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ABSTRACT Counterfactuals have been shown to be a powerful method in Visual Question Answering in the
alleviation of Visual Question Answering’s unimodal bias. However, existing counterfactual methods tend to
generate samples that are not diverse or require auxiliary models to synthesize additional data. In this regard,
we propose amore diverse and simple counterfactual sample synthesis method called CounterfactualMix-Up
(CoMiU), which generates counterfactual image features and questions through batch-wise swapping in
local object- and word-level. This method efficiently facilitates the generation of more abundant and diverse
counterfactual samples, which help improve the robustness of Visual QuestionAnsweringmodels.Moreover,
with the creation of diverse counterfactual samples, we introduce two more robust and stable contrastive
loss functions, namely Batch-Contrastive loss and Answer-Contrastive loss. We test our method on various
challenging Visual Question Answering robustness testing setups to show the advantages of the proposed
method compared with the current state-of-the-art methods.

INDEX TERMS Computer vision, counterfactuals, visual question answering, unimodal bias.

I. INTRODUCTION
Visual Question Answering (VQA) [1], a task that
requires a model to correctly predict an answer given an
image-question pair, has been actively studied for several
years [2], [3], [4], [5], [6], [7]. However, VQA models
commonly suffer from unimodal bias [8], [9], [10], where a
model predicts answers by simply relying on language priors.
These models are able to obtain the correct answer with only
the given question and without actually ‘‘seeing’’ the visual
information. However, a desirable visual system should give
informative hints for the right answer based on the evidence
of visual information present. In other words, removing the
essential information of an image or question should lead to
uncertainty or even the wrong answer [11].
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To this end, VQA models have been using counterfactuals
to combat the unimodal bias problem [11], [12], [13] as
using counterfactuals enforces a model to answer through
logical coherency or through more exposure to data. Within
counterfactual methods, several methods have been studied
where they try to balance the dataset with counterfactual
samples. Although such methods have shown favorable per-
formance on the VQA-CP dataset [9], such methods are
either not diverse enough (creating a single counterfactual
by masking by Chen et al. [12]) or not efficient (requiring
manual human annotations by Selvaraju et al. [14] or a
large amount of knowledge to pre-train an inpainting model
by Gokhale et al. [15]). In response, we propose a simple
and more efficient method of creating more diverse and
abundant counterfactual samples that do not require any
external knowledge.We name our counterfactual sample gen-
eration method as Counterfactual Mix-Up (CoMiU), where
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FIGURE 1. (a) Original sample. (b) Counterfactual samples that can be
generated from CoMiU with various distractor images and questions.
Note that the image is a representation as the object detector in VQA
sometimes has overlapping images. I+ is an image with the original
object and one of the random backgrounds, I− is an image with one of
the random objects and the original background. Q+ keeps question-type
words and the salient word while the rest are masked. Q− is the question
of the salient word is switched with a different word. A+ is an answer for
(I+, Q) or (I, Q+), and A− is an answer for (I−, Q) or (I, Q−). CoMiU is
able to generate diverse and abundant counterfactual samples without
any external knowledge.

counterfactual images are generated by swapping local object
bounding boxes with random backgrounds, creating multiple
and diverse counterfactual images at every training iteration.
While selecting random object bounding boxes to swap is
already helpful, we improve our counterfactual image mix-up
by swapping the object bounding boxes that are similar based
onGradCAM [16]. Counterfactual questions are generated by
finding semantically similar salient words within its batch to
swap with the original salient words, creating a new sentence
every iteration that is seemingly similar, but in actuality a
counterfactual to the image-question pair. Ultimately, these
diverse counterfactual images we generate aid in unimodal
bias by exposing the model to a vast number of counterfactual
samples and making our model more robust by making the
model focus on image to predict a correct answer.

In contrast to CSS [12], CoMiU is able to generate more
abundant and diverse counterfactual samples, making the
model exposed to more data, and improving its performance.
For example, with the VQA-CP2 dataset [9] containing 121K
images for the train set, CSS [12] creates 121K × 2 potential
counterfactual samples, while CoMiU can potentially create
(121K )2 images. Fig. 1 illustrates the number of counterfac-
tual images and questions that can be generated from a single
image-question pair. On the other hand, MUTANT [15],
using an external knowledge pre-trained inpainting model,
generates a total of 679K samples. In short, our method is

significantly efficient while being able to generate diverse
counterfactuals without external knowledge.

Moreover, in order to best exploit our vastly generated
diverse counterfactual samples, we utilize two contrastive
based loss functions which help learn the feature representa-
tions of our counterfactual samples. In particular, we intro-
duce Batch-Contrastive loss (BC) to learn the relationship
between the original and the positive/negative counterfactual
samples within the batch and Answer-Contrastive loss (AC)
to optimize the distance between the answer and the coun-
terfactual samples’ representation. Through generating more
abundant and diverse counterfactual samples, our contrastive
losses can be more effectively utilized, which shows one of
the significant benefits of our novel counterfactual sample
generation method. We empirically show the effectiveness
of our approach by showing state-of-the-art results on the
VQA-CP2, VQA-CP1 [9], GQA-OOD [17] datasets, and
favorable performances on other robustness testing VQA
datasets such as VQA-CE [18] among the approaches without
external networks or data [15].
Our contributions are summarized as follows: (1) We

devise a novel method for generating counterfactuals,
CoMiU, to improve the generalizability and robustness of
VQA models. (2) We show the benefit of our diverse and
abundant counterfactual samples with our two contrastive
learning based loss functions. (3) We show the efficacy of
our approach through extensive experiments onVQAdatasets
compared to recent state-of-the-art methods.

II. RELATED WORK
A. BIAS IN VQA
Even with much progress in the field of Visual Question
Answering (VQA) [2], [6], [19], [20], VQA models have
been known for their unimodal bias, more specifically lan-
guage bias, and various VQA datasets that aid diagnose this
problem have been proposed [9], [17], [18]. Several different
techniques have been proposed to target this issue, such as
ensemble based methods [13], [21], [22], [23], [24], balanc-
ing based methods with counterfactual examples [11], [12],
[25], dataset shuffling methods [26], [27], [28], [29], [30],
data augmentation methods [14], [15], [31], loss weight
balancing [32], or even using a meta task like Visual
Entailment [33]. Although data augmentation and balancing
methods are powerful, such methods require either more
data or extra steps that are difficult to procure or recreate.
Chen et al. [12], where we gain inspiration from, only mask
certain parts of an image or question, allowing the framework
to be end-to-end without the need for additional data or mod-
els. However, this method shows limited diversity in the gen-
erated samples compared to data augmentation approaches,
whereas our method automatically generates diverse mixed
image and question pairs to reduce bias. Large scale vision
and language transformer models [20], [34], [35], [36] also
employmasking as a pre-training task, but they do not employ
any form of mix-up in their pre-training. In our work, we do
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TABLE 1. The list of notations used in our method along with their
descriptions.

not directly compare to MUTANT [15] as this is out of scope
and comparison to a newly generated dataset is unfair in
testing debiasing learning techniques.

B. CONTRASTIVE LOSS
Motivated from the Noise Contrastive Estimation [37], con-
trastive learning [38], [39] has been recently adopted in var-
ious state-of-the-art self-supervised representation learning
methods [40], [41]. Recently, contrastive learning has shown
to be also effective for various tasks that require mutual
information maximization other than self-supervised repre-
sentation learning such as visual grounding (between image
and caption) [42] and image-to-image translation (between
source and target images) [43] with varying degrees of
success. In addition, several existing VQA methods adopt
the contrastive learning based loss function [42], [44] in
order to maximize the mutual information (1) between
visual-question joint feature and answer [15] or (2) between
the original and the counterfactual representations without
considering batch-wise representations. In contrast to the
existing contrastive loss functions for the counterfactual VQA
setting that show marginal improvements, by virtue of the
more dense and diverse counterfactual samples generated via
our method, our reformulated contrastive loss function shows
more favorable performance.

III. PROPOSED METHOD
In this section, we give a simple explanation of Visual Ques-
tion Answering (VQA) and explain in detail our methods
of creating counterfactual samples in addition to our newly
formulated losses. We also list all the notations used in our
method along with their descriptions in Table 1.

A. VQA BASELINE
Given a pair of an image I and a question as a sequence
of Nq number of words Q = {wi}

Nq
i=1, the goal of the VQA

task is to correctly predict a set of answers from the whole
answer set A, A ⊂ A. We adopt one of the famous VQA

state-of-the-art models as our base architecture, Bottom-
Up Top-Down (UpDn) [2], where the object features are
pre-extracted using a Faster-RCNN [45] network, the ques-
tions are embedded using a Glove Embedding [46], then
both of these features are combined using a combination
of convolutional and recurrent neural networks. Since the
introduction of UpDn [2], it is commonplace in the VQA
community to use the pre-extracted VQA object features. For
the VQA-CP v2 dataset, among fusion based ensemble mod-
els that mitigate bias, we employ the Learned Mixin (LMH)
debiasing method [22] in our work. In the training stage,
the loss function in [22] is calculated based on the fusion
of the ensemble of bias and plain model. During testing,
only the plain model is used. With these in mind, we define
our counterfactual sample generation for VQA under this
formulation.

B. GENERATING COUNTERFACTUAL SAMPLES
Counterfactuals is defined as follows: ‘‘imagine something
were to happen differently, howwould it affect the outcome?’’
Given this definition, we devise a method of synthesizing
counterfactual samples by changing the foreground object
bounding boxes in an image or words in a question that may
affect the answer prediction. As many data augmentation
works [47] show that the diversity of the training samples
improves the generalizability of the model on a test dataset,
our goal is to efficiently generate diverse and abundant
counterfactual samples. To this end, we propose to swap
the local objects/words with another image/question; we call
this method, Counterfactual Mix-Up (CoMiU). With the syn-
thesized counterfactual image question pairs, the model is
required to give an answer that is counterfactual to the input.
To do so, we utilize the answer assigning method [12] to
assign positive answer A+ given positive counterfactual pairs
(I+,Q) or (I ,Q+) where A+ is the set of top-N answers
with the highest probabilities, and negative answer A− given
negative counterfactual pairs (I−,Q) or (I ,Q−) where A− =
{ai|ai ∈ A, ai /∈ A+}. Counterfactual questions and images
are generated separately with a proportion hyper-parameter.
With these preliminaries, we explain our method of creating
counterfactual samples, I± = {I+, I−} and Q± = {Q+,Q−}
for each training iteration, in detail as follows.

Counterfactual Image Mix-Up. Since the introduction
of UpDn [2], pre-extracted Faster-RCNN [45] features have
been used as visual features in VQA. In this regime, each
image I is represented as a set of Nv number of pre-extracted
object bounding boxes, i.e., I = {vi}

Nv
i=1. In our work, we first

define I as a union of two different sets of foreground object
bounding boxes O and background object bounding boxes
B, i.e., I = O ⊂ B. Although we empirically find that
randomly selecting the foreground bounding boxes is already
helpful for our method, we define salient bounding boxes as
the foreground in order to further improve the effectiveness
of our method. In particular, we use the modified version
of Grad-CAM [16] to define a set of salient foreground
bounding boxes O and label the rest as background B.
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To generate counterfactual images, I+ and I−, we propose
to swap salient object bounding boxes with another random
image, generating more abundant and diverse counterfactuals
every training iteration instead of simply masking either O or
B. In particular, given a target image Ii and another random
image that we consider a ‘‘distractor’’ image Ij from a training
batch, we define the positive counterfactual to include the
foreground objectOi from Ii and random background Bj from
Ij. Combining the two, we create a new image: I j+i = Oi∪Bj.
Then, to create the negative counterfactual, similarly, we do
the opposite, i.e., I j−i = Oj∪Bi. Note that even though I

j+
i and

I i−j are identical, both are utilized for training with different

labels (Ai for I
j+
i and Aj for I

i−
j ).

In practice, considering all possible N 2 counterfactuals
from a training batch with the size of N is computationally
inefficient. Therefore, we assign one random distractor image
for each of N target images in a training batch by shuffling
the batch. As a result, we can abuse the notation of I j+i
and I j−i as I+i and I−i from here for simplicity. This means
that as the batches are randomized at every iteration, a new
set of random counterfactual positive and negative samples
are generated, signifying that it is not a single positive and
negative counterfactual per sample. In other words, there is
only one I+i per batch, but I+i and I−i are different at every
iteration. This ensures computational efficiency while still
being able to generate diverse samples. Due to the large
number of data points in the dataset and the randomness
of our method, much like [28], we assume the chances of
ambiguities and distractors to be sufficiently low.

To determine the number of object bounding boxes that we
define as foreground object bounding boxes and background,
we utilize the criterion C(·) defined by [12], which measures
the relative magnitude of the Grad-CAM over the object
bounding boxes in an image. The number of foreground
object bounding boxes is defined as the number of object
bounding boxes that have a Grad-CAM magnitude that sur-
passes a pre-defined threshold η. Unlike simple masking [12]
or inpainting [15], as we utilize a pair of images to generate
counterfactual samples, we need to reconcile the mismatch in
the number of foreground object bounding boxes between the
two images. As a result, we propose to define the number of
object bounding boxes to swap Nobj ≤ Nv to be the floor of
the batch-wise mean of the number of object bounding boxes
that have large enough C(·):

Nobj =
⌊
1
N

N∑
i=1

∑
v∈Ii

1
[
C(v) > η

]⌋
, (1)

where N is the batch size, 1[·] is the indicator function, v ∈ Ii
is the individual object bounding box in an image, and η is
the threshold hyper-parameter.We conjecture that by creating
counterfactual images by swapping with randomly selected
images, we are able to create that many more samples and
give increased exposure to the model [48]. In addition to this,
instead of simple masking, changing up the foreground object

bounding boxes and backgrounds may lead to a more natural
image in comparison to masked values.

Counterfactual Question Mix-Up. Similar to images,
we determine the local contribution of each word in the ques-
tion through the use of a modified Grad-CAM [16]. To create
Q+, we keep the question-type words (e.g., ‘‘how many’’)
and the salient word, and we mask the rest with the token
‘‘[MASK].’’ Then for Q−, instead of simply masking the
salient word, we propose to find different words and switch
themwith the salient word in the original question to generate
a new question. Unlike random mix-up for images, randomly
shuffling words does not guarantee the grammatical cor-
rectness of a generated sentence. Therefore, we propose to
generate counterfactual questions by switching salient words
with semantically similar words. In particular, we project all
the salient words within the training batch into a Glove [46]
pre-trained embedding space g(·). Then, to generate a coun-
terfactual question Q− from a question Q, we switch the
current salient word wi ∈ Q with the most similar (but not
same) salient word w∗j from the entire set of salient words in

a training batch, {wj}Nj=1:

wi← wj∗ , where j∗ = argmax
1≤j≤N ,
j̸=i,wj ̸=wi

s
(
g(wi), g(wj)

)
, (2)

where s(·, ·) is the cosine similarity. To avoid the phenomena
where the same word is chosen, we also include additional
criteria to the argmax setting to remove all instances where
thewords are the same (wj = wi). Note that, instead of finding
a single optimum pair for a data point from the whole training
data, as we find wj∗ every iteration from the training batch,
a randomness factor is kept, improving the diversity of the
generated counterfactual questions. As it is our motivation,
we also empirically find that improved diversity leads to
better performance. If the batch is too small, semantically
similar replacements may not always be found, in this case,
it can be seen as random word switching. Note that similar
to the image counterfactuals, at every iteration, a different
counterfactual Q+ and Q− are generated.

C. CONTRASTIVE LEARNING OBJECTIVES
To verify the effectiveness of our abundant counterfac-
tual samples, we introduce two different contrastive learn-
ing based loss functions: (1) Batch-Contrastive loss and
(2) Answer-Contrastive loss.

1) BATCH-CONTRASTIVE LOSS
With the causal triplets (I , I+, I−) and (Q,Q+,Q−) obtained
from CoMiU at every training iteration, our goal is to
effectively train our VQA model with these samples by
training the relationship between the original sample and
the positive/negative counterfactual samples, similar to the
self-supervised representation learning studies [40], [41].
However, unlike self-supervised methods that require a
large-scale dataset for pre-training tasks, we only utilize the
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FIGURE 2. Illustration of Batch-Contrastive (BC) loss and Answer-Contrastive (AC) loss. Given a question (Q) with the original image (Ii ), we show an
example of our positive and negative counterfactual samples that can be generated. Given the features computed in the batch, the BC loss maximizes
the similarity between the positive counterfactual sample and the original sample (s(zi , z+

i )) while minimizing the similarity between the original
sample and the other samples including the negative counterfactual samples (s(zi , z−

i )) or the counterfactual samples from the other images
(s(zi , z+

j )). In addition, the AC loss maximizes the similarity between the joint features and the ground truth answer (s(zi , g(a)) and s(z+

i , g(a))) while

minimizing the similarity between the joint features and the other answers (s(zi , g(a′)) and s(z+

i , g(a′))).

samples that are generated at training time. Here, we intro-
duce the contrastive learning based loss function, which we
call Batch-Contrastive (BC) loss. In particular, for the case of
counterfactual images as shown in Fig. 2, the Ii, I

+

i , and I−i
paired with Qi are fed into the multi-modal feature extractor
of the VQA model, the last layer before the answer classifier.
Then, passing through an auxiliary projection function [40]
f (·, ·), the joint embeddings are projected as zi = f (Ii,Qi),
z+i = f (I+i ,Qi), and z

−

i = f (I−i ,Qi), respectively which are
used to compute the loss function as follows:

LBCi = − log
( es(zi,z

+

i )∑N
j=1 e

s(zi,z
+

j ) + es(zi,z
−

j )

)
, (3)

where we use cosine similarity for the similarity scoring
function s(·, ·). In other words, with the feature from the
original image zi as an anchor and the positive and negative
counterfactuals (z+i and z−i ), we apply this BC loss overall
2× N counterfactual features in the batch of size N in order
that the similarity between the positive counterfactual and the
anchor features s(zi, z

+

i ) is maximized while the similarity
between the negative and the anchor s(zi, z

−

i ) is minimized.
Note that we also decrease the similarity between the anchor
and all counterfactual features within the batch (j ̸= i),
further improving the stability and boosting the performance.
As mentioned in Sec. III-B, note that we create only one pair
of positive/negative counterfactual features for each of the N
data points in the training batch at each training iteration.
Therefore, there are 2 × N − 1 negative samples when we

put all (both positive and negative) counterfactual samples z±j
(excluding z+i ) in the batch as negative samples. Note that the
same is applied for the counterfactual question whereQ,Q+,

and Q− are paired with I . Also, note that at each iteration,
a different pair of positive/negative counterfactual features
are generated and used to measure the contrastive loss.

We also find that under intuitive assumptions, the mutual
information between the representations of the original sam-
ple and positive counterfactual sample I(z; z+) is bounded by
the contrastive learning formulation as follows:

I(z; z+) ≥ log(2N )− E(zi,z
+

i )

[
LBCi

]
, (4)

which becomes tighter as N becomes larger [38]. The proof
of this inequality can be found in the supplementary material.
Therefore, minimizing our BC loss function can maximize
the lower bound of the mutual information, enabling the
model to learn the relationship between the counterfactual
and the original sample to predict the right answer from a
more causal aspect.
If we only consider the same image (N = 1), the denom-

inator of Eq. (3) becomes small, meaning that it is not large
enough or the negative samples are not diverse enough. Then,
the lower bound of the mutual information in Eq. (4) becomes
loose; thus, degrades the performance [41], [49]. In contrast,
by virtue of generating more abundant and diverse counter-
factual samples, we can make Eq. (4) more effective, which
shows one of the key significance of our novel counterfactual
sample generation.
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2) ANSWER-CONTRASTIVE LOSS
In addition, to aid the model distinguish the answers given
a visual-question pair, we also introduce an additional con-
trastive learning based loss function, Answer-Contrastive
(AC) loss, that operates in the space of answer embeddings
by computing the similarity between the joint embeddings z
and the embedding of all possible answers in the ground truth
answer set, i.e., g(a), a ∈ Ai ⊂ A given a joint feature zi
and one pair of positive/negative counterfactual samples z+i
and z−i :

LACi = − log
(∑

a∈Ai e
s
(
zi, g(a)

)
+ es

(
z+i , g(a)

)
∑

z′∈{zi,z
+

i ,z−i }

∑
a′∈A

es
(
z′, g(a′)

) )
. (5)

As answers are words, we project the answers using Glove
embedding and try to match the joint embeddings on the
same embedding space. This loss function aims to maximize
the similarity between the projections of the multi-modal
joint features of our model (either with the original image or
positive counterfactual) and the projected Glove embedding
vector of the ground truth answer for the given question-
image pair, s(z, g(a)) or s(z+, g(a)). Note that the similarity
metric is between the projection of multi-modal features and
ground truth answers, not between the predicted and ground
truth answers.

By removing z and z− in our AC loss function, the for-
mulation becomes similar to that of MUTANT [15]. Unlike
MUTANT, by considering the relation between z and z±s
with respect to the distance with the answer embedding,
our AC loss creates larger hypothesis space for the loss
function (three times larger); our loss function ultimately
becomes more stable and effective. We empirically show
the effectiveness of the loss function. Our final formula-
tion is the sum of the typical supervised VQA loss from
[22] and λ1LBC+λ2LAC , with the weights of λ1 and λ2 being
5 to 1 respectively.

IV. EXPERIMENTS
In this section, we show our experimental setting and the
findings through quantitative and qualitative results.

A. EXPERIMENTAL SETTING
1) DATASET
As we consider the bias problem within VQA, we evaluate
our models on the VQA-CP2 and VQA-CP1 datasets [9]. Fol-
lowing the release of the newer out-of-distribution evaluation
dataset, we also report our results on the GQA-OOD test set.
We also report our results on VQA-CE [18], which is a new
evaluation protocol to determine how much a model exploits
shortcuts within the VQA-v2 dataset.

2) EVALUATION METRIC
As the standard VQA evaluation metric, we evaluate all of
our VQA models on the standard VQA evaluation metric as
in [1].

TABLE 2. Comparison of our method on the VQA-CP2 test set. Best
results are styled in this manner while second best results are styled in
this manner. We mainly compare our results within the same architecture
and method type. ∗ shows models that we run on our machines using
publicly available code. We show that our model outperforms other
counterfactual techniques while significantly improving the ‘‘Num’’
category.

3) BASELINE ARCHITECTURE
We choose a popular state-of-the-art VQA baseline architec-
ture, UpDn [2],1 which is a commonly utilized architecture as
a testing platform for debiasing. We also base our debiasing
model on the ensemble based debiasing baseline LMH [22].

B. IMPLEMENTATION DETAILS
We implement our model using PyTorch, and as mentioned,
we use the Bottom-Up Top-Down (UpDn) [2] model as our
baseline architecture with a pre-trained Faster-RCNN [45]
visual features. All questions are embedded using a 300D
space Glove embedding [46]. We also use the default
question-type annotations in the VQA-CP2 dataset. All of
our models are trained on a single Nvidia Titan Xp GPU for
30 epochs with a batch size of 256 using the Adamax opti-
mizer, which is a variant of Adam optimizer [50], on default
settings. All 30 epochs require about 12 hours to complete.

1we use the publicly available re-implementation from https://github.
com/hengyuan-hu/bottom-up-attention-vqa
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TABLE 3. Results on the VQA-CP1 test set compared with the
state-of-the-art methods. All models are based on the UpDn architecture
except for GVQA. Results in Bold show the best results in each column.

TABLE 4. We show the experimental results on the GQA-OOD dataset.
We compare to available debiasing methods and show that our method
outperforms all debiasing methods by a large margin.

Each image has up to 36 bounding box objects with a
feature size of 2048 and each question length is limited to
14 words per question. The η for the image mix-up thresh-
old is set to 0.65. All of the answers are projected using a
300 dimension space Glove embedding [46]. To project the
multi-modal joint features, we use a two-layer multi-layer
perceptron (MLP) and resize the features into a 300 dimen-
sion space for the Answer-Contrastive and Batch-Contrastive
loss.

For our method of Question and Image mix-up as men-
tioned in the method section, following CSS [12], we apply
image and question mix-up independently. The proportion
hyper-parameter is set at 0.1, which translates to 10% of the
time the model uses Question mix-up and 90% of the time
using Image mix-up. In addition, as masking can be seen
as another form of mix-up, we found empirically found that
masking in addition tomix-upwas best in aiding performance
gains, so we also include masking as a form of mix-up and
run our experiments accordingly. The AC loss and BC loss
are added using a loss weight, with the weights of AC to BC
loss being 5 to 1.

C. RESULTS ON VQA-CP2
In order to understand how our method in relation to other
debiasing methods, we show our results in Table 2. In the
first four rows, we first list the vanilla base architectures
(SAN [51], GVQA [9], S-MRL [21]), and the architecture
that the rest of the debiasing methods including ours is
based on, UpDn [2]. Then we compare our methods to other

TABLE 5. VQA-CE evaluation compared with the state-of-the-art
methods. Ours shows the best performance in counterexamples
(Counter). Also, note that our method surpasses the other powerful
counterfactual method CSS by a large margin in all metrics.

debiasing methods such as HINT [14], SCR [31], AReg [10],
RUBi [21], LMH [22], GGE [23], GenB [24], CVL [11],
CF-VQA [13], CSS [12], Unshuffling [26], SSL [28],
D-VQA [29], MUTANT [15], and SAR [33]. Among these,
we compare our method to other methods that either include
external knowledge, datasets, during or before pre-training,
or use a combination of techniques such as ensemble and
dataset shuffling for fairness.

We show our Counterfactual Mix-Up (CoMiU) combined
with our losses, AC loss, and BC loss, in comparison to other
state-of-the-art VQA-CP2 test set results. We list CSS [12]*
as the baseline that we run on our machine for fair compari-
son. We find that CoMiU + BC +AC (Ours) achieves 59.99%
overall accuracy which is 7.54% higher than that of LMH,
where our model is based (relative 14.38% improvement to
that of LMH). In addition, our final method surpasses other
methods significantly in the ‘‘Num’’ category with ‘‘Yes/No’’
coming in at a close second while also being competitive in
the ‘‘Other’’ category. Interestingly, our final method shows
especially significant performance improvement from our
baseline, LMH, for the ‘‘Yes/No’’ category (relative 25.64%
improvement). Also, our final method with our contrastive
losses scores significantly higher in the ‘‘Num’’ category,
beating all existing methods by a large margin of 4.81%
accuracy compared to the next best method of CSS (a relative
9.70% improvement), and is even higher than MUTANT,
which requires large-scale data to pre-train the data generator.

D. RESULTS ON VQA-CP1
We also show our results on the VQA-CP1 test set against
other available state-of-the-art approaches. Note that not all
methods have the VQA-CP1 scores available, so we only list
those that are available. Table 3 shows that Ours outperforms
all existing state-of-the-art methods by a noticeable margin
of 7.86% overall accuracy (relative 14.22% improvement)
compared to our baseline (LMH) and 1.86% overall accuracy
(relative 3.03% improvement), compared to the second best
method, CSS+CL. For ‘‘Yes/No,’’ our method is 13.97%
accuracy higher (relative 18.27% improvement) than our
baseline, LMH. Ours also scores among the highest for both
the ‘‘Num’’ and ‘‘Other’’ categories with ‘‘Num’’ being sec-
ond best and ‘‘Other’’ being the best.
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TABLE 6. Ablation study of our method on Image (I) only. We include SSL
as it swaps questions and images whole. We include CoMiU with and
without BC loss and AC loss to show the individual effects.

TABLE 7. Ablation study for our method on Question (Q) only. Again,
we include SSL as it swaps questions and images whole. We include
CoMiU with different shuffling methods with and without our BC + AC
losses to show the individual effects.

E. RESULTS ON GQA-OOD
Recently, a new VQA out-of-distribution dataset that tests
the robustness of VQA models has been introduced recently
called the GQA-OOD [17] where the training data is man-
ually balanced and the out of distribution results are tested
through a manually biased test set. Due to space limitations
of the main paper, we include the results of the GQA-OOD
test set evaluation in this section. We compare our method
OURS to recent, available state-of-the-art debiasing meth-
ods that are based on the UpDn [2] architecture such as
RUBi [21], LMH [22], or CSS [12]. Unlike our setting on
the VQA-CP2 and CP1, we do not use the base LMH [22]
loss in our network, instead, we apply CoMiU + AC + BC
loss on the base UpDn architecture with no debiasing losses.
As seen from Table 4,Ours shows a significant improvement
from other debiasing methods. Even when compared to the
baseline architecture UpDn where all the methods are based,
Ours outperforms it by 2.09% overall. In the tail category,
Ours outperforms UpDn by 3.78%, which is the category that
directly tests the OOD (Out-Of-Distribution) performance.
Through these results, we show that our method is robust not
simply on the VQA-CP sets but also on the newly formed
GQA-OOD data.

F. RESULTS ON VQA-CE
Recently a new evaluation protocol has been introduced on
the VQA-v2 dataset to measure how much a VQA model
is dependent on shortcuts called the VQA-CounterExamples
(VQA-CE) [18]. The evaluation protocol is split into Overall,
Counter, and Easy. The Overall score simply lists the total
score for the VQA-v2 validation set. Easy is a subset of sam-
ples where the shortcuts within the image/question pair give
the correct answers and Counter is a counterexample where

TABLE 8. Ablation study for our contrastive losses. Using BC and AC
losses together rather than using individual losses shows noticeable
improvements in performance. Also, applying the BC and AC losses on the
CSS baseline without CoMiU gives negligible performance improvement.

TABLE 9. Evaluation of our method with different debiasing backbones
as an add-on module. Our method shows consistent overall accuracy
improvements for all the backbone architectures.

using the shortcuts leads to incorrect answers. We evaluate
our model on VQA-CE as shown in Table 5. Although the
overall score for VQA-CE is dependent on the VQA-v2 per-
formance as presented in the evaluation metric [18], we show
that our method shows the best performance on Counterex-
amples, which is the main point of interest in this dataset.
Also note that our method surpasses CSS in all the metrics
by a noticeable margin, which is our baseline method.

G. ABLATION STUDY RESULTS
To further understand the effectiveness of our proposed meth-
ods, we perform ablation studies on the components of our
methods compared with existing methods on the VQA-CP2
dataset. As our method comprises three parts, the Counter-
factual Mix-Up (CoMiU), Batch-Contrastive loss (BC), and
Answer-Contrastive loss (AC), we denote them separately as
CoMiU,BC, andAC in our ablation study tables. In addition,
as CoMiU comprises the Image mix-up and the Question
mix-up, we show the individual effects of each component
in Table 6 and Table 7 respectively.

1) INDIVIDUAL MODALITY RESULTS
Table 6 and Table 7 show that even without BC and AC
losses, CoMiU already improves the performance of the
models while adding BC and AC losses further boosts per-
formance. In particular, in Table 6, our image mix-up shows
the best overall accuracy compared to the simple region
making [12] or pair shuffling [28]. In addition, in Table 7,
our question mix-up shows favorable overall accuracy com-
pared to simple word masking [12] and shows comparable
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FIGURE 3. VQA performance vs diversity of the counterfactual samples
during training shown on VQA-CP2. Compared to the baseline methods,
LMH [22] and CSS [12], Our method (CoMiU), shown in bold, generates
counterfactual samples with the largest diversity, which leads to the best
VQA performance.

performance to that of pair shuffling [28]. We find that the
Question mix-up improves the Num score while the Image
mix-up improves the Yes/No score. We believe that each
component forces the model to reduce bias on the specified
modality and ultimately aids in the performance of the respec-
tive categories. Moreover, with our contrastive loss functions,
our question mix-up performs significantly better than the
competing methods.

2) CONTRASTIVE LOSS RESULTS
To understand the effects of BC and AC losses, we test
CoMiU with different types of contrastive losses and show
the results in Table 8. Note that CoMiU itself without the
losses already gives a large performance gain, and using
both of the losses together rather than using the individ-
ual contrastive losses shows noticeable improvements in the
performance of CoMiU. We conclude that our BC and AC
losses have complementary characteristics where the BC loss
learns the feature level similarity while the AC loss learns
the answer level similarity. Note that our AC loss without
considering the original and negative counterfactual samples,
which is similar to that of MUTANT [15] Answer Projection
loss, which performs poorly when compared to BC or AC
losses. In order to further understand the effects of our BC
and AC losses, we also show how our losses perform when
paired with CSS [12]. Adding our BC and AC losses gives
CSS a negligible performance improvement, showing that the
BC and AC losses are helpful when aided by our CoMiU
which generates diverse and abundant negative and positive
samples.

3) BACKBONE ABLATION
We test the general applicability of our method on other
debiasing baselines (UpDn [2], RUBi [21], and LMH [22])
and show our results in Table 9. On the simple UpDn model,
our CoMiUwith BC andAC losses improves the performance
in overall in addition to the ‘‘Num,’’ and ‘‘Other’’ cate-
gories. On RUBi [21], CoMiU and the losses improve the

TABLE 10. Evaluation of our method on the LXMERT [20] backbone
architecture among reported counterfactual based baselines. Note that
the availability of counterfactual based baselines is few so we list those
available. We also include the ensemble based debiasing loss LMH which
is the base debiasing baseline of our method and CSS. We find that
among the counterfactual based baselines that do not include external
data or network when training, we find our method outperforms previous
baselines significantly.

performance by a fair margin, with both the ‘‘Yes/No’’
and ‘‘Num’’ category outperforming the baseline. As for
LMH [22], which is the base debiasing loss for our model,
CoMiu with the two losses improves the performance by a
significant margin and improves the scores in every category
by significant margins. Overall, our method is able to con-
sistently improve the performance of various VQA backbone
models.

4) ARCHITECTURE ABLATION
We further test our method on the popular transformer

based backbone the LXMERT [20] architecture.We show our
results in Table 10. As many previous baselines lack perfor-
mance on this backbone, we include the counterfactual based
methods that do not use external data or external networks
when training. We also include the LMH ensemble based
debiasing technique on which our method is based. We find
that on the LXMERT baseline, our method performs signif-
icantly better than CSS in the Overall category. In addition,
our method improves upon the LMH baseline significantly in
all categories.

5) DIVERSITY AND PERFORMANCE
In order to demonstrate the effect of the diverse counterfac-
tual samples on the resulting VQA performance, we show
a plot between the VQA accuracy and the total number of
training samples for several baselines in Fig. 3. Compared
to the baseline method, LMH [22], CSS [12] generates two
counterfactual samples (one positive and one negative) which
limits the diversity gap. In contrast, our method, CoMiU
utilizes random distractor samples for every training iteration,
which leads to significant diversity improvements compared
to the baseline methods. Note that our method with the largest
sample diversity shows the best VQA performance, showing
the correlation between the counterfactual sample diversity
and the model performance.

H. QUALITATIVE RESULTS
We show the qualitative results of our method with the
attention masks and the top-1 answer from the baseline and
Ours in Fig. 4. The examples in the first and the second
columns show that although both models answer correctly,
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FIGURE 4. Qualitative results of our method. The top row shows the input image with object bounding boxes, the second row shows the baseline (LMH)
with the baseline’s answers. The last row shows our result. The translucent image regions show where the model attends to and the red boxes show the
highest attention. Our model is able to attend more directly and accurately to the objects that cause the answers. In the last row, we show a negative
case where the baseline attends relatively correctly, but our model is unable to attend correctly. We find that for questions with knowledge based
reasoning questions, just like the baseline, our method also struggles.

our model is able to attend more distinctly to the region that
causes the answers. The example in the third column shows
that our model really focuses on the region specified by the
question (‘‘the tail of the plane’’), and answers accordingly.
The fourth column shows our model does not simply looks
at the question priors, rather it shows that our model under-
stands the semantic meaning of the question properly and
answers instead of answering with color because there is
a word ‘‘color’’ in the question. The last column shows a
failure case where our model is unable to attend correctly
or answer correctly to the question. We conjecture that for
knowledge based reasoning questions, like many other VQA
models including the baseline, our model also suffers. These
qualitative examples verify that our model is able to attend in
a more focused and accurate manner to the objects that cause
the answers.

V. CONCLUSION
We propose a new efficient method of generating diverse
and abundant counterfactuals called Counterfactual Mix-Up
and two loss functions, Batch-Contrastive and Answer-
Contrastive losses, to improve the generalizability and robust-
ness of VQA models. Instead of simple masking, we show
that using a dynamic way to create counterfactual sam-
ples leads to better VQA performance. We also show a
way to leverage all of the newly generated samples in a
contrastive manner during training. With these proposed
methods, we show state-of-the-art results on the VQA-CP2,
VQA-CP1, and GQA-OOD test sets without any additional

data and show through qualitative results the impact of our
method. In addition, we also show state-of-the-art results on
the VQA-CE evaluation metric. In this work, we strive to
automatically generate a large number of samples, and we
do not specifically focus in depth on the quality of gen-
erated images. We believe that a potential scope for this
type of work is generating high fidelity images automatically
for counterfactual reasoning. To go further, with the current
developments of large foundational models, we hope our
work can inspire further works to automatically generate not
just images but image-question pairs that can be more helpful
for, but not limited to, the VQA task.
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