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Intestinal perforation (IP) in preterm infants is a life-threatening condition that may result in serious
complications and increased mortality. Early Prediction of IP in infants is important, but challenging
due to its multifactorial and complex nature of the disease. Thus, there are no reliable tools to predict
IP in infants. In this study, we developed new machine learning (ML) models for predicting IP in very
low birth weight (VLBW) infants and compared their performance to that of classic ML methods.

We developed artificial neural networks (ANNs) using VLBW infant data from a nationwide cohort
and prospective web-based registry. The new ANN models, which outperformed all other classic ML
methods, showed an area under the receiver operating characteristic curve (AUROC) of 0.8832 for
predicting IP associated with necrotizing enterocolitis (NEC-IP) and 0.8797 for spontaneous IP (SIP).
We tested these algorithms using patient data from our institution, which were not included in the
training dataset, and obtained an AUROC of 1.0000 for NEC-IP and 0.9364 for SIP. NEC-IP and SIP

in VLBW infants can be predicted at an excellent performance level with these newly developed ML
models. https://github.com/kdhRick2222/Early-Prediction-of-Intestinal-Perforation-in-Preterm-Infan
ts.

Intestinal perforation (IP) in preterm infants is a life-threatening condition that requires urgent surgical interven-
tion. Delayed diagnosis of IP can lead to serious complications and even death in certain patients. There are two
major causes of IP in premature infants: necrotizing enterocolitis (NEC) and spontaneous intestinal perforation
(SIP)'-%. NEC and SIP are acquired diseases, which means that IP occurs due to the actions of various risk fac-
tors. IP associated with NEC (NEC-IP) is an advanced stage of NEC in which NEC has progressed to a severe
state. On the other hand, SIP can occur unexpectedly without preceding symptoms or signs®. Many previous
studies have investigated the risk factors and pathogenesis of these two types of IP. According to the literature,
possible risk factors include prematurity, low birth weight, perinatal use of medications (ibuprofen, steroids,
indomethacin, and inotropic agents), maternal chorioamnionitis, patent ductus arteriosus (PDA), and high-grade
intraventricular hemorrhage (IVH grade III or IV)>7-22. Despite these efforts, due to the nature of retrospective
studies with a small number of patients, there is thus far no consensus concerning risk factors. Furthermore, the
pathogenesis of IP in premature infants is still not clearly understood; as a result, neonatologists and pediatric
surgeons have difficulty predicting and preventing the occurrence of NEC-IP and SIP#-%.

Recently, artificial intelligence (AI) technologies have been used to solve various medical problems, includ-
ing diagnosing diseases, choosing treatments, and predicting the risks and progression of diseases?’~*. Machine
learning (ML) algorithms, specifically artificial neural networks (ANNs), allow more accurate estimation of
complex patterns through learning from training data and are able to predict which patients will develop a
disease as an early and supportive diagnostic tool for clinicians. To date, only a few studies have used ML algo-
rithms to predict IP in premature infants. Irles et al.*! reported an ML model predicting NEC-IP, and Lure et al.*
reported an ML model to differentiate NEC-IP and SIP prior to surgical interventions. Lin* et al. reported an
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A B C p-value
No perforation (n=11,826) | NEC-IP (n=521) | SIP (n=208) Avs.B |Avs.C
Gestational age (weeks, mean + SD) 28.58£3.02 25.84+2.41 26.25+2.23 <0.001 | <0.001
Birth weight (g, mean + SD) 1092.38 +284.05 820.03 £249.41 858.38+£248.15 <0.001 | <0.001
Sex-male—n (%) 5919 (50.1) 285 (54.7) 130 (62.5) 0.038 | <0.001
Maternal chorioamnionitis—n (%) 3426 (29.0) 162 (31.1) 64 (30.8) 0.296 0.571
PROM—n (%) 4073 (34.4) 196 (37.6) 80 (38.5) 0.135| 0227
Antenatal steroid use—n (%) 9341 (79.0) 414 (79.5) 169 (81.3) 0.794 0.427
Resuscitation at delivery—n (%) 10,472 (88.6) 489 (93.9) 204 (98.1) <0.001 | <0.001
RDS—n (%) 9080 (76.8) 487 (93.5) 198 (95.2) <0.001 | <0.001
Surfactant use—n (%) 9114 (77.1) 489 (93.9) 200 (96.2) <0.001 | <0.001
Steroid use—n (%) 2589 (21.9) 198 (38.0) 91 (43.8) <0.001 | <0.001
Indomethacin use—n (%) 54 (0.5) 8(1.5) 2 (1.0) 0.001 0.252
Ibuprofen use—n (%) 3539 (29.9) 232 (44.5) 83(39.9) <0.001 0.002
Hypotension—n (%) 2838 (24.0) 325 (62.4) 130 (62.5) <0.001 | <0.001
Inotropic use—n (%) 548 (4.6) 59 (11.3) 26 (12.5) <0.001 | <0.001
IVH grade 3,4—n (%) 934 (7.9) 146 (28.0) 48 (23.1) <0.001 | <0.001
Sepsis—n (%) 2224 (18.8) 266 (51.1) 91 (43.8) <0.001 | <0.001
PDA on medication—n (%) 3615 (30.6) 241 (46.3) 87 (41.8) <0.001 | <0.001
PDA ligation—n (%) 1145 (9.7) 142 (27.3) 48 (23.1) <0.001 | <0.001

Table 1. Clinical characteristics of the patients. NEC-IP intestinal perforation associated with necrotizing
enterocolitis, SIP spontaneous intestinal perforation, SD standard deviation, PROM premature rupture

of membranes, RDS respiratory distress syndrome, IVH intraventricular hemorrhage, PDA patent ductus
arteriosus.

ML technique for individualized NEC risk scores using intestinal microbiota data. However, despite these efforts,
studies concerning ML technologies in neonatal IP are still lacking, and there are no definitive tools to predict
NEC-IP and SIP in advance. Therefore, our study aimed to develop our own ML models for predicting IP in
very low birth weight (VLBW) infants using a nationwide cohort dataset and to compare the performance of the
new models with that of classic ML models. Furthermore, to ensure that our novel predictive ML models were
valid in real neonatal intensive care (NICU) settings, we tested new ML models with individual cases from our
institution and assessed whether these new models achieved high predictive accuracy.

Results

Baseline characteristics of the patients. The baseline characteristics of the infants are shown in Table 1.
Of the 12,555 patients, 521 patients had NEC-IP (4.1%), and 208 patients had SIP (1.7%). Three groups of VLBW
infants were compared for analysis: (A) control group without NEC-IP or SIP, (B) patients with NEC-IP, and (C)
patients with SIP. Factors such as low gestational age, low birth weight, need for resuscitation at delivery, respira-
tory distress syndrome (RDS) and administration of surfactant, use of certain medications (steroids, ibuprofen,
and inotropes), hypotension, IVH grade III/IV, sepsis, and PDA on treatment were significantly associated with
IP, including both NEC-IP and SIP.

Proposed machine learning algorithms. In the work of Irles et al.’!, ML-based approaches were pro-
posed to predict NEC values, and our neural approaches produced promising NEC prediction results using a
dataset that included 852 positive cases. However, it is more difficult to collect data for NEC-IP and SIP than for
NEC; thus, the number of datasets, especially for positive cases, is very limited (521 and 208 positive cases for
NEC-IP and SIP, respectively). To solve this problem, we utilized relevant information from a neural network
trained for NEC prediction to elevate the diagnostic accuracy of SIP and NEC-IP.

In this study, we introduced several deep neural networks for predicting NEC, NEC-IP, and SIP in infants by
taking a 54-dimensional input vector as the network input, and the output of each network was a single value for
binary classification problems. Specifically, we first developed our baseline neural network (Model 1) based on
the conventional multilayer perceptron (MLP) architecture and then trained Model 1 to predict NEC, NEC-IP,
and SIP separately. For ANN:G, it is well known that simply adding layers can lead to performance improvement
by enforcing more nonlinearity; however, it causes the overfitting problem when the training dataset is insuf-
ficient. Therefore, we stacked the layers more deeply than the conventional models in diagnosis, as introduced
in a previously published study®', but determined the hyperparameters (e.g., the number of channels) carefully
and added more advanced techniques, such as batch normalization* and drop-out®, to avoid the overfitting
problem and facilitate stable training. Specifically, Model 1 is a binary classifier that is composed of 5 hidden
layers; each layer is formed from a block (Fig. 1a) arranged with an activation function, batch normalization and
dropout. It takes a 54-dimensional vector as an input and, after the application of all layers, renders feature vectors
of dimension. Model 1 is a typical neural approach and can produce promising results when a large number of
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datasets (e.g., NEC) are available. However, the outcomes from Model 1 can be vulnerable in real-world scenarios
where the training dataset is insufficient.

Therefore, we attempted to further improve our baseline Model 1 to predict NEC-IP and SIP more accurately
since the lack of data problem for NEC-IP and SIP is more serious than that for NEC. To alleviate this problem,
we developed a new approach that transferred information from the network to predict NEC values to help
estimate NEC-IP and SIP. Note that transfer learning in the field of deep learning is one of the most widely used
approaches to solve lack of data problems®~*’. Therefore, we present additional models (Model 2 and Model 3)
that can exploit information achieved from the NEC dataset to predict SIP and NEC-IP.

Specifically, Model 2 is composed of two different MLPs. One branch predicts NEC, and the other branch
predicts either SIP or NEC-IP (Fig. 1b). Notably, at the 4th layer of the MLP branch for NEC-IP and SIP in Model
2, feature vectors from the third layer of the network for NEC are fed as an additional input. By concatenating
the feature vectors from NEC, we can utilize the information for NEC in predicting NEC-IP/SIP.

Unlike that of Model 2, the network architecture of Model 3 is the same as that of Model 1. We employed
conventional transfer learning to utilize information from NEC to estimate NEC-IP/SIP and fine-tuned the
pretrained Model 1 to the specific NEC-IP/SIP datasets (Fig. 1c).

Comparison of performance between classic ML models and proposed ANN models. We pro-
vide prediction results in Table 2 to compare traditional ML models with our neural approaches. We observed
that the proposed neural approach (Model 1) outperformed traditional learning-based methods in terms of area
under the receiver operating characteristic curve (AUROC) scores for all cases (NEC, NEC-IP, and SIP).

Moreover, our extended networks (i.e., Model 2 and Model 3), which we designed to mitigate the lack of data
problem for NEC-IP (521 positive cases) and SIP (208 positive cases), showed improved results in predicting
NEC-IP and SIP over the baseline network (Model 1).

In particular, compared to Model 1, which was trained on the NEC dataset, our proposed methods for NEC-IP
and SIP (Model 2 and Model 3) exhibited improvements. Notably, Model 2 directly utilizes features distilled from
Model 1, Model 3 fine-tunes Model 1 for the prediction of either NEC-IP or SIP, and Model 2 outperforms Model
3 in terms of AUROC, as shown in Table 3 and Fig. 2. The performance metrics of these models using balanced
validation dataset are described in Supplementary Tables 1 and 2. This performance improvement achieved in
Model 2 and Model 3 indicates that information extracted to predict NEC can also be used to predict NEC-IP and
SIP more accurately. Moreover, the proposed direct feature distillation of Model 2 rather than the conventional
fine-tuning approach (i.e., Model 3) can be a recommendable option for addressing problems with limited data.

Application of the new ANN models in a real clinical environment. To assess the feasibility of the
algorithm in a real clinical environment, we tested our newly developed algorithms using the patient data from
our institution, which were not included in the training dataset. A total of 57 VLBW infants who were born at
our hospital between 2019 and 2020 were included in this test analysis. Among the three ANN models, Model
2 achieved the highest AUROC scores: 1.0000 for the prediction of NEC-IP and 0.9364 for the prediction of SIP
(Table 4 and Fig. 3).

Discussion

Our novel ML algorithms predicted NEC-IP and SIP in VLBW infants with favorable AUROC scores, outper-
forming all other classic ML algorithms. One of our algorithms exhibited an AUROC score of 1.0000 for pre-
dicting NEC-IP and 0.9364 for predicting SIP in real clinical settings. Our study shows the integration of a vast
nationwide dataset with ML, and the resulting model can be used to predict the possibility of specific medical
conditions in patients who may not perfectly represent the signs and symptoms of the disease.

Among preterm infants in the NICU, various medical problems exist at the same time, and multidisciplinary
collaboration is required to make medical decisions for these patients. IP is one of the most devastating medi-
cal conditions that occurs in the NICU. Early diagnosis, swift judgment, and prompt surgical intervention are
required to prevent severe complications and poor outcomes*'. However, as we explained earlier, predicting the
occurrence of IP is difficult. By running this algorithm, it is possible to analyze every preterm infant who is admit-
ted to the NICU and predict each patient’s likelihood of developing NEC-IP and SIP. Thus, early predictions of
these serious medical conditions could provide clinicians with a much more stable management environment,
enabling them to make better treatment decisions.

In recent years, Al and big data have been increasingly integrated into medicine because it is difficult for
the unaided human clinician to acquire all the latest published knowledge, as is required by modern evidence-
based medicine®®*2. Al is an important resource for medical research in that it can efficiently process large
amounts of data. Additionally, AI can produce consistent and unbiased results without fatigue. Several studies in
healthcare research have reported sufficient or even better risk prediction by AI methods compared to existing
models*~*. Especially these days, in solving difficult problems with big data which have complex distribution,
neural approaches exhibit excellent performance. Since neural networks can have non-linearity from adding lay-
ers and fine-tune parameters by transfer learning*®*, they can get the upper hand in complex tasks. To sum up,
ANN is an appropriate model for IP prediction, as it can handle imbalanced big data efficiently. However, even
if the overall cohort is large, diseases with low prevalence always suffer from a lack of data. Due to the character
of ML, it can produce excellent results only with a large amount of training data. Thus, applying ML to diseases
with low prevalence remains a challenge*®*. To overcome the data imbalance problem, several studies have
applied data processing techniques such as oversampling™ and undersampling®' as we did in our ANN models.

To further improve the performance of our models, we modified them by adding another branch or pre-
training it based on an algorithm that predicts other relevant disease with higher prevalence in order to help
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AUROC NEC NEC-IP SIP

Linear SVM 0.7632 0.8618 0.8162
Radial SVM 0.7567 0.8195 0.7481
Logistic regression 0.7641 0.8644 0.8044
K-NN 0.6229 0.6337 0.5759
Decision tree 0.5145 0.5377 0.5004
XGBoost 0.6758 0.7748 0.7452
LightGBM 0.7087 0.7758 0.7477
Random forest 0.7495 0.8051 0.7687
MLP (model 1) 0.8128 0.8665 0.8498

Table 2. Model performance of classic ML models for predicting NEC, NEC-IP, and SIP. ML machine
learning, NEC necrotizing enterocolitis, NEC-IP intestinal perforation associated with necrotizing enterocolitis,
SIP spontaneous intestinal perforation, SVM support vector machine, K-NN k-nearest neighbor, XGBoost
extreme gradient boosting, GBM gradient boosting machine learning, LightGBM light gradient boosting
machine learning, MLP multilayer perceptron.

the model predict the target disease more accurately. As a result of these adjustments, the modified algorithms
(Model 2 and 3) achieved better performance than the original model. According to previous studies, NEC-IP
and SIP are regarded as separate disease entities, and the pathogenesis of SIP does not appear to correlate with
that of NEC>®2-%°. Notably, however, training of NEC prediction improved not only the accuracy of NEC-IP
prediction but also the accuracy of SIP prediction. These results show that pre-ML training with more prevalent
medical conditions can help AI predict the occurrence of the target disease more accurately. Our study also
highlights that it is necessary to customize the algorithm for each disease to apply an ML model in real clinical
settings, especially if the disease is rare.

Although our study showed a favorable outcome, it had its share of limitations. First, a limited number of fac-
tors are included because only data collected from the Korean Neonatal Network (KNN) were used. It is expected
that the collection of further IP-related data, such as clinical symptoms, vital signs, and radiologic findings, will
enable the model to produce better results. In addition, the limitations of AI studies, such as representation,
homogeneity, and accuracy, were observed in this study. Another limitation is that it is difficult to determine how
Al methods generate results due to the nature of self-extracted data from large datasets*>>%*".

In conclusion, we developed our own ANN models to predict IP early in VLBW infants, and these new models
achieved higher accuracy than classic ML algorithms. To our knowledge, this is the first study to develop an ML
model to predict both NEC-IP and SIP using nationwide VLBW infant data. In addition, the newly proposed
ANN models showed excellent performance within real NICU clinical settings. When more clinical data, such as
vital signs, radiologic findings, biomarkers, and laboratory results, are gathered, we believe that a more accurate
ML model will be developed, thereby achieving early prediction of these serious medical conditions and better
clinical outcomes for VLBW infants.

Methods
Data collection. We derived data from infants registered in the KNN, a nationwide prospective cohort
registry of VLBW infants®®. Their clinical data were collected from 74 participating NICUs across the country
and analyzed retrospectively for this study. Prior to participation in the KNN registry, informed consent was
obtained from the parents of each infant, and all methods were carried out following relevant guidelines. This
study was approved by the Hanyang University Institutional Review Board (IRB No. 2013-06-025-043).

The cohort comprised 12,555 VLBW infants born between January 5, 2013, and December 31, 2018, weigh-
ing less than 1500xg.

Disease definitions. NEC was defined according to Bell's modified staging grade>1I. NEC-IP was diag-
nosed when patients with NEC underwent any kind of abdominal surgical intervention (peritoneal drainage
or laparotomy). SIP was defined when the patients underwent surgical intervention due to IP and the surgeon
found no predisposing causes, such as NEC, intestinal atresia, or meconium plug. The full list of 54 variables
used in ML analysis is shown in Supplementary Table 3.

Comparisons of baseline characteristics. A total of 54 variables, including various maternal and peri-
natal factors, were collected for ML. Among them, 18 clinical factors that were proposed as possible risk factors
for either NEC-IP or SIP in previous studies were analyzed using conventional statistical methods. Student’s
t-test was performed to analyze the continuous variables, and the chi-squared test was used to analyze categori-
cal variables. Statistical significance was set at P <0.05. The Statistical Package for the Social Sciences version 22.0
for Windows software program (IBM Corp., Armonk, NY, USA) was used in all statistical analyses.

Data preprocessing. Our dataset was composed of 12,555 infants in total; we divided them into training
and evaluation datasets (Table 5). Moreover, to facilitate the network training procedure, a data preprocessing
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TPR( Recall )

‘ Model 1 Model 2 Model 3

AUROC

NEC 0.8128 - -
NEC-IP 0.8665 0.8832 0.8692
SIP 0.8498 0.8797 0.8633
F1-score®

NEC 0.7701 - -
NEC-IP 0.7181 0.8093 0.7273
SIP 0.8059 0.8204 0.8041

Table 3. Performance of the proposed ANN models in predicting NEC, NEC-IP, and SIP. ANN artificial
neural network, NEC necrotizing enterocolitis, NEC-IP intestinal perforation associated with necrotizing
enterocolitis, SIP spontaneous intestinal perforation, AUROC area under the receiver operating characteristic
curve. *Scores were found with balanced validation dataset. Positive cases were oversampled.
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Figure 2. Receiver operating characteristic curves of proposed ML models for (a) NEC prediction, (b) NEC-IP
prediction, and (c) SIP prediction.

‘ Model 1 Model 2 Model 3

AUROC

NEC 0.6745 - -
NEC-IP 1.0000 1.0000 0.8704
SIP 0.9000 0.9364 0.8818
F1-score®

NEC 0.6903 - -
NEC-IP 0.8571 0.9076 0.8710
SIP 0.7241 0.7179 0.7925

Table 4. Test results for 57 cases within a real NICU environment. NICU neonatal intensive care unit, AUROC
area under the receiver operating characteristic curve, NEC necrotizing enterocolitis, NEC-IP intestinal
perforation associated with necrotizing enterocolitis, SIP spontaneous intestinal perforation. *Scores were
found with balanced validation dataset. Positive cases were oversampled.

step was applied (Fig. 4). First, to solve the missing data problem in the given dataset, we imputed the missing
(null) values with plausible values. Specifically, input values were categorized into ordinal, continuous and cat-
egorical types. In the case of ordinal inputs, we imputed the null values with the mode (most frequently occur-
ring) values, and in the case of continuous inputs, we imputed the null values with the mean values. Finally,
missing values of categorical inputs were replaced with the median values. After recovering the data, we mapped
the dataset between 0 and 1 by using min-max normalization. Finally, to mitigate the data imbalance problem
(e.g., 11,703 negative and 852 positive cases for NEC in Table 5), which is a common intrinsic feature of disease
datasets, we oversampled the smaller category (positive cases) and undersampled the bigger category (negative

cases), as suggested in previous studies®.

Training. We used the binary cross entropy (BCE) loss to train Model 1, and Model 1 was separately trained
to predict NEC, NEC-IP, and SIP. For Model 3, pretrained Model 1 for NEC was further fine-tuned, and the
separately updated parameters using the BCE loss were used to predict NEC-IP and SIP.
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Figure 3. Receiver operating characteristic curves of proposed ML models from 57 test cases. (a) NEC
prediction, (b) NEC-IP prediction, and (c) SIP prediction.

Training dataset Evaluation dataset

Negative Positive Negative Positive Total
NEC 10,000 770 1703 82 12,555
NEC-IP 430 2035 91
SIP 170 2348 38

Table 5. Size of training and evaluation datasets. NEC necrotizing enterocolitis, NEC-IP intestinal perforation
associated with necrotizing enterocolitis, SIP spontaneous intestinal perforation.
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Figure 4. Flowchart of data processing. Input values were categorized into ordinal, continuous and categorical
types. To solve the data imbalance problem, oversampling and undersampling technique were applied. Then, the
data were normalized.

Unlike Model 1 and Model 3, Model 2 was trained in a two-stage manner. In the first stage, the left branch
of the network (Fig. 1b) was trained for NEC with the BCE loss. Then, the BCE loss as well as the BCE for NEC
in the left branch were used to jointly optimize the network for either NEC-IP or SIP. In both training steps,
oversampling and undersampling technique were used to alleviate the data imbalance problem. We employed
the two-stage training scheme rather than using the one-shot joint training approach, as we could retain more
stability during the training from the two-stage approach.

To train the three proposed models (i.e., Model 1, Model 2, Model 3), the Adam optimizer®! with a learning
rate of 0.0001 was used for loss minimization. We used a dropout rate of 0.2 and a batch size of 128, Instead of
fixing the number of iterations, we stopped the training using the early stopping technique to avoid the overfitting
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problem. When the loss increased seven times in a row, we stopped the training (i.e., early stop) and took the
parameters just prior to the loss increase. The models were implemented in PyTorch with Python®, and the
Scikit-learn library63 was used to evaluate the results (e.g., AUROC, F1-Score, and ROC curve).

Da

ta availability

According to the Korean Neonatal Network (KNN) Publication Ethics Policy, all information about patients
is confidential. The information contained in the data must be protected as confidential, and only available to
individuals who have access for the permitted research activity.
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