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a b s t r a c t

A diffusion synthetic acceleration (DSA) technique for the SN transport equation discretized with the
linear discontinuous expansion method with subcell balance (LDEM-SCB) on unstructured tetrahedral
meshes is presented. The LDEM-SCB scheme solves the transport equation with the discrete ordinates
method by using the subcell balances and linear discontinuous expansion of the flux. Discretized DSA
equations are derived by consistently discretizing the continuous diffusion equation with the LDEM-SCB
method, however, the discretized diffusion equations are not fully consistent with the discretized
transport equations. In addition, a fine mesh rebalance (FMR) method is devised to accelerate the dis-
cretized diffusion equation coupled with the preconditioned conjugate gradient (CG) method. The DSA
method is applied to various test problems to show its effectiveness in speeding up the iterative
convergence of the transport equation. The results show that the DSA method gives small spectral radii
for the tetrahedral meshes having various minimum aspect ratios even in highly scattering dominant
mediums for the homogeneous test problems. The numerical tests for the homogeneous and hetero-
geneous problems show that DSA with FMR (with preconditioned CG) gives significantly higher
speedups and robustness than the one with the Gauss-Seidel-like iteration.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For the past few decades, there have been considerable efforts to
devise accurate spatial discretization methods for the multi-group
transport equation on unstructured meshes such as tetrahedral
meshes. The discontinuous finite element method (DFEM) is one of
the famous methods of solving the transport equation with un-
structured meshes [1e6]. Hong developed a new method called
LDEM-SCB, which uses subcell balances for tetrahedral meshes and
linear discontinuous expansion of the flux [4]. Allowing flux dis-
continuities on the interface provides better robustness and accu-
racy than the continuous finite element methods (FEMs). In
particular, LDEM-SCB was developed to increase the robustness
(particularly positivity) of the flux without the loss of accuracy in
comparison with DFEM, as shown in the previous work [4]. In this
method, the subcell balances over four subcells for each tetrahedral
uhammad), sergihong@khu.

by Elsevier Korea LLC. This is an
mesh are used to obtain the coupling equations, which give the
relationships among the unknown fluxes. On the other hand, no
acceleration method has been applied to LDEM-SCB.

However, the iterative solutions of the transport equations with
the source iteration converge very slowly in highly scattering
dominant problems of optically thick size. Therefore, research on
developing fast and efficient methods to accelerate the conver-
gence of the source iteration has been a strong focus in the nuclear
engineering community [7]. One such method, the diffusion syn-
thetic acceleration, is a very powerful method to accelerate the
convergence of the source iteration of the neutron transport
equation [8e14]. However, the development of an efficient DSA for
the discretized transport method using unstructured geometry
such as tetrahedral mesh for the complicated geometrical problems
is not straightforward because a certain level of consistency be-
tween the discretized diffusion and transport equations is required
to achieve the unconditional stability of the convergence
[1e3,7e15]. As a result, several methods have been suggested for
accelerating the iterative solution of DFEM for the transport
equation. First, Adams and Martin derived a modified four-step
(M4S) DSA scheme for the discrete ordinates transport equations
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discretized with DFEM [9]. Similar to Khalil's approach [10], they
derived the discretized diffusion equation by consistently dis-
cretizing the continuous diffusion equation to DFEM by coupling
the current mesh with its adjacent meshes through the incoming
partial currents. This method is not fully consistent with DFEM of
the discrete ordinates transport equation, but they showed that this
method gives unconditionally stable and rapid convergence for
one-dimensional slab and two-dimensional Cartesian geometries.
However, this method was unstable on three-dimensional un-
structured tetrahedral meshes for the problems with low aspect
ratios [11].

On the other hand, the fully consistent DSA (FCDSA)was derived
on unstructured tetrahedral meshes. This method maintains the
unconditional stability and effectiveness for various minimum
aspect ratios of meshes in the homogeneous problems [11]. How-
ever, this method has drawbacks in that the consistently derived
diffusion equation is very costly to solve, even with a precondi-
tioner, and it loses its effectiveness in multidimensional problems
with material discontinuities [13]. Warsa et al. also studied the
application of the Krylov methods with DSA as a preconditioner
[16]. For the problems with material discontinuities, they showed
that this approach (particularly with a partially consistent DSA as a
preconditioner) can be effectively used for the problems that are
intractable by the source iteration and DSA.

In this work, a diffusion synthetic acceleration method is
devised by consistently discretizing the continuous diffusion
equation to LDEM-SCB(1) with the procedure suggested by Adams
and Martin [9]. However, the discretized DSA equations are not
fully consistent with the discretized LDEM-SCB(1) equations. As in
LDEM-SCB(1), the scalar flux correction is approximated using the
linear discontinuous expansion in each tetrahedral mesh, which
leads to four unknowns (i.e., four scalar flux corrections at the four
nodes). Then, the coupling equations for the four unknown scalar
flux corrections are derived by using the subcell balance equations
over the four subcells that are considered in LDEM-SCB(1). The net
current correction terms appearing in the subcell balance equa-
tions are decomposed into the incoming and outgoing partial
current corrections. Outgoing partial current corrections are rep-
resented in terms of unknowns in the current mesh, while the
incoming ones are represented in terms of unknowns in the up-
stream meshes from which the neutrons flow. The resulting DSA
equations form a linear discontinuous discretization of the
continuous diffusion equation. They were first iteratively solved
using the Gauss-Seidel (GS)-like method, but this iterative scheme
was shown to be ineffective for large problems having a high
scattering ratio.

In this work, we newly suggest a fine mesh rebalance (FMR)
method coupled with the conjugate gradient (CG) method to
accelerate the GS-like iteration of the discretized diffusion equa-
tion. To show the effectiveness of the DSA method coupled with
FMR, we applied them to several homogeneous and heterogeneous
test problems. To improve the overall efficiency of DSA(FMR)
applied to LDEM-SCB(1), we applied the Jacobi and the split pre-
conditioners to CG [17]. We also showed the effect of the shape of
the tetrahedral mesh with various aspect ratios for a homogeneous
problem. The numerical estimates of the spectral radius, the
number of iterations, and the computing times were used to
measure the effectiveness because the DSA Fourier analysis has yet
not been performed.

In Sec. 2.1, the LDEM-SCB(1) method is reviewed. The method-
ologies for DSA for LDEM-SCB(1) and FMR are given in Sec. 2.2 and
Sec. 2.3, respectively. The numerical tests to show the effectiveness
of the suggested DSA method with FMR are given in Sec. 3. Finally,
the summary and conclusion are given in Sec. 4.
2. Theory and formulation

2.1. Review of LDEM-SCB(1)

The within-group discrete ordinates transport equation with
isotropic scattering is given by

bUm ,Vjð[þ1=2Þ
m ð r!Þþstj

ð[þ1=2Þ
m ð r!Þ¼ssf

ð[Þð r!Þ þ q; (1)

where jm is the angular flux in the direction bUm, f is the scalar flux,
st is the macroscopic total cross-section, ss is the macroscopic
scattering cross-section and q is the within-group source, which
includes the scattering sources from other groups, fission source,
and the external sources. In Eq. (1), [ represents the source iteration
index. Hong developed a subcell balance method LDEM-SCB for
solving the SN transport equation on unstructured tetrahedral
meshes by splitting the tetrahedral mesh into four subcells [4]. The
LDEM-SCBmethod uses the linear expansion of fluxes in eachmesh
and the subcell balance equations over four subcells to obtain the
coupling equations for unknown fluxes rather than the Galerkin
method for each direction. In this method, the meshes are coupled
through the incoming interface fluxes from the upstream meshes
as in DFEM. Therefore, the conventional sweeping procedure can be
used in LDEM-SCB on tetrahedral meshes for complicated
geometrical problems [1,4].

Two subcell balance methods were developed for solving the
multigroup SN transport equation by dividing each tetrahedral
mesh into four subcells in two ways. Fig. 1 shows the cell division
for LDEM-SCB(1) in which each subcell is formed by using the
tetrahedron's center point, three face-centered points, three edge-
centered points, and one node point [4]. Each subcell is a hexahe-
dron that is related to three external faces and three internal faces.
Each external face is divided into three subfaces. Each subcell is
denoted with the node number it contains. That is to say, the
subcell containing a node a is denoted by the subcell a.

The angular flux and source are expanded in each tetrahedron
by using the following linear expansion:

jkðx; y; zÞ¼4k
1 þ x4k

2 þ y4k
3 þ z4k

4; (2)

where 4k
i represents the i'th expansion coefficient of the angular

flux for the tetrahedral mesh k. In Eq. (2), x, y, and z represent the
global Cartesian coordinates. In this paper, we omitted the direction
Fig. 1. Subcell division for LDEM-SCB(1).
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index (m) for simplicity. The simple algebra shows that the average
flux over the external subface Aef

a;b
characterized by a node a and an

external face b (see Fig. 1) can be expressed in terms of expansion
coefficients as follows:

jk;ef
a;b

¼4k
1 þ

1
36

ð22xa þ7xg þ7xdÞ4k
2 þ

1
36

ð22ya þ7yg

þ7ydÞ4k
3 þ

1
36

ð22za þ7zg þ7zdÞ4k
4;

(3)

where xa, ya, and za represent the x, y, and z coordinates of node a,
respectively. In Eq. (3), g and d are the other nodes' indices
(different from node a) of the external face b.

On the other hand, the average flux over the internal face Aif
a;b

,
which represents the interface between subcell a and subcell b, is
given by

jk;if
a;b

¼ 4k
1 þ

1
36

ð6xa þ 6xb � 2xg � 2xdÞ4k
2

þ 1
36

ð6ya þ 6yb � 2yg � 2ydÞ4k
3 þ

1
36

ð6za þ 6zb � 2zg � 2zdÞ4k
4:

(4)

Similarly, the subcell average flux is represented by
�
13
108

A
!

1,
bU þ 22

108

�
d02 A
!

2 þ d03 A
!

3 þ d04 A
!

4

�
,bU þ 75

144
skVk

sc1

�
jk
1

þ
�

7
108

A
!

1,
bU � 2

108
A
!

2,
bU þ 7

108
d03 A
!

3,
bU þ 7

108
d04 A
!

4,
bU þ 23

144
skVk

sc1

�
jk
2

þ
�

7
108

A
!

1,
bU þ 7

108
d02 A
!

2,
bU � 2

108
A
!

3,
bU þ 7

108
d04 A
!

4,
bU þ 23

144
skVk

sc1

�
jk
3

þ
�

7
108

A
!

1,
bU þ 7

108
d02 A
!

2,
bU þ 7

108
d03 A
!

3,
bU � 2

108
A
!

4,
bU þ 23

144
skVk

sc1

�
jk
4

¼
�

75
144

qksc1 þ
23
144

�
qksc2 þ qksc3 þ qksc4

��
Vk
sc1 �

1
108

d02 A
!

2,
bU�22jk02;ups

1 þ 7jk02;ups
3 þ 7jk02;ups

4

�
� 1
108

d03 A
!

3,
bU�22jk03;ups

1 þ 7jk03;ups
2 þ 7jk03;ups

4

�
� 1
108

d04 A
!

4,
bU�22jk04;ups

1 þ 7jk04;ups
2 þ 7jk04;ups

3

�
;

(12)
jk
sc;a ¼4k

1 þ
13
36

xa4k
2 þ

13
36

ya4k
3 þ

13
36

za4k
4: (5)

Then, the representations of the internal face average flux and
external subface average flux in terms of the subcell average fluxes
are given by

jk;if
a;b

¼29
52

�
jk
sc;a þjk

sc;b

�
� 3
52

�
jk
sc;g þjk

sc;d

�
; (6)

jk;ef
a;b

¼ 1
52

�
65jk

sc;a � 23jk
sc;b þ5jk

sc;g þ5jk
sc;d

�
: (7)

It can be shown that the subcell average flux is represented in
terms of the point fluxes at the nodes as follows:

jk
sc;a ¼

75
144

jk
a þ

23
144

�
jk
b þjk

g þjk
d

�
; (8)

where jk
a represents the flux at node a of mesh k.

The LDEM-SCB(1) method uses the subcell balance equations to
couple the unknown point angular fluxes. For example, the balance
equation over subcell 1 is given by

1
3
bU,A

!
2j

k;ef
1;2 þ 1

3
bU,A

!
3j

k;ef
1;3 þ 1

3
bU,A

!
4j

k;ef
1;4 þ bU,A

!if

1;2j
k;if
1;2

þbU,A
!if

1;3j
k;if
1;3 þ bU,A

!if

1;4j
k;if
1;4 þ skVk

sc1j
k
sc1 ¼ qksc1V

k
sc1:

(9)

In Eq. (9), the source is given by

qksc1 ¼ sksf
k
sc1 þ sksc1: (10)

In Eq. (10), sksc1 represents the within-group source. The internal
face vectors between subcell 1 and subcells 2, 3 and 4, respectively,
are given by

A
!if

1;2 ¼ 1
12

A
!

1 �
1
12

A
!

2;

A
!if

1;3 ¼ 1
12

A
!

1 �
1
12

A
!

3;

A
!if

1;4 ¼ 1
12

A
!

1 �
1
12

A
!

4:

(11)

The substitution of Eqs. (6), (7) and (11) into Eq. (9) (after rep-
resenting them in terms of point fluxes using Eq. (8)) gives the final
subcell balance equation for subcell 1 in terms of point fluxes:
where k0a represents the mesh adjacent to the external face Aa of
the current mesh k, and the function d0a is defined by

d0a ¼
0@1; if bU,A

!
a
�
0;

0; if bU,A
!

a
�
0;

1A: (13)

Eq. (12) represents the balance equation for subcell 1 and three
similar equations can be derived for the other three subcells with
the same procedure.

The set of these four transport subcell equations are solved using
a GS-like iteration method for each direction with a sweeping pro-
cedure and the source iteration. In a highly scattering dominant
problemof optically thick size, the GS-like iterationmethodwith the
source iteration becomes slow. Therefore, an acceleration method is
always needed to accelerate the convergence of the source iteration.
2.2. Derivation of DSA equations

In this section, the DSA equations are derived by consistently
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discretizing the continuous diffusion equations using the LDEM-
SCB(1) method. This approach is similar to that suggested by
Adams and Martin [9]. That is to say, the continuous diffusion
equation is discretized with the same manner used in the LDEM-
SCB(1) discretization. The derivation of the DSA equations starts
with the following continuous diffusion equation:

V , F
!ð[þ1Þð r!Þþsaf ð[þ1Þð r!Þ¼ qð[þ1=2Þð r!Þ; (14)

1
3
Vf ð[þ1Þð r!Þþst F

!ð[þ1Þð r!Þ¼0; (15)

where the source q, the scalar flux correction f, and the net current
correction vector F

!
are given by

qð[þ1=2Þð r!Þ ¼ ss
�
fð[þ1=2Þð r!Þ � fð[Þð r!Þ

�
;

fð[þ1Þð r!Þ ¼ fð[þ1=2Þð r!Þ þ f ð[þ1Þð r!Þ;
J
!ð[þ1Þð r!Þ ¼ J

!ð[þ1=2Þð r!Þ þ F
!ð[þ1Þð r!Þ;

(16)

where f and J
!

represent the scalar flux and net current, respec-
tively. The scalar flux is defined as follows:

fð[þ1=2Þ ¼
ð
4p

dbUjð[þ1=2Þ: (17)

In Eq. (16), the quantities having iteration index ð[þ1 =2Þ
represent the results of a transport sweep using LDEM-SCB(1),
while the ones having indices ð[þ1Þ and ð[Þ represent the results
obtained with DSA and the flux before the transport sweeping,
respectively.

The continuous diffusion equations (i.e., Eqs. (14) and (15)) are
discretized in a manner consistent with LDEM-SCB(1), but this
derivation of DSA is not fully consistent with the discretized
transport equation. First, the subcell balance equations are ob-
tained by integrating Eq. (14) over a subcell. For example, the bal-
ance equation over the first subcell of a tetrahedron mesh k is given
byð
Vk

sc1

V , F
!k;ð[þ1Þ

dV þ
ð

Vk
sc1

skaf
k;ð[þ1ÞdV ¼

ð
Vk

sc1

qk;ð[þ1=2ÞdV ; (18)

where ska is the macroscopic absorption cross-section and Vk
sc1 is

the volume of subcell 1. Applying the divergence theorem to Eq.
(18) after dropping the iteration indices givesð
Asc1

dA
�
F
!k

, bn�þ skaf
k
sc1V

k
sc1 ¼ qksc1V

k
sc1; (19)

where f
k
sc1 and qksc1 are the average values of the scalar flux

correction and the source, respectively, over subcell 1 of mesh k.
This subcell balance equation can be rewritten by decomposing the
surface integral into external and interface surface terms as follows:
�
F
!k;ef

1;2 ,A
!k;ef

1;2 þ F
!k;ef

1;3 ,A
!k;ef

1;3 þ F
!k;ef

1;4 ,A
!k;ef

1;4

�
þ
�
F
!k;if

1;2,A
!k;if

1;2 þ F
!k;if

1;3,A
!

þskaf
k
sc1V

k
sc1 ¼ qksc1V

k
sc1;
where the superscripts ef and if refer to the external and internal
subfaces, respectively, and the subscripts in the net current cor-

rections F
!

and area vector A
!

refer to the node and face numbers

associated with subcell 1 of mesh k. For example, F
!k;ef

1;2 represents

the average current correction over the external subface A
!k;ef

1;2 of

subcell 1, whereas A
!k;ef

1;2 represents the external subface, which is
opposite to node-2 of subcell 1 as shown in Fig. 1. For the external

subface A
!k;ef

1;2 , the net current correction is expressed in terms of
partial current corrections as follows:

F
!k;ef

1;2 , A
!k;ef

1;2 ¼
���A!k;ef

1;2

���� F!k;ef
1;2 , bnk

2

�
; (21)

where bnk
2 is the outer normal vector of A

!k;ef

1;2 , and A
!k

2 is the external

surface area vector opposite to node-2 (i.e., A
!k;ef

1;2 ¼ A
!k

2=3).

���A!k;ef

1;2

���� F!k;ef
1;2 , bnk

2

�
¼1
3

���A!k

2

����w2F
k;ef ;þ
1;2 � v2F

k0ð1;2Þ;ef ;þ
a0;b0

�
; (22)

where Fk;ef ;þ1;2 and Fk
0ð1;2Þ;ef ;þ

a0 ;b0 represent the outgoing and incoming

partial current corrections respectively, across the external subface

A
!k;ef

1;2 from the viewpoint of mesh k. The index k0ð1;2Þ in Eq. (22)
represents the neighboring mesh of the present mesh k through

the subface A
!k;ef

1;2 , while a0 and b0 are the local node indices of mesh

k0ð1;2Þ, and they specify the subface A
!k;ef

1;2 .
In Eq. (22), the parametersw2 and v2 represent the outgoing and

incoming boundary conditions, respectively, on the face A
!k

2 of
mesh k on the external boundary. The external boundary conditions
are generalized as

Vacuum B:C:
Reflective B:C:

Interface
¼

8>><>>:
w ¼ 1; v ¼ 0;
w ¼ 0; v ¼ 0;
w ¼ 1; v ¼ 1:

(23)

The outgoing partial current correction frommesh k through the
external subface with the P1 approximation is given by

Fk;ef ;þ1;2 ¼1
4
f k1;2 �

1
2
Dk
�bnk

2 ,Vf
k
�
; (24)

where Dk is the diffusion coefficient, f k1;2 is the average scalar flux

correction over the external subface A
!k;ef

1;2 , whereas Ak
2x, A

k
2y, and Ak

2z

represent x, y, and z-components of the vector A
!k

2.

f k1;2 ¼
22
36

f k1 þ
7
36

�
f k3 þ f k4

�
: (25)

The dot product of bnk
2 and Vf k is given by
k;if

1;3 þ F
!k;if

1;4,A
!k;if

1;4

�
(20)
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bnk
2 ,Vf

k ¼
 
Ak
2x
vf k

vx
þAk

2y
vf k

vy
þAk

2z
vf k

vz

!
: (26)

The substitution of Eqs. (25) and (26) into Eq. (24) gives the
outgoing partial current correction.

Fk;ef ;þ1;2 ¼ 1
144

�
22f k1 þ7f k3 þ 7f k4

�
� Dk

2
��� A!k

2

���
 
Ak
2x
vf k

vx
þAk

2y
vf k

vy
þAk

2z
vf k

vz

!
: (27)

Similarly, the incoming partial current correction from mesh
k0ð1;2Þ (note that it is the outgoing partial current correction from
the viewpoint of this neighboring mesh) is given by
266664
x1
x2
x3
x4

377775 ¼ 1
6Vk

266664
6V01 y42z32 � z42y32 x32z42 � x42z32 x42y32 � x32y42
6V02 y31z43 � z34y13 x43z31 � x13z34 x31y43 � x34y13
6V03 y24z14 � z14y24 x14z24 � x24z14 x24y14 � x14y24
6V04 y13z21 � z12y31 x21z13 � x31z12 x13y21 � x12y31

377775
266664
1
x
y
z

377775; (33)
Fk
0ð1;2Þ;ef ;þ

a0;b0 ¼1
4
f k

0ð1;2Þ
a0;b0 þ 1

2
Dk0ð1;2Þ

�bnk0ð1;2Þ
b
0 ,Vf k

0ð1;2Þ
�
; (28)

where the outward normal unit vector is bnk0ð1;2Þ
b
0 ¼ � bnk

2. The scalar

flux correction f k
0ð1;2Þ

a0;b0 over external subface A
!k0ð1;2Þ;ef

a0 ;b0 of mesh

k0ð1;2Þ adjacent to mesh k through the subface (i.e., A
!k;ef

1;2 ¼ �

A
!k0ð1;2Þ;ef

a0 ;b0 ) is given by

f k
0ð1;2Þ

a0;b0 ¼22
36

f k
0ð1;2Þ

a0 þ 7
36

�
f k

0ð1;2Þ
g0 þ f k

0ð1;2Þ
d
0

�
: (29)

In Eq. (29), f k
0ð1;2Þ

a0 , f k
0ð1;2Þ

g0 and f k
0ð1;2Þ

d
0 represent the scalar flux

correction at nodes a0, g0 and d0 of mesh k0ð1;2Þ, respectively. The
y42z32 � z32y42 ¼ �2A1x; x32z42 � x42z32 ¼ �2A1y; x42y32 � x32y42 ¼ �2A1z;
y31z43 � z34y13 ¼ �2A2x; x43z31 � x13z34 ¼ �2A2y; x31y43 � x34y13 ¼ �2A2z;
y24z14 � z14y24 ¼ �2A3x; x14z24 � x24z14 ¼ �2A3y; x24y14 � x14y24 ¼ �2A3z;
y13z21 � z12y31 ¼ �2A4x; x21z13 � x31z12 ¼ �2A4y; x13y21 � x12y31 ¼ �2A4z:

(35)
incoming partial current correction is given by

Fk
0ð1;2Þ;ef ;þ

a0;b0 ¼ 1
144

�
22f k

0ð1;2Þ
a0 þ7f k

0ð1;2Þ
g0 þ 7f k

0ð1;2Þ
d
0

�
þ Dk0ð1;2Þ

2
��� A!k

2

���
 
Ak
2x
vf k

0ð1;2Þ

vx0
þAk

2y
vf k

0ð1;2Þ

vy0
þAk

2z
vf k

0ð1;2Þ

vz0

!
:

(30)

To further simplify Eqs. (27) and (30), we use the barycentric
transformation between the global coordinates ðx; y; zÞ and the
local coordinates ðx1; x2; x3; x4Þ systems. Any linear function
gðx; y; zÞ taking its values giði¼ 1;2;3;4Þ at the nodes of a tetrahe-
dron can be represented in terms of the local barycentric co-
ordinates as follows:
gðx1; x2; x3; x4Þ¼ g1x1 þ g2x2 þ g3x3 þ g4x4; (31)

where x4 ¼ 1� x1 � x2 � x3. This transformation is illustrated in
Fig. 2.

The 4 � 4 Jacobian matrix for the tetrahedron between the
global and local barycentric coordinates is given by

266664
1
x
y
z

377775 ¼

266664
1 1 1 1
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

377775
266664
x1
x2
x3
x4

377775: (32)

The explicit inversion of the transformation given in Eq. (32)
gives

where
uab ¼ub � ua; u ¼ x; y; z:

In Eq. (33), the following definitions are used:

Vk ¼ V01 þ V02 þ V03 þ V04;
6V01 ¼ x2ðy3z4 � y4z3Þ þ x3ðy4z2 � y2z4Þ þ x4ðy2z3 � y3z2Þ;
6V02 ¼ x1ðz4y3 � y3z4Þ þ x3ðy1z4 � y4z1Þ þ x4ðy3z1 � y1z3Þ;
6V03 ¼ x1ðy2z4 � y4z2Þ þ x2ðy4z1 � y1z4Þ þ x4ðy1z2 � y2z1Þ;
6V04 ¼ x1ðy3z2 � y2z3Þ þ x2ðy1z3 � y3z1Þ þ x3ðy2z1 � y1z2Þ:

(34)

The components of the external face area vectors can be
expressed as
The substitution of Eq. (35) into Eq. (33) gives

266664
x1
x2
x3
x4

377775 ¼ � 1
3Vk

266664
6V01 A1x A1y A1z
6V02 A2x A2y A2z
6V03 A3x A3y A3z
6V04 A4x A4y A4z

377775
266664
1
x
y
z

377775: (36)

Next, the scalar flux correction is expanded in terms of local
coordinates as follows:

f k ¼ x1f
k
1 þ x2f

k
2 þ x3f

k
3 þ x4f

k
4: (37)

Then, the partial derivatives of scalar flux correction with
respect to x, y, and z are given by
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vf k

vx
¼ f k1
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vx

þ f k2
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:

(38)

Taking the derivative of local coordinates in Eq. (36) with
respect to x, y, and z, we get
F
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1;2 ¼ 1
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: (41)
vx1
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¼ � 1

3Vk
A1y;

vx1
vz

¼ � 1

3Vk
A1z;

vx2
vx

¼ � 1

3Vk
A2x;

vx2
vy

¼ � 1

3Vk
A2y;

vx2
vz

¼ � 1

3Vk
A2z;

vx3
vx

¼ � 1

3Vk
A3x;

vx3
vy

¼ � 1

3Vk
A3y;

vx3
vz

¼ � 1

3Vk
A3z:

(39)

Then, the substitution of Eq. (39) into Eq. (38) gives
266666664
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(40)

Now, we obtain the final form of the net current correction term
(i.e., Eq. (21)) by substituting Eq. (40) into Eqs. (27) and (30), which
gives
Similarly, the net current correction term over the interface
between subcell 1 and subcell 2 can be derived as given by

F
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4f
k
4
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(42)

The above procedure can be applied to the other external and
internal subfaces of subcell 1, and the substitutions of all the results
into Eq. (20) gives the final balance equation over subcell 1 (i.e., the
DSA equation), which is given by
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(43)



Fig. 2. Barycentric coordinates transformation.
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where the term Qj is defined by

Qj ¼
���A!k

j

���n22f k0ðjÞ;ðp0Þ
a0 þ 7f k

0ðjÞ;ðp0Þ
g0 þ f k

0ðjÞ;ðp0Þ
d
0

o
� ~D

k0ðjÞ
8<:X4

j0¼1
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A
!k

j , A
!k0ðjÞ

j0

�
f k

0ðjÞ;ðp0Þ
j0

9=;;

(44)

where ~D
k0ðjÞ

is 24Dk0ðjÞ =Vk0ðjÞ and Dk0ðjÞ is 1 =3sk
0ðjÞ

t .
The remaining discretized diffusion equations for the other

three subcells in the tetrahedral mesh k can be derived in the same
manner. Actually, the discretized equations represent a discontin-
uous linear discretization of the diffusion equation, and we solve
them using a GS-like iteration, which is represented by the iteration
index ðpÞ in Eqs. (43) and (44). The mesh index k0ðjÞ represents the
neighboring mesh opposite to the face j of mesh k of subcell 1. Also,
it should be noted that the iteration index ðp0Þ in Eq. (44) for DSA
depends on the meshes. That is to say, the iteration index ðp0Þ be-
comes ðpþ1 =2Þ if the mesh k0ðjÞ has already been swept; other-
wise, it becomes ðpÞ. The index ðpþ1 =2Þwithout acceleration is the
same as ðp þ 1Þ. The convergence of the GS-like iteration may
depend on the order of the cell sweep (called diffusion sweep in
this work). At present, we used the same order of cell sweep for the
GS-like iteration as that used for the transport sweep.

The coupling procedure of transport equation with DSA is
explained as follows:

i. The LDEM-SCB(1) equations (i.e., Eq. (12)) are solved with a
transport sweep and with the previous scalar flux iterate, i.e.,
fð[Þ. Then, the scalar flux fð[þ1=2Þ is calculated by using the
angular flux jð[þ1=2Þ obtained from the transport sweep.

ii. The source term of the diffusion equation (i.e., the first
equation of Eq. (16)) is calculated using fð[Þ and fð[þ1=2Þ.

iii. The discretized diffusion equations (i.e., Eq. (43) and the
others for three subcells) are solved, which give the scalar
flux correction, f ð[þ1Þ.

iv. The next scalar flux iterate (i.e., fð[þ1Þ) is calculated by adding
fð[þ1=2Þ to the scalar flux correction f ð[þ1Þ.

fð[þ1Þ ¼fð[þ1=2Þ þ f ð[þ1Þ: (45)
v. The scattering source of LDEM-SCB(1) is updated using the
new scalar flux.

vi. This procedure is repeated until the scalar fluxes are
converged with a prescribed convergence criterion.
2.3. Derivation of FMR equations

The rebalance method is one of the earliest acceleration
methods used in the neutron transport problems and it has been
widely used due to its simple and easy implementation. In trans-
port calculations, the rebalancemethod couples the high-order (i.e.,
the discretized transport equation) to the low-order calculations.
The lower-order equations are derived using the balance equation
over a fine mesh or a coarse mesh (i.e., a group of fine meshes)
[18e22].

In this work, we suggest a linear FMR method to accelerate the
DSA equation. The rebalance schemes are usually applied to the
neutron transport equations, while this linear FMR method is
applied to the diffusion equation. The derivation of the FMR
equation starts with the balance equation, which is just obtained by
integrating Eq. (14) over a tetrahedral mesh k. That is to say, the
next iterate of the GS-like iteration of the DSA equation is required
to satisfy the following balance equation over a tetrahedral mesh k.ð
Ak

dA
�
F
!k;ðpþ1Þ

, bn�þskaf
k;ðpþ1Þ

Vk ¼ qkVk: (46)

However, we will omit the iteration index ðpþ1Þ of the GS-like
iteration for simplicity. The surface bounding the tetrahedron is
divided into four external surfaces as:

F
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3,A
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!k

4 þ skaf
k
Vk ¼ qkVk:

(47)

The net current correction vector F
!k

j over an external face j is
split into the incoming and outgoing partial current corrections as
follows:

F
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j ¼
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����wjF
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; (48)

where wj and vj are boundary conditions on the external face A
!k

j .

The outgoing Fk;þj and the incoming Fk
0ðjÞ;þ

j0 partial current correc-

tions can be derived using a similar procedure used in the deriva-
tion of the DSA equations as follows:
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(49)
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(50)

In Eqs. (49) and (50), a, b and g represent the node indices on
face j of mesh k, whereas a0, b0 and g0 represent the node indices on
face j0 of the mesh k0ðjÞ, respectively. The net current correction
vectors across the other external faces can be similarly derived and
the substitution of them into Eq. (47) gives the following balance



Fig. 3. Spectral radius as a function of side length of the unit box for the first test
problem.
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equation over the tetrahedral mesh k:
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Tkj f
k
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X4
j¼1

vjz
k
j ¼3Vk

�
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; (51)

where the terms Tk
j and zkj are defined by
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(53)

The same equation (i.e., Eq. (51)) can also be obtained by simply
adding the DSA equations of all the four subcells in a tetrahedral
mesh, which shows that both the DSAmethod and the FMRmethod
discretizations are based on the neutron balance equation. For the
linear FMR, we define an additive rebalance factor gk;ðpþ1Þ for the
scalar flux correction as follows:

f k;ðpþ1Þ
j ¼ f k;ðpþ1=2Þ

j þ gk;ðpþ1Þ: (54)

Finally, the substitution of Eq. (54) into Eq. (51) gives the
following final linear rebalance equation over mesh k:
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z
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j ;

(55)

where gk0ðjÞ;ðpþ1Þ is a rebalance factor for the neighboringmesh k0ðjÞ.
These equations can be written in the following matrix form:

A g!¼ b
!
; (56)

where b
!

is the collection of the right-hand sides of Eq. (55).
The rebalance equations (i.e., Eq. (55)) constitute a system of

linear equations whosematrix is symmetric positive definite, so the
CGmethod can be applied for solving them. The fact that thematrix
A is symmetric can be deduced from the symmetry of the coupling
coefficients between the four adjacent meshes in the rebalance
equation. The positive definiteness of the matrix A is based on the
fact that it is symmetric and has diagonal dominance with positive
diagonal elements [17].

In this work, we considered two different preconditioners to CG
for improving the overall efficiency of DSA(FMR), i.e., the Jacobi and
the split preconditioners. The Jacobi preconditioner is the diagonal
matrix D of the symmetric positive definite system of equations
(i.e., formed by the first term of the left-hand side of Eq. (55)), and it
is very easy to implement. It needs only to re-calculate the residual
z!i ¼ D�1

ii r!i of the preconditioned system, where ri is the i'th
component of the residual of CG. The split preconditioner is the
matrix M ¼ LLT , where L is the lower triangular matrix of the
original matrix A given in Eq. (56). The first term of the left-hand
side of Eq. (55) is the diagonal element, and the second term rep-
resents the off-diagonal elements of the matrix A. The off-diagonal
elements represent the couplings with the four adjacent meshes.
Therefore, the split preconditioner is more costly than the Jacobi
preconditioner for each CG iteration. The detailed algorithm of the
split preconditioned conjugate gradient (SCG) is as follows [17]:

First, we compute the vectors:

r!0 : ¼ b
!�A g!0; u!0 ¼ L�1 r!0; and p!0 ¼

�
LT
��1

u!0: (57)

Then, for i ¼ 0, 1,… until convergence:

ui :¼
ð u!i; u

!
iÞ

ðA p!i; p
!

iÞ
;

g!iþ1 :¼ g!i þ ui p
!

i;

u!iþ1 :¼ u!i � uiL
�1A p!i;

yi :¼
ð u!iþ1; u

!
iþ1Þ

ð u!i; u
!

iÞ
;

p!iþ1 :¼
�
LT
��1

u!iþ1 þ yi p
!

i:

(58)

This algorithm is solved for a specified convergence criterion. In
this algorithm, the vectors L�1 r!0 and L�1A p!i are calculated with
the forward substitution, while ðLT Þ�1 u!0 and ðLT Þ�1 u!iþ1 are
calculated with the backward substitution.

The calculation procedure for FMR is described in accordance
with the one for DSA, which is explained as follows:

i. The scalar flux corrections f k;ðpþ1=2Þ
j from the DSA sweep are

used in the right-hand side of the FMR equations (i.e., Eq.
(55)).

ii. The FMR diffusion equations are solved by the precondi-
tioned CG method to calculate the rebalance factors gk;ðpþ1Þ

(i.e., Eq. (58)).
iii. The scalar flux corrections are updated and then used in the

DSA diffusion equations as follows:



Table 1
Minimum aspect ratios and side lengths of unit boxes for the second test problem.

# amin hx (cm) hy (cm) hz (cm)

I 0.632 1.0 1.0 1.0
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f k;ðpþ1Þ
j ¼ f k;ðpþ1=2Þ

j þ gk;ðpþ1Þ: (59)
II 0.562 2.0 2.0 3.0
III 0.487 1.0 1.0 2.0
IV 0.421 2.0 2.0 5.0
V 0.370 2.0 1.0 3.0
VI 0.327 3.0 1.0 3.0
VII 0.256 2.0 1.0 5.0
VIII 0.170 2.0 1.0 8.0
IX 0.116 8.0 1.0 10.0
iv. This cycle is repeated until the diffusion equation for DSA
converges.

v. The scalar flux is then updated once DSA is converged,

f
k;ð[þ1Þ
j ¼f

k;ð[þ1=2Þ
j þ f k;ðpþ1Þ

j ; (60)

which replaces Eq. (45).
Recently, we have performed Fourier analysis of the GS-like

iteration for the discretized DSA equation and its FMR accelera-
tion to understand their convergence characteristics [23].
Fig. 4. Spectral radius versus minimum aspect ratio for different DSA methods for the
second test problem.
3. Numerical tests and results

The DSA method was applied to several test problems to show
its effectiveness. Because the theoretical work using the Fourier
analysis has not been performed, numerical estimates of the
spectral radius were used tomeasure the convergence of the source
iteration coupled with the DSA method. The numerical estimate of
the spectral radius is made using

rz




f!ð[þ1Þ � f
!ð[Þ




2


f!ð[Þ � f
!ð[�1Þ




2

; (61)

where kk2 means the L2 norm of the vector.
The first test problem is a one group homogeneous problem

consisting of a 10 � 10 � 10 grid of identical boxes called unit box,
and it has a uniform source of 10 neutrons cm�3sec�1. This problem
is similar to the one considered in Ref. 11. The side length of each
unit box is 2.0 cm, and each unit box is divided into six tetrahedral
meshes. We used two azimuthal and two polar angles per octant
with the Chebyshev-Legendre quadrature, wherein the reflective
boundary conditions are applied to the -x, -y, and -z direction
external faces, while the vacuum boundary conditions are applied
to all other external faces. The scattering ratio was fixed to 0.9999,
but the total cross-sectionwas varied to show the effect of themesh
size in terms of mean free path (mfp). The convergence criteria for
the source iteration (SI) and DSA are 1.0 � 10�10 and 1.0 � 10�8,
respectively. We used the pointwise convergence criteria both for
the source iteration and DSA, which are defined as

max
i

�����f
!ð[þ1Þ

i � f
!ð[Þ

i

f
!ð[þ1Þ

i

����� �
24 10�10for SI
10�8for DSA

35: (62)

The numerical estimates of the spectral radii are plotted in Fig. 3
as a function of the side length of the unit box (mfp). This figure
shows that our DSA converges very fast over a wide range of side
lengths (mfp), and the spectral radii are less than 0.40. However, it
should be noted that the spectral radii for the small mesh sizes (e.g.,
0.01 mfp) is smaller than the fine mesh limit (i.e., ~0.227c, c is the
scattering-to-total ratio) of Fourier analysis because the problem
size along one direction for 0.01 mfp mesh size is 0.1 mfp, which
leads to neutron leakage.

The second test problem is considered to show the effects of the
minimum aspect ratio of tetrahedral meshes on the convergence of
the DSAmethod [11]. The minimum aspect ratio (amin) is defined as
the ratio of three times the radius of the inscribed circle to the
radius of the circumscribed circle. This homogeneous problem
consisted of an 8 � 8 � 8 grid of unit boxes. The total cross-section
is 3.5 cm�1, and the scattering ratio is 0.9999. The boundary con-
ditions are the same as that of the previous test problem. Table 1
shows various tetrahedral meshes having different minimum
aspect ratios [11].

The results of our DSA method are compared to those of other
DSA methods such as FCDSA (Fully Consistent DSA) [11], WLA DSA
(Wareing, Larsen and Adams’ DSA) [13] and M4S DSA (Modified
Four-Step DSA) [9] even if they are applied to DFEM. The FCDSA
method is derived in a fully consistent way by discretizing the P1
equations and the transport equation with the isoparametric linear
discontinuous finite elements. On the other hand, the discretized
diffusion equations in the WLA DSA method are derived by taking
the asymptotic diffusion limit of the discretized transport equations
[7]. TheM4S DSAmethod is themodified four-stepmethod tomake
an approximation in the first moment equations that arise in the
full four-step procedure. For example, Adams and Martin [9]
derived DSA equations for DFEM by discretizing the continuous
diffusion equation with a similar way (but not consistent in usual
sense to the discretized DFEM transport equations) used in DFEM
and replacing the net current correctionwith their upstream partial
current corrections.

The numerical estimates of the spectral radii obtained from our
DSA method for this problem are compared with those obtained
from other DSA methods [11] as shown in Fig. 4. Our DSA method
for LDEM-SCB(1) shows considerably smaller spectral radii than
those of WLA DSA and M4S DSA schemes, but higher ones than
those of FCDSA. Also, it is noted in Fig. 4 that the spectral radii of our
DSA and FCDSA methods show only small changes over different
minimum aspect ratios.

The third test problem is a one group homogeneous problem
consisting of a 30 � 30 � 30 grid of unit boxes having a uniform



Fig. 5. Average numbers of CG iterations per DSA sweep for the third test problem.
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source of 10 neutrons cm�3sec�1. The side length of each unit box is
1.0 cm. The boundary conditions are the same as those of previous
test problems. For this problem, the pointwise convergence criteria
for the source iteration of the transport, the DSA, and the FMR
equations are 1.0 � 10�8, 1.0 � 10�5, and 1.0 � 10�2, respectively.
We used the following convergence criterion on the relative re-
sidual for FMR with a conjugate gradient method:




 r!ð[Þ



2


 r!ð0Þ



2

� 10�2; (63)

where the residual r!ð[Þ
is defined as

r!ð[Þ ¼ b
!� A g!: (64)

We considered five different cases having different total cross-
sections with a fixed scattering ratio of 0.9999, and the results
are summarized in Table 2. In this test problem, the Jacobi pre-
conditioner and the split preconditioner are applied to the CG
method for FMR. The results presented in Table 2 are obtained with
DSA(FMR) with the preconditioned CG. This table shows that the
DSA method effectively reduces the number of source iterations. In
addition, DSA with FMR(CG) even without preconditioning gives
significant speedups in computing time, ranging from 9.6 to 27 in
comparison with the source iteration. Also, it is shown that
FMRs(CG) with the Jacobi and the split preconditioning give much
higher speedups ranging from 11.3 to 40.6 than FMR(CG) without
preconditioning and that FMR(CG) with the split preconditioner
gives higher speedups than the one with the Jacobi preconditioner
except for the test Case I.

A comparison of results for this test problem is also presented in
Fig. 5, inwhich the average numbers of CG iterations per DSA sweep
are plotted for CG, JCG (CGwith Jacobi preconditioner) and SCG (CG
with split preconditioner). From Fig. 5, it is clear that the pre-
conditioned CGs have considerably smaller average numbers of CG
iterations per DSA sweep than the unpreconditioned one. In
particular, SCG gives a significant reduction in the number of CG
iterations than JCG.

Table 3 compares the numbers of DSA sweeps with and without
FMR application to DSA after each transport sweep. From this table,
it is shown that the FMR method with unpreconditioned CG is very
effective in reducing both the number of DSA sweeps and the
computing time. In this table, the speedup is defined as the ratio of
the computing times betweenDSAmethodswith andwithout FMR.
The speedup factor, in this case, shows that the DSA acceleration
with the FMR(CG) method is much more effective than the DSA
without the FMRmethod. In particular, the numbers of DSA sweeps
are drastically reduced with FMR. The numbers of DSA sweeps with
FMR are decreased by the factors of a few tens to several hundred in
comparisonwith DSAwithout FMR. The numerical estimates of the
Table 2
Comparison of DSA(FMR) speedups for the third test problem.

Test
Case

Total
Cross-Section
(cm�1)

Source Iteration without
DSA (without FMR)

Source Iteration with DSA
(without FMR)

Source Iter

Number of
Iterations

SI Time
(hours)

Number of
Iterations

SI Time
(hours)

SI(DSA)þ
FMR(CG)
Time (hour

I 1.0 4698 5.033 15 2.783 0.523
II 1.5 9367 9.167 16 6.347 0.542
III 2.0 14936 14.47 15 7.78 0.697
IV 2.5 20982 20.81 15 9.854 0.77
V 3.0 27161 26.93 15 10.401 1.049
spectral radii are also given in this table, and they slightly increase
as the total cross-section increases, but they are less than 0.38.

The last test problem is a heterogeneous cube of outer di-
mensions 50 cm � 50 cm � 50 cm in which four cylinders, each
having 10 cm diameter and 50 cm height, are embedded with equal
distances. The configuration of this problem is shown in Fig. 6. The
distance between two adjacent cylinders is 10 cm. This problem is
considered to test the practical applicability of the DSA method
with FMR by checking whether it still has significant speedups for a
realistic heterogeneous problem. We used four azimuthal and four
polar angles per octant with the Chebyshev-Legendre quadrature
and vacuum boundary conditions on all the external sides. In this
test problem, the cube outside the cylinders has a total cross-
section of 1.0 cm�1, a scattering cross-section of 0.999 cm�1, and
1 neutron cm�3sec�1 source strength, while the four cylinders have
variable cross-sections as shown in Table 4 and the source strength
is 10 neutrons cm�3sec�1. Actually, we considered fifteen different
cases having five different total cross-sections with three different
scattering-to-total cross-section ratios. For this problem 60,560
tetrahedral meshes, 10,927 nodes and 122,688 faces are generated
as shown in Fig. 6.

Fig. 7 shows the scalar flux distribution for Case XII for this test
problem. Fig. 7 shows that there are very steep gradients in the
region between the outer cube and the cylinders due to the dif-
ferences in the cross-sections and the source strengths.

The source iteration is accelerated with DSA(FMR) coupled with
CG, JCG, and SCG. The effectiveness of the preconditioners applied
to CG in the heterogeneous medium is compared in terms of the
number of CG iterations per DSA sweep at different values of the
scattering ratio as shown in Figs. 8e10. From these figures, it is
ation with DSA (with FMR) Source Iteration Speedup

s)

SI(DSA)þ
FMR(JCG)
Time (hours)

SI(DSA)þ
FMR(SCG)
Time (hours)

SI(DSA) SI(DSA)þ
FMR(CG)

SI(DSA)þ
FMR(JCG)

SI(DSA)þ
FMR(SCG)

0.371 0.446 1.81 9.62 13.6 11.3
0.377 0.352 1.44 16.9 24.3 26.0
0.608 0.504 1.86 20.8 23.8 28.7
0.737 0.512 2.11 27.0 28.3 40.6
0.821 0.671 2.59 25.7 32.8 40.1



Fig. 6. Geometrical description of heterogeneous test problem.

Table 4
Material specification of cylinders for the heterogeneous test problem.

Test Case Scattering
Ratio

Total Cross-Section (cm�1)

Case I 0.9 2.0
Case II 0.99 2.0
Case III 0.999 2.0
Case IV 0.9 3.0
Case V 0.99 3.0
Case VI 0.999 3.0
Case VII 0.9 4.0
Case VIII 0.99 4.0
Case IX 0.999 4.0
Case X 0.9 5.0
Case XI 0.99 5.0
Case XII 0.999 5.0
Case XIII 0.9 10.0
Case XIV 0.99 10.0
Case XV 0.999 10.0

Table 3
Comparison of numbers of DSA sweeps with and without FMR coupled with DSA for the third test problem.

Number of
Transport
Sweeps

Case I Case II Case III Case IV Case V

Number of
DSA Sweeps
w/o FMR

Number of
DSA Sweeps
with FMR

Number of
DSA Sweeps
w/o FMR

Number of
DSA Sweeps
with FMR

Number of
DSA Sweeps
w/o FMR

Number of
DSA Sweeps
with FMR

Number of
DSA Sweeps
w/o FMR

Number of
DSA Sweeps
with FMR

Number of
DSA Sweeps
w/o FMR

Number of
DSA Sweeps
with FMR

1 766 31 827 17 875 24 897 24 903 29
2 3660 52 3785 38 3165 51 2443 67 2144 81
3 11280 26 15446 14 19888 15 2291 20 18350 28
4 918 41 2516 26 8596 30 10094 36 15197 58
5 1944 26 1905 13 17515 35 24415 55 24176 67
6 9893 26 16591 25 2651 38 9451 39 12154 51
7 1578 31 3918 27 15279 53 22103 36 20724 43
8 452 27 547 24 12870 32 21342 39 14209 45
9 10145 25 11582 25 12768 48 18191 40 19922 45
10 2710 23 10869 22 14445 32 15808 39 18661 44
11 412 24 12800 26 13631 49 13934 42 14179 51
12 9985 26 10960 25 17281 33 15085 38 19504 50
13 2477 29 11027 23 11225 49 17350 46 18841 57
14 2012 32 9215 24 13728 38 13505 46 20927 56
15 3728 35 7593 21 13551 41 16646 45 16783 58
16 e e 8529 23 e e e e e e

Time (hours) 2.783 0.523 6.347 0.542 7.7803 0.697 9.8544 0.77 10.4086 1.049
Spectral

radius
0.2927 0.2988 0.3348 0.3359 0.3732

Speedup 5.3 11.7 11.2 12.8 9.9
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shown that the preconditioned CGs are very effective for all the
cases having different cross-sections. In particular, the SCG is much
more effective than CG and JCG. As the scattering ratio increases,
the number of CG iterations per DSA sweep also increases. This
effect is more evident in CG than that of JCG and SCG. However, this
effect on SCG is very small as shown in Figs. 8e10. It shows that the
split preconditioner is very effective in reducing the inner iterations
of the CG method.

The results for these test cases are also presented in Table 5 to
show a comparison of the speedups in the computing time of the
DSA(FMR)method coupled with CG, JCG, and SCG. From the table, it
is shown that DSA(FMR) is very effective even in the heterogeneous
test problem, and the speedups are improved by the precondi-
tioned CGs for this heterogeneous problem. However, by
comparing the speedups of DSA and DSA(FMR) without precondi-
tioner, it is observed that the difference in the speedups gradually
decreases with the increasingmean free path. For example, for Case
XV the DSA(FMR) without preconditioner becomes slower than
DSA. That is to say, FMR with unpreconditioned CG gives no
speedup to DSA but slightly degrades the speedup from 10.1 to 9.76.
It is because of higher computing time of CG. For the same case, JCG
and SCG give better speedups of 25.27 and 21.72, respectively,
whereas CG becomes ineffective as compared to DSA. It shows that
the preconditioners are very effective for all the cases. However, it is
noted that JCG is slightly more effective in terms of speedup than
SCG, even though SCG is significantlymore effective in reducing the
number of CG iterations than JCG. The smaller speedups of SCG
than that of JCG are due to the higher computing efforts of SCG for
each CG sweep than JCG. This table also shows that the speedups
are improved for higher scattering ratios in comparison with the
lower scattering ratios.

Next, the effect of preconditioner on the relative residual for the
convergence of CG at different scattering ratios is analyzed for Case
XV. The relative rate of decrease of the residual to the initial re-
sidual during CG iterations is analyzed during only the first source
iteration after the last DSA sweep for CG, JCG, and SCG by plotting it
on a logarithmic scale. The changes in the relative residual for CG,
JCG, and SCG are compared in Fig. 11. For this comparison, the
convergence criterion for the CG method is fixed to 1.0 � 10�4.
Fig. 11 shows that SCG and JCG have much faster reductions in the



Fig. 7. Scalar flux distribution of Case XII in the heterogeneous test problem.
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relative residual than CG without preconditioning and that SCG has
a considerably faster reduction rate than JCG. When the scattering
ratio increases from 0.9 to 0.999, the number of iterations also in-
creases. However, JCG and SCG show much better performance as
compared to CG even for high scattering ratio. It should also be
noted that SCG has a much smaller relative residual after the first
iteration than that of JCG.

4. Summary and conclusion

In this work, a diffusion synthetic acceleration technique for the
Fig. 8. Comparison of average numbers of CG iterations with different preconditioners
(c ¼ 0.9).
SN transport equation discretized with LDEM-SCB(1) on unstruc-
tured tetrahedral meshes was derived by consistently discretizing
the continuous diffusion equation with LDEM-SCB(1). The DSA
equations were derived by applying the same procedure used in the
derivation of LDEM-SCB(1) to the continuous diffusion equation.
That is to say, the derivation of the DSA equations used the same
subcell balance equations and the same expansion of the flux as
those used in the derivation of LDEM-SCB(1). However, the dis-
cretized DSA equations are not fully consistent with the LDEM-
SCB(1) discretized transport equations. In particular, the net
Fig. 9. Comparison of average numbers of CG iterations with different preconditioners
(c ¼ 0.99).



Fig. 10. Comparison of average numbers of CG iterations with different precondi-
tioners (c ¼ 0.999). Fig. 11. Effect of preconditioners on the convergence of CG.

H. Muhammad, S.G. Hong / Nuclear Engineering and Technology 52 (2020) 485e498 497
current correction terms in the subcell balance equation for the
diffusion equation are decomposed into the partial current cor-
rections, and these partial current corrections are represented in
terms of scalar flux corrections of the upstreammeshes fromwhich
the neutrons flow. The detailed derivations of the DSA equations
were simplified using the transformation between the barycentric
and global coordinates systems. The resulting DSA equations
constitute a linear discontinuous diffusion discretization.

The DSA equations can be naturally solved using a GS-like iter-
ationmethod, but this iterative schemewas shown to be ineffective
for large problems having high scattering ratios, which degrades
the effectiveness of the DSA method. To overcome this issue, a
Table 5
Comparison of DSA(FMR) speedups for the fourth test problem.

Test
Case

Source Iteration without
DSA (without FMR)

Source Iteration with DSA (without
FMR)

Source Iteration

Number of
Iterations

SI
Time
(hours)

Spectral
Radius

Number of
Iterations

SI(DSA)
Time
(hours)

SI(DSA)þ
FMR(CG)
Time (hours)

SI
FM
Ti

Case I 1237 2.22 0.3598 18 0.555 0.309 0.
Case II 2161 3.733 0.3617 18 0.873 0.513 0.
Case

III
3492 5.696 0.3667 18 1.30 0.692 0.

Case
IV

1211 2.227 0.3589 18 0.544 0.316 0.

Case V 2119 3.547 0.3573 18 0.805 0.599 0.
Case

VI
4112 6.691 0.3597 18 1.314 0.853 0.

Case
VII

1192 2.014 0.3586 18 0.58 0.383 0.

Case
VIII

2086 4.139 0.3572 18 0.85 0.654 0.

Case
IX

4725 7.908 0.3596 18 1.263 0.944 0.

Case X 1176 1.969 0.3585 18 0.561 0.393 0.
Case

XI
2061 3.668 0.3578 18 0.822 0.705 0.

Case
XII

5346 8.993 0.3688 18 1.437 1.204 0.

Case
XIII

1124 2.319 0.3584 18 0.558 0.304 0.

Case
XIV

1979 6.349 0.3629 18 0.794 0.663 0.

Case
XV

8029 14.61 0.4384 20 1.448 1.497 0.
linear fine mesh rebalance scheme was newly devised based on
each tetrahedral mesh and applied to accelerate the GS-like itera-
tion. In particular, the FMR equations constitute a system of linear
equations whose matrix is symmetric positive definite and they
were solved using the preconditioned CG methods. At present, we
considered the Jacobi and split preconditioners for CG.

The DSA method was applied to three homogeneous test
problems and one heterogeneous test problem to show its effec-
tiveness in terms of computing time (i.e., speedup), reducing the
number of iterations, and the numerical estimate of the spectral
radius. From the numerical tests for the homogeneous problems, it
was found that our DSA(FMR) method for LDEM-SCB(1) rapidly
converges for a wide range of mesh sizes and for various shapes of
Time with DSA (with FMR) Source Iteration Speedup

(DSA)þ
R(JCG)

me (hours)

SI(DSA)þ
FMR(SCG)
Time (hours)

SI(DSA) SI(DSA)þ
FMR(CG)

SI(DSA)þ
FMR(JCG)

SI(DSA)þ
FMR(SCG)

163 0.213 4.0 7.19 13.61 10.40
214 0.247 4.28 7.28 17.41 15.14
219 0.295 4.38 8.23 26.02 19.29

162 0.254 4.10 7.05 13.73 8.750

221 0.292 4.41 5.92 16.04 12.14
288 0.366 5.09 7.84 23.25 18.30

163 0.197 3.47 5.27 12.39 10.24

227 0.253 4.87 6.32 18.22 16.39

332 0.412 6.26 8.38 23.82 19.21

163 0.187 3.51 5.01 12.07 10.53
244 0.323 4.46 5.2 15.02 11.35

401 0.455 6.26 7.47 22.43 19.76

261 0.285 4.15 7.63 8.90 8.140

286 0.339 8.00 9.58 22.17 18.73

578 0.673 10.1 9.76 25.27 21.72
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tetrahedral meshes. It provides both significant speedups of 10e40
and significant reductions in the number of transport sweeps in
comparisonwith the source iteration. The test of our DSA(FMR) to a
heterogeneous test problem showed that DSA(FMR) gives signifi-
cant speedups up to 9e26 for a realistic heterogeneous problem.
Through the numerical tests, it was also found that the FMR
method with the preconditioned CG is critical to achieving signif-
icant speedups. At present, we did not consider the parallel
computation, but this will be pursued in the future to further
reduce the computing time.
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