the AdS4 so that it is not possible to discuss the Weyl semi-
metal spectrum from the beginning. In this paper, we will find the analytic expressions of the
Green’s function for all tensor types of symmetry breaking in the probe limit. Three aspects
of the spectral function will be emphasized: i) gap/gapless, ii) presence/absence of flat bands
of various types, iii) presence/absence of split Dirac cones. An especially interesting coupling
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turned out to be the scalar type coupling, which can give both gapped and gapless spectrums
depending on the sign of the coupling, which can never be possible in flat space theory.

From the analytic expressions, we noticed that most of the Green functions have branch-
cut singularities, but some of them have poles, and we can now understand why various
different types of flat bands exist. The definition of the non-Fermi Liquid is the vanishing of
the quasi-particle weight assuming that the Green function has a pole type singularity. In our
holographic mean field theory, it turns out that the generic form of the fermion propagator does
not have pole singularity but has the branch cut singularity. That is, the fluid appearing in our
theory is generically non-Fermi Liquid. Interestingly, in some cases, such behavior can happen
even after order parameter is turned on. However, for a few types of the order parameter,
the pole type singularity appears. Typically, it happens when the flat band appears.

At this moment, our analytic expressions are only for the case where order parameter fields
are alternatively quantized where only the leading term is nonvanishing in the pure AdS back-
ground. In standard quantization where only the subleading term of the matter field is nonvan-
ishing, we still have not find exact Green functions even in the probe limit. To back up this lim-
itation, we performed and presented the numerical analysis to find fully backreacted solutions
of the antisymmetric 2-tensor field, which is the most important and complicated case. We cal-
culated the spectral function of the fermions based on such backreacted solution, and compared
with the analytic result of the probe limit. In case the singularity is of pole type, we observed a
detailed agreement between the approximate analytic result and the fully back-reacted numer-
ical result, which suggests the stability of the Green function with the pole type singularity. In
contrast, for the propagators with branch-cut type singularity, the detail of the spectrum is rel-
atively vulnerable to the deformation by back-reaction, although qualitative similarity remains.

Before we go ahead to formulate our theory, we notice that our analytic work uses pure
AdS4(5) background but the zero temperature limit with broken symmetry usually involves a
nontrivial backreaction. So, we want to explain what kind of approximation we are doing by
using pure AdS. Also, one might ask that there is a formulation of semi-holography [31–33]
which is based on AdS2×R2, which seems to reproduce the Fermi Liquid as well as non-Fermi
Liquid. Here we want to describe how our theory and the semi-holography fit into a big picture.

We start by pointing out that the semi-holography is about the IR fixed point near
zero temperature, the metallic AdS2 × R2. Such geometry describes one of the quantum
critical points (QCP). Although one can still introduce finite temperature or symmetry
breaking there, the energy scale should be hierarchically closer to zero temperature than
ours because AdS2 is relevant only in that limit. See figure 1(a,b). It seems to us that the
AdS2 × R2 geometry is more relevant to the heavy fermion physics where QCP is exposed
(not hidden by the ordered region) and Fermi Liquid is close to the QCP as well as the
non-Fermi Liquid in that phase diagram.

Our aim is not such extreme zero temperature limit. The prototype model of our theory
is the holographic superconductivity where the back reacted geometry is a hairy black hole
that has a regular horizon and the near boundary region is still AdS4. Notice that it has been
argued that the zero temperature limit of holographic superconductor (HSC) is also Lifshitz
geometry [34], but the main property of HSC, can be discussed in terms of the hairy black
hole, which is a simple deformation of the RN geometry apart from near zero temperature
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(a) Domain wall geometry. (b) Phase diagram.

Figure 1. (a) Hierarchical difference of the temperatures: AdS2 temperature vs AdS4 temperature.
The position A and B are the positions of the ‘would be horizons’ of AdS2 and AdS4, respectively. (b)
Our theory is effective field theory in the regime of the blue box, while Semi-holography is that of red
box near QCP at T = 0. For heavy fermion cases, the dome is not hiding the QCP.

regime. Therefore we want to avoid such near zero temperature regime. Also, notice that the
High Tc superconducting material’s phase diagram shows that the QCP is usually hidden in
the superconducting dome. See figure 1(a). The upper region of the dome must be associated
with the hairy black hole phase with the horizon and asymptotic AdS4 intact. For us, the
most interesting temperature regime is not the regime near QCP itself but the regime where
the transition between the ordered dome and strange metal is available. Remember that
the strange metal is not just a low energy phenomenon. It continues from the temperature,
which is bigger than the order parameter, up to the melting temperature of the lattice.

In the figure 1(b), we denoted our interested regime by a box for the case of the HSC. Our
target is the analogue of such regime for various scalar/vector/tensor order parameters. Most
importantly, the pure AdS we used for analytic calculation is NOT the approximation of the
zero temperature IR fixed point geometry, but that of a hairy black hole. The basic intuition
is that, since we are choosing the horizon data such that we get the zero source term (or zero
condensation) at the boundary and we read off the physics from the boundary behavior of the
bulk fields, we assumed that the qualitative features of the Green function remain the same
whether we use pure AdS or hairy black hole as far as the asymptotic geometry is remained as
AdS4. Of course, this should be confirmed by the detailed numerical calculation. In section 5
where we considered the fully back reaction, the considered geometry is the analogue of the
hairy black hole, not the analogue of the IR fixed point geometry, and in some of the most
interesting cases where the Green functions have pole type singularities, we found that the
result of the probe analysis is rather robust under the correction of the back reaction.

The spectral features found in this paper by symmetry breaking includes gaps of s-,p-,
types and nodal rings and nodal shells and the flat band of various dimensions. d-wave gap
is not discussed here but it can be obtained from the symmetric rank two tensors [35–37].
The fact that these features of spectral features in the current condensed matter physics
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can be obtained in the absence of the lattice as consequences of the order and symmetry
breaking, are pleaseant surprises. It is also interesting to notice that some of these features
which were found in the weakly interacting topological system are also found in holographic
system suggests that they should also be found in the strongly interacting systems.

The rest of this paper goes as following. In section 2, we give a short description of
formalism of the holographic mean field theory and fermion Green function calculation. In
section 3, we calculate Green’s function analytically and draw spectral function for all types of
the Lorentz symmetry breaking. In section 4, we draw spectral functions and discuss features
of them. In section 5, we do extensive numerical calculation to find the fully back-reacted
order parameter and metric and use them to calculate the fermion spectral function again to
support the probe limit analytic results. In section 6, we discuss and conclude.

2 Holographic mean field theory with symmetry breaking

Our holographic mean field theory has four components: first, Bulk fermions ψ, which are dual
to the boundary fermions with strong interactions. Second, order parameter fields ΦI describe
the condensations of fermion bilinear, which is the analog of the Hubbard-Statonovich field of
the usual mean-field theory. Third, gravity describes the interactions between electrons, and
finally, the gauge field should be included to describe the density or chemical potential of the
fermions. In this work, we do not include the vector for the analytic work, but we can do it
when we work numerically. For simplicity, we assume that they can be described by local
fields in bulk, not in the boundary because we should allow the strongly interacting system
in the boundary to be described by nonlocal field theory. The total action is given by [28]

Stotal = Sψ + Sbdy + Sg,Φ + Sint, (2.1)

Sψ =
∫
d5x

2∑
j=1

√
−g ψ̄(j)

(1
2(
−→
/D −
←−
/D)−m(j)

)
ψ(j), (2.2)

Sg,Φ =
∫
d5x
√
−g
(
R− 2Λ + |DMΦI |2 −m2

Φ|Φ|2
)
, (2.3)

Sbdy = i

2

∫
bdy

d4x
√
−h
(
ψ̄(1)ψ(1) ± ψ̄(2)ψ(2)

)
, (2.4)

Sint =
∫
d5x
√
−g
(
ψ̄(1)Φ · Γψ(2) + h.c

)
. (2.5)

where /D = ΓM (∂M + 1
4ωMαβΓαβ), ωMαβ is the spin connection, Φ · Γ = Γµ1µ2···µIΦµ1µ2···µI .

ΦI is the order parameter field which couples with bilinear spinor in the bulk, leading to the
symmetry breaking under the presence of the source or its condensation. Additionally, we
will turn on just one component of field Φ to calculate the spectral function. The gamma
matrix convention and the geometry are chosen and given as follows,

Γt = σ1 ⊗ iσ2, Γx = σ1 ⊗ σ1, Γy = σ1 ⊗ σ3, Γz = σ2 ⊗ σ0, Γu = σ3 ⊗ σ0 (2.6)

ds2 = 1
u2

(
dt2 +

3∑
i=1

dx⃗i
2 + du2

)
, f(u) = 1, h = gguu, uh =∞, (2.7)
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where the underlined indices represent tangent space ones. Under this convention, the
boundary locates at u = 0.

Notice that in AdS5, including two-flavors of fermions is mandatory because holography
projects out half of the fermion degrees of freedom while we need a full 4 component spinor
in the 4 dimensional boundary. On the other hand, in AdS4, considering one flavor is still
allowed since the boundary is of 2+1 dimension where spinors are of two components.

We will analytically determine and analyze the fermions’ Green’s function in the presence
of an order parameter field. So, we consider the absence of gauge field for simplicity.
Furthermore, we will begin our analysis in the probe limit and later we will eventually
calculate the spectral function in the full back-reacted background. We will compare it with
the probe limit analytic results to check the reliability of the latter.

2.1 Variational analysis and boundary actions

In this section, we will perform the variational analysis in detail to show the boundary fermions
in different quantization choices. The standard-standard (SS) and standard-alternative (SA)
quantization can be distinguished by the sign of the boundary action (2.4). We first simplify
the action by introducing ζ(j),

ψ(j) = (−gguu)−1/4ζ(j)e−iωt+ikxx+ikyy+ikzz. (2.8)

Then, the variation of bulk fermions action (2.2), after the equation of motion is imposed
can be written as a boundary term given below.

δSbulk =
i

2

2∑
i=1

∫
d4x

[
ζ̄

(i)
− δζ

(i)
+ − ζ̄

(i)
+ δζ

(i)
− − δζ̄

(i)
− ζ

(i)
+ + δζ̄

(i)
+ ζ

(i)
−

]
. (2.9)

If we add the variation of boundary action with sign ± (2.4) depending on SS and SA
quantization respectively, the variation of total action is given by

δS
(SS)
tot = i

2

∫
bdy

d4x
(
ζ̄

(1)
− δζ

(1)
+ + δζ̄

(1)
+ ζ

(1)
− + ζ̄

(2)
− δζ

(2)
+ + δζ̄

(2)
+ ζ

(2)
−

)
, (2.10)

δS
(SA)
tot = i

2

∫
bdy

d4x
(
ζ̄

(1)
− δζ

(1)
+ + δζ̄

(1)
+ ζ

(1)
− − ζ̄

(2)
+ δζ

(2)
− − δζ

(2)
− ζ

(2)
+

)
. (2.11)

From this expression, we see what are chosen as independent degree of freedom to makes
the variation of total action zero. We call such independent fermions as the source fermions.
We define a 4 component spinor ξ’s by

ξ
(SS)
S := (ζ(1)

+ , ζ
(2)
+ ), and ξ

(SS)
C := (ζ(1)

− , ζ
(2)
− ), (2.12)

as the boundary spinors for SS-quantization. The indices S,C in ξS and ξC are adopted since
they correspond to the source and condensation terms. The ξC ’s supposed to be determined
by ξS ’s. Similarly, for the SA-quantization we define

ξ
(SA)
S := (ζ(1)

+ , ζ
(2)
− ), and ξ

(SA)
C := (ζ(1)

− , ζ
(2)
+ ). (2.13)
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One should remember that all ζ± are two component spinors while ξ’s are 4 component ones.
The extension ξ(u) of these fermions to the bulk of the AdS can also be considered by the
original ζ(u)’s whose boundary values were used above as ζ, so that

ξ(u) = umsξS + umcξC + · · · . (2.14)

We can now rewrite the on-shell effective action as

S
(SS)
tot = 1

2

∫
bdy

d4x
(
ξ

(SS)†
S (−σ0 ⊗ σ2)ξ(SS)

C + h.c
)
, (2.15)

S
(SA)
tot = 1

2

∫
bdy

d4x
(
ξ

(SA)†
S (−σ3 ⊗ σ2)ξ(SA)

C + h.c
)
. (2.16)

2.2 Green’s function

We can determine the boundary Green’s functions from the effective actions (2.15)–(2.16)
and the definition of source and condensation fermions. Since we have 4 components of ξ(u),
there must be 4 independent solutions Ψi(u) which can span the space of spinor solutions.
Our ξ(u) with prescribed boundary value should be a linear combination of these, so that

ξ(u) =
∑
i

ciΨi(u). (2.17)

By taking the a-th component of this equation, we have ξa(u) = Ψa
i (u)ci, which can be written

as a matrix equation ξ(u) = Ψ(u)c. Here Ψa
i (u) is the a-th component of i-th solution and we

considered ξ(u) and c as column matrices. By expanding the matrix Ψ(u) near the boundary,

Ψ(u) = umsS+ umcC+ · · · (2.18)

We now can write the source and condensation fermions depending on the quantization
choice as follows,

ξ
(Q)
S = S(Q)c, ξ

(Q)
C = C(Q)c. (2.19)

where Q stands for quantization choice. From eqs. (2.15)–(2.16) and using (2.19),

S
(Q)
total

∣∣∣
bdy

= 1
2

∫
bdy

d4x
(
ξ†SΓbdyξC + h.c

)(Q)
, (2.20)

= 1
2

∫
bdy

d4x(ξ†SΓbdyCS−1ξS + h.c)(Q), (2.21)

= 1
2

∫
bdy

d4x(ξ†SGξS + h.c)(Q). (2.22)

the boundary Green’s function can be defined as follow

G(SS) = −(σ0 ⊗ σ2)CS−1, (2.23)
G(SA) = −(σ3 ⊗ σ2)CS−1. (2.24)

Notice that the definition of Green’s function remains valid even for the zero bulk fermion
mass. Consequently, as far as we can extract the leading-order terms of the bulk fermions
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near the boundary, Green’s function calculation remains solvable. This is helpful because,
in the zero fermion mass, we will be able to obtain Green’s function analytically for all
Lorentz symmetry-breaking interactions with the proper choice of scaling dimension of the
order parameter field. The term suitable here refers to choosing scaling dimensions for the
source term, in which any u-dependence in the interacting term will be eliminated after fully
expressing the vierbein and spin connection. This ensures the results remain u-independent
at the interaction terms and allows solvable Dirac equations.

3 Analytic Green’s function of fermions in symmetry broken phases

We now consider zero bulk mass fermions with a holographic order parameter having only
the leading term by setting ⟨OΦ⟩ = 0. This is so-called alternative quantization of the Φ.
This setup allows us to derive Green’s function for all types of Lorentz symmetry-breaking
analytically. We have already performed numerical calculations to study the case of non-zero
fermion bulk mass and the case with condensation in previous works [38–40]. From the
expressions of Γ in (2.7) and

Γtx = σ0 ⊗ σ3, Γty = σ0 ⊗−σ1, Γtz = σ3 ⊗−σ2, (3.1)
Γxy = σ0 ⊗−iσ2, Γxz = σ3 ⊗ iσ1, Γyz = σ3 ⊗ iσ3, (3.2)
Γut = iσ2 ⊗ iσ2, Γux = iσ2 ⊗ σ1. Γuy = iσ2 ⊗ σ3, Γuz = σ1 ⊗−iσ0 (3.3)

our gamma matrices can be expressed in the following decomposed form:

Γµ =
(

0 γµ

γµ∗ 0

)
, Γµν =

(
γµν 0
0 γµν∗

)
,Γµu =

(
0 γµ

−γµ∗ 0

)
, (3.4)

where γµ = (iσ2, σ1, σ3,−i⊮) with µ = t, x, y, z and γµν = γµγν . The complex conjugation
appears due to Γz’s being pure imaginary. In AdS4, this decomposition is still valid with
µ = t, x, y, because apart from Γ5, all gamma matrices are real. So that the complex conjugate
disappears in AdS4. Such decomposition will be utilized for analytic solutions.

Classification of interaction types. Since the boundary represents the physical world,
we will classify the interaction type from the boundary point of view;

• 2 types of scalar: 1, Γu(radial scalar).

• 2 types of vector: Γµ(polar vector), Γµu(radial vector).

• 1 type of tensor: Γµν(polar antisymmetric 2-tensor).

Although Bu and Bµu are component of vector and tensor, respectively, they are scalar and
vector from the boundary point of view,

3.1 Scalar: Lint = iΦ(ψ̄(2)ψ(1) + h.c)

For scalar interaction, the solvable solution can be obtained by choosing

Φ(u) =M0u+ M︸︷︷︸
=0

u3 ; m2
Φ = −3

– 8 –
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SS case. The bulk equations of motion are given by[
∂u −M0(σ1 ⊗ σ0)

]
ξ

(SS)
S + i(σ0 ⊗ γµkµ)ξ(SS)

C = 0, (3.5)[
∂u +M0(σ1 ⊗ σ0)

]
ξ

(SS)
C − i(σ0 ⊗ γµ∗kµ)ξ(SS)

S = 0, (3.6)

due to the simple commutation relation between (σ0 ⊗ γµ∗kµ), and its conjugate, one can
get the simple fully diagonalized decoupled equations [29], which reads

(∂2
u −M2

0 − k2 + ω2)ξ(SS)
S,C = 0, (3.7)

The solutions are well-known and decay exponentially since the growing terms are removed
by imposing in-falling boundary condition (BC). As a result, the asymptotic solutions near
the AdS boundary located at u = 0 are given by

ξ
(SS)
S |bdy ≃ [S0(k) + S1(k)u+ · · · ]c , ξ

(SS)
C |bdy ≃ [C0(k) + C1(k)u+ · · · ]c, (3.8)

where Sn,Cn are u-independent but momentum dependent 4× 4 matrices. But apart from
the leading term S0(k),C0(k), they will not contribute to the boundary Green’s function.
Therefore we will write them simply as S(k),C(k) by deleting the index 0. Since ξS and ξC
are solved independently, one can plug-in one of the solution on the Dirac equations to find
the relation between them [27, 28]. The condensation term is determined by the source term
by solving the Dirac equation and it is given as follows:

C(k) = i
σ0 ⊗ γµ∗kµ
k2 − ω2 [T (k)−M0(σ1 ⊗ σ0)]S(k), (3.9)

where we define the matrix T = S1S−1
0 . For the scalar interaction, it is given by

T (k) = −
√
k2 − ω2 +M2

0 14×4, (3.10)

From the definition of boundary Green’s function (2.24), one gets 4 by 4 retarded Green’s
function as follows,

G(k)R = − Γt

k2 − ω2 (σ1 ⊗ γµ∗kµ)[T (k)−M0(σ1 ⊗ σ0)], (3.11)

= 1
k2 − ω2

[√
k2 − ω2 +M2

0 σ0 +M0 σ1
]
⊗K. (3.12)

where

k2 = k2
x + k2

y + k2
z , K := (γtγµkµ)T =

(
kx + ω −ky + ikz
−ky − ikz −kx + ω

)
(3.13)

It is important to note that TrK = 2ω, which will play a consistent role in our subsequent
calculations. We will discuss the trace result of the Green’s functions in the next section.

SA case. The bulk equations of motion are given by

∂uξ
(SA)
S − (σ2 ⊗ σ0)[Γµ∗kµ + iM0]ξ(SA)

C = 0, (3.14)

∂uξ
(SA)
C + (σ2 ⊗ σ0)[Γµkµ − iM0]ξ(SA)

S = 0, (3.15)
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similar to the SS case, one can decouple above equations which again yields (3.7)–(3.8).
Plugging the asymptotic solution into (3.14), we get

C(k) = [Γµ∗kµ + iM0]−1(σ2 ⊗ σ0)T (k)S(k), (3.16)

following the definition of Green’s function, and the T (k) given in (3.10), one can get the
general form of it as follows.

G(kµ)R = −(σ3 ⊗ σ2)[Γµ∗kµ + iM0]−1(σ2 ⊗ σ0)T (k) (3.17)

= 1√
k2 − ω2 +M2

0

[
σ0 ⊗K+M0 σ1 ⊗ σ1

]
. (3.18)

where k and K are defined in (3.1). One can see that the Green’s function contains off-
diagonal terms, which are absent in intra-flavor interaction case. Moreover, calculating AA
(alternative-alternative) or AS(alternative-standard) quantization cases yields the results
with the propagator replaced by the complex conjugation.

3.2 Radial scalar: Lint = Bu(ψ̄(2)Γuψ(1) + h.c)

The solvable solution can be obtained by choosing

Bu(u) = b+ b(2)
u︸︷︷︸
=0

u2 ; m2
Bu

= 0,

where b is the constant measuring the symmetry breaking strength.

SS case. The bulk equations of motion are given by

[∂u − i(σ1 ⊗ σ0)b]ξ(SS)
S + i(σ0 ⊗ γµkµ)ξ(SS)

C = 0, (3.19)

[∂u − i(σ1 ⊗ σ0)b]ξ(SS)
C − i(σ0 ⊗ γµ∗kµ)ξ(SS)

S = 0. (3.20)

Decoupled differential equations (DEs) are given by

[∂2
u − 2ib(σ1 ⊗ σ0)∂u + (k2 − ω2 + b2)]ξSSS,C = 0, (3.21)

Then, we can diagonalize the system by using the similarity transformation P defined by
the eigenvectors matrix of σ1 ⊗ σ0 which yields

[∂2
u − 2ib∂u + (k2 − ω2 + b2)]P−1ξSSS,C = 0, (3.22)

This yields the solution of the exponential form even after mapping the solution back by
the inverse similarity transformation. So, overall, nothing new for Bu case. We can still
write the Green’s function as follows:

C(k) = i
(σ0 ⊗ γµ∗kµ)
k2 − ω2 [T (k)− i(σ1 ⊗ σ0)b]S(k), (3.23)

The surprise of this interaction types is structure of T (k), which is given by

T (k) = −
√
k2 − ω2 + i(σ1 ⊗ σ0)b, (3.24)
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So the Green’s function reduces into the non-interacting case,

G(k) = i(σ0 ⊗ σ2)
(σ0 ⊗ γµ∗kµ)√

k2 − ω2
= σ0 ⊗K√

k2 − ω2
. (3.25)

SA case. The bulk dirac equation is given by

∂uξ
SA
S − [(σ2 ⊗ σ0)Γµ∗kµ + i(σ1 ⊗ σ0)b]ξSAC = 0,

∂uξ
SA
C + [(σ2 ⊗ σ0)Γµkµ − i(σ1 ⊗ σ0)b]ξSAS = 0,

Since the product of [(σ2⊗σ0)Γµ∗kµ+i(σ1⊗σ0)b] and its complex conjugation is a non-diagonal
matrix, a similarity transformation is needed for the diagonalization, which yields

[∂2
u + (b− i

√
k2 − ω2)2]P−1ξSA± = 0. (3.26)

The fermion Green’s functions for SS and SA quantization with Bu interactions are found
to be the same. This discovery raises the question of why SS and SA lead to identical
Green’s functions despite the differences in their equations of motion. The answer lies in two
critical factors that influence the structure of the Green’s function. Firstly, it depends on
the combination of gamma matrices present in the Dirac equation, which varies with the
choice of quantization. Secondly, the solutions are affected by the proper in-falling boundary
conditions (BC). As a result, despite the apparent difference in the initial appearance of the
Dirac equations, the solutions surviving the BC end up with the same Green’s function.

3.3 Polar vectors: Lint = Bµ(ψ̄(2)Γµψ(1) + h.c)

The solvable solution can be obtained by choosing

Bµ(u) = B(0)
µ +B(2)

µ︸︷︷︸
=0

u2 ; m2
Bµ

= 0. (3.27)

where B(0)
µ is a vectors with a single nonzero component b(t,i) which is nothing other than

a constant order parameter.

SS case. The bulk equations of motion are given by

∂uξ
(SS)
S + i[σ0 ⊗ γµkµ − σ1 ⊗ γµB(0)

µ ]ξ(SS)
C = 0, (3.28)

∂uξ
(SS)
C − i[σ0 ⊗ γµ∗kµ − σ1 ⊗ γµ∗B(0)

µ ]ξ(SS)
S = 0, (3.29)

Unlike the scalar case, polar vector type interactions cannot be decoupled simply in this
basis. However, we can transform the equations to a suitable basis by a u-independent
similarity transformation, P, where

P−1B∗BP = (K2
µ−σ0 ⊕K2

µ+σ0),

where B := [Γ̃µkµ − σ1 ⊗ γµB(0)
µ ], and K2

µ±
:= k2

⊥ + (bµ ± kµ)2. Under this transformation,
we can get the decoupled equations,

[∂2
u − (K2

µ−σ0 ⊕K2
µ+σ0)]ξ̃(SS)

S,C = 0, (3.30)
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where ξ̃S,C = P−1ξS,C . We obtain simple solutions even after transforming the solutions back
to the original basis, providing exponential decay. Consequently, we can express the asymptotic
solution similar to scalar case (3.8). By substituting the solution into the (3.28), we obtain

C(k) = i[σ0 ⊗ γµkµ − σ1 ⊗ γµB(0)
µ ]−1T (k)S(k), (3.31)

Then, the Green’s function is given by

G(k) = −i(σ0 ⊗ σ2)[σ0 ⊗ γµkµ − σ1 ⊗ γµB(0)
µ ]−1T (k). (3.32)

The Green’s functions can be determined straightforwardly by plugging in T (k) into (3.32).
Now let us calculate the explicit expression of the Green’s function.

Bt/SS. By solving the Dirac equations, one gets

T (k)(SS)
B

(0)
t

= −1
2
(
(Kt− +Kt+)14×4 + (Kt+ −Kt−)σ1 ⊗ σ0

)
, (3.33)

where

Kt± =
√
k2 − (bt ± ω)2 and bt = B

(0)
t , (3.34)

By plugging the above result into (3.32), we can get the Green’s function:

G(k)(SS)
B

(0)
t

= 1
2Kt+Kt−

(
g11 g12
g21 g22

)
, (3.35)

with g11 = g22 =
(
(Kt− −Kt+)btσ0 + (Kt− +Kt+)K

)
,

g12 = g21 =
(
(Kt− +Kt+)btσ0 + (Kt− −Kt+)K

)
. (3.36)

Bx/SS. By follwing the same calculation of time-like case, one gets

T (k)(SS)
B

(0)
x

= −1
2
(
(Kx− +Kx+)14×4 + (Kx− −Kx+)σ1 ⊗ σ0

)
, (3.37)

where

Kx± =
√
(bx ± kx)2 + k2

⊥ − ω2, k2
⊥ = k2

y + k2
z , and bx = B(0)

x , (3.38)

By plugging the T (k) in the above result into (3.32), one gets

G(k)(SS)
B

(0)
x

= 1
2Kx+Kx−

(
g11 g12
g21 g22

)
, (3.39)

with g11 = g22 =
(
(Kx− −Kx+)bxσ3 + (Kx− +Kx+)K

)
,

g12 = g21 = −
(
(Kx− +Kx+)bxσ3 + (Kx− −Kx+)K

)
. (3.40)

One can see that the Green’s function of polar vectors together with SS quantization
contains branch-cut singularity by the presence of K−1

µ± as the denominator terms. The
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singularity type does not change after tracing the Green’s function matrix, which we will
discuss in the next section.

After this case, we will no longer show the full expression of T (k), because it will become
more complicated while lacking meaningful content. However, one can obtain the Green’s
function by following the same logic and calculations.

SA case. The bulk equations of motion are given by

(∂u − iΓuµB(0)
µ )ξ(SA)

S − (σ2 ⊗ σ0)Γµ∗kµξ(SA)
C = 0, (3.41)

(∂u + iΓuµ∗B(0)
µ )ξ(SA)

C + (σ2 ⊗ σ0)Γµkµξ(SA)
S = 0, (3.42)

In this case, the differential equations cannot be fully decoupled by similarity transformation.
However, the DE is nothing but a linear Ordinary DE system. Similar to other cases, the
solutions satisfying the infalling BCs exponential decay (3.8). We, therefore, substitute the
solution back to the (3.41) and get the condensation in terms of the source:

C(k) = Γµ∗kµ
k2 − ω2 (σ2 ⊗ σ0)[T (k)− iΓuµB(0)

µ ]S(k), (3.43)

Therefore, the algebraic Green’s function for this case is given by

G(k)R = − Γt

k2 − ω2Γ
µkµ[T (k)− iΓuµB(0)

µ ]. (3.44)

Bt/SA. After getting T (k) by solving the Dirac equation, and plugging in (3.44), one can get

G(k)(SA)
B

(0)
t

= 1
2btk2

(
g11 g12
g21 g22

)
, (3.45)

with g11 = g∗22 =
(
ω(Kt− −Kt+) + bt(Kt− +Kt+)

)
K

−
(
btω(Kt− +Kt+)− E(Kt− −Kt+)

)
σ0,

g12 = g∗21 = i(kxσ1 + σ0γ
µkµ)(b2

t −Kt−Kt+ + E). (3.46)

where Kt± , bt are defined in (3.34), and E = k2−ω2 . One can easily check that the pole type
singularity k−2 will be canceled out after we take the trace of this Green’s function. Since
the cancellation of the pole makes the trace of the Green’s function becomes non-singularity
type Green’s function. Therefore, the presence of singularities in the 4 by 4 expression of the
Green’s function does not guarantee the presence of singularity in spectral function.

Bx/SA. By the same calculation in the previous cases, the Green’s function reads

G(k)(SA)
B

(0)
x

= 1
2bx(k2

⊥ − ω2)

(
g11 g12
g21 g22

)
, (3.47)

with g11 = g∗22 =
(
kx(Kx− −Kx+) + bx(Kx− +Kx+)

)
K

−
(
bxkx(Kx− +Kx+) + E(Kx− −Kx+)

)
σ3,

g12 = g∗21 = (kxσ2 − iσ3γ
µkµ)(b2

x +Kx−Kx+ − E). (3.48)
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where Kx± ,k⊥, bx are defined in (3.38) and E = k2 − ω2. In this case, the singularity
(k2

⊥−ω2)−1 is not changed or canceled by the trace, so that the trace of the Green’s function
has pole type singularity. We will back to discuss the trace of these Green’s functions in
the next sections.

3.4 Radial vectors: Lint = Bµu(ψ̄(2)Γµuψ(1) + h.c)

The solvable solution can be obtained by choosing

Bµu(u) =
B

(−1)
µu

u
+B(1)

µu︸︷︷︸
0

u; m2
Bµu

= 1,

where B(−1)
µu is a tensor in AdS bulk with a single nonzero component. However, from the

boundary point of view, its physical role can be classified as a vector.

SS case. The bulk Dirac equations are given by

∂uξ
(SS)
S + i[σ0 ⊗ γµkµ + σ1 ⊗ γµB(−1)

µu ]ξ(SS)
C = 0, (3.49)

∂uξ
(SS)
C − i[σ0 ⊗ γµ∗kµ − σ1 ⊗ γµ∗B(−1)

µu ]ξ(SS)
S = 0, (3.50)

The main procedure of this type is the same with other interactions. We get the condensation
in terms of the source as follows,

C(k) = i[σ0 ⊗ γµkµ + σ1 ⊗ γµB(−1)
µu ]−1T (k)S(k), (3.51)

This yields following Green’s function,

G(kµ) = −i(σ0 ⊗ σ2)[σ0 ⊗ γµkµ + σ1 ⊗ γµB(−1)
µu ]−1T (k). (3.52)

Btu/SS. By the same calculation in the previous cases, the Green’s function is given by

G(k)(SS)
B

(−1)
tu

= 1
2kK2

tu+K2
tu−

(
g11 g12
g21 g22

)
, (3.53)

with g11 = g22 =
(
b(k2 + ω2 − b2)(K− −Ktu+) + |k|(E − b2)(Ktu− +Ktu+)

)
K

+ bω
(
2b|k|(Ktu− +Ktu+) + (E + b2)(Ktu− −Ktu+)

)
σ0,

g12 = g21 = −ω
(
2b|k|(Ktu− +Ktu+) + (E + b2)(Ktu− −Ktu+)

)
K (3.54)

+
(
(b2(k2 + ω2)− E2)(Ktu− −Ktu+)− b|k|(E − b2)(Ktu− +Ktu+)

)
σ0.

where

Ktu± =
√
(b± |k|)2 − ω2, E = k2 − ω2, and b = B

(−1)
tu . (3.55)

The trace of the Green’s function turns into a simple form which will be discussed in the
following section.
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SA case. The bulk Dirac equations are given by

(∂u − iΓµB(−1)
µu )ξ(SA)

S − (σ2 ⊗ σ0)Γµ∗kµξSAC = 0, (3.56)

(∂u − iΓµ∗B(−1)
µu )ξ(SA)

C + (σ2 ⊗ σ0)ΓµkµξSAS = 0. (3.57)

The condensation are given as follows,

C(k) = Γµ∗kµ
k2 − ω2 (σ2 ⊗ σ0)[T (k)− iΓµB(−1)

µu ]S(k), (3.58)

which yields following retarded Green’s function matrix,

G(k)R = − Γt

k2 − ω2Γ
µkµ[T (k)− iΓµB(−1)

µu ]. (3.59)

Btu/SA. By the same calculation we have done, the Green’s function is given by

G(k)(SS)
B

(−1)
tu

= − 1
2bωk

(
g11 g12
g21 g22

)
, (3.60)

with g11 = g∗22 = ω(Ktu− −Ktu+)K+
(
E(Ktu− −Ktu+) + bk(Ktu− +Ktu+)

)
σ0,

g12 = g21 = k(b2 +Ktu−Ktu+ − E)σ2 (3.61)

where Ktu±, E and b are defined in (3.55). We will discuss the trace of the Green’s
function in the coming section.

Bxu/SA/SS. The decomposition and simplification of the Green’s functions for this case
pose significant challenges. Consequently, we will focus only on the trace of the Green’s
function, which included in the following section.

3.5 Antisymmetric 2-tensors: Lint = Bµν(ψ̄(2)Γµνψ(1) + h.c)

The solvable solution can be obtained by choosing

Bµν(u) =
B

(−1)
µν

u
+B(1)

µν︸︷︷︸
0

u; m2
Bµν

= 1,

where B(−1)
µν is symmetry breaking strength constant.

SS case. The bulk Dirac equations are given by[
∂u − (iσ1 ⊗ γµνB(−1)

µν )
]
ξ

(SS)
S + i(σ0 ⊗ γµkµ)ξ(SS)

C = 0, (3.62)[
∂u + (iσ1 ⊗ γµν∗B(−1)

µν )
]
ξ

(SS)
C − i(σ0 ⊗ γµ∗kµ)ξ(SS)

S = 0, (3.63)

Following a similar approach to Bµ’s SA-case, we can decouple above equation and get a system
of decoupled linear equations. So, we then plugin the solution into the above equation to get

C(k) = i
σ0 ⊗ γµ∗kµ
k2 − ω2 [T (k)− (iσ1 ⊗ γµν)B(−1)

µν ]S(k), (3.64)
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leads to the Green’s function which is given by

G(k)R = − Γt

k2 − ω2 (σ1 ⊗ γµ∗kµ)[T (k)− (iσ1 ⊗ γµν)B(−1)
µν ]. (3.65)

Bxy/SS. By solving the Dirac equations, and plugging-in into (3.65), we get

G(k)(SS)
B

(−1)
xy

= 1
2bxy(k2

z − ω2)

(
g11 g12
g21 g22

)
, (3.66)

with g11 = g22 =
(
|k|(Kxy− −Kxy+) + b(Kxy− +Kxy+)

)
(kzσ2 − ωσ0)

+ k2
z − ω2

|k⊥|
(Kxy− −Kxy+)(kxσ3 − kyσ1),

g12 = g21 = (kxσ3 − kyσ1)(b2
xy +Kxy−Kxy+ − E). (3.67)

where

k2
⊥ = k2

x + k2
y, Kxy± =

√
(bxy ± |k⊥|)2 + k2

z − ω2, bxy = B(−1)
xy , and E = k2 − ω2 (3.68)

In this case, the singularity (k2
z − ω2)−1 is not changed or canceled by the trace, so that the

trace of the Green’s function has pole type singularity. We will back to discuss the trace
of these Green’s functions in the next sections.

SA case. The bulk Dirac equations are given by

∂uξ
(SA)
S − (σ2 ⊗ σ0)[Γµ∗kµ − ΓµνB(−1)

µν ]ξ(SA)
C = 0, (3.69)

∂uξ
(SA)
C + (σ2 ⊗ σ0)[Γµkµ − Γµν∗B(−1)

µν ]ξ(SA)
S = 0. (3.70)

The above coupled equations can be decoupled to get exact solution of exponential form.

C(k) = [Γµ∗kµ − ΓµνB(−1)
µν ]−1(σ2 ⊗ σ0)T (k)S(k). (3.71)

The Green’s function for this case is given by

G(k)R = −(σ3 ⊗ σ2)[Γµ∗kµ − ΓµνB(−1)
µν ]−1(σ2 ⊗ σ0)T (k). (3.72)

Bxy/SA. By the same calculation, the Green’s function is given by

G(k)(SA)
B

(−1)
xy

= 1
2Kxy+Kxy−

(
g11 g12
g21 g22

)
, (3.73)

with g11 = g∗22 = (Kxy− +Kxy+)(KT − bxyky
|k⊥|

σ1) +
bxykx
|k⊥|

(Kxy− −Kxy+)σ3, (3.74)

g12 = g∗21 = − 1
2|k⊥|

(Kxy− −Kxy+)K̃− bxy(Kxy− −Kxy+)σ0. (3.75)

where k2
⊥ = k2

x + k2
y, Kxy± , bxy are define in (3.68) and

K̃ = KUK, U = 2
k2 − ω2

(
kx(kx − ω) + ky(ky + ikz) ikxkz + kyω

ikxkz + kyω kx(kx + ω) + ky(ky − ikz).

)
.

Btz/SS/SA. The decomposition and simplification of the Green’s functions for this case
pose significant challenges. Consequently, we will focus only on the trace of the Green’s
function, which included in the following section.
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(a) M (SS)
0 , ω-k. (b) M (SA)

0 , ω-k. (c) ω = 2.5. (d) ω = 2.5.

Figure 2. Spectral Functions (SFs) of scalar source for both quantization choices. (a,b) SFs in ω-k
plane. (c,d) SFs in ω = 2.5 slice, the dashed red line in figure (a), is the three dimensional object
in (c,d). The figure at each plane is its projection to each plane. The blue (c) and red (d) surfaces
represent the pole and the branch-cut type singularity, respectively.

4 Features of spectral functions

The spectral functions (SF) can be determined by the imaginary part of the traced Green’s
functions:

A(ω, k) = Im[Tr (G)]. (4.1)

Since the analytic results can be obtained when the order parameter fields have only leading
terms we will analyze only such cases.

4.1 Scalar

SS. The essential part of the Green’s functions is given by the trace (3.12),

TrG(SS)
M0

= 4ω

√
k2 − ω2 +M2

0

k2 − ω2 − iϵ
. (4.2)

where k2 =∑d−1
i=1 k

2
i , and M0 is the scalar source. The simple pole is located at the surface of

the d dimensional cone where d is dimension of the AdS boundary. Notice that the symmetry
breaking strength M0 does not affect the pole structure but only contributes to the gap size.
In AdS4, the pair of the gapped spectrum with M0, M50 was reported [24]. In AdS5, we
do not have the chiral dynamics of the boundary although we should have corresponding
spectrum from the boundary point of view. The difficulty lies in the fact that the chirality
cannot be defined in odd dimensions. We postpone this problem to the future work.

SA. The analytic expression is given by

TrG(SA)
M0

= 4ω√
k2 − ω2 +M2

0

, (4.3)

The main feature of this interaction is the gap generation, as it was noticed in [24, 38, 39].
Therefore, the scalar source in this case can be interpreted as the mass of boundary fermions.
In AdS5, only scalar SA quantization can generate the gap, while in AdS4 case, both M0,M

2
05

can do that. See figure 2(b,d).
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Diagonal interaction in fermion flavors. For the scalar, we consider the case where
the fermion-scalar interaction is diagonal type, namely,

Sint =
∫
d5x
√
−g
(
ψ̄(i)Φ · Γψ(i) + h.c

)
.

In this case, we have independent sum of two flavors and the result is following.

TrGM0 = 2ω
−M0 +

√
k2 − ω2 − iϵ+M2

0

(4.4)

Notice that the sign of M0 is important: for sign(M0) > 0 we have gapless spectrum while for
negative case we have gapped one. Therefore, in the intra-flavor case with Lint = iΦ(ψ̄(1)ψ(1)),
the massless-gapped phase transition depends on the changing sign of M0 [29]. However, in our
inter-flavor with Lint = iΦ(ψ̄(2)ψ(1)+h.c), there is no phase transition under the sign change of
M0. See figure 2(a,c). It turns out that for all interaction types other than the scalar-fermion,
there is no such phase transition between the gap-gapless phases in the spectral function.

4.1.1 Radial scalar Bu

SS and SA. For this interaction, there is no effect from the order parameter b due to the
cancelation that happened during calculation of the Green’s function, see (3.24). In fact,
this has been a puzzle from the view of the numerical calculation. As a result, the trace of
the Green’s function, regardless the quantization choice, is given by

TrG(SS,SA)
B

(0)
u

= 4ω√
k2 − ω2

, (4.5)

which is the same as that of critical point where Bu = 0.

4.2 Vectors

4.2.1 Time-like polar vector, Bt

SS. The trace of the Green’s matrix (3.32), by choosing µ = t is given by

TrG(SS)
B

(0)
t

= 2
(

b+ ω√
k2 − (b+ ω)2

− b− ω√
k2 − (b− ω)2

)
, (4.6)

where k2 = ∑d−1
i k2

i . In this case, above result shows two Dirac cones, shifted along ±ω
directions, which are not interacting with each other. The singularities are located at each
cone. Notice that there are spherical symmetry in kx-ky-kz. See figure 3(a,b,c)

SA. The trace of the Green’s matrix (3.44) is given by

TrG(SA)
B

(0)
t

= 2
b

[√
k2 − (b− ω)2 −

√
k2 − (b+ ω)2

]
, (4.7)

In this case, the symmetry are the same with SS case. However, there is no singularity
in the Green’s function. Therefore the entire SF is described by a branch-cut without
singularity. See figure 3(d,e,f)
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(a) B(0)(SS)
t , ω-k. (b) ω = 0. (c) ω = 1.

(d) B(0)(SA)
t , ω-k. (e) ω = 0. (f) ω = 1.

Figure 3. Spectral functions (SFs) of Bt source for both quantization choices. (a,d) SFs in ω-k plane.
(b,e) SFs in ω = 0 plane, and (c,f) for ω = 1 plane corresponding to the dashed red line, in which the
background represents the certain slices at each momentum is zero. The bare orange bulk without the
surface shows the spectral function without singularity.

4.2.2 Time-like radial vector Btu

SS. The analytic expression is given by

TrG(SS)
B

(−1)
tu

= 2ω√
(b− |k|)2 − ω2 + 2ω√

(b+ |k|)2 − ω2 . (4.8)

In this case, the spectrum is isotropic for each Dirac cone shifted along the entire k-space, and
that is why we cannot distinguish the spectrum of Bxy(SA) and Btu(SA) in AdS4. However, in
AdS5, the SF has spherical symmetry, while Bxy spectrum has planar rotational symmetry
in kx-ky plane. See figure 4(a,b,c).

SA. The analytic expression is given by

TrG(SA)
B

(−1)
tu

= −2
b

[(b+ |k|)√(b− |k|)2 − ω2 + (b− |k|)
√
(b+ |k|)2 − ω2

ω + iϵ

]
. (4.9)

The pole-type singularity appears in this case as a flat band. In AdS5, It is a 3D flat band
in the solid sphere with radius b. See figure 4(d,e). However, the flat band immediately
disappears if move to ω ̸= 0 slice. See figure 4(f).

4.2.3 Space-like polar vector, Bx

SS. The trace of the Green’s matrix (3.32), by choosing µ = x

TrG(SS)
B

(0)
x

= 2ω√
(b− kx)2 + k2

⊥ − ω2
+ 2ω√

(b+ kx)2 + k2
⊥ − ω2

, (4.10)
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(a) B(−1)(SS)
tu , ω-k. (b) ω ≃ 0. (c) ω = 1.

(d) B(−1)(SA)
tu , ω-k. (e) ω ≃ 0. (f) ω = 1.

Figure 4. Spectral functions (SFs) for Btu source for both quantization choices. (a,c) SFs in ω-k
plane. (b,c),(e,f) SFs in kx-ky-kz at ω = 0, 1 slices, respectively.

where k2
⊥ = k2

y + k2
z . The SF shows the superposition of two Dirac cones shifted along the

kx direction, which are non-interacting with each other. (4.10). The distance between the
Dirac points is 2b and the surface of the cones are branch-cut type singularity. Notably, the
SF in the ω-kx plane exhibits a shifting of 2dimensional Dirac cones, see fig 5(a). In the
section of ω-k⊥ plane; it shows a gap, see figure 5(b).

SA. The trace of the Green’s function matrix (3.44) for µ = x is given by

TrG(SA)
B

(0)
x

= 2ω
b

[(b+ kx)
√
(b− kx)2 + k2

⊥ − ω2 + (b− kx)
√
(b+ kx)2 + k2

⊥ − ω2

k2
⊥ − ω2 − iϵ

]
. (4.11)

The main feature of the spectrum is shifted Dirac cones in ±kx direction: two Dirac points
is connected by flat band of 1-dimensional pole singularity (ω2 − k2

⊥)−1 along kx ∈ [−b, b].
See figure 5(e,f). It is important to note that the residue is zero for kx /∈ [−b, b], so there
is no singularity outside the interval. See figure 5(g,h).

4.2.4 Space-like radial vector, Bux

The analytic expression is given by

TrG(SS)
B

(−1)
ux

= 4ωb
2 + k2 − ω2 + f+f−
f+f−(f+ + f−)

, (4.12)

TrG(SA)
B

(−1)
ux

= 4ω
(f+ + f−)

√
ω2 − k2

⊥ − b(f+ − f−)√
ω2 − k2

⊥(b2 + k2 − ω2 + f+f−)
. (4.13)
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(a) B(0)(SS)
x , ω-kx. (b) B(0)(SS)

x , ω-k⊥. (c) ω ≃ 0. (d) ω = 2.5.

(e) B(0)(SA)
x , ω-kx. (f) B(0)(SA)

x , ω-k⊥. (g) ω = 0. (h) ω = 2.5.

Figure 5. Spectral functions (SFs) of Bx source for both quantization choices. (a,b,e,f) SFs in
ω-kx, ω-k⊥ plane. (c,g) SFs in ω = 0, and (d,h) SFs for ω = 2.5 correspondingly to the dashed red
lines. In (g,h), if kx /∈ [−b, b] the pole type singularity disappears so that only kx /∈ [−b, b] which the
arc lines visible. The box’s background represents the certain slices at each momentum is zero.

where f± =
√
k2
x −

(
b±

√
ω2 − k2

⊥

)2
. The structure of the f± is nothing but shifting of

|ω|-radius semispheres in kx direction. It is useful to realize that f−f+ is shifting of two
|ω|-radius spheres in kx direction. See figure 6.

4.3 Antisymmetric 2-tensors

4.3.1 Space-like tensor Bxy

SS. The polar spatial tensor source of SS-quantization yields Green’s functions with the
rotational symmetry in kx-ky plane. The trace of the Green’s function matrix (3.65) yields

TrG(SS)
B

(−1)
xy

= 2ω
b

[(b+ |k⊥|)√(b− |k⊥|)2 + k2
z − ω2 + (b− |k⊥|)

√
(b+ |k⊥|)2 + k2

z − ω2

k2
z − ω2 − iϵ

]
.

(4.14)

Where k2
⊥ = k2

x + k2
y, which is perpendicular to kz. The structure of SF is different to Bx

case due to rotational symmetry in k-space. In this case, the cone shifts along k⊥ directions,
which makes the nodal line instead of separated two-Dirac points. Meanwhile, an infinite
1-dimensional pole-type singularity exists on a disk k⊥ ∈ [−b, b]. See figure 7(e,f) In kx-ky-kz
space, if ω slightly increases from 0, the singularity splits in kz direction and connects the
torus’s center; see figure 7(g,h). For AdS4, we lost the third momentum, so that no cone
appears and flat band remains only in kx-ky plane [40].

SA. The spectrum exhibits a notable characteristic of rotational symmetry in the kx-ky
plane (4.15), so the nodal line is this case’s main feature. The radius of the nodal line is 2b,
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(a) B(−1)(SS)
ux , ω-kx. (b) B(−1)(SS)

ux , ω-k⊥. (c) ω = 0. (d) ω = 1.

(e) B(−1)(SA)
ux , ω-kx. (f) B(−1)(SA)

ux , ω-k⊥. (g) ω = 0. (h) ω = 1.

Figure 6. Spectral functions (SFs) for Bux source for both quantization choices. (a,b,e,f) SFs in ω-k
plane. (c,d,g,h) SFs in kx-ky-kz at ω = 0, 1 slices, respectively. The spectral features are analogous to
Bx case, with extra branch-cut singularity pieces. Notice that the spectrum shown in (g) is just the
nonsingular branch-cut.

and the surface of the SF appears as the branch-cut type singularity. See figure 7(a,b,c,d)

TrG(SA)
B

(−1)
xy

= 2ω√
(b− |k⊥|)2 + k2

z − ω2 + 2ω√
(b+ |k⊥|)2 + k2

z − ω2 . (4.15)

4.3.2 Time-space-like tensor Btz
The trace of the Green’s function is given by

TrG(SA)
B

(−1)
tz

= 4ωb
2 + k2 − ω2 + h+h−
h+h−(h+ + h−)

, (4.16)

TrG(SS)
B

(−1)
tz

= 4ω
(h+ + h−)

√
ω2 − k2

⊥ − b(h+ − h−)√
ω2 − k2

⊥(b2 + k2 − ω2 + h+h−)
. (4.17)

where h± =
√
k2
⊥ −

(
b±

√
ω2 − k2

z

)2
, h± has a semi-torus structure. Here, h−h+ =√(

(b− |k⊥|)2 + k2
z − ω2)((b+ |k⊥|)2 + k2

z − ω2), which is nothing other than a torus. This
structure analogous to Bxy with extra branch-cut singularity pieces. For SA case at nonzero
ω, we observe a torus with connecting planes. See figure 8(d). For SS case at nonzero ω,
it is branch-cut version of B(SS)

xy . See figure 8(h). The crucial difference is that there is
no singularity at ω = 0 in SS case.

Until now, we have successfully obtained spectral functions for all interaction and quanti-
zation types where the condensate of field ⟨OΦ⟩ = 0. Our analytic results are summarized in
table 1, which allows us to classify them based on their spectral features into the following
four classes:
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(a) B(−1)(SA)
xy , ω-k⊥. (b) B(−1)(SA)

xy , ω-kz. (c) ω ≃ 0. (d) ω = 1.

(e) B(−1)(SS)
xy , ω-k⊥. (f) B(−1)(SS)

xy , ω-kz. (g) ω = 0. (h) ω = 1.

Figure 7. Spectral function (SFs) of Bxy source for both quantization choices. (a,b,e,f) SFs in
ω-kx, ω-k⊥ planes. (c,g,) SFs in ω = 0, and (d,h) ω = 1 correspondingly to the dashed red lines. The
spectral functions have rotational symmetry for each fixing kz. The background of the box represents
the certain slices at each momentum is zero.

(a) B(−1)(SA)
tz , ω-k⊥. (b) B(−1)(SA)

tz , ω-kz. (c) ω ≃ 0. (d) ω = 1.

(e) B(−1)(SS)
tz , ω-k⊥. (f) B(−1)(SS)

tz , ω-kz. (g) ω = 0. (h) ω = 1.

Figure 8. Spectral functions (SFs) for Btx source for both quantization choices. (a,b,e,f) SFs in ω-k
plane. (c,d,g,h) SFs in kx-ky-kz at ω = 0, 1 slices, respectively. The spectral features are analogous to
Bxy. Notice that the disk appearing in (g) is just the nonsingular branch-cut.

– 23 –



J
H
E
P
0
6
(
2
0
2
4
)
1
0
0

i) Flat band and topological liquid. The main characteristic of this class is the simple-pole
type singularity. It should be noted that these flat bands appear in a finite region,
which differs from flat bands that usually appear in lattice models. An explanation why
our flat bands appear over the finite region will be provided in the upcoming subsection.
The first column of figure 9 shows this class.

ii) Gaps and shifting of Dirac cones along k-direction. This class includes gaps in the
s-, p-wave, nodal ring, and nodal shell. The branch-cut type singularity is the only
singularity type in this class. The second column of figure 9 depicts this class.

iii) Gapless with nonsingular. Spectral features of this class are analogous to the first class;
however, there is no particle excitation at ω = 0 since there is no singularity. Therefore,
we will call them nonsingular segments, disks, and bowls. The third column of figure 9
represents this class.

iv) Gapless with shifting in ω-direction. Spectral features of this class show some similarities
to the gaps class, but instead of the usual nodal segment, ring, or shell, we found non-zero
spectra inside. Therefore, we will call them filled nodal segment, ring, or shell, distin-
guishing them from the second class. The fourth column of figure 9 illustrates this class.

4.4 Emergence of various dimensions flat band over finite region

We have shown that various dimensions flat band can emerge in our holographic approach
after the symmetry is broken by Φ, Bi, Bij , and Btu. We have reported the existance of these
flat bands in our previous works by numerical study. Nevertheless, the reason the flat band
emerged just over the finite region was still being investigated.

According to our analytic results, the problem is clarified. Firstly, the flat band’s
singularity can be confirmed as a simple pole by directly calculating residue for each case.
Secondly, we found that where the frequency approaches the momentum which makes the
Green’s function diverge, then the imaginary of the TrG can be approximately written in
terms of the step-function as follows:

• Scalar M0:
Im[TrG(SS)

M0
]
∣∣∣
ω2→k2

≃ Im
[ 4ω|M0|
k2 − ω2 − iϵ

]
, (4.18)

• Space-like polar vector Bx:

Im[TrG(SA)
B

(0)
x

]
∣∣∣
ω2→k2

⊥

≃ Im
[
2ω(b2

x − k2
x)

k2
⊥ − ω2 − iϵ

]
Θ(b2

x − k2
x), (4.19)

• Space-like polar tensor Bxy:

Im[TrG(SS)
B

(−1)
xy

]
∣∣∣
ω2→k2

z

≃ Im
[
2ω(b2 − k2

⊥)
k2
z − ω2 − iϵ

]
Θ(b2 − k2

⊥), (4.20)

• Time-like radial vector Btu:

Im[TrG(SA)
B

(−1)
tu

]
∣∣∣
ω→0
≃ −Im

[
2(b2 − k2)
ω − iϵ

]
Θ(b2 − k2). (4.21)
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Interactions Trace of analytic Green’s functions (AdS5) Features/Classifications Singularity types

M0

TrG(SA)
M0

= 4ω√
k2 − ω2 +M2

0

(4.3) Gapful/s-wave gap Branch-cut

TrG(SS)
M0

= 4ω

√
k2 − ω2 +M2

0

k2 − ω2 − iϵ
(4.2) Topological liquid Pole

Bx

TrG(SS)
B

(0)
x

= 2ω√
(b− kx)2 + k2

⊥ − ω2
+ 2ω√

(b+ kx)2 + k2
⊥ − ω2

(4.10) Shifting cones/p-wave gap Branch-cut

TrG(SA)
B

(0)
x

= 2ω
b

[(b+ kx)
√
(b− kx)2 + k2

⊥ − ω2 + (b− kx)
√
(b+ kx)2 + k2

⊥ − ω2

k2
⊥ − ω2 − iϵ

]
(4.11) 1D flat band Pole

Bxy

TrG(SA)
B

(−1)
xy

= 2ω√
(b− |k⊥|)2 + k2

z − ω2 + 2ω√
(b+ |k⊥|)2 + k2

z − ω2 (4.15) Nodal ring Branch-cut

TrG(SS)
B

(−1)
xy

= 2ω
b

[(b+ |k⊥|)√(b− |k⊥|)2 + k2
z − ω2 + (b− |k⊥|)

√
(b+ |k⊥|)2 + k2

z − ω2

k2
z − ω2 − iϵ

]
(4.14) 2D flat band Pole

Btu

TrG(SS)
B

(−1)
tu

= 2ω√
(b− |k|)2 − ω2 + 2ω√

(b+ |k|)2 − ω2 (4.8) Nodal shell Branch-cut

TrG(SA)
B

(−1)
tu

= −2
b

[(b+ |k|)√(b− |k|)2 − ω2 + (b− |k|)
√
(b+ |k|)2 − ω2

ω + iϵ

]
(4.9) 3D flat band Pole

Bu TrG(SS)
B

(0)
u

≡ TrG(SA)
B

(0)
u

= 4ω√
k2 − ω2

(4.5) QCP Branch-cut

Bux

TrG(SS)
B

(−1)
ux

= 4ωb
2 + k2 − ω2 + f+f−
f+f−(f+ + f−)

; f± =
√
k2
x −

(
b±

√
ω2 − k2

⊥

)2 (4.12) Filled nodal segment Branch-cut

TrG(SA)
B

(−1)
ux

= 4ω
(f+ + f−)

√
ω2 − k2

⊥ − b(f+ − f−)√
ω2 − k2

⊥(b2 + k2 − ω2 + f+f−)
; f± =

√
k2
x −

(
b±

√
ω2 − k2

⊥

)2 (4.13) Non-singular segment Branch-cut & nonsingular

Btz

TrG(SA)
B

(−1)
tz

= 4ωb
2 + k2 − ω2 + h+h−
h+h−(h+ + h−)

; h± =
√
k2
⊥ −

(
b±

√
ω2 − k2

z

)2 (4.16) Filled nodal ring Branch-cut

TrG(SS)
B

(−1)
tz

= 4ω
(h+ + h−)

√
ω2 − k2

⊥ − b(h+ − h−)√
ω2 − k2

⊥(b2 + k2 − ω2 + h+h−)
; h± =

√
k2
⊥ −

(
b±

√
ω2 − k2

z

)2 (4.17) Non-singular disk Branch-cut & nonsingular

Bt

TrG(SS)
B

(0)
t

= 2
(

b+ ω√
k2 − (b+ ω)2

− b− ω√
k2 − (b− ω)2

)
(4.6) Filled nodal shell Branch-cut

TrG(SA)
B

(0)
t

= 2
b

[√
k2 − (b− ω)2 −

√
k2 − (b+ ω)2

]
(4.7) Non-singular bowl Branch-cut & nonsingular

Table 1. The summary of trace of Green’s functions, spectral features and classifications for AdS5.
For all of the expressions, k2 = k2

x + k2
y + k2

z .

It is clear that apart from the scalar case, the simple pole spectra are nonzero, just over
a finite region, due to the presence of step functions. It also explains why the flat band
of B(SA)

tu appears just over a finite region even if the singularity is k independent function
(1/ω). According to these observations, we classify them as various dimensions flat bands:
1,2, and 3-dimensional flat bands as shown in figure 9.

4.5 Spectrum in the presence of the order parameter’s condensation

We have exhibited the SFs corresponding to the condensation in the alternative quantization
by employing the analytic Green’s functions. Here we mention that the flow equation can
numerically compute the case where order parameter fields condensation in the standard
quantization [38–40] although the analytic expressions are not possible. The spectral features
in the probe limit can be generated by employing seven spectral features and modifying
the symmetry in k-space.
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0Figure 9. The classifications of spectral features for all interaction and quantization types. The table

consists of spectral functions in ω-kx,y,z and kx-ky-kz at ω ≃ 0. The spectra have identical symmetry
on the horizontal alignment and have the same spectral feature on the vertical alignment. deff is the
number of the flat band, cones k-shifting, nonsingular, and cones ω-shifting spectra appearing in each
k-space section.

Our calculation shows that the interactions leading to the simple pole type in the
alternative quantization, which are given by Φ, Bx, Bxy, Btu, also yield the simple pole types
singularity in the standard quantizated case as well. But not vice versa. For example, the
scalar interaction with standard quantization have poles in SA fermion, but in alternative
quantization has branch-cut in the same SA fermion. See figure 10(b). In contrast, the
remaining interactions Bu, Bux, Btz, Bt yield branch-cut type Green’s functions alternative
quantization. See figure 10.

In this section, we found three types of Green’s function: pole type, branch-cut type
singularity and branch-cut non-singularity. In the upcoming section, we will compute the
full back-reaction for each order parameter field. It is noteworthy that we have observed a
remarkably stable pole-type singularity. This observation agrees with our previous research,
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(a) M (SS). (b) M (SA). (c) B(1)(SS)
tu .

(d) B(1)(SA)
tu . (e) B(2)(SS)

t . (f) B(2)(SA)
t .

Figure 10. Spectral functions (SFs) which are associated with the condensation order parameter
fields. (a,b) and (c,d) scalar and Btu condensation SFs, lead to the complete disappearance of the
fuzzy spectra, resulting in the emergence of only the Kaluza-Klein (KK) modes. Notice that in the
source case of these interactions, both simple pole and branch-cut singularities can occur. However,
only the simple pole type is observed in the condensation cases. (e,f) Bt condensation, the types of
Green’s functions appear similar to those observed in the source cases. Keep in mind that combining
these SFs and introducing variations makes it possible to generate all 16 types of interaction SFs.

wherein we interpreted the pole type, referred to as the zero mode, as a topological mode.
The stability of this mode is assured by the boundary conditions of the fermions, which
makes it topological [29]. Additionally, we also give the Green’s functions,dualities, and
the classifications for AdS4 theory in A.

5 Backreacted spectral functions

So far, our calculations were done in the probe limit, where back-reactions to the metric by
the order parameter fields were neglected. Consequently, the reliability of these approximate
analytic expressions can be asked and the only way to answer is to carry out the full back-
reacted solution. In this section, we carry out this program and compare it with the essential
probe limit analytic results. Since any of the back reaction calculations involve full-scale
numerical work, and preliminary calculation with low numerical grid gave us the tentative
result that the Green’s function with pole type singularity is stable under perturbation while
the branch cut type singularity is not. Therefore we also expect that the full-scale back
reacktion should be similar. In this section, we perform only for the space-like antisymmetric
tensor type order parameter, postponing other cases to future work. We use a special
lagrangian, which permits the non-zero source and zero condensation. In other words, we use
the theory that allowed the alternative quantization of the order parameter field. We should
mention a big difference between the order parameter field Bt, and the usual gauge field
At, which is not an order parameter but a field encoding the charge density effect provided
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externally. The charge density ρ is given by external condition and the horizon regularity
fixes its value µ at the boundary so that At ∼ µ− ρu2. Therefore, At can not describe any
broken symmetry or order parameter. On the other hand, Bt is supposed to describe the
spontaneous symmetry breaking by having zero source or zero condensation. It turns out
that this is possible only by coupling with other fields. Just as in the superconductivity case,
we assumed it is induced mainly by an interaction with the gauge field, F = dA. In this
section, where we actually produces such field Bt by considering back reaction and coupling,
we used F 2

µνB
2
α for the vector. This comment applies to all other tensor fields as well.

We follow the fundamental action model, which is given in [41, 42]. Additionally, to
quantize real Bxy alternatively, where only the leading term is nonvanishing, we introduce At
and set the highest order coupling term between At and Bxy as the source of spontaneous
symmetry breaking. The model is then given by

Sg,B,A =
∫
d5x
√
−g

(
R− 2Λ− 1

4F
2
µν

(
1 + 4γB2

αβ

)
− 1

3H
2
λαβ −m2B2

αβ

)
, (5.1)

here A = At(u)dt and the antisymmetric field-strength tensor Hλαβ, given by

Hλµν = ∇λBαβ +∇αBβλ +∇βBλα ; ∇λBαβ = ∂λBαβ − ΓγλαBγβ − ΓσλβBασ, (5.2)

where B = Bxy(u) dx ∧ dy. Notice that the choice of our Aµ, Bαβ, leading to FµνBαβ = 0,
and in this scenario, F 2

µνB
2
αβ becomes the highest order term.

It is important to note that by setting m2 = 1, the asymptotic behaviour of space-like
antisymmetric 2-tensor field Bxy(u) is given by

Bxy(u) ≃ ⟨O1⟩u−1 + ⟨O2⟩u+ · · · . (5.3)

The presence of the singularity in the expression causes some numerical difficulties; conse-
quently, we define a new variable, Bxy(u) := uBxy(u) which significantly enhances numerical
convenience by eliminating the singularity from the expression. With a small value ϵ, we
can determine the sub-leading term ⟨O2⟩ by B′

xy(ϵ)/2ϵ, which suppose to be zero due to
the alternative quantization.

In the back-reaction calculation, we take the following ansatz,

ds2 = 1
u2

(
−f(u)χ(u)dt2 +

3∑
i=1

dx2
i +

du2

f(u)

)
, (5.4)

the background fields equations of motion are then given as follows

B′′
xy + B

′
xy

[
f ′

f
+ χ

′

2χ −
1
u

]
− Bxy

u

[
f ′

f
+ χ

′

2χ −
1
u
− 4u5Q2γBxy
f(1 + 4u2γB2

xy)2 + 1
uf

]
= 0, (5.5)

f
′ − f

3u
[
12 + u2(Bxy − uB

′
xy)2

]
− 1

3uB
2
xy −

u5Q2

6(1 + 4u2γB2
xy)

+ 4
u
= 0, (5.6)

χ
′ + 2

3uχ(Bxy − uB
′
xy)2 = 0, (5.7)

A
′
t +

uQ
√
χ

1 + 4u2γB2
xy

= 0. (5.8)
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Figure 11. The value of alternative quantization condensate as a function of temperature. From the
bottom to the top, various curves correspond to γ = −2,−3, and −5. The large values of γ give the
larger order parameter condensate at T/Tc = 0. However, the differential equations turn numerically
unstable, causing difficulty in collecting all calculation results in the entire temperature range. So, we
have not plotted them here.

where Q is the effective charge density. We utilize the shooting method to search for the
solution which satisfies the following boundary conditions,

f(uH), At(uH) = 0, χ(ϵ) = 1, Bxy(uH) = finite, ⟨O2⟩ ≡ B
′
xy(ϵ)/2ϵ = 0, (5.9)

to perform the calculation, we consider the near horizon behavior of fields which can be
obtained by the Taylor expansion of the fields in the following ways:

(Bxy(u), f(u), χ(u), At(u)) ≃
n∑
i=0

(bi, fi, χi, ai)
(
1− u

uH

)i
. (5.10)

By plugging in the above expansion into the fields equations (5.5)–(5.8), we can deter-
mine (bi, fi, χi, ai) in terms of the horizon value (b0, χ0, uH). Together with the boundary
conditions (5.9) and tuning value of Q, the solutions of the full back-reaction can be obtained.

We examine our calculation by fixing uH = 4, in which the stable solutions can be obtained
in various finite values of the coupling constant γ. By tuning Q ∈ (0.012, 0.074), we get the
critical temperature Tc ≈ 0.075, and the value of the order parameter ⟨O1⟩ as a function of
temperature, which we found that it is an analogue with holographic superconductor [22].
See figure 11. However, we postpone the physical interests of it for now since our aim in
this paper is to show the reliability of our analytic results.

By employing the backreacted background solutions, we can calculate the backreacted
fermions spectral function by using flow equation [38]. We divided the temperature regime
into three categories: low (T ≪ Tc), high (T > Tc), and medium (T ∼ Tc) temperature
and investigate the spectral function for each regime. In the low-temperature regime, the
spectrum is similar to our analytic probe result; this seems natural since, in this regimen,
the black-hole temperature is much smaller than the order parameter (T ≪ ⟨O1⟩). While for
T ∼ Tc ∼ ⟨O1⟩, the spectral features remain with fuzzy dressing. Above the Tc, the system is
in the normal phase where symmetry is restored, so the spectral function is similar to that
of the critical system, which has more fuzziness. See figure 12.
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(a) T > 2Tc. (b) T ≈ 0.9Tc. (c) T ≈ 0.1Tc. (d) Analytic B(SS)
xy .

(e) T > 2Tc. (f) T ≈ 0.9Tc. (g) T ≈ 0.1Tc. (h) Analytic B(SA)
xy .

Figure 12. Backreacted fermions spectral functions (SFs) by fixing the order parameter ⟨O1⟩ ≈ 2.0
at T ≈ 0.1Tc. (a,e) fermions SF with Bxy interaction type at above Tc. In this regime, the symmetry
is restored so that ⟨O1⟩ = 0. (b,f) SFs where the order parameter is of the order of temperature
(T ∼ Tc ∼ ⟨O1⟩). (c,g) SFs where the order parameter is much bigger than temperature (⟨O1⟩ ≫ T ).
(d,h) SFs generated by our analytic results given in the section 4.

The results reveal the following: i) The degrees of freedom near k⊥ = |⟨O1⟩| spread
out, but the pole singularity structure remains stable. On the other hand, the singularity
structure of the branch-cut along ω = ±|(k⊥ ± ⟨O1⟩)| shows deformation. ii) Regardless of
fermion quantization, the main spectral functions maintain the same feature as the probe
limit results. These results emphasize the reliability of probe-limit results, providing the
advantage of avoiding complexities and excessive time calculations associated with full
back-reaction calculations.

6 Discussion

In this paper, we found the analytic expressions of the Green’s function of fermions under
the various types of symmetry breaking: vector and tensor as well as a few types of scalars.
We classified the propagator according to the types of singularities: some have branch cut
types but some of them have pole types. By having the analytic expressions, although they
are within the probe limit, we now understand why various dimensional flat bands exist
and why they have finite regions of support.

Our setup refers to the order parameter field configuration with zero sub-leading order
term, ⟨OΦ⟩ = 0. For the scalar condensation in AdS4, an analytic study has already been
made and reported [29], but in the context of AdS5, the presence of the condensation term
gives the Dirac equations nontrivial dependence of u, making the solvability unavailable for all
types of order parameter fields. This is the reason why analytic calculation for condensation
was not considered in the present work.
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To support the analytic results which are obtained from the probe background and also
with only source type order parameters, we performed the numerical analysis to find solutions
of a coupled system of gravity with space-like antisymmetric 2-tensor and use it to calculate
the spectral function of the fermions. Comparing the spectral functions of fermions with and
without the back-reaction, we observed a qualitative agreement in the structural features. In
other types of order parameters, we do not show the results in this work, but we also found
such qualitative agreement in most cases, which will be extended to future projects.

One should also note that our analytic results are obtained from a pure AdS background.
However, we used it to approximate the haired black hole background, not the back reacted
near 0 temperature, because in the presence of the order, such zero temperature limit gets a
serious modification and becomes a new scaling solution so that it is not for the ordered phase,
which is our target. Therefore, our analytic results should be compared with the result at
relatively high temperatures where the transition between the strange metal and the ordered
state. The singularity structure significantly changes as we change the temperature. The
most important remark is that our numerical spectral functions provide slight deformation
and a reduction in sharpness compared to analytic results, which is nothing but the effect
of the back reaction. However, we observed the different effects of the back reaction on
pole and branch-cut type singularity.

In the cases of the pole-type singularity or flat bands, we observe the negligible back
reaction and high stability of the flat bands, in which the structure of the singularities
qualitatively remains and closely matches our analytic results. Evidently, in the cases where
the rotational symmetric flat band is present: B(SS)

xy , the simple pole singularity structure is
remarkably stable. This observation agrees with our previous work, which interpreted the
pole spectrum as a topological mode. However, we observed spreading out of the density
of state near ω = 0,k⊥ = |⟨O1⟩|, which is the back-reaction effect.

On the other hand, in the cases of the branch-cut type singularity spectrum, the
singularity structure is slightly different from our analytic results. For B(SA)

xy , we observe
that the singularity along ω = ±|(k⊥ ± ⟨O1⟩)| is more fuzzy and reshapes compared to the
analytic result. However, it still remains the main feature qualitatively.

We now list a few future projects apart from removing the above limitations. First,
discussing the presence of branch-cut singularity in the propagator in view of the non-Fermi
Liquid would be interesting. Second, discussing the topology of the various spectral functions
should be possible. This would precisely answer the question of what happens to the topology
in the limit where the quasi-particle disappears. We hope we can come back to this issue in
the near future. Finally, notice that we lack a chiral Γ5 matrix to represent the chirality of
the boundary. For this reason, we did not discuss the chiral dynamics in this paper. We think
it must be done by introducing another flavor of fermion to double the degrees of freedom.
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Interactions Trace of analytic Green’s functions (AdS4) Features/Classification

M0/M05

TrG(SA)
M0
≡ TrG(SS)

M50
= 4ω√

k2 − ω2 + M 2
0

Gapful/s-wave gap

TrG(SS)
M0
≡ TrG(SA)

M50
= 4ω

√
k2 − ω2 + M 2

0
k2 − ω2 − iϵ

Topological liquid

Bx/B5x

Tr G
(SS)
B

(0)
x
≡ Tr G

(SA)
B

(0)
5x

= 2ω√
(b− kx)2 + k2

y − ω2 + 2ω√
(b + kx)2 + k2

y − ω2 Shifting cones/p-wave gap

TrG(SA)
B

(0)
x
≡ Tr G

(SS)
B

(0)
5x

= 2ω

b

(b + kx)
√

(b− kx)2 + k2
y − ω2 + (b− kx)

√
(b + kx)2 + k2

y − ω2

k2
y − ω2 − iϵ

 1D flat band

Bxy/Btu Tr G
(SA)
B

(−1)
xy
≡ TrG(SS)

B
(−1)
tu

= 2ω√
(b− k)2 − ω2

+ 2ω√
(b + k)2 − ω2

Nodal ring

(anti-symmetric) TrG(SS)
B

(−1)
xy
≡ TrG(SA)

B
(−1)
tu

= −2
b

(b + |k|)
√

(b− k)2 − ω2 + (b− |k|)
√

(b + k)2 − ω2

ω + iϵ

 2D flat band

Bu TrG(SS)
B

(0)
u
≡ TrG(SA)

B
(0)
u

= 4ω√
k2 − ω2

QCP

Bux/B5u

TrG(SS)
B

(−1)
ux
≡ TrG(SA)

B
(−1)
5u

= 4ω
b2 + k2 − ω2 + f+f−

f+f−(f+ + f−) ; f± =
√

k2
x −

(
b±

√
ω2 − k2

y

)2
Filled nodal line

TrG(SA)
B

(−1)
ux
≡ TrG(SS)

B
(−1)
5u

= 4ω
(f+ + f−)

√
ω2 − k2

y − b(f+ − f−)√
ω2 − k2

y(b2 + k2 − ω2 + f+f−)
; f± =

√
k2
x −

(
b±

√
ω2 − k2

y

)2
Non-singular segment

Bt/B5t

TrG(SS)
B

(0)
t

≡ TrG(SA)
B

(0)
5t

= 2
 b + ω√
k2 − (b + ω)2

− b− ω√
k2 − (b− ω)2

 Filled nodal ring

TrG(SA)
B

(0)
t

≡ TrG(SS)
B

(0)
5t

= 2
b

[√
k2 − (b− ω)2 −

√
k2 − (b + ω)2

]
Non-singular disk

Table 2. The summary of trace of Green’s functions and spectral features in AdS4. In AdS4, the
Green’s functions have duality of the trace part between SS and SA quantization which the key is the
fifth gamma matrix Γ5 which is absent in AdS5 space-time. It is important to note that k2 = k2

x + k2
y

for all expressions.

2022H1D3A3A01077468. We thank the APCTP for the hospitality during the focus program,
where part of this work was discussed.

A AdS4 Green’s function, spectral features, classification, and dualities

Even the spectral functions for AdS4 were studied in our previous work but the analytic
results have not been completely reported yet. However, we found the duality between AdS4
and AdS5 Green’s functions which we will show in this section. We follow the gamma matrix
convention for AdS4 in [24, 27, 38–40].

Γt = σ1 ⊗ iσ2, Γx = σ1 ⊗ σ1, Γy = σ1 ⊗ σ3, Γu = σ3 ⊗ σ0, Γ5 = iΓtΓxΓyΓu. (A.1)

Under this convention, Γ5 ≡ Γz in our main AdS5 context, so that the bulk gamma matrices
can be decomposed as follows,

Γµ =
(

0 γµ

γµ 0

)
, Γµν =

(
γµν 0
0 γµν

)
,Γµu =

(
0 −γµ

γµ 0

)
,

the structure of the gamma matrices shows us that the result of Green’s functions will
be the same as AdS5 by removing complex conjugates in the expressions and eliminating
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the third momentum kz. The reason is that the differential equations remain the same as
before. For pseudo-interaction types, however, they might be confused due to lack of the fifth
gamma matrix in AdS5. According to Γ5,Γ5x,Γ5t,Γ5r, they are equivalent to Γz,Γzx,Γzt,Γzr,
respectively, by setting kz = 0. As a result, the duality of the Green’s functions between
AdS5 and AdS4 are obtained. See table 2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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