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Abstract: Research on image-inpainting tasks has mainly focused on enhancing performance by
augmenting various stages and modules. However, this trend does not consider the increase in the
number of model parameters and operational memory, which increases the burden on computational
resources. To solve this problem, we propose a Parametric Efficient Image InPainting Network
(PEIPNet) for efficient and effective image-inpainting. Unlike other state-of-the-art methods, the pro-
posed model has a one-stage inpainting framework in which depthwise and pointwise convolutions
are adopted to reduce the number of parameters and computational cost. To generate semanti-
cally appealing results, we selected three unique components: spatially-adaptive denormalization
(SPADE), dense dilated convolution module (DDCM), and efficient self-attention (ESA). SPADE
was adopted to conditionally normalize activations according to the mask in order to distinguish
between damaged and undamaged regions. The DDCM was employed at every scale to overcome
the gradient-vanishing obstacle and gradually fill in the pixels by capturing global information along
the feature maps. The ESA was utilized to obtain clues from unmasked areas by extracting long-
range information. In terms of efficiency, our model has the lowest operational memory compared
with other state-of-the-art methods. Both qualitative and quantitative experiments demonstrate the
generalized inpainting of our method on three public datasets: Paris StreetView, CelebA, and Places2.

Keywords: image inpainting; generative adversarial networks (GANs); lightweight architecture;
conditional normalization; dilated convolution; dense block; self-attention

1. Introduction

Image inpainting attempts to generate masked regions with visually satisfying image
structures and regional features. This task has long been a major research area in computer
vision. However, rapid changes have occurred in recent years with the emergence of deep
learning. For example, traditional methods [1–9] only used known pixels for weighted
replication or diffusion. However, deep learning-based approaches [10–18] continuously
compress masked images into a dense latent space and then fill in the missing pixels by
restoring high-level semantic information. The strength of deep learning-based methods is
clearly demonstrated in large-hole inpainting tasks.

Various deep learning-based models have been introduced with the development of
convolutional neural networks (CNNs) and generative adversarial networks (GANs) [19].
For instance, in accordance with the traditional concept, the methods in [16,17,20–22]
integrate a patch-matching algorithm into the latent space to effectively generate pixels and
produce results that are visually pleasing. To address the limitations of vanilla convolution,
partial convolution (PConv) and gated convolution (GConv) were proposed in [13,23],
in which valid pixels are conditioned by a mask that acts as a prior. The framework of
inpainting models plays a key role in performance enhancement as well. Specifically, the
methods in [24–27] adopt a two-stage inpainting architecture, with the overall structural
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features of the masked regions forecasted in the first stage and the final result predicted
in the second stage by adopting the output of the previous step as a constraint. Typically,
Edge Connect (EC) [24] recovers the missing edges in the first stage by piling up numerous
residual blocks with dilated convolutional layers, which increases the receptive field of
the model and extracts global features. In the second stage, the restored edge map is
employed in texture synthesis to ensure the visual unity of the final result. However, these
approaches often require separate training procedures, meaning the end-to-end training
strategy cannot be applied and increasing the training complexity. Moreover, because
two distinct models are employed to form a generator, the number of parameters and
model complexity increase, as does the likelihood of overfitting problems. This increases
the operational memory usage, which hinders the use inpainting models on platforms
with restricted computational resources. For instance, models with high capacity, i.e.,
smartphones and embedded boards, where demand is growing rapidly, may encounter
difficulties in real-world application deployment.

To solve these problems, we propose the Parametric Efficient Image InPainting
Network (PEIPNet) with a one-stage inpainting framework. First, inspired by [28], we
adopt depthwise and pointwise convolutions instead of vanilla convolution to minimize
the number of model parameters. Second, we employ spatially-adaptive denormalization
(SPADE) [29] to conditionally normalize the feature maps according to the mask. Third,
inspired by [30], we introduce a dense dilated convolution module (DDCM) to gradually
fill in the missing regions at different scales and mitigate the vanishing gradient problem.
Finally, efficient self-attention (ESA) [31] is utilized to capture long-range information from
unmasked areas in order to enhance the inpainting accuracy.

To the best of our knowledge, the proposed PEIPNet is the first method for the image-
inpainting task that has less than one million model parameters while ensuring high
performance. The contributions of this study are summarized as follows:

• An efficient one-stage inpainting framework with effective modules is proposed to
reduce the number of model parameters and computational costs in order to mitigate
overfitting problems when trained on small datasets, with potential applications in
various environments.

• Qualitative and quantitative evaluations conducted on different public datasets demon-
strate the excellent performance of our method in comparison with state-of-the-
art models.

2. Related Works
2.1. Image Inpainting with Patch-Based Methods

Patch-based methods were first introduced for texture synthesis [1,3], then adopted
in [32] for image inpainting to fill in masked areas at the image level. These approaches
normally inspect and copy comparable patches from a database or uncontaminated back-
ground into missing regions according to the distance metrics between different patches,
i.e., the Euclidean distance and SIFT distance [33]. Bertalmio et al. [4] merged patch-based
texture combination techniques with diffusion-based dispersion under image decomposi-
tion. PatchMatch [9] was proposed to search for similar matches between image patches.
Therefore, patch-based designs for image inpainting can produce sharp outputs with simi-
lar contexts. However, generating semantically plausible images through a patch-based
approach remains difficult, as a high-level understanding of the images is required.

2.2. Image Inpainting by Deep Generative Methods

Generative models based on neural networks for image inpainting typically encode a
damaged image into a latent feature. In the latent space, the masked areas are filled in at
the feature level, then the feature maps are decoded and restored into an image. In recent
years, studies based on deep generative models have yielded promising results. Context
Encoder (CE) [10] was one of the first neural networks to adopt deep feature learning
and adversarial training [19]. CE can generate visually appealing outputs for semantic
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hole-filling. In terms of the loss function, the guidance loss was proposed in [16], which
makes the feature maps produced in the decoder more similar to those of the ground truth
images in the encoder. The methods in [11,24] employed dilated convolution to increase
the receptive field of the model and capture the global features. A two-stage inpainting
framework was utilized in [24–27] to fill in the pixels based on the constraints generated in
the first stage. Instead of vanilla convolution, PConv [14] and GConv [23] were designed
to eliminate the effects induced by placeholder values in the masked areas of the image.
A contextual attention (CA) layer [18] was proposed to fill in the lost pixels with similar
patches from undistorted areas in high-level feature maps. With regard to the CA layer,
Sagong et al. [21] introduced a novel parallel extended decoder path with a modified CA
module to reduce computational cost. However, minimizing the capacity of the model to
increase its efficiency while solving the overfitting problem remains a challenge.

2.3. Conditional Normalization

A normalization layer for feature extraction is commonly applied in deep neural
networks to aid the training process.

For instance, batch normalization (BN) [34] normalizes the activation maps across
batch and spatial dimensions that affect generative networks. Instance normalization
(IN) [35] differs from BN in that it normalizes the features only across spatial dimensions
and enhances the outcomes of numerous generative tasks, such as style transformation.
Layer normalization (LN) [36] normalizes activations across the channel and spatial di-
mensions, helping to train recurrent neural networks more stably. Group normalization
(GN) [37] normalizes the features of the grouped channels of an instance, which boosts
performance on specific vision tasks such as object detection.

Conditional normalization differs from the single set of affine parameters used in the
aforementioned normalization approaches. Conditional normalization methods typically
utilize external information to learn multiple sets of affine parameters. Conditional IN [38],
adaptive IN [39], conditional BN [40], and SPADE [29] have been introduced for image
synthesis tasks. In the image-inpainting task, region normalization (RN) [41] has been
introduced for spatial region-wise normalization to overcome the limitations of typical
feature normalization methods, which do not consider the impact of the corrupted areas of
the input image during the normalization process.

2.4. Neural Networks with Lightweight Architecture

Lightweight neural networks have been introduced that allow model developers to
select a small network corresponding to resource restrictions, i.e., latency and size. In
particular, many studies have been conducted on image classification tasks with the aim of
reducing the model capacity. Depthwise separable convolution was adopted in [42] and
MobileNet in [28] to reduce the computation in the first few layers. In contrast, flattened
networks [43] construct a network with fully factorized convolution, demonstrating the
effectiveness of intensely factored models. Factorized convolution has been employed in
factorized networks [44], similar to that in topological conjunctions. Afterwards, Xcep-
tion [45] scaled up the depthwise separable convolution to exceed the performance of
Inception-V3 [46]. SqueezeNet [47] is another remarkably small network that uses a
bottleneck method to reduce the number of required parameters. Structured transform net-
works [48] and deepfried convnets [49] have been proposed to reduce computational costs.
However, none of these strategies have been applied to scale down the model capacity in
image-inpainting tasks.

3. Methodology

In this section, we first introduce the architecture of the proposed method and then
explain the various loss functions used for training.
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3.1. Generator Architecture

Figure 1 shows the architecture of the proposed method, which employs an autoen-
coder framework. To minimize the number of model parameters, we introduce a com-
bination of depthwise and pointwise convolutions, as in [28]. Depthwise and pointwise
convolutions are employed sequentially at the encoder and applied in the opposite order at
the decoder. In both parts, depthwise convolutions with a kernel size of 3× 3 are used to
extract features and increase the receptive field. Pointwise convolutions with a kernel size
of 1× 1 are used to alter the number of channels. For all convolutional modules, spectral
normalization [50] was used to stabilize the training process. SPADE [29] was chosen
to conditionally normalize the masked and unmasked regions according to the semantic
prior information. The SPADE framework is comprehensively analyzed in Section 3.1.1.
LeakyReLU (LReLU) was chosen as the activation function, and its hyperparameter was
set to 0.2.

PEIPNet
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Figure 1. Structural overview of the PEIPNet model. PEIPNet consists of an encoder and a decoder. The
encoder first compresses the damaged image into the latent space by sequentially downsampling the
input by half two times. Then, the proposed DDCM fills in the masked regions using densely connected
dilated convolutional layers. After the encoding process, the decoder recovers the resolution of the input
image. The decoder continuously upsamples the input features two times, with the ESA generating
pixels for unfilled areas by obtaining long-range information. Additionally, skip connections with DDCM
are utilized to feed spatial information forward from the encoder to the decoder. At last, a multi-scale
discriminator framework is used to separate fake and real images.

For a given a masked input image with a size of 256× 256× 3, the encoder first expands
the number of channels to 48. The spatial size of the feature map is then downsampled by
half using a depthwise convolutional module, while the number of channels is doubled to
extract a feature map of size 128× 128× 96. The encoder then applies the same operation
again, which reduces the size of the feature map to 64 × 64 × 192. At this point, the
masked regions are not yet filled with appropriate pixels. Hence, we use a DDCM to fill in
the missing areas and aggregate the features with different receptive fields. The DDCM
structure is thoroughly discussed in Section 3.1.2.

After passing through the encoder, the decoder recovers the resolution and generates
the final output. The decoder first upsamples the input feature map using nearest-neighbor
interpolation with a scaling factor of two. To obtain the spatial information, the output is
concatenated channel-wise with the feature map from the encoder, which has the same
spatial size. Because the masked regions in the feature map obtained by the encoder are
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unfilled, the DDCM is applied to the feature map immediately prior to concatenation.
Moreover, we employ ESA [31] to fully extract the useful nonlocal information from the
aggregated feature map. The design of ESA is described in Section 3.1.3. After ESA, the
number of channels in the feature map is reduced from 288 to 96 using the pointwise
and depthwise convolutional modules, yielding a feature map of size 128× 128× 96. The
decoder uses the same procedure to extract a feature map of size 256× 256× 48. Finally, a
pointwise convolutional module is employed to match the number of channels with the
original input and produce the final result with size 256× 256× 3.

By adopting the aforementioned methods, the resulting PEIPNet is a lightweight
architecture that can generally be used for real-world applications, i.e., embedded boards
and smartphones. The model capacity and computational cost are thoroughly analyzed in
Section 4.4.

3.1.1. Spatially-Adaptive Denormalization

SPADE [29] was introduced as a conditional normalization method for image-to-image
translation tasks. SPADE uses a semantic segmentation mask as a prior to learn the mapping
function that can transform an input segmentation mask into a realistic image.

The SPADE employed in our model uses a binary mask M as the prior. Let M ∈ LH×W ,
where L is a set of integers [0, 1] that denote the unmasked and masked regions and H and
W are the mask height and width, respectively. Assuming the features of the i-th layer of
a CNN with a batch of N samples to be f i, the number of channels in the layer to be Ci,
and the height and width of the feature map in the layer to be Hi and Wi, respectively, the
feature value at site (n ∈ N, c ∈ Ci, y ∈ Hi, x ∈Wi) is formulated as

γi
c,y,x([M, M′])�

f i
n,c,y,x − µi

c

σi
c

⊕ βi
c,y,x([M, M′]), (1)

where [M, M′] are the set of masks, in which M′ denotes the inversion of the binary mask
M; f i

n,c,y,x is the feature at the site before normalization; µi
c and σi

c are the mean and
standard deviation of the features in channel c, respectively; and � and ⊕ are the element-
wise multiplication and addition, respectively. Nonparametric BN [34] was employed to
compute µi

c and σi
c, which are expressed as

µi
c =

1
NHiWi ∑

n,y,x
f i
n,c,y,x (2)

σi
c =

√
1

NHiWi ∑
n,y,x

( f i
n,c,y,x − µi

c)
2. (3)

The parametric variables γi
c,y,x([M, M′]), and βi

c,y,x([M, M′]) in Equation (1) are the
learned modulation parameters of the normalization layer. Compared with standard
normalization layers, such as BN, SPADE is well suited for the image-inpainting task, as
the modulation parameters adapt to the binary mask where masked and unmasked regions
are given as the prior. A structural overview of the SPADE is shown in Figure 2.

Unlike SPADEs used in other previous methods, we have replaced all vanilla convolu-
tional layers with depthwise and pointwise convolutional layers. This helps to effectively
reduce the number of model parameters and computational costs while ensuring suitable
performance and maintaining the overall concept of our proposal.
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Spatially-Adaptive Denormalization

C C
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+ Spectral Norm.

3×3 Depthwise Conv.

+ Spectral Norm.
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Figure 2. Structural overview of spatially-adaptive denormalization (SPADE). SPADE is adopted to
conditionally normalize masked and unmasked regions by using the input binary mask as a prior.
SPADE first normalizes the input feature using a nonparametric BN; then, the parametric variables γ

and β extracted from the input binary mask are utilized to affine the normalized features.

3.1.2. Dense Dilated Convolution Module

We propose the DDCM to fill in the missing regions by combining various feature
maps with different receptive fields in each stage. The main components of the DDCM are
dense blocks [30] and dilated convolutional modules. We first explain the structure of the
proposed DDCM, then present the reasons for its suitability in image-inpainting tasks.

A given input feature map FDDCM of size H ×W × C passes through depthwise and
pointwise convolutional modules. To reduce the number of model parameters, a bottleneck
layer with a pointwise convolutional layer reduces the number of channels to C′ in order to
generate the feature map F0

DDCM, which is expressed as

F0
DDCM = BL

(
PC
(

DC(FDDCM)
))

, (4)

where C′ = C
2 while DC, PC, and BL denote the depthwise and pointwise convolutional

module and bottleneck layer, respectively.
Then, a depthwise convolutional module with a dilation rate of two is applied along with

a pointwise convolutional module to obtain the feature map F1
DDCM, which is formulated as

F1
DDCM = PC

(
DDCr=2(F0

DDCM)
)

, (5)

where DDC represents the dilated depthwise convolutional module and the subscript r
denotes the dilation rate.

The same operation with a dilation rate of four is employed to extract the feature map
F2

DDCM, which is defined as

F2
DDCM = PC

(
DDCr=4(F1

DDCM)
)

. (6)

Next, two feature maps F1
DDCM and F2

DDCM are concatenated channel-wise to produce
[F1

DDCM, F2
DDCM] for feature aggregation. The combined feature map then passes through
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the bottleneck layer to decrease the number of channels from 2C′ to C′. A depthwise convo-
lutional module with a dilation rate of six is applied along with a pointwise convolutional
module to construct the feature map F3

DDCM, which is expressed as

F3
DDCM = PC

(
DDCr=6

(
BL([F1

DDCM, F2
DDCM])

))
. (7)

Using all the previous features, the same operation as in Equation (7) is then applied
to yield the feature maps F4

DDCM and F5
DDCM, which are formulated as

F4
DDCM = PC

(
DDCr=8

(
BL([F1

DDCM, F2
DDCM, F3

DDCM])
))

(8)

F5
DDCM = PC

(
DDCr=10

(
BL([F1

DDCM, F2
DDCM, F3

DDCM, F4
DDCM])

))
. (9)

Finally, all the extracted feature maps are combined into one feature map to utilize the
effective information. This is fed into the bottleneck layer to reduce the number of channels
from 5C′ to C. Depthwise and pointwise convolutional modules are applied to produce the
final output F

′
DDCM of size H ×W × C, which is defined as

F
′
DDCM = PC

(
DC
(

BL([F1
DDCM, F2

DDCM, F3
DDCM, F4

DDCM, F5
DDCM])

))
. (10)

As the feature map is fed forward, the dilation rate of the depthwise convolutional
module increases by two. Increasing the dilation rate expands the effective receptive field,
enabling the model to look over much larger areas of the feature map. This process is
applicable to image-inpainting tasks because the network can fill in the masked regions
using various types of information from the entire feature map. A structural overview of
the DDCM is shown in Figure 3.

The dense block was first introduced in [30] to mitigate the vanishing gradient problem,
enhance feature propagation, and stimulate the reuse of the feature map. For the DDCM,
we employed the dense block for two main reasons.

The first reason is to help the model converge to a better minimum point. Because the
DDCMs are located in the middle of the proposed method and skip the connections between
the encoder and decoder, the gradient may vanish because of the deeply stacked convolutional
modules. Hence, adding a dense block provides various paths to pass the gradient at the
current location along to the input, which eventually solves the vanishing gradient problem.

The second reason is to gradually fill in the missing areas in the feature map with the
relevant pixels. Although the feature maps are extracted and downsampled to different
scales, the missing areas are not assigned the appropriate values. Thus, we adopted a
dense block to progressively generate pixels while inducing minimal artifacts. The feature
maps at the front part of the DDCM (i.e., F1

DDCM and F2
DDCM) are extracted using local

information. Therefore, the feature maps passed along at every later stage act as the prior
information, helping the model to continuously draw out features from local to global
regions with an increased receptive field.

The DDCM is suitable for image-inpainting tasks for the aforementioned reasons.
Moreover, as in SPADE, we have used depthwise and pointwise convolutional layers in
the DDCM to minimize the model’s capacity while maintaining the concept of efficient
inpainting. The effect of the DDCM is thoroughly analyzed in Section 4.7.
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Dilated Dense Convolution Module
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Figure 3. Structural overview of the dense dilated convolution module (DDCM). The DDCM consists
of numerous dilated convolutional layers with different dilation rates. By adopting dilated convolu-
tion, it is possible retain a large receptive field, which is very helpful in extracting global information.
The convolutional layers are connected densely in order to share features with various receptive fields.
The features are aggregated with channel-wise concatenation, and pointwise convolutional layers are
utilized to reduce the number of channels. Additionally, SPADE is employed at each convolutional
layer for conditional normalization.

3.1.3. Efficient Self-Attention

In our model, ESA [31] is employed to extract nonlocal information while retaining
the minimum number of model parameters. In this section, we explain the details of ESA
by comparing it with dot-product self-attention.

Dot-product self-attention [51] is a method for modelling long-range interactions in
neural networks. Let f i ∈ Rd be the input features of the i-th layer of a CNN. Dot-product
self-attention utilizes three different linear layers to transform f i into three feature maps:
query qi ∈ Rdk , key ki ∈ Rdk , and value vi ∈ Rdv . For matrix multiplication, the queries
and keys must have the same feature dimension dk. The similarity between the i-th query

and j-th key is measured by ρ(qikjT), where ρ denotes a normalization function. Hence,
the dot-product self-attention computes the similarities between all pairs of the position
in the feature maps. Utilizing the relationships as weights, the output feature is obtained
using the weighted summation of the values from all positions aggregated at position i.

Assuming that all n positions’ queries, keys, and values in the matrix are formed as
Q ∈ Rn×dk , K ∈ Rn×dk , and V ∈ Rn×dv , the output of the dot-product self-attention is
defined as

D(Q, K, V) = ρ(Q⊗ KT)⊗V, (11)

where ⊗ represents the matrix multiplication. There are two main choices for the normal-
ization function ρ:

Scaling : ρ(Z) =
Z
n

So f tmax : ρ(Z) = δrow(Z)
(12)

where δrow is the adopted Softmax function in each row of the matrix Z.
The main obstacle to using this mechanism is its resource demands. This operation

calculates the relationship between each pair of positions, inducing n2 similarities. Hence, it
yields a memory and computational complexity of O(n2) and O(dkn2), respectively, where
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O denotes the large O notation. Owing to the resource demands, this mechanism is mainly
applied to low-resolution features.

Shen et al. [31] proposed an efficient self-attention mechanism that is mathematically
identical to the dot-product self-attention while being significantly faster and more memory
efficient. This mechanism applies three linear layers to the input feature f ∈ Rn×d to form
the queries Q ∈ Rn×dk , keys K ∈ Rn×dk , and values V ∈ Rn×dv . Unlike the dot-product
self-attention mechanism, which solves the keys as n feature vectors in Rdk , the efficient
module considers them as dk single-channel feature maps. This module then generates a
global context vector by utilizing each of these feature maps as weights over all areas and
accumulating the value features through weighted summation.

Thus, the efficient self-attention mechanism is expressed as

E(Q, K, V) = ρq(Q)⊗ (ρk(K)T ⊗V), (13)

where ρq and ρk denote the normalization functions for the query and key features, respec-
tively. The two normalization approaches are formulated as

Scaling : ρq(Z) = ρk(Z) =
Z√
n

So f tmax : ρq = δrow(Z)

ρk = δcol(Z)

(14)

where δq and δk are the Softmax functions for each row or column of the matrix Z, respectively.
The efficient self-attention is equal to the dot-product self-attention when the scaling

normalization method is employed. Substituting the scaling normalization formula in
Equation (12) into Equation (11) yields

D(Q, K, V) =
Q⊗ KT

n
⊗V. (15)

Similarly, substituting the scaling normalization formula in Equation (14) into Equation (13) produces

E(Q, K, V) =
Q√

n
⊗ (

KT

√
n
⊗V). (16)

Because n is scalar and matrix multiplication is associative, Equation (16) is formulated as

E(Q, K, V) =
Q√

n
⊗ (

KT

√
n
⊗V)

=
1
n

Q⊗ (KT ⊗V)

=
1
n
(Q⊗ KT)⊗V

=
Q⊗ KT

n
⊗V.

(17)

As result, correlating Equations (15) and (17) yields E(Q, K, V) = D(Q, K, V). A structural
overview of dot-product and efficient self-attention is shown in Figure 4.

Owing to the effective implementation and efficiency of the attention mechanism, we
employed ESA at the decoder to extract long-range information on aggregated features
and obtain clues from other areas to successfully fill in the missing areas. Furthermore,
we believe that this is the first image-inpainting model that has utilized ESA. Hence, this
retains the idea of a lightweight architecture, while we have modified the settings of ESA
to make the model parameters even lower. The impact of ESA is examined in detail in
Section 4.7.
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Dot-Product Self-Attention

𝑭:𝒏 × 𝒅
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𝑭:𝒏 × 𝒅

𝝆𝒒(𝑸):
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Global

Context
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Figure 4. Structural overview and comparison of dot-product self-attention and efficient self-attention
(ESA). Dot-product self-attention employs pairwise similarities by multiplying a query and key to
extract long-range information, while ESA uses global context vectors by multiplying a key and a
value. By arranging the query, key, and value in a different way, ESA permits reduced computational
complexity while keeping the outputs of both methods mathematically the same.

3.2. Discriminator Architecture

For adversarial learning, we adopted a multiscale discriminator framework. The
discriminator has a PatchGAN [52] structure with five 4× 4 vanilla convolution layers and
a step size of {2, 2, 2, 1, 1}. For the first three convolutional layers, the spatial size of each
output feature map is halved, while the number of channels is doubled. The fourth convolu-
tional layer doubles the number of channels, while the last convolutional layer transforms
the final output feature map into a map with one channel. For all convolutional layers,
spectral normalization [50] was adopted to satisfy the 1-Lipschitz constraint and ensure the
training process. LReLU was used as the activation function with a hyperparameter of 0.2.

To apply a conditional setting for the learning process, the generated and target
images are concatenated channel-wise with the corresponding binary mask M and fed into
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the discriminator as the input. In addition, both inputs are downsampled by half using
nearest-neighbor interpolation and fed into another discriminator to satisfy the multiscale
discriminator framework. The output sizes of the two discriminators are 30× 30× 1 and
14× 14× 1. A structural overview of the multiscale discriminator framework is shown in
Figure 1.

3.3. Loss Function

To train our model, we used a combination of loss functions, namely, the adversar-
ial loss [19], feature-matching (FM) loss [53], perceptual loss [54], style loss [55], and
reconstruction loss.

First, for the adversarial loss, we employed the hinge loss [56] as the objective function
for the generator, which is defined as

L1
adv−G = −E[M,Iout ][D

1([M, Iout])]

L2
adv−G = −E[M,Iout ]↓ [D

2([M, Iout]↓)],
(18)

where Iout denotes the output image from the generator, ↓ is the nearest-neighbor interpo-
lation downsampled by half, and D1 and D2 are discriminators with inputs of different
scales. The objective functions of the two discriminators are expressed as

L1
adv−D = E[M,Itarget ][ReLU(1− D1([M, Itarget]))] +E[M,Iout ][ReLU(1 + D1([M, Iout]))]

L2
adv−D = E[M,Itarget ]↓ [ReLU(1− D2([M, Itarget]↓))] +E[M,Iout ]↓ [ReLU(1 + D2([M, Iout]↓))],

(19)

where Itarget is the target image and ReLU is the rectified linear unit (ReLU) activation function.
Second, we utilized the FM loss. The FM loss causes the generator to create more

reasonable and realistic outputs by measuring the features of the output image Iout and
target image Itarget in each of the discriminators. Let S1 and S2 be the number of convolu-
tional layers of D1 and D2, respectively, let E1

k and E2
k be the number of elements in the kth

activation layer of D1 and D2, respectively, and let D1
k and D2

k be the activation diagrams
of layer k of D1 and D2, respectively. The FM loss is defined as

L1
f m = E

[
S1

∑
k=1

1
E1

k

∥∥D1
k(Itarget)− D1

k(Iout)
∥∥1

1

]

L2
f m = E

[
S2

∑
k=1

1
E2

k

∥∥D2
k(Itarget)− D2

k(Iout)
∥∥1

1

]
,

(20)

The mean absolute error (MAE) is adopted to compute the distance between features.
Third, we use the perceptual loss, which compares the feature maps acquired using

the same convolution operation for the target and output images. This loss enables the
generator to enhance the high-level semantic correlation between the two images by
calculating and minimizing their differences. Specifically, we compared the distances
between the activation features of the five layers (relu1-1, relu2-1, relu3-1, relu4-1, and
relu5-1) of the target and generated images in the VGG-19 network [57] trained on the
ImageNet dataset [58]. Thus, the perceptual loss is formulated as

Lperc = E
[

∑
k

1
Ek

∥∥τk(Itarget)− τk(Iout)
∥∥1

1

]
, (21)

where Ek denotes the number of elements in the kth activation layer and τk denotes the
activation diagram of the correlated layer.

Fourth, we applied the style loss, which is the correlation coefficient activation value
of each activation feature channel. In our method, the VGG-19 network is used to extract
feature maps, as in Lperc. Its correlation is defined by computing the eccentric covariance
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between the diverse activation characteristic graphs of various scales. The style loss is
expressed as

Lstyle = Ek

[∥∥Gτ
k (Itarget)− Gτ

k (Iout)
∥∥1

1

]
, (22)

where k denotes the kth activation layer and Gτ
k is the Gram matrix τk with a size of Ck ×Ck.

Finally, we adopt the reconstruction loss to compute the distance between the cor-
responding pixels of the target and output images. As for the FM, perceptual, and style
losses, the MAE was used to calculate the difference because it mitigates the problem of
exploding gradients by maintaining a stable gradient for any input. The reconstruction loss
is defined as

Lrec =
∥∥Itarget � (1−M)− Iout � (1−M)

∥∥1
1, (23)

where only the restored areas were used to compute the loss.
Using all of the abovementioned losses, the overall loss function of our model is

formulated as

LPEIPNet =λadv(L1
adv−G + L2

adv−G) + λ f m(L1
f m + L2

f m)+

λpercLperc + λstyleLstyle + λrecLrec,
(24)

where the loss weights were set as follows: λadv = 1, λ f m = 1× 102, λperc = 1× 102,
λstyle = 1× 102, and λrec = 1× 103.

4. Experiments
4.1. Datasets

PEIPNet was trained on three public datasets: Paris StreetView [59], CelebA [60], and
Places2 [61]. The Paris StreetView dataset contains 15,900 training samples and 100 testing
images. The CelebA human face dataset contains approximately 160,000 training images
and 19,900 testing images. The standard training dataset Places2 contains over four million
images. Our model was evaluated on this validation dataset with 36,500 images. For train-
ing and testing, we followed the same procedure as in [14], in which random augmentation
methods such as random translation, rotation, dilation, and cropping were used to augment
the training masks. A mask set with 12,000 irregular masks that were pre-organized into
six intervals according to the mask area (1∼10%, 10∼20%, . . . , 50∼60%) was employed for
testing. All the images in the Paris StreetView, CelebA, and Place2 datasets were resized to
256× 256 using bicubic interpolation.

4.2. Compared Methods

We compared our method with state-of-the-art models such as EC [24], RFR [62],
CR-Fill [63], CTSDG [64], and SPL [65]. All these models were pretrained; hence, their
performance was directly evaluated in our settings.

4.3. Implementation Details

In the experiments, we used the Adam optimizer [66] (β1 = 0.9, β2 = 0.999). The
learning rates were initialized to 1× 10−3 and 4× 10−3 for the generator and discriminators,
respectively. The batch size was set to 32. Our model was trained for 1× 105 iterations,
with the model evaluated at each 1× 103 iteration. The cosine annealing algorithm [67] was
selected as the learning rate scheduler to slowly decay the learning rates of the generator
and discriminators to 1× 10−5 and 4× 10−5, respectively. The PyTorch framework [68]
and an NVIDIA A100 GPU with 80 GB of RAM were utilized to implement the proposed
method. The official code can be found in the following link: https://github.com/JK-the-
Ko/PEIPNet, accessed on 7 September 2023.

https://github.com/JK-the-Ko/PEIPNet
https://github.com/JK-the-Ko/PEIPNet
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4.4. Analysis of Model Complexity

Because we introduced a lightweight architecture for the image-inpainting task, the
number of parameters and operational memory of each model were computed and com-
pared, as listed in Table 1. Models with a batch size of one were used to measure the
memory usage. For the model capacity, our method had less than one million parameters,
the smallest among the tested models. The parameter difference ratio compared with other
approaches ranged from 4.5 to 57.9. For the operational memory, PEPSI [21] would be
an exceptional comparison, but was excluded because the official code was not provided
by its authors. Our model consumed the least amount of computational resources, i.e.,
approximately seven times lower compared to CR-Fill, the model with the second-lowest
consumption. Having the most efficient structure in terms of both the number of parame-
ters and operational memory provides a significant advantage in solving the overfitting
problem, which commonly occurs when using a dataset with a limited number of images.

Table 1. Number of parameters and complexities of compared methods. The lower the number of
parameters and complexity, the more efficient the method. Our result is highlighted in bold.

Method Number of Model
Parameters

Operational Memory
(MiB)

Parameter
Difference Ratio

EC [24] 21,535,684 2291.2 23.91
RFR [62] 31,224,064 2119.5 34.66

CR-Fill [63] 4,052,478 2075.5 4.50
CTSDG [64] 52,147,787 2118.2 57.89

SPL [65] 45,595,431 2107.5 50.61
Ours 900,875 301.4 1

4.5. Qualitative Evaluations

Figure 5 shows the qualitative comparison results on the Paris StreetView dataset. The
EC model generates an edge map corresponding to the final output and identifies the global
arrangement and long-range features by employing dilated convolutional layers. However,
minute textural details were not extracted, resulting in an offset in the local target. For
example, in the first row, the straight line above the front sign was not recovered, which
corrupted the distinct boundary. In the second to fourth rows, the texture of the tree, the
structure of the bricks between the middle highest window, and the pattern of the building
surface were distorted. RFR sequentially fills in the missing pixels by circular feature
inference, generating high-fidelity visual effects; however, serious artifacts developed as
well. For example, in the first to third rows, wrinkled patterns are produced in the large
masked regions. In the fourth row, checkerboard artifacts are found on the bricks, which
is a common problem of transposed convolutional layers [69]. CTSDG binds the texture
and structure to each other; however, the boundaries were blurred owing to the implicit
usage of the structure. For instance, in the first to third rows, the straight lines are obscured,
distorting the distinct boundaries of semantically different regions. In the fourth row,
cross-patterned deformities developed throughout the region. SPL conducts knowledge
distillation on the pretext models and modifies the features for image-inpainting. This
helps in understanding the global context while providing structural supervision for the
restoration of local texture. Nonetheless, the local texture was smoothed out, resulting in
blurring effects. For example, although solid lines are retained in all the rows, the texture of
the leaves and brick patterns are not retained in the second to fourth rows. In contrast, our
proposed method restores images with a suitable balance of low- and high-level features.
For all rows, the pixels were filled with clear boundaries and a semantically plausible
texture, as seen in the second row. This result is attributed to the use of ESA, where the
model is able to obtain hints of the texture from all areas of the corresponding feature maps.
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(a) Input (b) EC (c) RFR (d) CTSDG (e) SPL (f) Ours (g) GT

Figure 5. Qualitative results of our method and other models on the Paris StreetView dataset. From
left to right: (a) input masked images, (b) EC [24], (c) RFR [62], (d) CTSDG [64], (e) SPL [65], (f) ours,
and (g) ground truth images.

Figure 6 shows the qualitative comparison results on the CelebA dataset. EC obtained
unsatisfactory results, i.e., the facial structures were extremely distorted. For instance, in
the first row, the position of the left eye is not symmetrical to the right eye. In the second
row, the nose does not have the appropriate shape, while the mouth is barely visible. In the
fourth row, although the eyes and nose have the proper silhouettes, the mouth can hardly
be seen. RFR provides better results than EC, though the final outputs are not improved.
Although the model generates eyes with a normal shape, the mouths in all the rows are
distorted, which ruins the degree of image restoration. CTSDG had the least favorable
results of all. For all rows, the facial structures are not retained due to blurring effects, and
checkerboard artifacts are found in all inpainted regions. While SPL sufficiently recovered
the images, there were a few implausible regions remaining. For instance, in the first row,
the size of the left eye is different and relatively smaller than the right eye. In the fourth row,
the wrinkles and beard on the face disappear owing to excessive smoothing. In contrast,
our model generated images with the best quality. For example, in the first row, the size
of the left eye is similar to that of the right eye, and is at a suitable location. In the third
row, unlike the other models, our method generates a mouth with teeth, very close to the
ground-truth image. In the fourth row, the wrinkles and beard with a proper mouth are
retained, and there is less perceived difference compared to the other methods.
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(a) Input (b) EC (c) RFR (d) CTSDG (e) SPL (f) Ours (g) GT

Figure 6. Qualitative results of our method and other models on the CelebA dataset. From left to
right: (a) input masked images, (b) EC [24], (c) RFR [62], (d) CTSDG [64], (e) SPL [65], (f) ours, and
(g) ground truth images.

Figure 7 shows the qualitative comparison results on the Places2 dataset. EC restored
images with an acceptable quality using an edge map; however, certain areas are not
appealing. For example, in the third row, the rails of the roller coaster are connected by
curved lines, which is unrealistic. In the fourth row, the leaves filled with generated pixels
do not have a consistent color compared with the other regions. CTSDG produced images
with indistinct boundaries, i.e., unrealistic results. For instance, in the second row, the
structure of the window is not fully retained owing to the blurriness of the bottom-left
region. In the third row, the ride paths appear disconnected, which is unrealistic. In the
fourth row, the texture of the leaves contrasts with the other regions and is not harmonized
with different areas. CR-Fill trains the generator by adopting an auxiliary contextual
reconstruction task that makes the generated output more plausible, even when restored by
the surrounding regions. Hence, CR-Fill reconstructed images with an acceptable quality;
however, a few regions can be perceived as different. For instance, in the first and third
rows, the boundaries of the trees are not obvious, and the color of the middle–right part of
the ride is inconsistent. SPL produced outputs with distinct lines connecting the masked
regions; however, key textures and patterns were lost owing to excessive smoothing. For
example, in the first, third, and fourth rows, the textures of the objects are blurred. The
generated image in the second row contains checkerboard artifacts that distort the texture
and quality of the image. In contrast to other methods, our proposed model achieved a
balance between the apparent boundaries and textures of various objects. For instance,
all the rows have straight lines separating semantically different areas. Furthermore, the
textures of the objects were effectively restored, leading to plausible results.
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(a) Input (b) EC (c) CTSDG (d) CR-Fill (e) SPL (f) Ours (g) GT

Figure 7. Qualitative results of our method and other models on the Places2 dataset. From left to
right: (a) input masked images, (b) EC [24], (c) CTSDG [64], (d) CR-Fill [63], (e) SPL [65], (f) ours, and
(g) ground truth images.

In summary, our proposed method effectively balances low- and high-level feature restora-
tion. This proves the generalizability of the proposed method based on qualitative evaluations.

4.6. Quantitative Evaluations

To analyze the inpainting results of our proposed method and those of other mod-
els, we applied four different metrics: the Fréchet inception distance (FID) [70], learned
perceptual image patch similarity (LPIPS) [71], structural similarity (SSIM), and peak signal-
to-noise ratio (PSNR). The FID is a widely used quantitative metric in the field of image
generation; it measures the Wasserstein-2 distance between the generated and target images
utilizing a pretrained Inception-V3 model [46]. Except for the FID, the other metrics are
full-reference image quality assessments, in which restored images are compared with
their corresponding ground truth images. The LPIPS evaluates the restoration effect by
computing the similarity between the deep features of two images using AlexNet [72]. The
SSIM calculates the difference between two images in terms of their brightness, contrast,
and structure. Finally, the PSNR analyzes the restoration performance by measuring the
distances between the pixels of two images. The quantitative comparison results on the
Paris StreetView, CelebA, and Places2 datasets are listed in Tables 2–4, respectively. For
all the results, the first and second highest values are labeled in bold and underlined
(↓ indicates that lower is better; ↑ indicates that higher is better).

On the Paris StreetView dataset, our PEIPNet method ranked first or second for all
metrics. For mask rates of (0.1, 0.2] and (0.2, 0.3], PEIPNet achieved the best results, similar
to the FID and LPIPS. However, for mask rates of (0.3, 0.4] and (0.4, 0.5], RFR had the best
results, similar to the FID and LPIPS, while PEIPNet had the second-best results. For SSIM
and PSNR, SPL and PEIPNet had the best and second-best results, respectively, for all mask
rates. The excellent performance of PEIPNet is attributed to the low number of artifacts in
the generated images. The textures of different objects were retained as well, which FID and
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LPIPS are highly sensitive to. Hence, PEIPNet can fill in small masked regions; however, its
strength decreased on the large-hole inpainting task. This is because the DDCM and ESA
encourage PEIPNet to obtain various meaningful hints from different regions of the feature
maps with small masked areas by identifying global long-range and local features through
dilated convolution and nonlocal attention. If there are insufficient regions from which
to obtain information, the aforementioned mechanism results in reduced performance
of PEIPNet.

Table 2. Quantitative comparisons between EC, RFR, CTSDG, SPL, and our method on the Paris
StreetView dataset with different mask rates. ↓ indicates that lower is better and ↑ indicates that higher
is better. The best result is highlighted as bold and the second-best result is marked with underline.

Dataset Paris Streetview

Mask Ratio (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5]

FID (↓)

EC 18.5194 29.1657 41.9956 57.1491
RFR 16.6533 24.3895 34.3220 47.7101

CTSDG 18.8494 30.4578 46.1283 63.7335
SPL 17.7120 28.6431 44.2332 58.4954
Ours 14.8024 23.5567 38.1458 54.1898

LPIPS (↓)

EC 0.0375 0.0663 0.102 0.1479
RFR 0.0337 0.0598 0.0896 0.1302

CTSDG 0.0373 0.0693 0.11 0.1606
SPL 0.0367 0.068 0.1084 0.1571
Ours 0.0301 0.0559 0.0943 0.1428

SSIM (↑)

EC 0.9397 0.8946 0.8405 0.7764
RFR 0.9468 0.9052 0.8533 0.7911

CTSDG 0.9471 0.9035 0.8469 0.7826
SPL 0.9578 0.923 0.877 0.8209
Ours 0.9522 0.9123 0.8605 0.8012

PSNR (↑)

EC 30.9867 28.1855 25.749 23.8551
RFR 31.76 28.866 26.2591 24.4081

CTSDG 31.8254 28.8162 26.0823 24.2014
SPL 33.3091 30.226 27.3961 25.5072
Ours 32.4553 29.4006 26.6137 24.7842

On the CelebA dataset, PEIPNet ranked first or second for the LPIPS, SSIM, and PSNR.
EC had the best outcomes for the FID with all mask rates, followed by SPL. However, the
FID difference between SPL and PEIPNet was very small, except with the mask rate of
(0.4, 0.5]. For the LPIPS, PEIPNet had the best results with the first three mask rates and the
second-best with the highest mask rate. The opposite was true for the best and second-best
results of the RFR. For the SSIM and PSNR, SPL had the best values, followed by PEIPNet.
As on the Paris StreetView dataset, the disparity in inpainting performance compared with
the best method continued to increase as the mask rate increased, for the same reason
mentioned previously.

On the Places2 dataset, PEIPNet again had either the best or second-best LPIPS, SSIM,
and PSNR. Unlike on the CelebA dataset, PEIPNet had the second-best outcome for the
FID with mask rates of (0.1, 0.2] and (0.2, 0.3]. For the LPIPS, PEIPNet had the lowest
values with the first three mask rates and the second lowest with the highest mask rate;
the opposite was true for SPL. For the SSIM and PSNR, PEIPNet had the second highest
values for all mask rates, while SPL had the best outcomes. The same phenomenon of
increased inpainting accuracy difference compared with the best result was observed on
the Places2 dataset.
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Table 3. Quantitative comparison between EC, RFR, CTSDG, SPL, and our method on the CelebA
dataset with different mask rates. ↓ denotes that lower is better and ↑ indicates that higher is better.
The best result is highlighted in bold and the second-best result is marked with underline.

Dataset CelebA

Mask Ratio (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5]

FID (↓)

EC 2.0626 2.8117 4.0842 6.0656
RFR 3.2892 4.8099 6.9820 9.8065

CTSDG 3.9021 6.7093 10.5437 15.1646
SPL 2.2515 3.1305 4.5734 6.3852
Ours 2.3552 3.1706 4.6410 7.1648

LPIPS (↓)

EC 0.026 0.0468 0.0721 0.1032
RFR 0.0232 0.0416 0.0641 0.0908

CTSDG 0.0293 0.0551 0.0858 0.1208
SPL 0.0359 0.0578 0.0839 0.1142
Ours 0.0195 0.0385 0.0638 0.0962

SSIM (↑)

EC 0.952 0.9148 0.8712 0.821
RFR 0.9583 0.923 0.8813 0.834

CTSDG 0.9533 0.9146 0.8697 0.8199
SPL 0.9632 0.9358 0.9022 0.8624
Ours 0.9613 0.9285 0.8892 0.8445

PSNR (↑)

EC 32.0645 28.6826 26.1033 24.0045
RFR 32.8072 29.2923 26.6869 24.6201

CTSDG 31.996 28.4897 25.9326 23.9307
SPL 33.7915 30.611 28.0283 25.8719
Ours 33.356 29.7005 26.9822 24.8199

Table 4. Quantitative comparison between EC, CTSDG, CR-Fill, SPL, and our method on the Places2
dataset with different mask rates. ↓ denotes that lower is better and ↑ indicates that higher is better.
The best result is highlighted in bold and the second-best result is marked with underline.

Dataset Places2

Mask Ratio (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5]

FID (↓)

EC 1.4810 3.3814 6.2819 10.7867
CTSDG 1.1672 3.3474 7.3858 14.0385
CR-Fill 0.9558 2.2416 4.3691 7.7783

SPL 0.6680 1.8749 4.0821 7.7864
Ours 0.6796 1.9225 4.8417 10.5155

LPIPS (↓)

EC 0.0515 0.0897 0.1323 0.1804
CTSDG 0.048 0.0925 0.1444 0.2021
CR-Fill 0.0444 0.0808 0.1219 0.1689

SPL 0.0373 0.0726 0.114 0.1618
Ours 0.0365 0.0709 0.1139 0.1657

SSIM (↑)

EC 0.9225 0.8654 0.8039 0.737
CTSDG 0.935 0.8795 0.8186 0.7522
CR-Fill 0.9325 0.8784 0.8193 0.7542

SPL 0.9547 0.9128 0.8643 0.8089
Ours 0.9419 0.8929 0.8378 0.777

PSNR (↑)

EC 27.9966 24.9664 22.826 21.1286
CTSDG 29.0271 25.6747 23.3848 21.6154
CR-Fill 28.5685 25.1761 22.8066 20.95

SPL 31.2566 27.7344 25.2727 23.3253
Ours 29.8566 26.4925 24.1477 22.3093

The proposed PEIPNet method showed exceptional performance for all metrics: FID,
LPIPS, SSIM, and PSNR. In most cases, PEIPNet had the best or second-best outcome; this
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tendency was not observed for the other methods. Specifically, PEIPNet achieved at least
the second-best results on the Paris StreetView dataset, indicating the advantage of having
a small number of model parameters when training with a limited number of samples.
Thus, our quantitative evaluations confirmed the generalizability of the proposed method.

4.7. Ablation Studies

To verify the effects of the introduced the DDCM and ESA, ablation studies using
our method were conducted on the Paris StreetView dataset. Specifically, we divided the
DDCM into two parts for analysis, namely, the dilated convolution and the dense block. To
reduce the training time, we altered the batch size to eight for all combinations.

The quantitative results with different combinations of DDCM and ESA on the Paris
StreetView dataset are listed in Table 5. For the DDCM, eliminating the entire module
affected model performance; the average FID and LPIPS increased by 5.3607 and 0.0102,
while the SSIM and PSNR decreased by 0.0083 and 0.4658, respectively, compared with the
original model. Comparison of the two parts of the DDCM showed that applying dilated
convolutional layers yielded better results for all metrics, which indicates the importance of
long-range feature extraction in the image-inpainting task. ESA plays a crucial role, as the
average FID and LPIPS increased by 2.32 and 0.0034, while the SSIM and PSNR decreased
by 0.0025 and 0.0676, respectively. However, the decline in performance without ESA was
lower than that without the DDCM, indicating its dominance in the proposed method.

Table 5. Quantitative comparison ablation experiment on the Paris StreetView dataset with different
combinations of the proposed DDCM and ESA. 3 and 7 indicate the presence of the corresponding
module. ↓ indicates that lower is better and ↑ indicates that higher is better. The best result is highlighted
in bold.

Dataset Paris Streetview

DDCM ESA Average
FID
(↓)

Average
LPIPS

(↓)

Average
SSIM

(↑)

Average
PSNR

(↑)
Dilated
Conv.

Dense
Block

7 7 7 42.6749 0.1005 0.8690 27.5524
7 7 3 41.1195 0.0971 0.8713 27.6425
7 3 7 40.8669 0.0971 0.8717 27.6685
7 3 3 39.8682 0.0963 0.8740 27.7794
3 7 7 39.4503 0.0920 0.8737 27.8604
3 7 3 38.8718 0.0911 0.8745 27.9010
3 3 7 38.0788 0.0903 0.8771 28.0407
3 3 3 35.7588 0.0869 0.8796 28.1083

The qualitative results with different combinations of the DDCM and ESA on the
Paris StreetView dataset are shown in Figure 8. Unlike the original model, the remaining
combinations did not retain the streetlight structure. Specifically, the pillar was disconnected
from the head of the lamp, which is unrealistic. The authentic model provided the best
restoration of the texture of the leaves, demonstrating the strength of the proposed modules.

Finally, we calculated the complexities of different combinations of models, as described
in Section 4.4 and summarized in Table 6. The contribution of dilated convolution was minor,
with almost no change in the memory when this process was eliminated. Removing the
dense block had a greater impact on the memory compared with dilated convolution, though
the change remained insignificant. On the other hand, eliminating ESA had a significant
impact on memory through a 4.51% reduction in the computational cost. Thus, despite its
structural efficiency, adopting self-attention remains costly.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Qualitative comparison ablation experiment on the Paris StreetView dataset with different
combinations of proposed DDCM and ESA. DC, DB, and ESA denote dilated convolution, dense block,
and efficient self-attention, respectively. 3 and 7 indicate the presence of the corresponding module.
(a) Input; (b) DC(7)-DB(7)-ESA(7); (c) DC(7)-DB(7)-ESA(3); (d) DC(7)-DB(3)-ESA(7); (e) DC(7)-DB(3)-ESA(3);
(f) DC(3)-DB(7)-ESA(7); (g) DC(3)-DB(7)-ESA(3); (h) DC(3)-DB(3)-ESA(7); (i) DC(3)-DB(3)-ESA(3); (j) GT.

Table 6. Number of parameters and complexity of different combinations of the proposed DDCM
and ESA. 3 and 7 indicate the presence of the corresponding module.

DDCM
ESA

Number of
Model Parameters

Operational
MemoryDilated Conv. Dense Block

7 7 7 418,763 286.1
7 7 3 695,243 300.9
7 3 7 624,395 287.4
7 3 3 900,875 301.2
3 7 7 418,763 287
3 7 3 695,243 300.8
3 3 7 624,395 287.8
3 3 3 900,875 301.4

5. Conclusions

In this study, we have introduced the PEIPNet model for filling in missing pixels in
damaged images. The proposed method consists of a one-stage inpainting framework
in which depthwise and pointwise convolutions are utilized to minimize the number of
parameters and computational costs. We introduce three distinct modules into the proposed
model to produce semantically plausible outputs. First, SPADE was adopted to normalize
the feature maps according to the input mask. Second, a DDCM was used at each scale to
generate pixels and capture global information along the activations. Finally, we employed
ESA to extract long-range information and obtain references from undamaged areas. As
a result, PEIPNet is the first image inpainting method with less than one million model
parameters, and consumes the lowest amount of operational memory among the compared
state-of-the-art models. This shows the strength of our method, as it can be generally used
in real-world applications which require low computational costs, i.e., smartphones and
embedded boards. In addition, our experiments showed that the proposed method can be
generalized in terms of both qualitative and quantitative perspectives. In future studies,
we plan to reduce the model parameters and memory consumption to strengthen the main
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concept of lightweight architecture and real-world application. Moreover, we intend to
obtain higher-resolution images for inpainting generality.
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