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1 Introduction

Inspite of the much progress, understanding the many-body effects of strongly correlated
systems remains mysterious because of the lack of tools to calculate strange behaviours of such
materials [1, 2]. One of the celebrated features of strongly interacting systems is the Mott gap,
which is essential in understanding the physics of high-temperature superconductivity, which
is considered as a doped Mott insulator [3]. The Mott gap is induced by the electron-electron
on-site interaction, but it can not be described by the order and symmetry breaking. Its
physics can be best represented by the Hubbard Hamiltonian [4] that involves the competition
between hopping and on-site repulsion, though the Hubbard model is not solved completely in
two and higher dimensions. Recently, the Mott gap has been partially explained by dynamical
mean-field theory (DMFT) calculation [1].

Gauge/gravity duality [5–7] provides an alternative tool to study a strongly coupled
system in terms of weakly interacting theory of gravity in one higher spatial dimension [8–16],
and its application to condensed matter physics has been practiced widely in the past decade.
Since gravity models map strongly coupled boundary field theory, one obvious inquiry is to
find a holographic setup to explain the Mott gap. For the classification of the order gap
appearing in the strongly coupled system, a holographic mean field theory has been proposed
using a holographic approach in [17]. The main task there is to find gap-like features for
various symmetry-breaking pattern in the holographic setup.

Because such holographic theory aims at the general theory for strongly interacting
systems, it would be interesting to ask whether we can also explain the Mott physics in terms
of the holographic mean field theory and compare the result with the result of DMFT.
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Along this line of thinking, the dipole coupling, which is sometimes called the Pauli
interaction, has been utilized in the holographic literature [18–22]. However, the spectral
function of the holographic fermion with Pauli interaction has a highly asymmetric gap in
the sense that the upper side of the Fermi sea (FS) has a gap but the lower side of FS is
touched by a spectral peak line. From the density of states (DoS) in the presence of the
dipole coupling, one can see that the gap in that theory is ‘soft’ as well as asymmetric. On
the other hand, the DMFT result shows that the Mott gap is symmetric. This motivates us
to consider other non-minimal interactions between the gauge field and fermion. Finding a
symmetric gap in the DoS analysis without an order parameter field is the main achievement
of this paper. In doing this we can classify Mott gaps and the ordered gaps.

We will first reproduce all the spectral functions for the holographic fermion with dipole
interaction and analyze the DoS corresponding to the spectral functions. We will then propose
another type of interaction having more desired features: from the holographic mean field
theory [17], we know that only scalar or pseudo scalar type Yukawa interaction can give a
proper gap, while we also know that there should not be any order parameter field involved in
the description of the Mott gap. Then the only field we can use is the gauge field describing
the density effect and the only way to form a gauge invariant scalar out of the gauge field
is FµνFµν so that we should try a few version of the F 2ψ̄ΓSψ term where S is the gamma
matrix index corresponding to an effective scalar. This is the idea of the paper and as a
consequence of adding such interaction, we will get a symmetric Mott gap from some of them.

Compared with the interaction term of Hubbard Hamiltonian, we have argued that
F 2ψ̄ψ is the most reasonable holographic interaction for the Mott gap. The DoS for this
interaction shows a strong and symmetric gap, which is consistent with the DoS obtained
from DMFT calculation. We have also observed that the symmetric Mott gap appears
because of the time-reversal symmetry. The F 2ψ̄ψ interaction term preserves time-reversal
symmetry, whereas the dipole interaction breaks time-reversal symmetry. From the density of
states analysis, the Mott gaps are classified into three classes: i) Symmetric, ii) Asymmetric
with isolated Fermi sea. iii) Asymmetric with valence band touching Fermi sea. Then, the
dependence on temperature, chemical potential, coupling constant, and the effect of fermion
mass have been discussed in detail. From the boundary point of view, the possible gamma
matrix are ΓS = I4,Γz, iΓ5, iΓ5z. This analysis is extended to the two-flavour fermion case.
For completeness, we revisit all possible ordered gaps in holographic setups and classify all
possible Mott gaps in the holographic set from the gap point of view.

This paper is organized as follows. In section 2, we have revisited the holographic setup
with the dipole interaction and proposed our setup with different interactions. The DoS
analysis for Mott gaps is presented in section 3. In section 4, we present the classifications
of all interactions in terms of Mott gap, ordered gap and flatband. We summarize our
findings in section 5.

2 Basic setup

2.1 Pauli interaction term for Mott gap

Before discussing our proposal for the holographic Mott gap, we would like to revisit the
previous model for the Mott gap [18]. The holographic Mott gap model is based on the Pauli
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or dipole interaction term. The Lagrangian is given by

Lf = iψ̄

(
ΓµDµ −mf − i

p

2FµνΓ
µν
)
ψ (2.1)

The above interaction term can not be mapped with Hubbard interaction term for Mott
gap (A.8). The background geometry was considered in [18] as follows:

ds2 = 1
z2

[
−f(z)dt2 + dz2

f(z) + dx2 + dy2
]

with f(z) = 1−M
z3

z3
h

+Q2 z
4

z4
h

(2.2)

with M = 1+Q2 and µ = Q/zh. The above metric represents Reissner-Nordström (RN) AdS
black hole geometry. The Hawking temperature for this metric is TH = 1

4πzh

(
3M − 4Q2).

The zero temperature limit of the boundary theory implies the black hole extremal limit. In
the extremal limit, the mass and the charge of the black hole are fixed with values M = 4 and
Q =

√
3. For the fixed values of the other parameters (p = ±4.5,mf = 0, qf = 1, zh = 1, µ =√

3), we have reproduced all previous spectral function. In the previous investigation [18],
the energy density curve “A(ω) vs ω′′ for fixed k has been used to describe the gap feature
in the fermionic spectral function.

For p = −4.5, the spectral function (figure 1(a)) exhibits a gap feature while Fermi
level (ω = 0) appears to be touching the valence band. On the other hand, for p = +4.5,
the spectral function flips, suggesting a gap in the negative energy region, although the
Fermi level touches the conduction band [13]. Using the definition of density of state
(DoS = 1

2π
∫
A(k, ω)kdk), we have shown the DoS corresponding to their spectral function

plot in figure 1(a). Although the spectral function for p = −4.5 shows a gap-like feature
in figure 1(a), its DoS part shows that the gap is soft and asymmetrical, which is rather
unfamiliar in the DMFT result. This motivates us to search for other possible non-minimal
interactions between the gauge field and fermion.

2.2 Our proposal

We propose the following fermionic action

Sψ =
∫
d4x

√
−g

[
iψ̄(ΓµDµ −mf − ηF 2ΓS)ψ

]
and Sbdy = i

∫
d3x

√
−hψ̄ψ . (2.3)

Here, η represents the coupling constant and F 2 = FµνF
µν . The spinor’s covariant deriva-

tive is denoted by Dµ = ∂µ + 1
4ωµᾱβΓ

ᾱβ − iqfAµ. The possible gamma matrices are
ΓS = I4, iΓ5,Γz, iΓ5z. Comparing with the interaction term in Hubbard Hamiltonian (see
appendix A and eq. (A.6)), we can identify ΓS = I4, which will show a symmetric Mott gap
in the DoS. The bulk gamma matrices used in this paper are as follows:

Γt = σ1 ⊗ iσ2, Γx = σ1 ⊗ σ1, Γy = σ1 ⊗ σ3, Γz = σ3 ⊗ σ0, (2.4)

where underline indices represent tangent space indices. We obtain the Dirac equation

(ΓµDµ −mf − ηF 2ΓS)ψ = 0 . (2.5)
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To simplify the analysis, we express the fermionic field as follows:

ψ(t, x, y, z) = 1
(−ggzz)1/4 e

−iωt+ikxx+ikyyΨ(z) . (2.6)

This form allows us to eliminate the spin connection term in the spinor equation of motion.
We have considered the gauge field ansatz A = At(z)dt to compute the spectral function,
which behaves as At = µ(1− z/zh), where zh is the horizon and µ is the chemical potential
of the boundary theory. By substituting the above fermion field (2.6) and gauge field ansatz
into the Dirac equations, we derive the following expressions:[

Γz∂z − i

√
gtt

gzz
(ω + qfAt)Γt −

mf√
gzz

]
Ψ(z)

+ i

(√
gxx

gzz
kxΓx +

√
gyy

gzz
kyΓy

)
Ψ(z)− ηF 2

√
gzz

ΓSΨ(z) = 0. (2.7)

3 Mott gaps in DoS

In this section, we will calculate the density of states by solving the Dirac equation. To solve
the Dirac equation, we express the four-component spinor as Ψ(z) = (Ψ+(z),Ψ−(z))T where
Ψ± = (Ψ±1,Ψ±2). First, we focus on the gamma matrix ΓS = I4, which can be mapped to
the interaction term in Hubbard Hamiltonian. The Dirac equation becomes[

∂z ∓
mf√
gzz

]
Ψ±(z) = ±

[
iKjγ

jΨ∓(z)
]
± ηF 2

√
gzz

Ψ±(z) (3.1)

where Kj =
(√

gtt

gzz (ω + qfAt),−
√

gxx

gzz kx,−
√

gyy

gzz ky
)
, γj = (iσ2, σ1, σ3). In the asymptotic

limit as z → 0, we consider gµν → z2ηµν , where ηµν is the Minkowski metric. In the
asymptotic limit, the source and condensation are given for |mf | < 1

2 by [23]

Ψ+(z)
z→0= Azmf , Ψ−(z)

z→0= Dz−mf . (3.2)

Following the same procedure in [24], we can write down the boundary action in the
following form

Sbdy =
∫
d3x

[
Ψ†

−(z)Γ̃Ψ+(z) + Ψ†
+(z)Γ̃Ψ−(z)

]
(3.3)

where the boundary gamma matrix Γ̃ = −σ2. Recasting the Dirac equation, the flow equation
for bulk Green’s function G(z) has been derived in appendix B. Using the horizon value
of the G(z) and solving the flow equation, we can numerically calculate the bulk Green’s
function G(z). From this bulk Green’s function, the retarded Green’s function GR is obtained
using the following relation

GR = lim
z→0

U(z)G(z)U(z) (3.4)

where U(z) = diag(zmf , zmf ). The spectral function (SF) is defined as

A(kx, ky, ω) = Tr(Im(GR)) . (3.5)
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(a) FµνΓµν at T = 0, qf = 1. (b) F 2 at T = 0.025µ, qf = 0. (c) F 2 at T = 0.025µ, qf = 1.

Figure 1. Spectral function and density of state for different cases: (a) For dipole interaction at zero
temperature, Mott gap is soft and asymmetric. (b) For density interaction (F 2ψ̄ψ) with qf = 0, Mott
gap is hard and symmetric. (c) With minimal interaction included also, the Mott gap is hard and
asymmetric due to the shifted Fermi surface.

From this, the density of state (DoS) is defined in the following way:

DoS = 1
(2π)2

∫
kcut

dkxdkyA(kx, ky, ω) =
1
2π

∫
kcut

A(kx, ky, ω)kdk (3.6)

where k =
√
k2
x + k2

y and kcut is the momentum cutoff region in which we are counting the
degree of freedom of the system. Using the gauge field solution At(z) = µ(1 − z/zh), we
obtain the RN-AdS black hole as background spacetime which has form

ds2 = 1
z2

[
−f(z)dt2+ dz2

f(z)+dx
2+dy2

]
with f(z)= 1− z3

z3
h

+µ2

2

(
z4

z2
h

− z3

zh

)
. (3.7)

The Hawking temperature for this geometry reads

TH = 3
4πzh

(
1− µ2z2

h

6

)
(3.8)

which is mapped to the temperature(T ) of the boundary theory. The spectral function with
DoS at finite temperature T = 0.025µ for qf = 0, 1 with η = 1 is shown in figure 1. A clear
Mott gap feature is observed in the spectral function as well as in the density of states. For the
numerical computation for F 2ψ̄ψ, we have considered T = 0.05, µ = 2,mf = 0 and coupling
strength η = 1. We choose the momentum cutoff value kcut such that it counts all the degrees
of freedom of the system (inside the region of the bands). Since there is no degree of freedom
outside the bands, the large-momentum cutoff does not affect the feature of the DoS plots. We
have mentioned all momentum cutoffs in the DoS figures since we chose different momentum
cutoffs for each DoS to reduce computing time. Note that all dimensionful parameters ω and
k can be expressed in units of µ since µ is the energy scale of the system.

Even without mininal interaction the dipole interaction induces a gap which is extended
only in right hand side direction as it is shown in figure 2(dashed one). From this, we
can classify three types of Mott gaps. The F 2ψ̄ψ interaction without minimal interaction
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Gauge −iηψ̄Lintψ

Field Gapless Gap Flatband Effect of qf
At(z)dt ΓzF 2, iΓ5zF 2 F 2(η > 0), iF 2Γ5, −iFµνΓµν FµνΓµνΓ5 Shifting & Bending

Table 1. Mott gaps from different gauge field interactions.

Figure 2. DoS for Mott gaps with different interactions at T = 0.025µ for qf = 0,mf = 0, η = 1 with
momentum cutoff kcut = [−5, 5].

produces a hard and symmetric Mott gap. The other type of Mott gap is defined as a hard
and asymmetric gap, which is produced by F 2ψ̄ψ interaction with minimal gauge interactions.
The last type of the Mott gap is the one we described above: the one which is generated
by the dipole interaction with and without minimal gauge interactions. It is asymmetric
and its Fermi surface touches the valence band.

In the absence of the minimal interaction, the time-reversal symmetry can make fermion
spectral function symmetric depending the interaction type. The dipole interaction breaks
the time-reversal symmetry in the bulk fermion equation. In contrast, the F 2ψ̄ψ interaction
preserves the time-reversal symmetry in the bulk fermion equation for the fermion charge
qf = 0 (see the appendix C). From eq. (C.8) and eq. (C.6), we observed that the F 2ψ̄ψ

interaction term plays the role of effective fermion mass in the fermion equation. The shifting
of fermion mass in the fermion equation (eq. (C.6)) preserves time-reversal symmetry.

We now explore all possible interactions that can generate a gap without any symmetry
breaking. As we mentioned earlier, we have also examined other three possible cases
ΓS = iΓ5,Γz, iΓ5z. From the spectral function and DoS, we have found that F 2ψ̄iΓ5ψ

generates Mott gap while the other two interactions do not show any gap feature in the
spectral function (table 1). We have obtained Mott gaps from three types of interactions:
scalar (F 2ψ̄ψ), pseudo scalar (iF 2ψ̄Γ5ψ), and dipolar (iFµνψ̄Γµνψ) types. The scalar and
pseudo scalar type Mott gaps are strong and symmetric, whereas the dipole type Mott gap
is soft and asymmetric.

One noticing point is that the gap size for the F 2ψ̄ψ interaction is larger than the gap size
for the F 2ψ̄iΓ5ψ interaction. The comparison of the DoS with the same parameter values for
different interactions at T = 0.025µ for qf = 0,mf = 0 with unit coupling strength is shown
in figure 2. The momentum cutoff range of kx and ky are [−5, 5] for figure 2. This is clear
evidence that F 2ψ̄ψ interaction is more suitable for describing the Mott gap in holography.
The holographic flatband can also be realized using non-minimal gauge coupling with fermion
(FµνΓµνΓ5). The fermion’s finite charge bends and shifts the flatband which is shown for
T = 0.025µ,mf = 0.45 and coupling strength= 1 with different fermion charges in figure 3.
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(a) For qf = 0. (b) For qf = 1. (c) For qf = −1.

Figure 3. Effect of fermion charge qf on spectral function for FµνΓµνΓ5ψ.

(a) Gap vs Coupling. (b) Gap vs Temperature. (c) Gap vs Fermion mass.

Figure 4. Mott gap size ∆M from DoS where DoS≤ 0.001 value is considered as cutoff for gap. (a)
At T = 0.025µ,mf = 0 (b) For µ = 2, η = 1,mf = 0, (c) For T = 0.025µ, η = 1.

We would like to investigate the effect of temperature, coupling strength, and fermion
mass in the spectral function as well as in the density of states. We know that the effect of
the charge is to shift the position of the Fermi surface. In the presence of the charge qf = 1,
we have also found the same feature here (figure 1(c)).

The gap size ∆M is measured from the DoS, where the DoS≤ 0.001 region is considered
as the gap region. It depends on the chemical potential and the temperature. Since the Mott
gap is generated due to non-minimal gauge field interaction, the gap size is proportional to the
chemical potential. The effect of the coupling strength on the gap size is shown in figure 4(a).
The dependency of gap size on the temperature (figure 4(b)) shows a phase transition from
Mott insulator to metal transition. From this figure 4(b), we can compute the ratio between
the gap energy and the critical temperature for the Mott insulator, ∆M (T=0)

Tc
∼ 6.3, which is

much higher than the corresponding ratio in superconductors.
The gap size decreases as the bulk fermion mass increases from zero to 1

2 . The nature of
the spectral function changes to pole type when mf = 1

2 which is consistent with the previous
investigation [25]. Since gap generation is due to interacting term, and mf = 1

2 in holography
leads to non-interacting theory, the gap tends to vanish as mf = 1

2 . However, we observe
that there is a finite gap size at mf = 1

2 when coupling strength is turned on. We have shown
the effect of coupling strength, fermion mass and temperature on the gap size in figure 4.

4 Classification of gaps in two flavor fermions

In this section, we promote our flavour analysis to two flavour fermions related to sublattice
symmetry in materials. We will examine whether the dipole interaction can create a symmetric
Mott gap. Besides this, we will also investigate F 2ψ̄1Γscalarψ2 interaction. In the two-flavor
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(a) For charge qf = 0. (b) For charge qf = 1.

Figure 5. Spectral function along with DoS for Lint = iηF 2Γ5 at T = 0.025µ with momemtum cutoff
range [−5, 5] and fermion mass mf = 0 for different fermion charge qf .

(a) For mf = 0.1 . (b) For mf = 0.4 . (c) For mf = 0.5 .

Figure 6. Effect of the fermion mass on spectral function at T = 0.025µ.

fermions setup, the Lagrangian density becomes

L =
2∑
j=1

iψ̄j (ΓµDµ −mf )ψj − iψ̄1Lintψ2 − iψ̄2Lintψ1 . (4.1)

The corresponding coupled equation of motion of two flavour fermions read

(ΓµDµ −mf )ψ1 − Lintψ2 = 0, and (ΓµDµ −mf )ψ2 − Lintψ1 = 0 . (4.2)

The procedure of Green’s function derivation for two flavour fermions is almost the same
with one flavour case, which is given in detail in [13, 17]. In the two flavour scenario, we
mainly focus on the standard-standard (SS) and standard-alternative (SA) quantization. One
noticeable point is that GSS = Γ5GSA relates SS and SA quantizations in terms of the output
of the spectral function. The spectral function for the two flavour case for Lint = iηF 2Γ5

with SS quantization is shown in figure 5. The effect of the charge and the fermion mass on
the spectral function is shown in figure 5 and 6 respectively. The role of bulk fermion mass
is to determine the singularity structure of Green’s function [25]. It changes branch-type
singularity to pole-type singularity when mf → 1

2 . Unlike one flavour case, the Mott gap in
two flavours almost vanishes when mf = 1

2 , which is shown in the spectral function plot (see
figure 6). Although the interaction term is turned on, the system tends to be non-interacting
when mf = 1

2 . In the two flavour fermion with SS-quantization, the Lint = iηF 2Γ5 interaction
only shows the Mott gap feature in the spectral function. The dipole interaction term in
two flavour fermion shows no gap feature. We have summarized all non-minimal gauge
field interactions in table 2.

For completeness, we now focus on the ordered gap generated by the symmetric breaking.
The superconducting gap is classified as an ordered gap. There are three ordered gap types:
s-, p- and d-wave ordered gap. In holographic models, these three ordered gaps have been

– 8 –



J
H
E
P
1
0
(
2
0
2
4
)
0
6
2

Gauge −iψ̄1Lintψ2 with SS-quantization, SS = Γ5SA

A = At(z)dt Gapless Gap Flatband Effect of q
F 2-term ηF 2, iηF 2Γz iηF 2Γ5 Shifting FS

Dipole-term iηFµνΓµν , ηFµνΓµνΓz ηFµνΓµνΓ5 Shifting & Bending

Table 2. Mott gaps and flatband from non-minimal interactions for two flavor fermions.

Order ηψ̄Lintψc with Nambu-Gorkov spinor [23]
Gap Sc. Gap Flatband
s-wave ϕiΓz

p-wave VµΓµ, VµiΓ5Γµ(R), VµνΓµν VµΓµΓz (1-dim.)
d-wave BµνΓµDν

Table 3. The order gap: ϕ is scalar field, Vµ is vector field and Bµν is symmetric tensor field. Vµν is the
covariant derivative of the vector field and R presents the rotation of Fermi arc. The spatial component
of vector field and symmetric tensor field show p-wave and d-wave superconductivity respectively.

realized from charged scalar [26–32], vector [33–35], and symmetric tensor [36–42] fields. The
action for holographic superconductors (bosonic sector) are given as follows:

Sb =
∫
d4x

√
−g

2κ2

[
R+ 6

L2 + 2κ2
(
−1
4FµνF

µν + Lmatter

)]
, (4.3)

where Lmatter for scalar, vector and tensor fields are given in [23, 43] and [24] respectively. In
these references, the spectral function analysis for s, p, d-wave holographic superconductors
(HSC) has also been done in detail, which is summarized in table 3. Setting κ = 1, L = 1,
we consider the scalar field with scaling dimension = 2 and charge = 2 [43] to obtain the
condensation value. Given the value of T

µ , we can solve numerically all coupled bosonic field
equations. In the presence of different bosonic fields (condensation value), we find different
order gaps in the fermionic spectral function for the scalar field, vector field, and symmetric
tensor field. To incorporate the particle-hole symmetry, we have to consider Nambu-Gorkov
(NG) representation [43], where conjugate ψc = ψ∗ is considered as independent degree
of freedoms.

Here, we compare the order gap and the Mott gap from the density of states. With the
same parameters at T = 0.025µ, the Mott gap size is larger than the superconducting gap,
as shown in figure 7. For the superconducting gap, we have calculated DoS in the presence
of backreaction of matter fields (gauge and scalar field) for the scaling dimension = 2 of
the scalar field in the s-wave holographic superconductor model [43] with interaction term
iηϕψ̄Γzψ. Given the values of T and µ, the Mott gap is generated directly through the gauge
coupling, whereas the superconducting gap in the fermion spectral function is triggered by
the condensation value, which is generated by the spontaneous symmetry breaking.

The dependency of parameters for Mott gaps and superconducting gaps show similar
behavior.1 We have shown the temperature dependence and coupling strength dependence

1The detailed calculation of the spectral function for order gap is presented in [23, 24, 43]. Here, we have
recalculated the spectral function of [43] for the s-wave holographic superconductors (HSC) at T = 0.025µ

with fermion charge(qf ) = 1, scalar charge= 2 and scaling dimension= 2 of the scalar field in the presence of
backreacted geometry (AdS-charged black hole with scalar hair). Using this fermionic spectral function, we
have computed the DoS for the s-wave HSC.
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(a) Comparing DoS. (b) Gaps vs T . (c) Gaps vs η.

Figure 7. (a). Compare of DoS for Mott gap and order gap at T = 0.025µ with unit coupling
strength and fermion charge qf = 1 with kcut = [−5, 5]. (b). Comparing the temperature dependence
of the gap size from the DoS at fixed chemical potential µ = 2 and η = 1, where the DoS ≤ 0.05
region is considered the gap region. (c). The effect of coupling strength on both gaps size from DoS
at T = 0.025µ.

of both gaps from their DoS in figure 7(b) and 7(c) respectively. The critical temperature
for Mott-Insulator phase transition is T (M)

c = 0.125µ(T = 0.25, µ = 2), whereas the critical
temperature for superconductor-metal phase transition is T (HSC)

c = 0.04µ.
The critical temperature for the Mott-Insulator phase transition is much higher than the

critical temperature for superconductors, which is consistent with real material experiments.
The effect of fermion mass and coupling strength are the same for both gaps. From figure 7,
we can argue that the qualitative behaviour of the holographic Mott gap and the holographic
superconducting gap are the same. However, the mechanisms of these two gap generations are
completely different. The superconducting gap in a fermionic spectral function is associated
with U(1)-symmetry breaking and minimal coupling between the fermion and the order
parameter, whereas the Mott gaps are associated with non-minimal coupling of the gauge
field and fermion. In the NG representation, the one-dimensional flatland is also realized
from a spatial vector field interaction with fermion (VµΓµΓz), which is shown in table 3.

5 Summary

In this paper, we have addressed the analysis of the density of states for Mott gaps and
superconducting gaps in holographic setups. Without manifest symmetry breaking, the
gap generation is known as the Mott gap, whereas the superconducting gap is generated
because of symmetry breaking. Using gauge/gravity duality, these two gaps are explained
in the literature, where Mott physics has been described using dipole interaction [18]. It is
a non-minimal gauge coupling with fermions that generates a gap in the fermionic spectral
function without a symmetry-breaking mechanism.

In the previous investigation [18], the Mott gap in the spectral function is asymmetric,
and one of the bands seems to touch the Fermi level at ω = 0. To gain a clearer view
of the Mott gap size, we have calculated the density of states (DoS), which shows a soft
and asymmetric Mott gap, whereas DMFT results show differently. This motivates us to
consider other non-minimal gauge couplings with fermions. First, we have considered a
density coupling (F 2ψ̄ψ) term, which can be mapped to the interaction part of the Hubbard
Hamiltonian (A.6). This mapping also justifies our proposal. Then, we have calculated the
spectral function along with the DoS, which clearly shows a strong and symmetric Mott gap
feature. Other possible non-minimal gauge field interactions (A.7) have been examined, and
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the Mott gap size in the DoS (figure 2) has been compared. The DoS figure also supports our
claim about the proper Mott gap in the fermionic spectral. We obtain Mott gap from the three
types of interactions: scalar (F 2ψ̄ψ), pseudo scalar (iF 2ψ̄Γ5ψ), and dipolar (iFµνψ̄Γµνψ)
types. For the dipole interaction case, we can treat the Mott gap as a soft and asymmetric
gap, whereas the other two types are strong and symmetric Mott gaps.

The reason for a symmetric fermion spectral function is the time-reversal symmetry in
the system. Without fermion charge qf = 0, the scalar and pseudo scalar preserve time
reversal symmetry in the fermion eq. (C.6) while the dipole interaction breaks time-reversal
symmetry the fermion eq. (C.8). Based on our DoS results, we have classified the Mott gap
into three classes: i) Symmetric, ii) Asymmetric with isolated Fermi sea. iii) Asymmetric with
valence band touching Fermi sea. We have also found that the dipole interaction term with Γ5

exhibits a flatband in the spectral function, which constitutes a non-minimal gauge interaction.
Therefore, the flatband can be explained without a symmetry-breaking mechanism.

The effects of the fermion charge, coupling strength, temperature, and fermion mass
are important for further investigation. To observe the effects of these parameters on the
Mott gaps, we measured the gap size ∆M from the DoS, where the DoS≤ 0.001 region is
a gapped region. The gap size is plotted in figure 4. We observed that the Mott gap is
vanishing at T = 0.125µ. Therefore, this can be treated as the critical temperature for the
Mott insulator-metal transition. Finite fermion mass decreases the Mott gap size. In the
limit of the fermion mass mf = 1

2 , we found that the structure of singularity type changes
from a branch-cut type to a simple pole structure, which matches with previous findings [25].

Next, we have classified interactions in terms of Mott and superconducting gaps. To
achieve this, we first examined all non-minimal gauge field interactions in two-flavor fermions.
We found that in two flavour fermions, only the density interaction (F 2iΓ5) creates a Mott
gap, while the dipole term doesn’t produce any gap feature in the spectral function. For the
fermion mass mf = 1

2 , the system nearly becomes non-interacting, despite the interaction
strength being high (η = 1), which is not seen in the one-flavor fermion case. We have
replicated three types of order gaps, which are summarized in table 3. When comparing the
gap size in DoS for the same parameters, we observe that the Mott gap size is larger than
the superconducting gap which is consistent with the literature. Our future direction is to
study the transport properties of this holographic setup.
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A Mott physics

Hubbard Hamiltonian (HH) is given by

H = −
∑

<ij>,σ

tijc
†
iσcjσ +HI , (A.1)
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where interaction Hamiltonian HI = U
∑
i ni↑ni↓ with the fermionic number operator

ni↑ = c†i↑ci↑. In the Mean field approximation, we can write

ni↑ni↓ ≈ ni↑⟨ni↓⟩+ ni↓⟨ni↑⟩ − ⟨ni↑⟩⟨ni↓⟩ (A.2)

which gives the interaction term in the HH as follows:

HI = U
∑
i

[ni↑⟨ni↓⟩+ ni↓⟨ni↑⟩ − ⟨ni↑⟩⟨ni↓⟩] . (A.3)

The interpretation of this expression is that the up-spin fermions interact with the average
density of the down-spin fermions, and similarly the down-spin fermions interact with the
average density of the up-spin fermions. This HH governs the Mott metal-insulator transition.
We need to find a similar kind of interaction term in the holographic setup. The number
density can be expressed in terms of charge density (ρ) which maps to the gauge field in
the bulk theory. First, we need to assume that ⟨ni↑⟩ = ⟨ni↓⟩ ∝ ρ. Therefore, the interaction
part now becomes

HI ∝ ρU
∑
i

[
c†i↑ci↑ + c†i↓ci↓

]
− Uρ2 (A.4)

which translates in momentum space as

HI ∝ Uρ
∑
k

[
c†k↑ck↑ + c†k↓ck↓

]
− Uρ2 ≈ Uρ

[
c†+↑c+↑ + c†+↓c+↓ + c†−↑c−↑ + c†−↓c−↓

]
− Uρ2

(A.5)
The last term in the right hand side of the above equation gives the shifting of the
energy. We need to find an interaction term in the holographic setup, which can
map to

[
c†+↑c+↑ + c†+↓c+↓ + c†−↑c−↑ + c†−↓c−↓

]
. We can identify the bulk fermion field

ψ = (c+↑, c+↓, c−↑, c−↓)T where we are embedding HI into a higher dimension. Now the
fermionic annihilation (c±↑↓) and creation (c†±↑↓) operators are function of radial coordinate
and momentum [43]. Therefore, the suitable non-minimal coupling term for gauge field is
F 2ψ†ψ which is the non-relativistic(NR) interaction. We can promote this NR interaction
term to the relativistic bulk interaction term in the following way:

Lint = −iψ̄ηF 2ψ (A.6)

where η is the coupling strength and F 2 = FµνF
µν . Note that iΓt is the dressing factor for the

promoting relativistic form from the NR interaction since the kinetic term of the Lagrangian
also contains this dressing factor. Since the potential term in a Lagrangian is opposite to the
Hamiltonian, we need to consider the negative sign in the interaction Lagrangian. Therefore,
the most suitable In general, we can consider the following interaction term

Lint =

 −iηψ̄F 2ΓSψ Density type interaction

−iηFµνψ̄ΓµνΓSψ Pauli interaction
, (A.7)

where the possible gamma matrices are ΓS = I4,Γz, iΓ5, iΓ5z although other interaction
terms with different ΓS are not proportional to

[
c†+↑c+↑ + c†+↓c+↓ + c†−↑c−↑ + c†−↓c−↓

]
. For
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the Pauli interaction (ΓS = I4) in the non-relativistic limit, the interaction term Fµνψ̄Γµνψ
becomes ψ†FµνΓµνψ. For the gauge field ansatz A = At(z)dt, the dipole interaction term
can be expressed as

Ldipole
int ∝ ψ†FztΓztψ = z2(∂zAt)

[
c†+↑c−↓ − c†+↓c−↑ − c†−↑c+↓ + c†−↓c+↑

]
. (A.8)

The above expression can not be mapped to
[
c†+↑c+↑ + c†+↓c+↓ + c†−↑c−↑ + c†−↓c−↓

]
term.

Therefore, we can argue that the reasonable interaction for the Mott gap is the density type
interaction (A.6). Since some interactions in eq. (A.7) produce gap feature in the spectral
function, we will examine all possible interactions to find Mott gap feature in the DoS.

B Derivation of Green’s function

Rearranging all components of equations, we can recast the Dirac equations (3.1) in the
following structure

∂zΨ+ +M1Ψ+ +M2Ψ− = 0 , (B.1)
∂zΨ− +M3Ψ− +M4Ψ+ = 0 (B.2)

where 2 × 2-matrix Mi, i = 1, 2, 3, 4 are given by

M1 = −mf + ηF 2

z
√
f

I2,

M2 = i√
f

 ky − (ω+qfAt)√
f

+ kx
(ω+qfAt)√

f
+ kx −ky

 ,

M3 = −M1, M4 = −M2 . (B.3)

There are two independent solutions since Ψ+ and Ψ− are two components spinor. The
general solution can be written in a linear combination of two solutions as

Ψ+ =
2∑
i=1

ciΨ(i)
+ = S(z)c,

Ψ− =
2∑
i=1

ciΨ(i)
− = C(z)c (B.4)

The 2× 2-matrix S(z),C(z) are constructed from the solution, where the constant column
vector c is constructed from the two coefficients of the linear combination. Substituting
above eq. (B.4) in eq.(s)(B.1), (B.2), we obtain

∂zS(z) +M1S(z) +M2C(z) = 0 , (B.5)
∂zC(z) +M3C(z) +M4S(z) = 0 . (B.6)

The boundary solution tells us that we need to define U(z) = diag(zmf , zmf ) to get normalized
boundary Green’s function. Then we can write the boundary solution from eq. (B.4)

Ψ+(z)
z→0≈ U(z)S0c, Ψ−

z→0≈ U(z)−1C0c , (B.7)
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where S0,C0 are the z-independent boundary 2 × 2-matrix. We can define

J = S0c, C = C0c (B.8)

which translate the boundary solution (eq. (B.7)) as

Ψ+
z→0≈ U(z)J , Ψ−

z→0≈ U(z)−1C . (B.9)

Comparing eq. (B.9) with eq. (3.2), we find

J = A, C = D (B.10)

We can also get the relation between C and J from eq. (B.8)

C = C0S−1
0 J . (B.11)

From the boundary action (eq. (3.3)), we can write

Sbdy =
∫
d3xJ †Γ̃C + h.c. (B.12)

Using eq. (B.11), the boundary action now becomes

Sbdy =
∫
d3xJ †Γ̃C0S−1

0 J + h.c. =
∫
d3xJ †GRJ + h.c. (B.13)

where the retarded Green’s function GR = Γ̃C0S−1
0 . We can promote this boundary Green’s

function into bulk Green’s function by considering the z-dependent Green’s function as follows:

G = Γ̃C(z)S−1(z) (B.14)

where C(z), S(z) is defined in eq. (B.4). Taking the derivative of the above equation, we get

∂zG(z) = Γ̃
[
∂zC(z)S−1(z)− C(z)S−1(z)(∂zS(z))S−1(z)

]
(B.15)

Using eq.(s)(B.5), (B.6), we have found

∂zG(z) + Γ̃M3Γ̃G(z)−G(z)M1 −G(z)M2Γ̃G(z) + Γ̃M4 = 0 (B.16)

This is the desired flow equation to know the bulk Green’s function G(z). From eq. (B.7),
we can express

S(z) z→0≈ U(z)S0 and C(z) z→0≈ U(z)−1C0 . (B.17)

By substituting the above relations, we can now map the boundary Green’s function with
bulk Green’s function near the boundary in the following way

G(z) z→0≈ U(z)−1GRU(z)−1 (B.18)

where we have used the fact Γ̃U(z)−1Γ̃ = U(z)−1. To solve the flow equation, we need to
know the horizon value of the Green’s function which is G(zh) = iI2.
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C Time reversal symmetry

To understand the time-reversal symmetry in our holographic setup, we will follow the
arguments in [9]. Setting ky = 0 and kx = k, the bulk fermion equation (2.7) with Γs = I4
in density like interaction and dipole interaction becomes[

∂z −
mf + ηF 2

√
gzz

σz
]
Ψ± = ∓

[√
gtt

gzz
(ω + qfAt)σy +

√
gxx

gzz
kσx

]
Ψ∓ − p

√
gttFztσ

yΨ∓

(C.1)

We recast the above equation as

∂zξ± + 2(mf + ηF 2)√
gzz

ξ± = −
√
gtt

gzz
(ω + qfAt)

[
ξ2
± + 1

]
± k

[
ξ2
± − 1

]
− p

√
gttFzt

[
ξ2
± − 1

]
(C.2)

where ξ+ = i d−
u+
, ξ− = −iu−

d+
, and Ψ±(z) =

(
u±
d±

)
. This Riccati equation for non interacting

case becomes (setting η = 0, qf = 0, p = 0)

∂zξ± + 2mf√
gzz

ξ± = −
√
gtt

gzz
ω
[
ξ2
± + 1

]
± k

[
ξ2
± − 1

]
. (C.3)

For the fermion field ansatz (2.6), the time-reversal symmetry implies the replacement of
ω → −ω in the fermion bulk equation. The infalling boundary condition to solve fermion
equation is ξ±(zh) = i, which demands the replacement of ξ± → −ξ∗∓ in fermion equation
when ω → −ω. Therefore, the time-reversal symmetry leads to the following transformation
(replacement in eq. (C.3))

ω → −ω, ξ± → −ξ∗∓ (C.4)

which makes symmetric spectral function A(ω, k) = A(−ω, k) since A(ω, k) is proportional
to boundary limit of Im.(ξ+ + ξ−). To turn on the chemical potential in holographic setups,
we need to consider finite fermion charge, which is obtained from the minimal coupling
of gauge and fermion field. For finite fermion charge, the ω → (ω + qfAt(z)) in fermion
equation, which makes eq. (C.3) to

∂zξ± + 2mf√
gzz

ξ± = −
√
gtt

gzz
(ω + qfAt(z))

[
ξ2
± + 1

]
± k

[
ξ2
± − 1

]
(C.5)

which is not invariant under eq. (C.4) since At(t)
t→−t−−−→ At(−t) = At(t). Therefore, the

minimal gauge coupling (the chemical potential in boundary theory) makes asymmetric
spectral function without any gap feature. To introduce the gap feature in the fermion
spectral function without any order parameter, we need non-minimal gauge coupling with
fermion. We now turn on the non-minimal coupling F 2, the eq. (3.1) becomes (setting
η ̸= 0, qf = 0)

∂zξ± + 2√
gzz

[
mf + ηF 2

]
ξ± = −

√
gtt

gzz
ω
[
ξ2
± + 1

]
± k

[
ξ2
± − 1

]
(C.6)
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which is invariant under eq. (C.4). Therefore, F 2ψ̄ψ interaction term with qf = 0 preserves
the time-reversal symmetry, which produces a symmetric and hard Mott gap. In the presence
of fermion charge, the eq. (3.1) becomes (setting η ̸= 0, qf ̸= 0)

∂zξ± + 2√
gzz

[
mf + ηF 2

]
ξ± = −

√
gtt

gzz
(ω + qfAt(z))

[
ξ2
± + 1

]
± k

[
ξ2
± − 1

]
(C.7)

which breaks time-reversal symmetry because of qf ̸= 0. This produces an asymmetric and
hard Mott gap. For dipole interaction, the bulk fermion equation becomes

∂zξ± + 2mf√
gzz

ξ± = −
√
gtt

gzz
[ω + qfAt]

[
ξ2
± + 1

]
± k

[
ξ2
± − 1

]
− p

√
gttFzt

[
ξ2
± − 1

]
(C.8)

which also breaks time-reversal symmetry whether qf = 0 or qf ̸= 0. Therefore, dipole
interaction always produces an asymmetric gap. From the observation, this Mott gap is soft
and extended to one side of the Fermi surface. Depending upon the sign of coupling strength,
the Fermi surface either touches the valance band or conduction band. From the above
analysis, we can argue that the F 2ψ̄ψ interaction term plays the role of effective fermion
mass in the fermion equation. Such nature of different types of interactions is determined by
the type of gamma matrix in the interaction term and fermion equation of motion.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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