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I. INTRODUCTION 

The finite-difference time-domain (FDTD) method [1–4] 

has been popularly used for a variety of electromagnetic (EM) 

wave propagation phenomena in the Earth’s atmosphere [5, 6]. 

The Earth’s atmosphere consists of the troposphere, the strato-

sphere, and the ionosphere [7]. In the troposphere and strato-

sphere, only the refraction and attenuation phenomena affect 

EM wave propagation. However, EM wave propagation in the 

ionosphere is complicated because of various propagation envi-

ronments, such as the static magnetic field of the Earth and 

plasma. Therefore, it is of great importance to accurately analyze 

EM wave propagation in the ionosphere modeled as anisotropic 

magnetized plasma. Plasma is a frequency-dependent dispersive 

medium, and it can be implemented in FDTD using various 

methods, such as the recursive convolution method [8], the Z-

transform method [9], and the auxiliary differential equation 

(ADE) method [5, 6, 10]. The ADE-FDTD method is highly 

preferable because it involves a simple arithmetic implementa-

tion, and it can also be straightforwardly applied to nonlinear 

dispersive media, unlike other methods [11, 12]. There are two 

particular implementations in ADE-FDTD for the EM analy-

sis of anisotropic magnetized plasma. First, the magnetic field 

(H) and the current density ( J) are collocated at the same time 

step and position when discretizing J [5]; this is called the H-J 

collocated FDTD method. Second, the electric field (E) and J 

components are collocated at the same time step and position; 

this is called the E-J collocated FDTD method [6]. Unlike that 

of the H-J collocated method, the numerical stability condition 

of the E-J collocated method is independent of medium proper-

ties and remains the same as the Courant stability limit for free 

space [6]. Moreover, the E-J collocated method is more accurate 

than the H-J collocated method [6]. Note that unconditionally 

stable FDTDs for magnetized plasma have been proposed 

based on the weighted Laguerre polynomials [13] or the Crank-

Nicolson-approximate-decoupling algorithm [14].  
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In FDTD, applying an appropriate boundary condition 

(ABC) to truncate the computational domain is necessary. Cur-

rently, the most efficient and commonly used ABC for FDTD 

is the perfectly matched layer (PML) [15, 16]. However, the 

PML implementation is not straightforward in the E-J collo-

cated method, as a matrix calculation is involved in the FDTD 

update equations. To the best of our knowledge, the PML im-

plementation to the E-J collocated FDTD scheme for aniso-

tropic magnetized plasma has not yet been discussed. In this 

work, we propose a stable PML implementation suitable for the 

E-J collocated FDTD approach for anisotropic magnetized 

plasma. Toward this purpose, we employ complex stretching 

variables for the nabla operator when deriving FDTD update 

equations. Numerical examples are used to validate our proposed 

PML implementation. 

II. FORMULATION 

1. FDTD Update Equations 

Let us consider the FDTD update equations for anisotropic 

magnetized plasma based on the E-J collocated method. The 

EM wave propagation in the anisotropic magnetized plasma 

region can be analyzed by Maxwell’s equations coupled with the 

Lorentz equation of motion. The governing equation set is giv-

en by 
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where νc is the collision frequency, ωp is the plasma frequency, ωb 

is the cyclotron frequency, and ε0 and μ0 are the permittivity and 

permeability of free space, respectively. The cyclotron frequency 

is a function of the static magnetic field. Therefore, the cross-

product term in Eq. (3) can lead to anisotropy of plasma so that 

the EM wave behavior depends on the direction of the static 

magnetic field relative to the EM wave propagation direction. In 

the E-J collocated method, the current density vectors are collo-

cated at the same time step and position of the electric field vec-

tors. Therefore, by applying the central difference scheme (CDS) 

in both time and space to Eqs. (1)–(3), one can obtain the 

FDTD update equations consisting of three standard update 

equations for the magnetic field components and six coupled 

update equations for the electric field and current density com-

ponents. 

The update equations for Eq. (1) using CDS are as fo-  

llows: 
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The update equations for Eq. (2) using CDS are as follows: 
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The update equations for Eq. (3) using CDS are as follows: 
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Here, the superscript and the subscript refer to the time and 

spatial indexing, respectively. The ωbx, ωby, and ωbz are the cyclo-

tron frequencies along each direction. As shown in Eqs. (7)–(12), 

the update equations of E and J are required at the same time 

step, and thus the final FDTD update equations are expressed in 

a matrix form. For brevity’s sake, we use the following notation: 
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where A[6 × 6], B[6 × 6], and C[6 × 6] are the coefficient ma-

rices that depend on the anisotropic magnetized plasma proper-

ties and the FDTD modeling parameters for time and space. It 

should be emphasized that the matrix calculation is performed 

only once before FDTD time marching, and thus the demand-

ing computational cost is negligible. Note that there is a spatially 

non-collocated status of electric fields, magnetic fields, and cur-

rent densities. To address this problem, we use the space averag-

ing technique for all the spatially non-collocated components to 

maintain second-order accuracy [6]. For example, the final up-

date equation of Ex for anisotropic magnetized plasma can be 

expressed as 
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where the superscript <a, b> refers to the corresponding index 

of the matrix element of [A-1B] and [A-1C]. In Eq. (17), the 

electric fields (𝐸෨), magnetic fields (𝐻෩), and current densities (𝐽ሚ) 
should be considered by applying spatial averaging at position (i 

+ 1/2, j, k) of the Ex field component. The other coupled com-

ponents, Ey, Ez, Jx, Jy, and Jz, are obtained in a similar manner as 

Eq. (17). Note that the final update equations for the magnetic 

field component can be obtained through the standard FDTD 

process (Eqs. (4)–(6)) because there is no field coupled with 

other field components. 
 

2. PML-FDTD Update Equations 

Let us consider the ABC for the E-J collocated FDTD 

method. In this work, the complex frequency-shifted (CFS)-

PML is employed to prevent the spurious late-time growth of 

EM fields [16]. By using a modified nabla operator with com-

plex stretching variables, 
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where a CFS stretching is utilized so that 
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Here, ζ = x, y, z. The CFS stretching (αζ ≠0) leads to a slightly 

more costly time-domain implementation than the standard 

PML stretching (αζ = 0), but the former is more effective at 

absorbing evanescent waves and low-frequency fields, as it can 

correctly operate for ω→ 0. Except for considering κζ variable,  

the update equations of the CFS-PML E-J collocated FDTD 
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are almost the same as those of the E-J collocated FDTD based 

on Eqs. (7)–(12). In general, PML implementation is straight-

forwardly applied to most FDTD update equations. However, it 

is not straightforward in the E-J collocated FDTD, as the cur-

rent density components are collocated at the same time step 

and position of the electric field components. Therefore, the 

CFS-PML implementation is also included in matrix form for 

the update equations of the E-J collocated FDTD: 
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(21)
 

The final update equation of Ex for anisotropic magnetized 

plasma in the PML region can be expressed as 
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(22)

 

Here, fxy, fxz, fyz, fyx, fzx, and fzy are the auxiliary variables of 

CFS-PML implementations [17]. The auxiliary variables are 

given by 
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and σζ, κζ, and αζ are the parameters related to the CFS-PML 

[16]: 
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(28)

 

where d is the thickness of the PML. The remaining auxiliary 

variables can be obtained similarly to Eq. (23) and Eq. (24). 

D[6×6] is the coefficient matrix that depends on the modeling 

parameters. Similarly, the PML implementation should be con-

sidered for the other coupled components (Ey, Ez, Jx, Jy, and Jz) in 

the matrix of Eq. (20).  

Before proceeding with the numerical examples, note that 

other PML implementation can be possible. Similar to conven-

tional PML implementation, PML can be implemented by 

simply adding auxiliary variables. In this approach, the final up-

date equation of Ex for anisotropic magnetized plasma in the 

PML region is expressed as 
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(29)

However, this conventional PML implementation in aniso-

tropic magnetized plasma may lead to diverging FDTD results, 

which will be shown in the next section. 

III. NUMERICAL EXAMPLES 

For simplicity, without loss of generality, the one-dimensional 

(1D) problem (along the z-axis) is considered for analyzing the 

EM wave interaction with anisotropic magnetized plasma. An 

x-polarized differentiated Gaussian pulse is considered in the 

1D region of the anisotropic magnetized plasma region with an 

arbitrary angle θ (0º, 30º, 60º, and 90º) between the wave-

number vector and the DC bias magnetic field. The computa-

tional domain contains 500 cells with a uniform grid Δz = 75 

μm and a temporal cell size Δt = 0.2475 ps. Ten cells of CFS-

PML were used at the terminations of the space to eliminate 

unwanted reflections. The plasma parameters are modeled to 

have an electron density without ions under an applied 1.7 T 

magnetic field. Therefore, the electron plasma frequency ωp = 

2π ൈ 50 ൈ 109 rad/s, the electron cyclotron frequency ωb = 

3 ൈ 1011 rad/s, and the electron collision frequency vc = 20ൈ109 

Hz [18].  

Let us consider the conventional PML implementation, e.g., 

(29). Fig. 1 shows the time-domain waveforms of the Ex field 

component at the observation point located 50 cells away from 

the source. As shown in Fig. 1, the conventional PML-FDTD 

simulation results are inaccurate and even divergent in all cases. 

Now, let us consider the proposed PML implementation, e.g., 

(22). Fig. 2 shows that the FDTD simulation results are numer-

ically stable in this case. As shown in Fig. 2, the Ey field compo-

nent exists under the x-polarized incident field. This implies 

that the proposed FDTD algorithm can successfully analyze the 

anisotropic phenomenon of magnetized plasma. 

We then conduct a parametric study for the proposed PML 

performance. An angle between the wavenumber vector and the 

DC bias magnetic field is 0º. All the other parameters are the 

same as in the previous simulation. The reference solution is  

 
Fig. 1. Conventional PML implementation results of the Ex field component in the anisotropic magnetized plasma region with an arbi-

trary angle θ. (a) θ = 0º, (b) θ = 30º, (c) θ = 60º, and (d) θ = 90º. 
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obtained using a large FDTD domain such that the reference 

solution is not contaminated by PML reflections [1]. The reflec-

tion error from the PML is defined as  

  

    
   

  10Rel.error 20 log
max

ref

ref

E t E t
t

E t


   

(30)
 

where E(t) is the proposed PML implemented electric field, and 

Eref(t) is the reference electric field. 
 

 

Here, σopt is scaled as follows [1]: 
 

 
opt

0

0.8 1
=

m


 



 

(31)

 

where η0 is the free-space wave impedance, and Δ is the lattice-

cell dimension. As shown in Fig. 3, the optimum CFS factors 

are m = 2, σmax/σopt = 1.4, κmax = 2, and αmax = 2. These factors  
  

         
(a)                                                    (b) 

(c) 

Fig. 3. Contour plots of the maximum reflection error as a function of the CFS factors. (a) κmax = 2, αmax = 0.45. (b) m = 2, αmax = 0.45. (c) m = 2, 

κmax = 2. 

(a) (b) 

Fig. 2. Proposed PML implementation results of the electric field components in the anisotropic magnetized plasma region with an arbi-

trary angle θ. (a) Ex field and (b) Ey field.  
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yield the lowest reflection error of −90 dB. We also compute the 

relative error for the optimum CFS factors under various DC 

bias magnetic fields. Fig. 4 shows that the PML performance is 

good, and thus the proposed PML implementation is suitable 

for the EM analysis of anisotropic magnetized plasma. 

Finally, we compute the right-hand circularly polarized (RCP) 

and left-hand circularly polarized (LCP) reflection coefficients 

of the EM wave in the magnetized plasma slab with an arbitrary 

angle θ (0º, 30º, and 60º). The computational domain is divided 

into 500 cells, and the plasma slab occupies 120 cells. All the 

other parameters are kept the same as in the previous simulation. 

As shown in Fig. 5, the proposed E-J PML-FDTD simulation 

results have a good agreement with the analytic results [19]. 

 

Fig. 4. Relative error of the CFS-PML E-J collocated FDTD. 

 

(a) 

(b) 

Fig. 5. Reflection coefficients: (a) RCP and (b) LCP. 

IV. CONCLUSION 

In this work, we have proposed a stable PML implementa-

tion suitable for the accurate FDTD method for the analysis of 

EM wave propagation in anisotropic magnetized plasma. To-

ward this purpose, we have developed an accurate E-J collocated 

FDTD algorithm for the plasma region with an arbitrary geo-

magnetic field by including the PML variables in the FDTD 

matrix update equations. The proposed PML-FDTD method 

can be applied to accurately predict EM wave propagation in 

the atmosphere for radio and satellite communication. 
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