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1. Introduction

A highly elongated tokamak is desirable in order to increase 
plasma pressure and energy confinement, as verified in many 
experiments [1] and numerical simulations [2]. In the design 
of ITER, the expected confinement time τE was estimated 
by using experimentally derived empirical scaling relations. 
These relations, plus the well-known Troyon MHD beta limit, 
show a strong dependence on the elongation parameter κ (i.e. 
τ κ∝E

0.7 [3] and β κ∝ +1 2( ) [4]). The maximum value for 
the elongation is likely limited by axisymmetric (n  =  0) MHD 
resistive wall modes, which drive the vertical instability in the 
initial phase of the perturbation away from the equilibrium. 

As the vertical displacement becomes severe, finite toroidal 
modes (n  =  1, n  =  2, …) may take over [5] and determine the 
evolution of the plasma during the disruption, which is often 
called a vertical displacement event (VDE), and has been 
studied in many tokamaks [6–10]. Since we are interested in 
configurations which avoid VDEs altogether (with the help of 
feedback stabilization), we focus on the n  =  0 mode in our 
work.

There have been many numerical investigations of the 
n  =  0 MHD stability using different models (e.g. plasma 
surrounded by a perfectly conducting wall [11–13] or by a 
resistive wall [14–17]). However, these studies do typically 
not include the impact of the feedback system. In contrast, we 
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Abstract
A highly elongated plasma is desirable in order to increase plasma pressure and energy 
confinement to maximize fusion power output. However, there is a limit to the maximum 
achievable elongation which is set by vertical instabilities driven by the n  =  0 MHD mode. 
This limit can be increased by optimizing several parameters characterizing the plasma 
and the wall. The purpose of our study is to explore how and to what extent this can be 
done. Specifically, we extend many earlier calculations of the n  =  0 mode and numerically 
determine scaling relations for the maximum elongation as a function of dimensionless 
parameters describing (1) the plasma profile (βp and li), (2) the plasma shape (ε and δ), (3) 
the wall radius (b/a) and (4) most importantly the feedback system capability parameter 
γτw. These numerical calculations rely on a new formulation of n  =  0 MHD theory we 
recently developed (Freidberg et al 2015 J. Plasma Phys. 81 515810607, Lee et al 2015 J. 
Plasma Phys. 81 515810608) that reduces the 2D stability problem into a 1D problem. This 
method includes all the physics of the ideal MHD axisymmetric instability while reducing 
the computation time significantly, so that many parameters can be explored during the 
optimization process. The scaling relations we present include the effects of the optimal 
triangularity and the finite aspect ratio on the maximum elongation, and can be useful for 
determining optimized plasma shapes in current experiments and future tokamak designs.

Keywords: tokamak equilibrium, MHD resistive wall mode, vertical elongation

(Some figures may appear in colour only in the online journal)

J. Lee et al

An analytic scaling relation for the maximum tokamak elongation against n  =  0 MHD resistive wall modes

Printed in the UK

066051

NUFUAU

© 2017 IAEA, Vienna

57

Nucl. Fusion

NF

10.1088/1741-4326/aa6877

Paper

6

Nuclear Fusion

IOP

International Atomic Energy Agency

2017

1741-4326

1741-4326/17/066051+9$33.00

https://doi.org/10.1088/1741-4326/aa6877Nucl. Fusion 57 (2017) 066051 (9pp)

mailto:jungpyo@psfc.mit.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/aa6877&domain=pdf&date_stamp=2017-05-10
publisher-id
doi
https://doi.org/10.1088/1741-4326/aa6877


J. Lee et al

2

have recently derived a variational formulation for the mar-
ginal linear stability of the n  =  0 mode which includes the 
presence of a thin resistive wall and which naturally integrates 
the effect of a realistic vertical instability control system 
through the introduction of a feedback parameter γτw [17]. 
Along with this new formulation, we have developed a new 
numerical method [18] to efficiently compute the instability 
threshold. An important aspect of our numerical formulation 
is that it reduces the 2D stability problem to an equivalent 1D 
problem, which makes it computationally inexpensive, and 
allows us to explore multi-dimensional parameter space by 
running thousands of simulations, in order to obtain, through 
numerical curve fitting, useful analytic scaling relations. The 
main purpose of this article is to present these new scaling 
laws, which can be useful to optimize the plasma performance 
in existing tokamaks, and to design new machines.

A key additional feature of the present calculations as 
compared to our previous study [18], making our scaling 
relations more widely applicable, is the generalization of 
the plasma equilibrium pressure and current profiles. In [17, 
18], the plasma profiles were restricted to the simple class of 
‘Solov’ev profiles’ [19], which have the advantage of leading 
to MHD equilibria with explicit analytic representations, but 
have the caveat that they correspond to pressure and current 
profiles that are relatively flat radially as compared to typical 
experimental profiles. Specifically, the Solov’ev profiles have 
an internal inductance of about �l 0.4i , which is considerably 
smaller than the typical experimentally measured profiles 
characterized by li  >  0.7. In order to compute equilibria for 
arbitrary plasma profiles, we use the Grad-Shafranov solver 
ECOM [20]. We also rely on ECOM to calculate, for each 
poloidal Fourier mode, the perturbed poloidal magnetic flux ψ 
associated with the axisymmetric perturbation, as well as its 
normal derivative ψ⋅ ∇n . We remind the reader that following 
the notation introduced in [17], ξψ = ⋅ ∇Ψ⊥  where ξ⊥ is the 
perpendicular displacement vector, and Ψ is the equilibrium 
poloidal flux, which satisfies the equilibrium Grad-Shafranov 
equation. The knowledge of the two quantities ψ and ψ⋅ ∇n  at 
the plasma boundary is precisely what is required to apply our 
general formulation [18] and solve the equation δ =W 0. If p 
is the number of poloidal Fourier modes used to decompose 
the perturbed flux ψ, the computational cost is about p times 
larger than the corresponding cost for Solov’ev equilibria 
[18]. Even if so, our stability formulation still only requires 
solving two 1D problems at the two radial interfaces (plasma-
vacuum and vacuum-wall), which is much more efficient than 
solving the full 2D stability problem directly.

As described in [18], our methodology is the following. We 
first look for a set of parameters which satisfy the marginal sta-
bility condition δ =W 0 including the feedback control param-
eter γτw. Using this set of parameters, the maximum elongation 
κ can be determined numerically in terms of the other param-
eters. In our studies, the maximum elongation is determined as 
a function of the following six critical dimensionless param-

eters: (1) beta poloidal ( ∫β µ= φp I Rr4 dp V 0
2

0/( )), (2) internal 

inductance ( ∫ µ= φl B I Rr2 di V p
2

0
2 2

0/( )), (3) inverse aspect ratio 

(ε), (4) triangularity (δ), (5) the ratio of wall radius to the 

plasma radius (b/a) and (6) the feedback system performance 
parameter γτw. Here, the parameters (κ, δ, and ε) determining 
the shape of the plasma are as defined in [14]. For simplicity, 
we change the distance from the wall to the plasma simply 
by adjusting the parameter ∆o defined by = +∆b a 1 o/ ( ). In 
other words, we fix the shape of the wall relative to the shape 
of the plasma boundary by setting ∆ = ∆ = ∆1 3o i v( / ) , where 
∆o, ∆i and ∆v are the outer, inner, and top gap between the 
plasma and the wall normalized by the minor radius a, respec-
tively. This simple assumption is in agreement with the plasma 
and wall geometry of most existing tokamak experiments. 
Note that in our model, ∆o determines the relation between 
the elongation and the triangularity of the plasma boundary 
and the elongation and the triangularity of the wall boundary: 
κ κ= + ∆ +∆3 1w o o( )( ) and δ δ= +∆1w o( ).

The structure of the article is as follows. In section 2, we 
describe how we use the equilibrium code ECOM to gener-
alize our stability formulation [17, 18] to physically relevant 
equilibrium pressure and current profiles. The fitting model of 
κ β δ γτl b a, , , , ,p i w( / )ε  based on our large number of simula-
tions is presented in sections  3 and 4, which highlight two 
important effects on the maximum elongation: the depend-
ence on the optimal triangularity and the dependence on the 
aspect ratio. We summarize our results in section 5, and high-
light some remarkable features of the scaling laws.

2. Implementation for arbitrary profiles

In order to apply our formulation of the n  =  0 MHD stability 
problem [17, 18] to arbitrary pressure and current profiles, 
we need to calculate the relation between ψ and ψ⋅ ∇n  at the 
plasma boundary, which we call ∂Ωp, for these profiles. This 
relation is obtained by solving the neighboring equilibrium 
equation,

⎛
⎝
⎜

⎞
⎠
⎟ψ µ ψ∆ = −

Ψ
+

Ψ
ΩR

p Fd

d

1

2

d

d
in .p0

2
2

2

2 2

2
   � (1)

where R is the radial coordinate in the φR Z, ,( ) coordinate 
system associated with the tokamak geometry, p is the plasma 
pressure, and Ψ = φF RB( )  where φB  is the toroidal magnetic 
field. In order to solve (1), we first need to compute the Grad-
Shafranov equation determining the equilibrium flux Ψ, with 
Ψp( ) and ΨF( ) given profiles, and the boundary condition 
Ψ = 0 on ∂Ωp:

� µ∆Ψ = −
Ψ
−

Ψ
R

p Fd

d

1

2

d

d
.0

2
2

 (2)

We solve equation (2) with the axisymmetric equilibrium 
code ECOM [20]. Once Ψ is known on the computational grid, 
so is the term in parenthesis in equation (1). We can therefore 
also solve the linear Grad-Shafranov equation (1) numerically 
using ECOM. The boundary conditions on ψ are specified as 
follows.

The numerical formulation of the problem we presented in 
[18] relies on a Fourier series decomposition of the restriction 
of ψ and ψ⋅ ∇n  to ∂Ωp in terms of the poloidal arc-length 
variable l:

Nucl. Fusion 57 (2017) 066051
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∑ψ = ∂Ω
=

R

R
a nlsin in ,

n

p

n p
0 1

( )    (3)

∑ψ⋅ ∇ = ∂Ω
=

R

R
b mln sin in ,

m

p

m p
0 1

( )    (4)

where l is the poloidal arc-length normalized to the range in 
π0, 2[ ] and p is the number of poloidal modes. The relation 

between ψ and ψ⋅ ∇n  then takes the form of the response 
matrix T, whose component Tm,n is defined by

∑=
=

b T a .m
n

p

m n n
1

, (5)

In the stability formulation presented in [18], which applies 
to Solov’ev profiles, we could derive an analytic expression for 
the response matrix, which took the form +−B I A11 1 11( ) ( ). To 
generalize the formulation for arbitrary profiles, one replaces 
that analytic matrix with numerically obtained response 
matrix T.

Each row of the matrix T can be evaluated numerically by 
solving equation (1) with the nlsin( ) as the boundary condi-
tion on ψ at ∂Ωp, and by using the solution to this equation to 
numerically evaluate ψ⋅ ∇ ln n( ) ( ) on ∂Ωp. Using the inverse 
Fourier series, one can find

∫π ψ= ⋅ ∇
π

T l
R

R
mln

1
d sin .m n n,

0

2
0( ) ( ) (6)

In ECOM, the Grad-Shafranov equation  is reexpressed 
as a nonlinear Poisson problem, which is solved iteratively. 
Solving the equilibrium Grad-Shafranov equation for Ψ and 
equation  (1) for ψ typically takes fewer than 10 iterations 
each. We call that number niter. Because we need to solve 
equation (2) once and equation (1) p times, the total cost to 
compute the response matrix T is + ΩO p n t1 iter(( ) ), where niter 
is the number of iterations for the convergence of the solver, 
and Ωt  is the time for each ECOM Poisson solve in Ωp. We 
calculate the coefficients of the response matrix via the Fast 
Fourier Transform, making the computational cost of this part 
of the stability calculation negligible.

In the next sections, we use the numerical formulation pre-
sented in this section  to calculate the maximum elongation 

for several pressure and current profiles, corresponding to var-
ious li and βp. Specifically, we consider the class of pressure 
profiles, µ Ψ = − − Ψp pd d 1 1 p p

0 0
in out/ ¯ ( ( ¯ ) ) , and F profiles, 

Ψ = − − ΨF F1 2 d d 1 1 f f2
0 in out( / )( / ¯ ) ( ( ¯ ) ) , available in ECOM, 

where Ψ̄ is the poloidal flux normalized to the interval [0,1]. 
In the present work, we keep The outer exponents =p 1.0out  
and =f 1.0out  fixed for simplicity, and adjust the inner expo-
nents pin and fin to have the intended profile shape for li, and 
the ratio p F0 0/  to obtain the desired βp.

Note that as compared to our previous study [18], we also 
have to recalculate the feedback parameter γτw for the more 
realistic pressure and current profiles considered here. The 
results are given in Appendix A. The feedback parameter γτw 
which was previously deduced [18] was obtained based on the 
assumption of Solov’ev profiles. These profiles correspond to 
a low value of inductance, ∼l 0.4i , as compared to the typi-
cally observed values, ∼l 0.8i . The table given in Appendix A 
uses experimentally relevant li and βp.

3. The optimum triangularity

It has been shown in [18] for low li profiles that the maximum 
elongation can be increased by optimizing triangularity and 
the value of the optimal triangularity increases as the inverse 
aspect ratio ε increases. Figure 1 shows that the situation is 
more complicated for general profiles, and that the depend-
ence of the elongation on the triangularity is a sensitive func-
tion of the value of li and of βp. In this section, we determine 
a scaling law for the optimal triangularity, and use this scaling 
law as well as numerical simulations to examine the condi-
tions for the existence of an optimal triangularity.

3.1. Model scaling laws

In the absence of a more educated guess, we model the 
depend ence of κ on δ by a quadratic form:

κ κ κ δ δ= − −δ .opt opt
2( ) (7)

The quadratic form chosen here can be viewed as the lowest 
order Taylor expansion of κ around the optimal point δopt, and 
is empirically justified by the curves κ δ( ) we show in figure 1. 
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Figure 1. Maximum elongation versus triangularity for various (a) internal inductance and (b) poloidal beta.
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In (7) the optimal triangularity δopt, the coefficient κδ as well 
as κopt depend strongly on ε, li, βp, ∆o, and γτw. Intuitively, 
the existence of an optimal triangularity can be viewed as the 
result of competing effects between the pressure driven term 
and the line bending term in δW , which are sensitive to the 
plasma profiles. From our simulation results we have found 
that a good fit to the numerical data for the triangularity coef-
ficients is given by

δ δ β

κ κ β

=

=

α α α

δ
β β β

l

l

,

,

i p

i p

opt
1 2 3

1 2 3

ˆ

ˆ

ε

ε
 

(8)

where α1, α2, β1, and β2 are constants, ( )α β γτ ∆ =l , , ,i p w o3   
α α α β α γτ α+ + + + +∆l 1i p w o4 5 6 7 8( ) ( ) and ( )β β γτ ∆ =l , , ,i p w o3   
β β γτ β β β β β γτ β∆ = + + + + +∆l l, , , 1i p w o i p w o3 4 5 6 7 8( ) ( ) ( ). Note  
the complicated dependence of the ε exponent on the plasma 
parameters.

3.2. Fitting results

We calculate the numerical coefficients in the scaling law 
for the optimal triangularity by relying solely on our simula-
tion data, in which the existence of an optimal triangularity is 
observed in the range δ<0 0.8⩽ . Taking the log of the factors 
in equation (8) and using least squares fitting, we obtain the 
following best fit:

δ β= β γτ− − − − + +∆l2.30 ,i p
l

opt
1.27 0.01 1.21 0.76 1.22 0.001 1.21 1i p w o( ( ) ( ))ε

 (9)

where the standard deviation of the fit is σ = 0.09. As shown 
in figure 2(a), the difference between the scaling law and the 
numerical results is small for low to moderate δ, and relatively 
high for high triangularity, i.e. δ > 0.5opt . Mathematically, this 
can be explained by the fact that the curves corresponding to 
high optimal triangularity are flatter in the neighborhood of 
the optimum than the curves corresponding to low optimal 
triangularity, as can be seen in figure 1. Physically, this is the 
signature of a complex interplay between the role of trian-
gularity and the other relevant parameters in the n  =  0 linear 
MHD physics. Finally, some of the observed inaccuracy of 
the scaling law for large δopt is likely also due to the fact that 

ECOM is less accurate when the triangularity is relatively 
high.

The scaling law for the sensitivity coefficient κδ is rather 
complicated. For a wide range of parameters, we calculate κδ 
by computing κ at δ δ= − 0.2opt , δ δ= opt and δ δ= + 0.2opt . 
A least squares fit of the resulting data set then yields

κ β=δ β γτ− + − + − +∆l0.27 .i p
l2.88 0.10 0.45 0.24 0.23 0.19 0.75 1i p w o( ( ) ( ))ε

 (10)
We see in figure 2(b) that the fit has a large standard devia-

tion, which we calculate to be σ = 0.31. This suggests that the 
simple quadratic model in equation (7) is in fact too simple to 
obtain an accurate fit. Even if so, κδ as given by equation (10) 
is a good indicator of the sensitivity of κ on δ. The formula 
in particular shows a robust tendency for κδ to decrease as li 
increases. This can be explained as follows: as li increases, the 
plasma current density is more concentrated in the core, and 
the effect of surface triangularity on the n  =  0 MHD mode is 
effectively reduced.

3.3. Condition for the existence of an optimal triangularity

We have found that optimal triangularity generally increases 
as ε, li or βp increases. This is very likely due to the fact 
that the Shafranov shift increases when either of these 
three parameters increases. Note that the ε exponent in the 
scaling law in equation (9) is approximately proportional to 
the theoretical value of Shafranov shift in the low ε limit: 

β β− − ∼− +l l1.22 0.76 1.22 0.5p i p i( )). This means that the 
optimal triangularity at the wall boundary needs to increase 
along with the Shafranov shift to stabilize the n  =  0 mode 
effectively. Because the Shafranov shift moves the core 
towards the low field side, the effective triangularity averaged 
over the total plasma volume increases due to the shift. The 
shift of the core increases with ε, li or βp.

Figure 3(a) shows a contour plot of the optimal triangu-
larity as a function of βp and li obtained by running a large 
number of simulations, with a fixed = 0.3ε . Figure 3(b) shows 
the equivalent figure as obtained from the scaling law for δopt 
in equation  (9). The two contour plots are reasonably well 
matched. Figure 3(b) shows that sufficiently large values of li 
or βp lead to a critically large value of δopt. When this occurs 

2.30l
i
^(1.27)β

p
^(-0.01) ^(1.21-0.76l

i
-1.22β

p
-0.001γτ+1.21(1+∆

o
))
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data

Figure 2. Fitting of (a) δopt (b) κδ using the simulation results in which an optimal triangularity exists.
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(i.e. δ > =sin 1.0 0.84opt ( ) ), the well-known Miller cross sec-
tion  [21] used in our simulations breaks down in the sense 
that the plasma shape is no longer convex and assumes a bean 
shape instead, which is not relevant for current tokamaks, and 
unlikely for future tokamaks [22]. In practice, it is therefore 
reasonable to limit triangularity to δ 0.7⩽ . Hence, we say that 
if the optimal triangularity δopt according to equation  (9) is 
comparable to or larger than the value 0.7, there is no optimal 
triangularity. In that case, the maximum achievable elongation 
is obtained by maximizing the triangularity. The white region 
in the upper half corner of figure 3(a) corresponds to a region 
in βp-li space in which no optimal triangularity was found 
numerically in the range δ0 0.7opt⩽ ⩽ . The white region in the 
lower half corner of figure 3(a) for the small βp and li is not 
simulated because this parameters are not relevant for current 
tokamaks. As a rule of thumb, the optimal triangularity tends 
to exceed 0.7 if l 0.9i ⩾  or β 1.4p ⩾  for = 0.3ε , γτ = 1.5w  and 
∆ = 0.1o .

4. Dependence on the aspect ratio

The dependence of the maximum elongation on the aspect 
ratio ε has been investigated previously [11]. We found in our 
simulations that this dependence is far more complicated than 
what the results from previous work would indicate. This is 
because of the dependence of the effective triangularity on the 
aspect ratio, as discussed in section  3. At very large aspect 
ratio, the optimal triangularity is very low, in which case we 
recover previous results, as we will show. However, the situa-
tion is more subtle at finite ε, when δ effects come in. This is 
the central point of this section.

Let us start with the situation corresponding to very large 
aspect ratio. Figure  4 shows the simulation results of the 
maximum elongation for a large aspect ratio ( = 0.01ε ) device 
in terms of the internal inductance for various values of the 
triangularity. For such a large aspect ratio, �δ 0.0opt , and for 
this optimal triangularity (corresponding to the black curve), 
the maximum elongation increases as li decreases, as found 

in previous studies [11], because lower li means a smaller 
effective plasma-wall distance. However, as the triangularity 
increases away from the optimal triangularity, the maximum 
elongation is reduced, and the reduction is particularly signifi-
cant at low li when the effective distance between the plasma 
and the wall is small. We will return to the large aspect ratio 
case in section 4.2, where we give an explicit dependence for 
the elongation on the physical parameters at very low ε.

We determine below separate scaling laws for four dif-
ferent values of triangularity (δ = 0.0, δ = 0.33. δ = 0.5, and 
δ = 0.7). We do not include the dependence on triangularity 
in the scaling laws for two reasons. First, as we have seen 
with the relatively high variance associated with the scaling 
law for κδ in equations (7) and (10), it is challenging to con-
struct scaling laws in terms of δ which are robust over a wide 
range of δ values. Moreover, as we have shown in figure 4, 
the maximum elongation changes significantly as the tri-
angularity deviates from δopt, and the optimal triangularity 
depends sensitively on several parameters as shown in Eq (9). 
Second, the scaling law for the maximum elongation at the 
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optimal triangularity may not be directly useful to the fusion 
community because the triangularity in many experiments or 
tokamak designs is not only determined by the optimal trian-
gularity with respect to the n  =  0 instability but also by other 
constraints and performance goals, such as the locations of the 
coils, turbulent transport, and other MHD instabilities [18]. 
As a result, most machines have a moderate triangularity (e.g. 
δ = 0.33 for ITER), while the optimal triangularity regarding 
the n  =  0 mode is likely to be too large (δ> 0.7) for typical 
experimental values of the parameters li, βp, and ε.

4.1. Model scaling laws

Our numerical results show that the maximum elongation can 
be accurately modeled by a simple form,

⎛
⎝
⎜

⎞
⎠
⎟κ κ κ= +

+
2

1
,0 1 2

2ε
ε

 (11)

where the quantities κ0 and κ1 depend on γτw, li, ∆0, and βp 
through the fitting formulae in equations (12) and (13), but do 
not depend on ε. In the next two paragraphs, we give physical 
explanations for the good fit between the simple form given 
by equation  (11) and our numerical results, many of which 
confirm results obtained in previous studies [15, 23].

Consider first the coefficient κ0 which represents the max-
imum elongation in the limit of large aspect ratio. This coef-
ficient is due to the effects of the finite distance between the 
plasma and the wall, which are independent of the magnitude 
of the aspect ratio [15]. In the limit in which the wall is at 
infinity, the optimal shape approaches a circle corresponding 
to δ 0opt →  and κ = 10 . Mathematically, the wall can be moved 
to infinity in several ways: ∆ ∞o → , ∞li → , and γτ 0w → . For 
finite values of these parameters and a fixed triangularity, a 
good fit to the numerical simulations is obtained by assuming 
that κ0 scales as

κ κ
γτ

= +
+∆

ν

ν νl
1.0

1
.w

i o
0 0

1

2 3
ˆ ( )

( ) (12)

where κ0ˆ , ν1, ν2, and ν3 are scalar constants which will be 
computed through a fitting procedure and given in section 4.2. 
Note that the dependence of κ0 on βp is very weak and can be 
ignored with a minimal loss in accuracy.

The aspect ratio dependence of the maximum elongation 
is determined by the coefficient κ1 and the functional depend-
ence on ε assumed in equation (11). Observe that as 0→ε , the 
maximum elongation is proportional to 2ε  as expected from 
calculations of the natural elongation of a tokamak in  
equations  (33) of [15] and (87) of [23]. Also, as 1→ε , the 
maximum elongation saturates. The rate of saturation depends 
on the parameters li and βp, as shown in figure  5. A large 
Shafranov shift for a high li or βp results in the increase of 
the effective triangularity of the plasma and a reduction of the 
maximum elongation because of the large difference between 
the optimal triangularity and the given triangularity. That 
being said, we will ignore for simplicity the dependence of 
the rate of saturation on li or βp, and fix the saturation rate in 
our model scaling law equation (11) by setting κ =d d 0/ ε  at 

= 1ε . As we will show, this simplifying assumption leads to a 
reasonably accurate model.

Our numerical simulations show that an accurate scaling 
law for κ1 can be written as

κ κ β γτ= +∆µ µ µ µl 1 .i p w o1 1
1 2 3 4ˆ ( ) ( ) (13)

where κ1̂, µ1, µ2, µ3, and µ4 are scalar constants which will be 
computed through a fitting procedure and given in section 4.3.

4.2. Fitting of κ0

As shown in figure 6 for the case δ = 0.0, the coefficients in 
the scaling relation for κ0 in equation (12) are calculated by 
fitting the simulation results of κ at = 0.01ε . For the four dif-
ferent values of the triangularity, the results are

κ γτ δ

κ γτ δ

κ γτ δ

κ γτ δ

= + +∆ =

= + +∆ =

= + +∆ =

= + +∆ =

− −

− −

− −

−

l

l

l

l

1.0 0.54 1 for 0.0,

1.0 0.54 1 for 0.33,

1.0 0.55 1 for 0.50,

1.0 0.63 1 for 0.70,

i w o

i w o

i w o

i w o

0
0.68 0.62 3.52

0
0.47 0.71 4.00

0
0.08 0.82 4.74

0
1.20 1.14 6.67

( ) ( )    
( ) ( )    
( ) ( )    

( ) ( )    
 (14)
where the standard deviation of the fitting is quite low 
(σ = 0.003, 0.006, 0.01, and 0.04 for δ = 0.0, 0.33, 0.5, and 
0.7, respectively). The observed li dependence in figure  4 
is reflected in the increasing exponent of li for larger values 
of the triangularity. Additionally, the absolute values of the 
exponents of γτw and +∆1 o( ) increase as the triangularity 
increases. We observe that the dependence of the maximum 
elongation on the wall and feedback system becomes strong 
for larger values of the triangularity.

4.3. Fitting of κ1

The coefficient for the ε dependence, κ1 in equation (13), can 
be estimated from the difference between κ = 0.01( )ε  and 
κ = 0.6( )ε , where = 0.6ε  is the maximum value we consid-
ered here, as we experienced difficulties with our numerical 
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Figure 5. κ versus ε for various li and βp, with δ = 0.33, γτ = 1.5w  
and ∆ = 0.1o  fixed.
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code for higher values of ε and high triangularity. For various 
values of the triangularity, κ1 is given by

κ β γτ δ

κ β γτ δ

κ β γτ δ

κ β γτ δ

= +∆ =

= +∆ =

= +∆ =

= +∆ =

− − −

− − −

− −

− −

l

l

l

l

0.04 1 for 0.00,

0.35 1 for 0.33,

0.41 1 for 0.50,

0.52 1 for 0.70,

i p w o

i p w o

i p w o

i p w o

1
6.98 2.67 1.47 1.84

1
1.42 0.04 0.27 0.42

1
1.21 0.06 0.18 0.68

1
2.00 0.17 0.50 2.32

( ) ( )    

( ) ( )    

( ) ( )    

( ) ( )    
 (15)
where the standard deviation of the fitting is reasonably low 
(σ = 0.01, 0.01, 0.03, and 0.06 for δ = 0.0, 0.33, 0.5, and 0.7, 
respectively).

Using scaling laws for κ0 and κ1 in equation  (14) and  
equation (15), the simple scaling law for κ in equation (11) leads to 
a good fit for all simulation results for parameters ε, li, βp, ∆o, and 
γτw varied over a wide range. Figures 7–10 illustrate this remarkably 
good agreement, with standard deviations σ = 0.02, 0.05, 0.08, 
and 0.14 for δ = 0.0, 0.33, 0.5, and 0.7, respectively.
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Figure 6. Fitting of κ0 using κ at = 0.01ε  and δ = 0.0.
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5. Discussion

We applied a new and fast numerical scheme to a recently 
developed variational formulation [17, 18] to compute the 
maximum achievable elongation in tokamaks in the presence 
of a resistive wall and a feedback stabilization system. The 
speed of our numerical solver allowed us to explore a wide 
range of parameter space, and derive analytic scaling laws for 
the maximum elongation. These scaling laws can be used for 
new reactor designs and for improving the performance of 
existing tokamak experiments. Our main results are as follows:

 (1) The maximum elongation is optimized when the triangu-
larity of the wall is well matched by the effective plasma 
triangularity averaged over the total plasma volume 
to stabilize the n  =  0 mode effectively. The effective 
plasma triangularity increases with the Shafranov shift. 
Accordingly, as ε, βp or li increases, the Shafranov shift 
increases and δopt increases, as reflected in the scaling 
law for the optimal triangularity at the wall and plasma 
boundaries in equation (9).

 (2) The sensitivity of κ on δ is reduced by increasing li, as 
shown by the decrease of κδ in equation (10) and figure 4.

 (3) Equations (14) and (15) show that the dependence of κ0 
and κ1 on the other physical parameters varies depending 
on the magnitude of the triangularity. Larger values for 
the triangularity typically result in smaller κ0 and larger 
κ1, i.e. a larger ε dependence.
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Appendix. Estimation of γτw with moderate li and βp

In table A1, we recalculate the feedback parameter γτw in [18] 
with the realistic values of the internal inductance ∼l 0.8i  and 
the poloidal beta β ∼ 1.0p  for several tokamaks.
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