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Abstract: Video captioning via encoder–decoder structures is a successful sentence generation
method. In addition, using various feature extraction networks for extracting multiple features to
obtain multiple kinds of visual features in the encoding process is a standard method for improving
model performance. Such feature extraction networks are weight-freezing states and are based
on convolution neural networks (CNNs). However, these traditional feature extraction methods
have some problems. First, when the feature extraction model is used in conjunction with freezing,
additional learning of the feature extraction model is not possible by exploiting the backpropagation
of the loss obtained from the video captioning training. Specifically, this blocks feature extraction
models from learning more about spatial information. Second, the complexity of the model is further
increased when multiple CNNs are used. Additionally, the author of Vision Transformers (ViTs)
pointed out the inductive bias of CNN called the local receptive field. Therefore, we propose the full
transformer structure that uses an end-to-end learning method for video captioning to overcome
this problem. As a feature extraction model, we use a vision transformer (ViT) and propose feature
extraction gates (FEGs) to enrich the input of the captioning model through that extraction model.
Additionally, we design a universal encoder attraction (UEA) that uses all encoder layer outputs
and performs self-attention on the outputs. The UEA is used to address the lack of information
about the video’s temporal relationship because our method uses only the appearance feature. We
will evaluate our model against several recent models on two benchmark datasets and show its
competitive performance on MSRVTT/MSVD datasets. We show that the proposed model performed
captioning using only a single feature, but in some cases, it was better than the others, which used
several features.

Keywords: video captioning; transformer; end-to-end learning

1. Introduction

Video captioning is one of the notable studies in the computer vision–natural language
processing connection. The model understands video and creates captions explaining
video via visual data such as frame representation, motion data, and objects. Therefore,
the caption represents the information of the video or something changing in the video.
Recently, it was revealed that the encoder–decoder architecture is helpful in video cap-
tioning. In addition, the architecture, in the previous part of the encoding part, extracts a
feature by weight-freezing pre-trained feature extraction models and handles the feature to
find the decisive points of the video information. Those methods use not only one kind of
feature, such as an appearance feature, but also several kinds of features to deal with more
information from videos and process the features in various ways.

Several papers [1–4] show various methods of captioning. Such video captioning
processes typically require a video feature extraction process to convert raw pixel data
to the vector form that is required in the entire deep-learning process. Moreover, the
pre-trained CNNs have been required for each feature extraction process. For example, in
the ORG-TRL [5], the appearance feature that represents frame information is extracted by
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2D CNNs, 3D CNNs extract the motion feature, and an object-detection network such as
Faster-RCNN extracts the object feature on video.

Because of using pre-trained CNNs to convert a video to features, firstly, the captioning
performance is affected by the feature extraction network performance. As can be seen from
the experimental results of MGRMP [6], when the network that extracted motion features
changed C3D to 3D-ResNext, it showed excellent performance improvement even though it
was the same architecture. That proves that good feature extraction significantly influences
good capturing performance. Additionally, the E2E Video Captioning [7] proposed the
method to optimize the feature extraction network via end-to-end learning.

However, there are some limitations to the traditional feature extraction model. While
a weight-freezing network is efficient for feature extraction, it has the disadvantage that it
does not update while the entire model is training on new data. In addition, because it is
based on CNNs, and since CNNs have a local receptive field, it makes the performance
bound. In contrast, the transformer has a global receptive field because of the self-attention
layer, improving the model performance when pre-trained well. In many fields [8–10],
transformer networks outperform CNNs. Therefore, attempting to convert CNN-based
feature extraction models to transformer-based models is natural. Inspired by recent studies
that apply transformer networks to vision tasks, we propose the full transformer architec-
ture for video captioning. From feature extraction to the part that extracted appearance
features, proceeding through to the transformer. We make the model consisting of the
(ViT) [11] and adopt end-to-end learning. Moreover, the feature extraction gate (FEG) is
proposed to acquire a much better understanding of visual features. The FEG is used to
obtain better information and combines CLS token information and previously discarded
patch sequence information to extract information that better contains visual content.

Furthermore, we use all encoder layer outputs to resolve the lack of information
caused by using one type of feature. As used in the M2 transformer [12], each encoder
layer output enters each layer of the decoder as input. In [13], the authors analyzed that
each encoder layer output has slightly different information about the relationship between
features. Therefore, because each encoder layer output means a different relation of frame
feature, we expected the same effect as multi-feature when using multi encoder layer
output. At this time, we add additional self-attention to check how the encoder layer
outputs are related and to further strengthen the video information. To perform this self-
attention, each encoder layer output to be activated must pass through the same network.
Thus, the model was designed based on the universal transformer, a layer weight-sharing
structure. Furthermore, we named this method the universal encoder layer attention (UEA).
In addition, we named our model universal attention transformer (UAT).

Our contributions are the following: (1) we propose the full transformer video caption-
ing structure optimized via end-to-end learning. (2) We design the feature extraction gate
(FEG) that considers making better features by a fusion of CLS token and patch sequences.
(3) We also propose universal encoder layer attention (UEA), constructed to obtain more
information from one feature type.

2. Related Work
2.1. Video Captioning

Among existing studies, SibNet [4], which uses one type of feature, tried to learn
semantic information and content information separately through CNNs, and PickNet [14]
proposed a structure that selects and learns frames that are judged to contain important
information in a video. MARN [15] proposed an additional memory structure for learning
the association between words and video content, SAAT [16] recognized objects and syntax
to find actions in the video, and STG-KD [1] identified the movement of objects via spatio-
temporal graphs. Additionally, ORG-TRL [5] suggested a way to utilize object features by
learning the relationship with surrounding objects through graph convolution.

The latest method, MGRMP [6], used targeting and tracking of important video regions
for captioning without using object features. SGN [17] proposed the methods to predict the
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next-word information through semantic attention within the video. Another latest study,
RCG [18], suggested a different method, which was made as a video-text retrieval method,
and retrieval was carried out in the generation process.

2.2. Vision Transformer

A Vision Transformer [11] proposed a novel method to handle the vision problem via
the transformer structure. Many tasks were accomplished with state-of-the-art performance
via the ViT. For example, IPT [19] used the transformer on a super-resolution task, and DETR
and Swin-TR [9,20] used it on object detection tasks. Additionally, BEiT [21] demonstrated
the effectiveness of the transformer on semantic segmentation and outperformed the
previous study. These show that the transformer would change all vision tasks’ base
architecture.

Furthermore, Arnab et al. [8] proposed a novel architecture to handle video data
via a full transformer structure. The authors suggested several model architectures and
”tubelet embedding”, which makes a patch by several frames. In addition, the model
structure is two encoder structures, consisting of a spatial and temporal encoder with both
enconder layers having the same configuration. Each of the two encoders learns different
information. The spatial encoder learns spatial information, and the feature of passing
through the spatial encoder is the input of the temporal encoder. Therefore, the temporal
encoder analyzes the temporal relation of each spatial feature. As a result, the entire model
learns the video’s spatial and temporal information.

2.3. Handling Temporal Feature

In the video, not only spatial relationships but also temporal relations are important
content because they have rich information about the video, the kinds of motion, and
object movement. For example, the authors of [1,22,23] proposed the methods that learn
the spatio-temporal relation of video. By that, they obtain state-of-the-art performance
in their study. Therefore, learning temporal features, not only spatial features, should be
considered to understand the video.

For this, many recent studies, such as OSRG [24] and ORG-TRL [5], and others [25,26]
have adopted long short-term memory (LSTM) or recurrent neural networks (RNNs) for the
part of their captioning decoder. Traditionally, researchers used these sequence networks to
find a sequence’s meaning or to learn about temporal changes in data. Since the temporal
feature extraction model, C3D or I3D, is performed to extract the motion features, there
is some temporal information. In addition, the appearance features are the set of the
video frames, so it is crucial to find the relation between them to obtain information about
temporal changes in the video. Therefore, it was natural to adapt these sequence models to
the video captioning model.

After the creation of the transformer, researchers tried to use LSTM and RNN but also
transformer networks to handle temporal features on video data. In TVT [27], the authors
consider the sequence structure of self-attention to frame sequence. By that, the feature of
one frame is treated as one temporal feature, and by self-attention, the model learns the
overall video by learning the overall temporal relation.

2.4. End-to-End Learning

A E2E video captioning [7] proposed an end-to-end learning method on a video
captioning structure. The authors show that this encourages encoders to value relevant
features for caption generation and their two-stage training strategy. In the first stage,
the pre-trained encoder network is frozen, and only the decoder is trained. After several
epochs, the entire network is trained end-to-end. First, we consider that strategy. However,
because ViViT [8], which the two structure transformer model adapts, is a simple learning
method that trains via one stage (no freeze) and shows unblemished performance, we
follow that one-stage method.
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2.5. Universal Transformer

Dehghani et al. [28] proposed the universal transformer structure. These encoders and
decoders are weight shared, so there is no more need for additional layer parameters for
training. The authors propose the universal structure with a dynamic halting process, but
we use only a base universal structure.

For recognizing different layers, time encoding exists on the structure. At each time
step, the passing encoder/decoder layers add not only a positional encoding but also a
time encoding. By this, the model has just one encoder–decoder layer parameter that could
have the effect of learning about different layer features.

3. Materials and Methods

Figure 1 shows the overall architecture. This overall architecture is composed of two
models, the feature extraction model and the captioning model. The appearance feature is
extracted from the vision transformer. Our approach for the full-captioning model consists
of two components. First, it is the feature extraction gate (FEG) that selects a better feature
from the ViT. The second is the encoder channel attention on the captioning model. When
the model is run, the appearance feature is extracted by the ViT. After that, it passed the FEG
and arrives at the captioning encoder. The captioning encoder is in charge of processing and
searching for temporal relations from the frame-feature sequence. After that, the captioning
decoder reads the output of the encoder layer and generates the captions. In this process,
the relationship between video content and the interaction between video content and
words are modeled through scaled dot-product attention [29], which exists on the encoder
and decoder.

Figure 1. Our full model. The captioning encoder−decoder is the universal transformer structure.
Therefore, each encoder and decoder layer is weight-shared. The appearance feature is extracted by
ViT, which is our feature extraction model. The decoder layer reads stacked encoder layer outputs
after L steps, which means all encoder operations are ended. The left figure describes entire model.
The right figure explains our captioning decoder; this includes channel attention and universal
encoder attention.

Attention is an operation that performs a weighted sum with a value vector by scoring
the similarity of the query and key distribution. Since our model consists of a full trans-
former structure, attention is performed everywhere. The scaled-dot product attention
operation can be defined as follows:
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Attention(Q, K, V) = softmax(
QKT
√

d
)V (1)

where Q is a matrix consisting of nq query vectors and K and V; both the matrices consist
of nk keys and values. Q, K, and V all have the same dimension, and d is a scaling factor.

Additionally, there is multi-head attention (MHA), which calculates the new expres-
sion of h times in the context of the whole context. The idea of MHA is acquiring h new
expressions that reflect the context and using the matrix by concatenating these various
expressions as the attention output. It is formulated as:

MHA(F, F, F) = concatenate(head1, . . . , headh)W0 (2)

headi = Attention(FWQ
i , FWK

i , FWV
i ) (3)

F = LayerNormalization(I) (4)

where Wi is a trainable matrix and h is the number of heads. Our layer normalization is
performed before MHA operates. Therefore, the inputs of MHA and F are the normalized
I, which are input features.

3.1. Feature Extraction Model

ViT Feature Extraction Process. Firstly, we extract T frames from the video. Then,
each frame is passed into the transformer encoder for feature extraction. At this time, in
order to input the given input pixel data to sequence data, which is an input of the ViT, it
must be reshaped by patch embedding. Each pixel datum is divided into a fixed patch size
P, and the frame features are reshaped to form a sequence where N = HW

P2 . Furthermore,

the made patch has the dimensions RP2×C. By embedding, it has dmodel dimension size and
becomes X0 ∈ RN×dmodel .

After performing concatenation on the one token, a learnable positional embedding
is added and the transformer encoder is entered. This token is called the CLS token. The
encoder layer mechanism is defined as:

Ẋk = MHA((Xk−1), (Xk−1), (Xk−1)) + Xk−1,

Xk = FFN(LN(Ẋk)) + Ẋk,

FFN(x) = RELU(xW1 + B1)W2 + B2

, (5)

where k = 0, . . . , M; M is the number of feature extraction model layers. LN means layer
normalization. FFN is a feed-forward network that consists of a ReLU function and a fully
connected layer. The output calculated in this way has N x D, which is equal to the shape
of the input.

Feature Extraction Gate. As shown in Figure 2, unlike other existing methods that
use only CLS tokens, we consider using the entire output sequence to make better features.
First, we perform avg-pooling on the patch sequence RN×D to make the same shape as the
CLS token. After that, the weighted sum is performed, and the feature passes through the
sigmoid function to create the gate feature ‘G’, which has a value between 0 and 1. This G
determines which information to take from the CLS token. Likewise, 1−G is used to control
the avg-pooled feature sequence. After that, we add two features after an element-wise
multiplication of G with the CLS token and 1− G with the pooled frame sequence. In
this way, features with the shape of R1×D are obtained that combine not only CLS token
information but also patch features information in one frame. Namely, this gate structure
compares features and makes the fusion of the CLS token and the patch sequence. It is
formulated as:
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Ġ = concatenate(XCLS, Xpooled)W3 (6)

where W3 ∈ R2dmodel×dmodel represents the trainable weights. The two features XCLS, Xpooled
are concatenated and sum-weighted. After making the gate feature, it passes the sigmoid
function. That Gsig is calculated with XCLS, and the 1− G is calculated with Xpooled. The
formula is as follows:

G = sigmoid(Ġ) (7)

F = XCLS � G + (1− G)� Xpooled, (8)

where �means an element-wise multiplication. We named this module the feature extrac-
tion gate (FEG).

Figure 2. The architecture of the feature extraction gate (FEG). This generates the captioning model
input by controlling the ratio of the CLS token feature and the mean-pooled patch sequence feature.

3.2. Captioning Model

Captioning Encoder. Our captioning encoder has a role in analyzing the temporal
relation of the extracted frame features which ViT makes. The input sequence length in the
captioning part is T, the same as the number of keyframes. In this process, the relationship
of keyframes that appears in temporal information of video content is learned from the
captioning encoder. Because the captioning encoder is the same structure as the feature
extraction encoder, the encoder performs the attention operation, similar to the feature
extraction encoder. However, we need additional positional embedding to learn temporal
features. Since our feature extraction model is the ViT that embeds patches about a 1-frame
image and performs the attention operation to spatial information, it only performs spatial
embedding. Therefore, we add a positional embedding to the output of FEG to make the
model learn temporal relationships.
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Next, we stacked all encoder outputs. These stacked encoder layer outputs are as follows:

Es = stacked(El) (9)

where l = 1, . . . , L; L is the number of layers. This stacked feature is used in the captioning decoder.
Captioning Decoder. Zpi is the result of the masked multi-head self-attention of Zi−1.

Z0 is the embedded vector of the target words, where Z0 ∈ RW×dmodel . W is the maximum
length of a sentence. Next, the second MHA on the decoder generates the channel attentive
feature. The formula is:

Zpi = MHA(Zi−1, Zi−1, Zi−1) + Zi−1 (10)

ECAi = MHA(Es, Es, Es) + Es (11)

where i = 1, . . . , L; ECAi , Es ∈ RT×L×dmodel . We named the MHA operation that performs
for Es, Equation (10), as the channel self-attention (CSA). We construct this CSA with the
residual connections, so after MHA is performed, the query vector is summed to the output
vector. Additionally, the attention layer input is normalized by layer normalization before
the attention operates, as mentioned in Equation (4).

Equation (12) is performed to make the attentive features of Zpi for each channel
attentive feature ECAi

l
. When cross multi-head attention is running, ECAi

l
is calculated with

Zpi and made into a new vector. This time, the query vector Zpi is not summed. After it is
finished, each Ei

CAl
is made and stacked once more, and Ei

all is made. In addition, because
the values are accumulated as many times as there are encoder layers, multi-head channel
attention is performed to obtain the attention value with the same size of the query vector
Zpi . On the multi-head channel attention, if each encoder layer is considered one channel,
each channel’s attention score is calculated. The result Zoi reflects each channel as much
as the corresponding score is obtained. Finally, the decoder output Zi is obtained by layer
normalizing and passes through the FFN. By this, the entire cross attention is performed.
The entire mechanisms are defined as:

Ei
CAl

= MHA(Zpi , ECAi
l
, ECAi

l
) (12)

Ei
all = stacked(Ei

CAl
) (13)

Zoi = MHA(Zpi , Ei
all , Ei

all) + Zpi (14)

Zi = FFN(LN(Zoi )) + Zoi (15)

3.3. Universal Structure

We propose a encoder layer attention by channel self-attention. However, the problem
is that each encoder is independent, so each encoder layer outputs come from a different
layer. The self-attention mechanism creates a new value by comparing and scoring how
many results from the same model are related. Therefore, it is pointless to perform self-
attention with layers from each different encoder layer. To overcome this problem, we
adopt the universal transformer structure.

The universal transformer is a weight-shared structure. Each encoder and decoder
layer parameter is weight-shared, meaning the encoder layers’ outputs pass to the next
encoder layer, which has the same parameters. After the L step, where L is the number of
layers, the encoder outputs are stacked and proceed toward the decoder. The universal
structure is defined as:

Ei
L = Universal Encoder Layeri(Ei−1

L ),
Estacked = stacked(Ei

L),
Zl = Universal Decoder Layerl(Estacked, Zl−1),

(16)
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where Ei
L ∈ RT×dmodel and E0

L is the first input of the universal encoder, F. Because all
output comes from the same layer, channel self-attention performs well, so it could be
helpful to find useful features. Moreover, we construct the decoder on a universal network
for parameter balance with the encoder.

We defined this method as the universal encoder attention (UEA) that applies CSA, as
mentioned in the captioning decoder section, to the universal encoder layer outputs.

4. Results
4.1. DataSet

The Microsoft Video Description Corpus (MSVD) [30] is a widely used video cap-
tioning benchmark dataset. It is composed of 1970 videos and multilingual sentences.
On average, each video has 40 English sentences, and we use them all. Following prior
work [31], we split the dataset to 1200/100/670. A total of 1200 videos were used for
training, and 100 sets were used for validation. The remaining videos were used for testing.

Microsoft Research Video to Text (MSR-VTT) [32] comprises 10,000 video clips from
20 categories, such as sports, movies, and music. Each clip is annotated with 20 English
captions made by Amazon Mechanical Turks. Previous works split the dataset into 6513
clips for training and 497 clips for validation, and the others were used for testing. We
followed that division. The average sentence length is 20 words.

4.2. Metrics

To evaluate, we used four metrics, BlEU-4 [33], METEOR [34], ROUGE-L [35], and
CIDEr [36]. The BLEU-4 metric scores the precision of four grams between ground truth
and prediction. METEOR measures the F-score, a penalty function for incorrect words.
Another metric, ROUGE-L, uses the longest common subsequence (LCS) for scoring. The
CIDEr score is obtained by computing cosine similarity to all ground truth sentences and
averaging its score.

4.3. Implementation Details

We uniformly sampled eight keyframes from all videos. All keyframes were resized
to 224 × 224. The full model was trained over eight epochs in one stage via end-to-end
learning, when the captioning model was a universal structure. If the vanilla transformer
structure was adopted, we trained 15 epochs. In addition, the model was learned to
minimize cross-entropy loss. We used the Adam optimizer [37] with a fixed learning rate
of 2× 10−5, and the beam search with a beam size of five. The batch size was eight.

We employed the pre-trained ViT-Base model, which was pre-trained on ImageNet-
21k, as the feature extraction model. The patch size was 16, and other details follow on
ViT [11]. Our captioning model layers were four, and the attention head was eight. A 0.3
dropout ratio was used. dmodel = 768 was the embedding dimension size, which was the
same as the hidden dimension size. We selected the test model from the best performance
on the validation.

4.4. Performance Comparison

To evaluate our method, we compare it with the previous methods. Table 1 shows the
quantitative results on MSR-VTT and MSVD. Additionally, to compare our approach to
using the ViT and only appearance features with other methods, we list the appearance,
motion, and object features with extraction models. Reinforcement learning is not used for
a fair comparison.

In both the MSVD and MSR-VTT datasets, our model obtained a significant improve-
ment on the BLEU-4 score. Specifically, this is a very encouraging performance, considering
that only the appearance feature was used. Moreover, other single-feature models’ results,
such as those of PickNet [14], TVT [27], and RecNet [38], on the MSVD and MSR-VTT
datasets have shown that the CIDEr score is relatively low compared to the BLEU-4 score.
Our modelm however, achieves a higher BLEU-4 score and CIDEr score simultaneously.
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In addition, VRE [39]’s MSRVTT dataset experimental results using audio information
together showed better performance on several metrics than our model, but our model
performed much better in MSVD, an environment without audio information. Further-
more, it obtained a higher CIDEr score than the methods using multi-features such as
MARN [15], OA-BTG [40], POS+VCT [41], and SAAT [16]. Unlike the others, OSRG [24]
adopted MaskTrack-RCNN [42] to extract the bounding box of the object and obtain motion
information of objects. Additionally, the authors used adversarial reinforcement learning
(ARL) to train. By the method, OSRG achieves state-of-the-art performance on four metrics.
Although this method shows very high performance, we do not directly compare it with
our model because it used reinforcement learning and tracking models in the feature extrac-
tion process. In addition, Ref. [43] proposed a new method and achieved state-of-the-art
performance for the best sentences in the video captioning process. However, unlike other
methods, this method uses multiple sentence generation techniques and evaluates model
performance, so we did not make performance comparisons with that model.

Additionally, we compare our models to TVT [27], on which the captioning model is
constructed, to a vanilla transformer and the features extracted by NasNet [44] and I3D [45].
Our base model performance is shown in Table 2. TVT (Base) is similar to our base model,
except for the end-to-end learning and the feature extraction model. It has a higher score
than ours on BLEU-4, but shows less performance on others. TVT (Att) uses motion features
through methods such as channel attention. They pass appearance/motion features between
different encoders and perform cross attention separately, then stacking and fusing them, as
with our channel attention. Although multi-features are used for the captioning structure of
the same vanilla transformer, TVT does not significantly outperform our base model.

Table 1. Comparison performance on MSRVTT/MSVD. Features show the feature extraction models
on each method. B@4, M, R, and C mean the BLEU-4, METEOR, ROUGE-L, and CIDEr metrics.
We assigned the feature extraction network that each model used. IRv2 is InceptionResnetV2 and
MT-RCNN is Masktrack-RCNN.

Method Features MSRVTT MSVD
Appearance Motion Object B@4 M R C B@4 M R C

PickNet [14] ResNet-152 - - 39.4 27.3 59.7 42.3 52.3 33.3 69.6 76.5
RecNet [38] GoogleNet - - 39.1 26.6 59.3 42.7 52.3 34.1 69.8 80.3
SibNet [4] GoogleNet - - 40.9 27.5 60.2 47.5 54.2 34.8 71.7 88.2

TVT(Base) [27] NasNet - - 38.0 27.1 58.8 45.6 52.5 34.4 70.1 75.9
TVT(Att) [27] NasNet I3D - 40.1 27.9 59.6 47.7 53.0 34.7 71.7 80.8
OA-BTG [40] ResNet-200 - MaskRCNN 41.4 28.2 - 46.9 56.9 36.2 - 90.6
MARN [15] ResNet-101 3D-ResNext-101 - 40.4 28.1 60.7 47.1 48.6 35.1 71.9 92.2

VRE [39] ResNet-152 - - 43.2 28.0 62.0 48.3 51.7 34.3 71.9 86.7
POS-VCT [41] IRv2 C3D - 42.3 29.7 62.8 49.1 52.8 36.1 71.8 87.8

SAAT [16] IRv2 C3D FasterRCNN 39.9 27.7 61.2 51 46.5 33.5 69.4 81
STG-KD [1] ResNet-101 3D-ResNext-101 FasterRCNN 40.5 28.3 60.9 47.1 52.2 36.9 73.9 93

ORG-TRL [5] IRv2 C3D FasterRCNN 43.6 28.8 62.1 50.9 54.3 36.4 73.9 95.2
RCG [18] IRv2 C3D - 42.8 29.3 61.7 52.9 - - - -
SGN [17] ResNet-101 3D-ResNext-101 - 40.8 28.3 60.8 49.5 52.8 35.5 72.9 94.3

MGRMP [6] IRv2 3D-ResNext-101 - 41.7 28.9 62.1 51.4 55.8 36.9 74.5 98.5
TTA [46] ResNet-152 C3D - 41.4 27.7 61.1 46.7 51.8 35.5 72.4 87.7

OSRG [24] IRv2 MT-RCNN MT-RCNN 46.5 33.6 65.6 54.3 59.8 38.5 88.2 97.8
Ours ViT-B/16 - - 43.0 27.8 60.9 49.7 56.5 36.4 72.8 92.8
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Table 2. Ablation study with the FEG. On the base model, performance improvement by the FEG is
insignificant.

Method B@4 M R C

Base model 47.8 35.3 71.5 81.5
w FEG 47.5 35.5 70.7 82.5
w UEA 52.6 34.9 71.2 84.1

w FEG, w UEA 56.5 36.4 72.8 92.8

Moreover, our method used few keyframes, relatively. STG-KD [1] uses 10 keyframes,
and RCG [18], SAAT [16], OSRG [24], and ORG-TRL [5] use 28 keyframes. In addition,
MGRMP [6] uses 32 keyframes for extracting the appearance feature. On the other hand,
our model uses eight keyframes. Despite the use of these few keyframes, our model
achieves better performance than some of the above models.

4.5. Ablation Studies

Role of FEG and UEA. We compare our model separately. The experiment results
are shown in Table 2. (1) Base model is the model which consists of two components: ViT
and the vanilla transformer. (2) w FEG, w/o UEA is the model adding the FEG to the base
model. (3) w/o FEG, w UEA is the model without FEG, and which adds UEA. (4) w FEG,
w UEA is our full model, with FEG and UEA to check the effects on each module. It is
shown that the performance improvement is insufficient when the FEG is attached to the
vanilla transformer. However, the model with the FEG definitely obtains higher scores than
the model without the FEG when the FEG is used with the UEA. This is demonstrated by
comparing (3) and (4). That means the FEG is more effective when used with the UEA.

Universal approaches. Additionally, we test the universal captioning model to check
if the effect of UEA is better than other methods. All the models have experimented without
the FEG. Univ-Base is the vanilla universal transformer. Univ-EA means our UEA model.
Table 3 shows the results. The Univ-Base model achieves a high BlEU-4 score. However, it
has a low score on the CIDEr metric, and Univ-Full shows an improvement on the CIDEr
metric over the Univ-Base model. This result means the universal structure makes a model
obtain a high BlEU-4 score, and UEA complements the lack of a CIDEr score.

Table 3. Ablation studies for universal structure.

Method B@4 M R C

Univ-Base 55.0 35.2 71.6 80.8
Univ-EA 52.6 34.9 71.2 84.1

Effect of the number of layers. We explore UEA performance when the number
of encoder layers is different. Table 4 shows the results with two, three, four, five, and
six layers. Note the results when two and four layers are used. This demonstrates that
our approach is fine to generate precise captions. On the other hand, when six layers
are used, the performance is lower than that of using four layers. This shows that when
the layers were too much, some encoder layer outputs could not be found regarding the
meaningful video sequence relationship, and disturbed the model to learn from the other
significant outputs.
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Table 4. Results on the number of layers.

Layers B@4 M R C

Two layers 55.0 35.2 71.6 85.5
Three layers 55.2 36.2 72.8 90.6
Four layers 56.5 36.4 72.8 92.8
Five layers 56.9 36.4 71.7 93.8
Six layers 54.1 36.0 71.8 87.7

When the number of layers is five, it shows the best BLEU-4 score and CIDEr score.
However, because it has a low ROUGE-L score, we chose the four-layer structure in
other experiments. Therefore, all models tested in the ablation study are constructed into
four layers.

Freezing the feature extraction model. Moreover, we tested our model with a weight-
frozen ViT to reveal the effect of end-to-end learning. Therefore, all features were extracted
by the ViT pre-trained on ImageNet-21k. On captioning parts, the base model is composed
of a vanilla transformer, but our model consists of the FEG and the UEA. Table 5 shows the
results on the MSVD dataset.

Comparing Tables 2 and 5, the base model shows a higher CIDEr score when using
weight-frozen ViT compared to end-to-end learning. It shows end-to-end learning does
not improve the captioning performance greatly when using a vanilla transformer. On
the other side, our model performance is higher on all metrics than they are when using
weight-freezed ViT. The results mean our model is more suited for the end-to-end learning
method than the vanilla transformer.

Table 5. Results on the base model and our model. Those two experiment are performed on ViT with
weight freezing.

Method B@4 M R C

Base 47.7 35.1 70.4 86.6
Ours 54.9 36.4 72.7 92.5

Change Feature Extraction Model. We test our model with CNN feature extraction
networks. We adopt ResNet152 [47] for the CNN feature extraction model and our UEA
module for the captioning model. In Table 6, we compare this model with a vanilla
transformer. Even though the appearance feature is only used and the motion feature is
not, UEA makes the model perform better than the Base. This shows that using UEA also
has a positive effect on CNN feature extraction-based video captioning.

Table 6. Ablation studies for UEA. We compare the performance effect of UEA with the CNN feature
extraction model (ResNet152). On experiments, we froze the feature extraction model. The captioning
model was tested on the MSVD dataset. Base means vanilla transformer model.

Model B@4 M R C

ResNet152 + Base 46.53 31.75 66.72 77.30
ResNet152 + UEA 48.34 33.40 68.89 82.49

4.6. Qualitative Analysis

We show qualitative results with our model and the baseline model. This baseline
model means the ViT + vanilla transformer without the FEG and the UEA. “Ours” means
our full model with the FEG and the UEA. Figure 3 shows that the baseline model could
not catch some important words. However, our model catches words such as “running”,
“makeup”, and “bread”. This shows that our approach affects the model performance di-
rectly. Figure 4 shows qualitative results on the MSRVTT dataset.
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Figure 3. Qualitative results of our model and the base model on the MSVD dataset. Each case shows
that our model is better than the base model. This shows that FEG and UEA operate well to generate
an actual sentence.
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Figure 4. Qualitative results on the MSRVTT dataset.
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5. Discussion

In this paper, we have proposed a novel video captioning structure consisting of
a complete transformer with a novel attention method. Particularly, we changed the
backbone CNNs to transformer networks and checked the effect of the model via end-
to-end learning. The feature extraction gate and additional attention methods make the
feature more effective in improving performance. In addition, our model uses only the
appearance feature which is extracted from the image frame. It is encouraging that our
model, which is trained by using only frame information, shows better performance than
the SAAT and STG-KD [1,16] models, which achieve performance scores by using several
kinds of visual features, such as motion and object features extracted from other CNNs.
We will explore the novel method to use multiple kinds of visual features, such as object
features, via a new transformer architecture.
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8. Arnab, A.; Dehghani, M.; Heigold, G.; Sun, C.; Lučić, M.; Schmid, C. Vivit: A video vision transformer. arXiv 2021,
arXiv:2103.15691.

9. Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-end object detection with transformers. In
Proceedings of the European Conference on Computer Vision (ECCV), Online, 23–29 May 2020.

10. Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma, S.; Xu, C.; Xu, C.; Gao, W. Pre-trained image processing transformer. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–24 June 2021.

11. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

https://www.cs.utexas.edu/users/ml/clamp/videoDescription/
https://www.cs.utexas.edu/users/ml/clamp/videoDescription/
https://www.mediafire.com/folder/h14iarbs62e7p/shared
https://www.mediafire.com/folder/h14iarbs62e7p/shared
http://doi.org/10.1109/TPAMI.2019.2940007
http://www.ncbi.nlm.nih.gov/pubmed/32149622


Sensors 2022, 22, 4817 15 of 16

12. Cornia, M.; Stefanini, M.; Baraldi, L.; Cucchiara, R. Meshed-memory transformer for image captioning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 14–19 June 2020.

13. Vig, J.; Belinkov, Y. Analyzing the structure of attention in a transformer language model. arXiv 2019, arXiv:1906.04284.
14. Chen, Y.; Wang, S.; Zhang, W.; Huang, Q. Less is more: Picking informative frames for video captioning. In Proceedings of the

European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018.
15. Pei, W.; Zhang, J.; Wang, X.; Ke, L.; Shen, X.; Tai, Y. Memory-attended recurrent network for video captioning. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019.
16. Zheng, Q.;Wang, C.; Tao, D. Syntax-aware action targeting for video captioning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition(CVPR), Online, 14–19 June 2020.
17. Ryu, H.; Kang, S.; Kang, H.; Yoo, C.D. Semantic Grouping Network for Video Captioning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Online, 2–9 February 2021.
18. Zhang, Z.; Qi, Z.; Yuan, C.; Shan, Y.; Li, B.; Deng, Y.; Hu, W. Open-book Video Captioning with Retrieve-Copy-Generate Network.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Online, 19–24 June 2021.
19. Zhang, P.; Dai, X.; Yang, J.; Xiao, B.; Yuan, L.; Zhang, L.; Gao, J. Multi-scale vision longformer: A new vision transformer for

high-resolution image encoding. arXiv 2021, arXiv:2103.15358.
20. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted

windows. arXiv 2019, arXiv:2103.14030.
21. Bao, H.; Dong, L.; Wei, F. BEiT: BERT Pre-Training of Image Transformers. arXiv 2019, arXiv:2106.08254.
22. Zhang, D.; He, L.; Tu, Z.; Zhang, S.; Han, F.; Yang, B. Learning motion representation for real-time spatio-temporal action

localization. Pattern Recognit. 2020, 103, 107312. [CrossRef]
23. Chang, Y.; Tu, Z.; Xie, W.; Luo, B.; Zhang, S.; Sui, H.; Yuan, J. Video anomaly detection with spatio-temporal dissociation. Pattern

Recognit. 2022, 122, 108213. [CrossRef]
24. Hua, X.; Wang, X.; Rui, T.; Shao, F.; Wang, D. Adversarial Reinforcement Learning with Object-Scene Relational Graph for Video

Captioning. IEEE Trans. Image Process. 2022, 31, 2004–2016 [CrossRef] [PubMed]
25. Hori, C.; Hori, T.; Lee, T.Y.; Zhang, Z.; Harsham, B.; Hershey, J.R.; Marks, T.K.; Sumi, K. Attention-based multimodal fusion

for video description. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Venice, Italy,
22–29 October 2017.

26. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, attend and tell: Neural image caption
generation with visual attention. In Proceedings of the International Conference on Machine Learning (ICML), Lille, France,
6–11 July 2015.

27. Chen, M.; Li, Y.; Zhang, Z.; Huang, S. TVT: Two-view transformer network for video captioning. In Proceedings of The 10th
Asian Conference on Machine Learning, Beijing, China, 14–16 November 2018.

28. Dehghani, M.; Gouws, S.; Vinyals, O.; Uszkoreit, J.; Kaiser, Ł. Universal transformers. arXiv 2018, arXiv:1807.03819.
29. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L. Attention is all you need. In Advances in

Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.,
Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 31.

30. Chen, D.; Dolan, W. Collecting Highly Parallel Data for Paraphrase Evaluation. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics,
Portland, OR, USA, 19–24 June 2011; pp. 190–200.

31. Venugopalan, S.; Rohrbach, M.; Donahue, J.; Mooney, R.; Darrell, T.; Saenko, K. Sequence to sequence-video to text. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015.

32. Xu, J.; Mei, T.; Yao, T.; Rui, Y. Msr-vtt: A large video description dataset for bridging video and language. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

33. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W. Bleu: A method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002.

34. Lavie, A.; Agarwal, A. METEOR: An Automatic Metric for MT Evaluation with High Levels of Correlation with Human
Judgments. In Proceedings of the Second Workshop on Statistical Machine Translation, Prague, Czech Republic, 23 June 2007;
Association for Computational Linguistics: Prague, Czech Republic, 2007; pp. 228–231.

35. Lin, C.Y. Rouge: A package for automatic evaluation of summaries. In Text Summarization Branches Out; Association for
Computational Linguistics: Barcelona, Spain, 2004; pp. 74–81.

36. Vedantam, R.; Zitnick, C.L.; Parikh, D. CIDEr: Consensus-based image description evaluation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4566–4575.

37. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2017, arXiv:1412.6980.
38. Wang, B.; Ma, L.; Zhang, W.; Liu, W. Reconstruction network for video captioning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018.
39. Shi, X.; Cai, J.; Joty, S.R.; Gu, J. Watch It Twice: Video Captioning with a Refocused Video Encoder. In Proceedings of the 27th

ACM International Conference on Multimedia, New York, NY, USA, 21–25 October 2019.
40. Zhang, J.; Peng, Y. Object-aware aggregation with bidirectional temporal graph for video captioning. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019.

http://dx.doi.org/10.1016/j.patcog.2020.107312
http://dx.doi.org/10.1016/j.patcog.2021.108213
http://dx.doi.org/10.1109/TIP.2022.3148868
http://www.ncbi.nlm.nih.gov/pubmed/35139018


Sensors 2022, 22, 4817 16 of 16

41. Hou, J.; Wu, X.; Zhao, W.; Luo, J.; Jia, Y. Joint syntax representation learning and visual cue translation for video captioning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 29 October–1 November 2019.

42. Yang, L.; Fan, Y.; Xu, N. Video Instance Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, Seoul, Korea, 27 October–2 November 2019.

43. Nabati, M.; Behrad, A. Multi-Sentence Video Captioning using Content-oriented Beam Searching and Multi-stage Refining
Algorithm. Inf. Process. Manag. 2020, 57, 102302. [CrossRef]

44. Qin, X.; Wang, Z. Nasnet: A Neuron Attention Stage-by-Stage Net for Single Image Deraining. arXiv 2019, arXiv:1912.03151.
45. Carreira, J.; Zisserman, A. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 22–25 July 2017.
46. Tu, Y.; Zhou, C.; Guo, J.; Gao, S.; Yu, Z. Enhancing the Alignment between Target Words and Corresponding Frames for Video

Captioning. Pattern Recognit. 2021, 111, 107702. [CrossRef]
47. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2018.

http://dx.doi.org/10.1016/j.ipm.2020.102302
http://dx.doi.org/10.1016/j.patcog.2020.107702

	Introduction
	Related Work
	Video Captioning
	Vision Transformer
	Handling Temporal Feature
	End-to-End Learning
	Universal Transformer

	Materials and Methods
	Feature Extraction Model
	Captioning Model
	Universal Structure

	Results
	DataSet
	Metrics
	Implementation Details
	Performance Comparison
	Ablation Studies
	Qualitative Analysis

	Discussion
	References

