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Abstract: Sentence-level relation extraction (RE) has a highly imbalanced data distribution that about
80% of data are labeled as negative, i.e., no relation; and there exist minority classes (MC) among
positive labels; furthermore, some of MC instances have an incorrect label. Due to those challenges,
i.e., label noise and low source availability, most of the models fail to learn MC and get zero or very
low F1 scores on MCs. Previous studies, however, have rather focused on micro F1 scores and MCs
have not been addressed adequately. To tackle high mis-classification errors for MCs, we introduce
(1) a minority class attention module (MCAM), and (2) effective augmentation methods specialized in
RE. MCAM calculates the confidence scores on MC instances to select reliable ones for augmentation,
and aggregates MCs information in the process of training a model. Our experiments show that
our methods achieve a state-of-the-art F1 scores on TACRED as well as enhancing minority class F1
score dramatically.

Keywords: relation extraction; minority class; data augmentation

1. Introduction

Relation extraction (RE) is the task of identifying the semantic relation between two or
more entities. For example, given the sentence “Sam[Entity1] was born in 1596[Entity2]”,
the target relation-type (class) between the entities would be person:date of birth.

In TACRED [1] that is a widely used supervised RE dataset, we found that some
classes suffer from (1) label noise that refers to the errors in labels [2] and (2) low source
availability as shown in Table 1, and let denote those classes as minority classes, MCs.
Due to those problems, several neural network models failed to learn MCs and got zero
or very low F1 scores on MCs. For example, our experimental results showed that the
average F1 test scores on MCs of C-GCN [3], KnowBERT [4], and LUKE [5] were 0%, 0%,
14.3%, respectively; the experimental results of [6] also confirmed the poor performance of
52 neural network models on MCs (details are provided in Appendix E).

Although there have been many studies that dealt with label noise or low source
availability, few studies have been done to directly address MCs in RE.

As for label noise, first, manually annotated RE datasets, such as Semeval-2010-Task-
8 [7], ACE 2005 (https://catalog.ldc.upenn.edu/LDC2006T06 (accessed on 25 June 2022)),
and the FewRel Dataset [8], have been regarded as relatively clean, and the studies on
these datasets have rarely considered the noise problem in their approach. However, a few
researchers recently referred to the label noise problem in TACRED. Table 2 shows the
samples of training dataset under label noise. Alt et al. [6] confirmed that the TACRED
dev and test datasets were also corrupted; hence, they corrected the noisy instances and
analyzed the error cases. Moreover, Stoica et al. [9] re-categorized relations in TACRED
and re-annotated labels. Although those studies highlighted out the label noise problem,
they focused on the dataset itself and did not deal with the learning with the noise label.
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Table 1. Top seven classes in TACRED training dataset ordered by the level of label noise in de-
scending order (a) and those ordered by the number of correct instances in ascending order (b). per
and org are the abbreviation of person and organization, Noise denotes the the level of label noise
for each class which is calculated by # wrong label

# instances , and Correct denotes the number of correct labels
for each class. Noisy labels, i.e., wrong labels are determined by the refined annotation [9]. Four
classes marked in bold font suffer both of noise label and low source availability regime, i.e., MC. MC
instances are totally 227 out of 68,124 training instances (0.33%) and the positive class which has most
instances, 2443, is person:title (3.6%).

(a)

Class Noise

per:country_of_death 83.3%
per:countries_of_residence 80.7%

org:shareholders 73.7%
per:other_family 68.7%
org:member_of 66.4%

per:cities_of_residence 65.8%
org:dissolved 65.2%

(b)

Class Correct

per:country_of_death 1
org:dissolved 8

per:country_of_birth 15
org:shareholders 20

per:stateorprovince_of_birth 29
per:stateorprovince_of_death 33

org:member_of 41

Table 2. Examples of traininig dataset from TACRED. The relation between [Entity1] and [Entity2] is
annotated as shown in the TACRED label column.

Sentence TACRED Label Correct?

Kaiser’s parents had emigrated in 1905 from
Ukraine, then part of Russia[Entity2], where
his[Entity1] four oldest siblings were born.

per:country of death No

The president told ABC radio[Entity1]’s Sunday
Profile program that violence in his country since
its independence five years ago[Entity2] has been

because the nation has had to begin from
scratch. . .

org:dissolved No

It[Entity1] was disbanded in 2003[Entity2]. org:dissolved Yes

In contrast, distant supervision for RE (DS-RE) inherently has suffered from the label
noise problem and numerous studies have been conducted to solve it. Most of the existing
studies mainly adopted multi-instance learning and focused on alleviating bag-level noise
using sentence-level attention [10–13] or used extra information for entities [14,15]. How-
ever, no unified validation dataset for DS-RE has been proposed. Most researchers have
used held-out evaluation and depended on human evaluation, which involves manually
checking the subset of test instances. To tackle this problem, Gao et al. [16] published
the manually annotated test set for NYT10 [17] and Wiki20 by using Wiki80 [8] that is a
widely used DS-RE dataset. The study confirmed that previous models on NYT10 failed in
MC prediction.

Next, as for low source availability, the imbalanced distribution is a widely acknowl-
edged problem in RE task [18–20]. Negative instances, i.e., no relation, far exceed other
instances. Moreover, even among the positive instances, the amount of clean MC instances
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is minimal and not sufficient for training a model. For example, the class with the most
instances, i.e., person:title in TACRED accounts for only 3.6% of the entire training dataset
and MC is much smaller, as shown in Table 1. Some studies have tackled the label sparsity
in RE by adopting data augmentation [21–23]. However, Xu et al. [21] simply reversed
the dependency path of the head and tail entities to prevent overfitting. Eyal et al. [23]
validated the efficacy of their approaches on a subset of the dataset under certain scenarios.
Papanikolaou et al. [22] focused on the data generation itself and required exhaustively
finetuning separate models on each class. As for data augmentation, several studies have
proposed masked language modeling (MLM) based data generation [24,25] for text classifi-
cation. However, they do not apply to RE because they cannot guarantee the class-invariant
between entities, and most labels of RE are corrupted.

In this paper, we tackle the MC problem in RE and introduced (1) a minority class
attention module (MCAM) with the class-specific reference sentence (Ref), and (2) the
augmentation methods particularized to RE. We applied our methods to TACRED.

The Ref is a description that narrates the definition of the keywords in the MC relation-
type. Take, relation type organization and dissolved, for example, the Ref of it is constructed by
using the definition of origanization and dissolve. We adopted only one Ref for the targeted
MC, which differs from previous studies that unselectively used external knowledge for
entire classes. The vector of Ref can be seen as an MC label representation. For MCAM, it is
used for identifying clean instances of corresponding MC and to construct the vector that
represents MCs information. In detail, MCAM calculates the reliability score by comparing
the input sentence of an MC instance and its corresponding Ref, where Refs are considered
as criteria for distinguishing clean instances of each MC. Based on this score, reliable
samples are selected for augmentation, and additionally, the vector of MC information is
constructed. Our experiments show that the proposed methods achieved a state-of-the-art
(SOTA) F1 score on TACRED, as well as dramatically enhanced MC F1 scores.

In brief, the main contributions of this study are as follows:

• We propose MCAM that identifies noisy instances and improves MC prediction by
constructing the vectors that represent the MCs information.

• We propose simple yet effective data generation methods particularized to RE that
coordinate with MCAM and minimize the risk of relation-type change.

• Experimental results demonstrate the efficacy of the proposed approaches that enhance
the overall model performance and MC prediction and is robust to spurious association.

2. Related Work

Distant Supervision (DS [26]) inherently has a label noise problem, and numerous ap-
proaches have been proposed to tackle it. DS involves automatic data labeling based on the
assumption that if two entities in the knowledge bases (KBs) are related, the relation may
hold in all sentences where these entities are found. Although DS is an effective method for
generating abundant training instances by using openly available KBs (e.g., Yago, Freebase,
DBpedia, Wikidata), the training instances inevitably contain significant label noise. To
alleviate the label noise problem, Riedel et al. [17] and Hoffmann et al. [27] relaxed the as-
sumption and used the multi-instance learning (MIL) [28] framework which was originally
proposed to solve the task with ambiguous samples. For example, Riedel et al. [17] used
the expressed-at-least-once assumption; it assume that at least one sentence exists where the
predefined relation between the entities holds among the sentences mentioning the same
entity pair. Moreover, under MIL, sentences mentioning the same entities were merged
into a bag for each triple (relation, entity1, entity2).

Based on MIL, several researchers for DS-RE have focused on reducing the bag-level
noise mainly by using an attention mechanism [10–13]. For example, Lin et al. [10] used
sentence-level attention and assigned a different weight for each sentence in the same bag,
and aggregated the informative representation of the sentences for the bag representation.
Yuan et al. [12] used the sentence-level attention, captured the correlation among the
relations, and integrated the relevant sentence bags into a super-bag to minimize bag-
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level noise. In addition to the attention mechanism, some studies used extra knowledge
from KBs to enrich the entity and label representation to clarify the relation between
entities [14,15]. For example, Ji et al. [14] used entity descriptions for the entity embedding,
and Hu et al. [15] used entity descriptions for label embedding and a bag representation
robust to noisy instances. However, in real-world settings, entities are infinite and the
descriptions in KBs are limited; hence, they are rarely applicable. Moreover, a model
depending on the entity information is prone to use the so-called shallow heuristic methods
(i.e., leveraging spurious association); consequently, it is likely to fail generalization on
challenging samples [29,30]. In contrast, our approaches use Refs as criteria for determining
clean MC instances, which are separate from noisy instances; and adopt only one Ref for
each MC relation-type that is independent of the potentially infinite entity. Moreover, this
study differs from previous studies in that we selectively used external knowledge for the
targeted classes only.

Regarding alleviating imbalance distribution and solving low source availability, very
few studies have applied data augmentation to RE. The reason is probably the difficulty
of relation-type invariance. Papanikolaou et al. [22] fine-tuned GPT-2 on each relation-
type and generated augmentation dataset, which is not applicable to the RE task with
many relation-types. Xu et al. [21] augmented the dataset by changing the order of the
dependency path of the head and tail entities. However, the study mainly focused on
preventing overfitting and not on handling imbalanced distribution. As for generating
synthetic data, several studies proposed MLM based approaches [24,25]. Nevertheless,
they did not consider the label noise and not guarantee the relation-type invariant. Unlike
previous studies, we introduce a method for generating synthetic data particularized to
RE tasks that are not exhaustive and independent of label corruption by considering the
bi-directional transformer-based architecture with the target entities unchanged, i.e., pre-
serving a relation-type.

3. Problem Setup
3.1. Task Formulation

Given a sentence Si = {t1, t2, . . . , tj} where tj is the j-th token in the sentence Si,
the goal of RE is to predict the relation-type in a predefined label set Y between [Entity1]
(e1) and [Entity2] (e2); our goal is to improve MC recognition. LetM = {ci}n

i=1 denotes
MC set where ci ∈ Y is one of the MCs.

3.2. Input Sentence Representation

As for Si, special tokens (<s>, </s>) were added at the beginning and end of the
sentence; two selected tokens (@, #) were used as entity indicators and added at the
beginning and end of the entities [31,32]. Encoder of the pretrained model is used to get
contextualized representation vectors as follows:

Encoder(Si) = [HSi
t1

, . . . , HSi
tj
], (1)

where HSi
tj
∈ Rd is the representation vector of token tj in the sentence Si and d is the

embedding dimension of Encoder. The representation vector of sentence Si for the task is
obtained by aggregating the representation vectors of the first token of each entity indicator:

VSi
main = ReLU(Wq[H

Si
@ ; HSi

# ]), (2)

where VSi
main denotes the representation vector of Si, [;] indicates concatenation and

Wq ∈ Rd×2d. We utilize attention mechanism [33]; VSi
main is used as a query vector for

calculating the reliability score as shown in Equations (4) and (8).
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3.3. Reference Sentence Representation

We used relation-type descriptions as Refs D = {Dc1 , . . . , Dcn | ci ∈ M} for each MC
relation-type ci to set the criteria for determining clean MC instances. ci can have only one
Ref Dci that is composed of relation-type ci’s keywords and their definitions. The word
definitions were obtained from Wiktionary (https://www.wiktionary.org (accessed on
25 June 2022)) and Wordnet (https://wordnet.princeton.edu (accessed on 25 June 2022)),
which are both open-source and publicly available.

We selected the best matching definition; however, in case a definition was too short or
inadequately described the relation-type, we concatenated more than one definition with a
comma (,). The entire Refs we used are provided in Appendix D.

The representation vector of Dci is the contextualized embedding vector of special
token (<s>) in Dci :

Encoder(Dci ) = [H
Dci
t1

, . . . , H
Dci
tj

], (3)

where t1 = <s> and, accordingly, H
Dci
<s> is the representation vector of Dci , i.e., label

representation of ci.

4. Methods

In this section, we describe the proposed approach in detail. Figure 1 shows the overall
architecture of the model. Our approaches involve three steps: (1) training the model with
MCAM and attention guidance (Section 4.1), (2) filtering noisy labels and selecting the
reliable instances of MC for augmentation according to the reliability score (Section 4.2),
and (3) additionally training model with selective MC augmentation (Section 4.4).

Figure 1. Overall architecture of our model: (left) aggregation of the main vector and the weighted
sum of the value vectors and (right) incorporating MCs information into the value vector of corre-
sponding MC. Following [31,32], special tokens (@, #) are used as entity indicators and added at
before and after [Entity1] and [Entity2] tokens, respectively. We also trained a model to predict MC
using its value vector alone and induced the model to align MC and its Ref vector. The representation

vectors of Refs is denoted as HD = [H
Dc1
<s>, . . . , HDcn

<s>].

4.1. MCAM and Classification

As shown in Figure 1, MCAM refers to operating a series of processes related to MC
mainly by using the attention mechanism: (1) calculating the attention score over Refs, and
(2) constructing a vector of MCs information. Here we describe how MCAM works.

4.1.1. Attention Mechanism

We adopted an attention mechanism to identify noisy data and, moreover, provide a
model with the vector of MCs information utilizing the concept of query, keys, and values:
Query (q) corresponds to the representation vector of sentence Si; and keys (K) and values

https://www.wiktionary.org
https://wordnet.princeton.edu
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(V) correspond to projections of the representation vector of Refs D. They can be expressed
as follows:

q = VSi
main (4)

K = [Kc1 , . . . , Kcn ],

= [Wk H
Dc1
<s>, . . . , Wk HDcn

<s>],
(5)

V = [Vc1 , . . . , Vcn ],

= [Wv H
Dc1
<s>, . . . , Wv HDcn

<s>],
(6)

where Wk ∈ Rd×d, Wv ∈ Rd×d, and Kci and Vci is a key and value vector of Dci respectively.
The representation vector of aggregated MCs information, VMC, can be seen as the

vector of MCs information, which is formulated as

VMC = ∑
ci∈M

αci ·Vci , (7)

where αci is the attention score of the input sentence over Dci :

αci = 〈q, Kci 〉/
√

d. (8)

As for αci , Softmax is not applied because it reduces the attention weights into prob-
abilities and limits the expressibility of the vectors to which the attention weights are
applied [34]. Since αci is obtained by comparing the representation vector of an input
sentence and a reference sentence, i.e., label representation, we used |αci | as a reliability
score on instances of ci to determine the noisy data in the process of selective augmentation
(Section 4.2).

4.1.2. Classification

The model output vector O is obtained by adding MCs information to query q
as follows:

O = q + g ·VMC, (9)

where g ∈ (−1, 1) denotes gate unit that regulates the flow of MC information:

g = tanh(Wg · q), (10)

where Wg ∈ R1×d.
Given Si and D, to compute the probability on each relation-type, the projection of the

output vector is fed into a softmax layer as shown below:

P(r|Si, D; θ) = Softmaxr(WoO), (11)

where P(r| · ; θ) is the prediction probability on relation-type r ∈ Y of a model which is
parameterized by θ, Wo ∈ RL×d and L is the total number of relation-types. Accordingly,
given N samples, cross entropy loss function Lcl f can be formulated as:

Lcl f = −
N

∑
i=1

log P(yi|Si, D; θ), (12)

where yi is an annotated label on Si.
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4.1.3. Attention Guidance

Attention guidance is to make a model that connects the Ref and its corresponding
MC. Without explicit guidance, it is hard for a model to match the plain text, Ref, to the
corresponding MC. To solve this problem, we trained the classifier to predict each MC
using the corresponding Ref alone (i.e., without input sentence) through the following loss
function Lre f , which enables us to directly incorporate MC ci label information into Vci

as follows:

Lre f = − ∑
ci∈M

log P(ci|Dci ; θ), (13)

P(ci|Dci ; θ) = Softmaxci (WoVci ). (14)

As shown in Equation (14), it differs from Equation (11) in that Equation (14) does not
use Si and the entire Refs D, but instead uses only one Ref, Dci . An illustrative example is
provided in Appendix C.

4.1.4. Self Attention Guidance

In addition to attention guidance, we utilized self attention guidance to obtain more
accurate attention scores which are used to determine the noisy data.

It is inspired by the study of [35] that uses this method to minimize the prediction score
of the ground truth class after a pixel-level segmentation mask is applied to the specific area
that obtains a higher attention score than a predefined threshold. This approach encourages
the model to learn that the masked area is important for predicting the corresponding class
and extracting more complete attention maps. We modified this method and adapted it to
our model when the instance belongs toM.

The processes are as follows: (1) given y = k (k ∈ M), flipping the sign of attention
weight on V in Equation (6) and calculating the output vector:

O′ = q + g · ∑
ci∈M

(−αci ) ·Vci , (15)

and (2) minimize the corresponding prediction score which is denoted as L f lip as given below:

L f lip = Softmaxk(WoO′). (16)

Therefore, our objective function is L = Lcl f + Lre f + L f lip.

4.2. Selective Data Augmentation

As illustrated in Figure 2, we selected the reliable instances of MCs according to the
following procedure: (1) arranging the MC instances in descending order according to the
reliability score on the corresponding Ref, (2) selecting the higher m% instances, i.e., reliable
instances, (3) generating synthetic data and re-calculating reliability scores on them, and
(4) taking a subset of the synthetic data into a training dataset based on those scores.
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Figure 2. Workflow for the selective augmentation of MC.

In step (4), the size of the augmentation is a hyper-parameter and illustrative experi-
ments are provided in Section 6.2. In step (2), regarding m% we determined it by estimating
the level of valid annotation on relation-type ck. Let denote it as ρck and, then, 1− ρck

represents the level of label noise. ρck is derived by calculating the number of instances
aligning with the corresponding Ref Dck :

ρck =
∑i∈N(ck)

1[argmaxcj∈M |αcj(Si)|]
|N(ck)|

, (17)

where N(ck) is the index set of ck instances, |αcj(Si)| is the absolute value of attention score
of sentence Si over Dcj , and 1[·] is the indicator function that is equal to 1 when given
yi = ck the value inside the function is ck or 0 otherwise. We averaged ρck of each MC (i.e.,

1
|M| ∑ck∈M ρck ) to determine the size of reliable instance per MC.

4.3. Generating Synthetic Data

Regarding the step (3) in Section 4.2, we designed a method for generating synthetic
data particularized to RE that preserves the relation-type between entities, i.e., label-
invariant augmentation. We utilized MLM and conducted following the steps: (1) finetun-
ing pretrained model on a training dataset with MLM task, (2) after completing finetuning,
incrementally masking a token with the special token, [MASK], from the beginning to the
end of the target sentence except for entity tokens, (3) inferencing the masked token with
the finetuned model, (4) replacing it by using top-k random sampling strategy [36], and (5) re-
peatedly implementing step (2) to (4) and generating K′ synthetic data per reliable instance
(we set K′ as 300).

This approach can introduce data diversity, minimize the risk of relation-type change
and is independent of label noise, because the model learns the token distribution around
the target entities in the process of finetuning that is irrelevant to relation-type and
bidirectional-attention models, such as BERT, can exploit preserved target entities to pre-
dict the masked token. The pseudo-code for generating synthetic data is provided in
Algorithm 1.
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Algorithm 1 Pseudo Code for Generating Augmentation Candidates
Data: The dataset Tclean consisting of selected and reliable MC instances
Parameter: Learned masked language model parameters θ̂
Initialize: An augmentation set Taug ← {}

for Si ∈ Tclean do
count← 0
while count ≤ K′ do

S′i ← Copy(Si)
for tj ∈ Si do

if j /∈ EntitySpan then
S′i ← Replace(S′i , tj, [MASK])

t̂j← TopKSampling(argmaxt̂jPr(t̂ji; θ̂))

S′i ← Replace(S′i , [MASK], t̂j)
else

Continue
end if

end for
Taug ← Taug ∪ S′i
count← count + 1

end while
end for

4.4. Additional Training with MC Augmentation

To improve the model performance on predicting MCs, we trained the model with more
epochs with the augmented dataset and adapted two additional training strategies [37,38]:
(1) freezing the backbone model parameters to preserve the information learned from
the main training process, and (2) selectively training the instances on which the model’s
prediction probability is lower than the predefined threshold to prevent overfitting (details
are provided in Appendix A). Additionally, label smoothing regularization [39] (LSR) was
applied throughout the additional training process to mitigate the effect of label noise and
for the calibration [40,41] of which the parameter ε was set as the averaged the level of label
noise calculated from Equation (17). Thus the objective function for the additional training is
L′ = LSR(Lcl f ; ε) + LSR(Lre f ; ε) + L f lip where LSR(·; ε) is LSR operation parameterized
by ε.

5. Experiments

In the following sections, we evaluate the proposed methods. Our code is publicly
available at https://github.com/henry-paik/EnhancingREMC (accessed on 25 June 2022).

5.1. Dataset and Baselines

We trained our models on the training dataset of TACRED [1] for which statistics
is provided in Table 3. Experiments were performed on the test dataset of TACRED and
two extended TACRED datasets [6,29]. Alt et al. [6] corrected wrong labels and published
a revised version of TACRED dev and test datasets. This dataset is denoted as revised
TACRED (Rev-TACRED). Rosenman et al. [29] consists of challenging and adversarial
samples designed to verify the robustness of models to the so-called shallow heuristic methods,
e.g., highly dependent on the existence of specific words or entity types in the sentence
while not understanding the actual relation between entities. This is denoted as challenging
RE (CRE).

We compared our model with the following models: (1) C-GCN [3], (2) LUKE [5],
(3) SpanBERT [42], (4) KnowBERT [4], (5) RoBERTa-large [43], and (6) RE-marker [32].

https://github.com/henry-paik/EnhancingREMC
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Table 3. Training dataset statistics. We list the number of relations (# Rel), MC instances (# MC),
and no relation instances (# N/A) with the percentage.

Datasets # Rel # MC (%) # N/A (%) # Total

TACRED 42 227 (0.33) 55,112 (81) 68,124

5.2. Metrics

In addition to using a micro F1 score (F1), we used a macro F1 score (Ma. F1) that
is the average of the per-class F1 scores. Unlike F1, Ma. F1 is insensitive to the majority
classes. For Rev-TACRED, we additionally adopted MC F1 and a weighted MC F1 score
(W. MC F1). MC F1 is calculated on four MCs while other relation-types are neglected to
calculate the model performance on MCs alone. W. MC F1 is an instance-wise weighted
micro F1 score on the MC instances to measure the model performance on difficult samples
among MCs, where the weight, from 0 to 1, is assigned to each instance according to the
difficulty calculated by the seed models from [6]. Details are provided in Table A4.

We also adopted positive accuracy (Acc+) and negative accuracy (Acc−) on CRE
that [29] developed for measuring the robustness against leveraging spurious association.
Let’s take the following two sentences, for example:

• S1: Ed[e1] was born in 1561[e2], the son of John, a carpenter, and his wife Mary.
• S2: Ed was born in 1561[e2], the son of John[e1], a carpenter, and his wife Mary.

If a model depends on leveraging spurious association, even though it can correctly
classify S1 as person:date of birth, it is very likely to predict that the relation still holds in S2,
which is incorrect. Acc- is calculated on the adversarial instance (S2) where the relation
does not hold anymore. Thus, a high Acc- value suggests that a model is robust to the
so-called heuristic methods, understanding the actual relation between entities.

5.3. Implementation Details

In this experiment, we built our model, RE-MC, by equipping RoBERTa-large with
MCAM; trained it with nine settings of data augmentation varying scale factor N and
minimum proportion S of the token replacements to the entire tokens. We set N = {2, 4, 8}
by which the original size of MC (227) was multiplied, i.e., total augmentation size would
be 454, 908, and 1816, respectively, which are evenly distributed to each MC; S was set as
S = {0.1, 0.2, 0.3}, which is a constraint on MLM with the pretrained model that should be
satisfied. Empirical analysis of N and S is provided in Section 6.2.

We trained RE-MC on three different random seeds, and selected one of them that
yielded the median F1 on Rev-TACRED dev. In the following sections, we report the
results of the model trained on that seed. As for generating synthetic dataset, we finetuned
RoBERTa-base on the TACRED training dataset for 100 epochs. Other settings are provided
in Appendix B.

As described in Table 1, the targeted MCs for our methods to improve are as follows:
per:country of death (c1), org:member of (c2), org:dissolved (c3), and org:shareholders (c4).

5.4. Results

Table 4 presents the test results on TACRED and Rev-TACRED. The results show the
SOTA performance on the overall metrics, not only for MC, which is meaningful results in
that our methods are robust to be biased either toward MCs nor majority classes. Compared
with RE-marker our model is based on, we can see that MCAM and selective augmentation
improved the overall model performance (F1 75.4% and 84.8% on TACRED and Rev-
TACRED respectively), which indicates that our approaches can be applied to other base
models to reinforce MC prediction, i.e., model-agnotic in that we simply added MCAM
and selective augmentation to RE-marker to build our model. Subsequently, regarding
W. MC F1 RE-MC outperforms the other models by a large margin of at least ∆26.9%,
demonstrating the efficacy of our approaches to dealing with MC. RE-MC (N = 8, S = 0.1),
especially, can be the most effective settings for dealing with MC (49.1% and 71.4% on MC
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F1 and W. MC F1), even though it might be a relatively limited increase in the overall F1
compared to other settings.

Table 4. The test scores on TACRED and Rev-TACRED. Results with * are from [6].

Data Model F1 Ma. F1 MC F1 W. MC F1

TACRED

C-GCN 67.3 49.5 17.4 -
SpanBERT * 70.8 56.1 19.2 -
KnowBERT * 71.5 57.6 12.5 -

LUKE 72.7 58.9 3.8 -
RE-marker 74.5 62 12.2 -

RE-MC (N = 2, S = 0.1) 75.1 62.1 24.1 -
RE-MC (N = 4, S = 0.3) 75.4 63.4 27.6 -
RE-MC (N = 8, S = 0.1) 74.6 62.5 26.9 -

Rev-TACRED

C-GCN 74.8 55.5 0 0
SpanBERT * 78 63.7 21.4 16.6
KnowBERT * 79.3 63.4 0 0

LUKE 81.5 67 14.3 11
RE-marker 82.9 70.8 24 24.9

RE-MC (N = 2, S = 0.1) 84.8 71.8 47.1 53.3
RE-MC (N = 4, S = 0.3) 84.7 72 44 51.8
RE-MC (N = 8, S = 0.1) 83.3 70 49.1 71.4

Furthermore, as shown in Table 5, the proposed approach is robust to heuristic meth-
ods, i.e., rarely leveraging spurious association, indicating that our augmentation strategy
is good for token perturbation and relation-type invariants.

Table 5. The test scores on CRE. A model with a higher Acc− score, and a smaller gap (Diff.) between
Acc+ and Acc− is considered more robust to heuristic methods, i.e., spurious association. Results
with † are from [29].

Model Acc Acc+ Acc− Diff.

SpanBERT † 63.5 89.7 42.5 47.2
KnowBERT † 72.4 84.2 62.9 21.3

LUKE 80.8 87.3 75.5 11.8
RE-marker 78.6 87.5 71.4 16.1

RE-MC(N = 2, S = 0.1) 80.2 84.8 76.6 8.2

5.5. Significance Test

For MC scores, we conducted a significance test because the number of MC instances
in TACRED-Rev test set was small, 18 (c1: 10, c2: 4, c3: 1, c4: 3). To increase the quantity
of MC instances, we additionally took the refined annotation from [9] after manually
inspecting the annotations. Finally, the significance test was conducted using total 33 MC
instances (c1: 14, c2: 4, c3: 4, c4: 11). We did bootstrapping 100,000 times, for each size of 33,
and calculated MC F1.

The results of significance test between RE-MC (N = 2, S = 0.1) (bootstrapping mean is
42.3) and two main competitive models, i.e., LUKE and RE-Marker (bootstrapping means
are both 21.1), show that the difference is significant at 90% confidence level as shown in
Table 6 and Figure 3. Table 6 shows the lower and upper bound of 90% confidence interval
and Figure 3 shows the distribution of bootstrapping results of the difference between MC
F1 scores of ours and RE-marker and LUKE, respectively.
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Table 6. 90% confidence interval of the differences between MC F1 scores of models. L.B., U.B. and M
denotes the lower bound, upper bound and median value, respectively.

L.B. U.B. M

Ours—LUKE 0 42.9 21.2
Ours—RE-Marker 0 41.9 21.2

(a) Ours vs LUKE (b) Ours vs RE-marker

Figure 3. Distribution of the bootstrapping results. We calculated the difference between MC F1
scores of ours and LUKE (a) and RE-marker (b), respectively. X-axis represents the difference between
MC F1 scores and Y-axis represents the frequency. The value of lower bound and upper bound (solid
line), and median (dotted line) under 90% confidence level is marked in the figures.

6. Analysis
6.1. Ablation Study

Table 7 shows the efficacy of our methods, such as selective augmentation, additional
training, and LSR; removal of each component causes the significant performance deteriora-
tion on MC prediction. As for selective augmentation, it leads to significant improvements
in MC prediction (MC F1 9.1 → 47.1), which indicates that it is the critical component
for MC prediction. The removal of additional training shows the deterioration of the MC
prediction performance (MC F1 9.1→ 0). We can also see that LSR contributes to improving
MC prediction (MC F1 27.6→ 47.1).

Table 7. Performance comparison for ablation study. w/o Aug denotes the removal of augmentation;
w/o Add denotes the removal of additional training; and w/o LSR denotes removal of LSR when
additional training.

Model F1 Ma. F1 MC F1

RE-MC (N = 2, S = 0.1) 84.8 71.8 47.1

w/o Aug 84.6 70.9 9.1
w/o Aug w/o Add 83.3 68 0

w/o LSR 84.2 70 27.6

6.2. Augmentation Size and Token Replacements

To analyze the effects of the augmentation size and token replacements, we set nine
different MC augmentation datasets by varying the scale factor N = {2, 4, 8} and the
minimum proportion of token replacements S = {0.1, 0.2, 0.3} where the actual average
proportion was 0.21, 0.28, and 0.35, respectively. Figure 4 shows the results of the average
scores of 30 models for each setting, which were the top ten models from three different
random seeds, respectively, based on Rev-TACRED dev F1. Following the experimental
results in Figure 4, we reported the scores of the optimal parameter-combination in Table 4
(i.e., N = 2, S = 0.1; N = 4, S = 0.3; and N = 8, S = 0.1).
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Figure 4. Augmentation settings and F1 scores on Rev-TACRED test and dev datasets. Y-axis is F1;
X-axis is scale factor N; legend S is the proportion of the token replacements; and MC boot. F1 in plot
(3, 2) denotes the bootstrap mean of MC F1 score.

As shown in plot (1, 1), the entire augmentation settings are effective, and the values
are consistently higher than those of other base models shown in Table 4 (minimum F1
in plot (1, 1) is greater than 84%). For MCs, in plot (3, 1) and (3, 2), we can clearly see
that MC prediction performance increases dramatically as N becomes larger, especially
when S = 0.3. For example, given S = 0.3, the maximum differences are yielded between
the case of N = 2 and N = 8 in plot (3, 1), ∆13%, and (3, 2), ∆10.2%. It indicates that a
low MC F1 is attributed to the low source availability, and our augmentation approach
functions properly.

Regarding F1 and Ma. F1 in plots (1, 1) and (2, 1), the trends are contrary to each
other: the former decreases and the latter increases as N becomes larger. However, owing
to greater improvements in MC as shown in plot (3, 1), the drops on F1 are offset by
the rapid increase in Ma. F1, which is evident when comparing the slopes in plots (1, 1)
and (2, 1).
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7. Conclusions

This study demonstrated that MC prediction in TACRED under label noise and low
source regimes could be improved by using MCAM with Refs and selective augmentation.
The experimental results showed that the proposed methods significantly improved the
overall performance and MC prediction. Moreover, these methods are also robust to
heuristic methods. While our approaches proved efficacy in dealing with MC for RE, we
should further extend the usage of MCAM architecture to other tasks where MC problems
prevail but text Ref is not available. Our future work includes finding an appropriate proxy
of Ref and strategies to embed MCs information for other tasks.
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Appendix A. Additional Training

Xie et al. [38] introduced Training Signal Annealing (TSA) and gradually increased the
schedule of confidence threshold ηt at every step t. We modified the schedule and adapted
it to our additional trainining as shown in Figure A1.

Figure A1. Exponential schedule. We introduce maximum ηmax and minimum ηmin threshold, run
maximum 6 epochs and set the epoch E as 4 where schedule reach ηmax. Empirically, exponential
schedule is suitable for the model, in particular, which is suffering from learning MCs pattern. We set
ηt = min((1− exp(− t

T × 5))× (ηmax − ηmin) + ηmin, ηmax), where T is the product of the total steps
per epoch and E.

Appendix B. Experimental Settings

Training and experiments are conducted on a Ubuntu20.04 server with Intel (R) Core
(TM) i9-10980XE CPU and GeForce RTX 3090 GPU. For TACRED, we used RoBERTa-
large [43] as a backbone model, used learning rate 5 × 10 −6 and batch size of 4 for
initial training, and batch size of 4 and learning rate 5 × 10 −6 for additional training. The
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checkpoint of backbone model was obtained from https://huggingface.co/roberta-large
(accessed on 25 June 2022), the number of parameters is 355M, and that of ours is 357M.

The hyper parameter settings for RE-MC (N = 2, S = 0.1) are as shown in Table A1 where
the parameter of label smoothing was determined by using Equation (17) but statistical
approaches to ratio estimation [44] or noise estimation [45] also can be used. The number
of augmentation dataset are provided in Table A2 and MCs distribution is provided in
Table A3.

We searched hyperparameters as follows:

• learning rate: 1 × 10 −5, 5 × 10 −6, 1 × 10 −6;
• batch size: 2, 4, 6.

Table A1. Hyper parameters. CE denotes Lcl f and AG denotes Lre f .

Name Value

Maximum word length 512
Mini batch size 4
Learning rate 5 × 10 −6

Optimizer AdamW
Warmup steps the first 10% of steps of the first epoch
Weight decay 1 × 10 −4

Initial training epochs 5
Additional training epochs 6

Label smoothing ε1 (CE) 0.3
Label smoothing ε2 (AG) 0.3

Table A2. Selected model implementation details for TACRED.

(N = 2, S = 0.1) (N = 4, S = 0.3) (N = 8, S = 0.1)

# Aug. 429 901 1814

c1 114 228 454
c2 106 212 462
c3 99 231 442
c4 110 230 456

# Total 68,424 68,896 69,789

Table A3. MCs distribution. Train and Test is that of TACRED and R- indicates Revised TACRED.
Aug. indicates augmentation which of values was added to the original training dataset for our final
model (RE-MC).

Train Test R-Test R-Dev

per:country of death 6 9 10 47
org:member of 122 18 4 7
org:dissolved 23 2 1 1

org:shareholders 76 13 3 35

Appendix C. Attention Guidance

Figure A2 shows that the model assign a high reliability score to the intended reference
vector of each MC. The instance with a blue-colored cell on the corresponding value vector
of reference sentence is likely to be an error in the label with higher probability, i.e., an
incorrect annotation.

https://huggingface.co/roberta-large
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Figure A2. Heatmaps of the absolute attention scores for each MC instance in TACRED training
dataset over value vectors of reference sentences. The Y-axis represents an instance, the X-axis
represents a reference sentence, and the value is the reliability score. The expected heat map of the
ideal dataset and MCAM is showing a high value (almost purple) on the i-th column of the i-th figure
where the scores of the ci instances are plotted.

Appendix D. Reference Sentence

We provide reference sentences for TACRED as follows:

• org:member_of: ‘the relation is “organization and member of”. organization: a group
of people or other legal entities with an explicit purpose and written rules. member:
one who officially belongs to a group, a part of a whole, one of the persons who
compose a social group (especially individuals who have joined and participate in a
group organization). of: having a partitive effect, introduces the whole for which is
indicated only the specified part or segment, from among, indicates a given part.’

• org:dissolved: ‘the relation is “organization and dissolved”. organization: a group of
people or other legal entities with an explicit purpose and written rules. dissolve: stop
functioning or cohering as a unit, to terminate a union of multiple members actively,
as by disbanding, to destroy, make disappear.’

• per:country_of_death: ‘the relation is “person and country of death”. person: an
individual, usually a human being. country: the territory of a nation, especially an
independent nation state or formerly independent nation, a political entity asserting
ultimate authority over a geographical area, a sovereign state, a politically organized
body of people under a single government. death: the cessation of life and all associ-
ated processes, the end of an organism’s existence as an entity independent from its
environment and its return to an inert, nonliving state, the event of dying or departure
from life’.

• org:shareholders: ‘the relation is “organization and shareholders”. organization: a
group of people or other legal entities with an explicit purpose and written rules.
shareholder: one who owns shares of stock in a corporation, someone who holds
shares of stock in a corporation.’

Appendix E. Model Performance on MCs

Alt et al. [6] tested 52 RE models on Rev-TACRED test; we used the experimental
results to calculate the average number of models that correctly predict for each class(

# Correct Prediction
# RE Models

)
. For example, regarding org:dissolved, on average 0.5 RE models cor-

rectly do classification on the instances belong to org:dissolved. As shown in Table A4,
models generally failed predict MCs.

As for the metric W. MC F1, instance-wise weight of difficulty is calculated by the
same experimental source that Table A4 is based on. For example, the instance below
belongs to per:country_of_death but none of 52 models correctly predicted, and hence the
weight of this instance is one (i.e., 52/52):
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• They say [. . . ] [Entity1] died late Saturday [. . . ] in southern Finland [Entity2] , while [. . . ]

where we omitted the name and unimportant tokens.

Table A4. The average number of models that correctly predict for each class.

Relation Type Average Number of Models

per:country_of_death 0
org:member_of 0.1
org:dissolved 0.5

org:shareholders 1.3
per:country_of_birth 1.4

org:members 1.7
per:alternate_names 2.5

per:other_family 4.7
org:parents 10.6

per:stateorprovince_of_death 12.1
org:subsidiaries 13.5

per:city_of_death 14.9
per:cause_of_death 16.3

org:founded_by 17.8
per:date_of_death 18.3
per:city_of_birth 19.6

org:country_of_headquarters 20.3
per:children 20.4

org:political/religious_affiliation 21
per:parents 21.2

per:countries_of_residence 22.2
per:religion 23.6
per:siblings 23.9

org:number_of_employees/members 25.1
per:stateorprovinces_of_residence 25.2

per:stateorprovince_of_birth 25.3
per:cities_of_residence 25.3
per:schools_attended 27.4

per:origin 29.2
per:spouse 30

per:employee_of 30.9
org:stateorprovince_of_headquarters 34.7

org:city_of_headquarters 35.2
per:date_of_birth 38.1

per:charges 38.4
org:website 41.5

org:alternate_names 41.7
org:founded 42.1

org:top_members/employees 42.4
per:title 42.5
per:age 44.9

no_relation 48.4
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