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Abstract: Human posture recognition has a wide range of applicability in the detective and preventive
healthcare industry. Recognizing posture through frequency-modulated continuous wave (FMCW)
radar poses a significant challenge as the human subject is static. Unlike existing radar-based studies,
this study proposes a novel framework to extract the postures of two humans in close proximity
using FMCW radar point cloud. With radar extracted range, velocity, and angle information, point
clouds in the Cartesian domain are retrieved. Afterwards, unsupervised clustering is implemented to
segregate the two humans, and finally a deep learning model named DenseNet is applied to classify
the postures of both human subjects. Using four base postures (namely, standing, sitting on chair,
sitting on floor, and lying down), ten posture combinations for two human scenarios are classified
with an average accuracy of 96%. Additionally, using the centroid information of human clusters,
an approach to detect and classify overlapping human participants is also introduced. Experiments
with five posture combinations of two overlapping humans yielded an accuracy of above 96%. The
proposed framework has the potential to offer a privacy-preserving preventive healthcare sensing
platform for an elderly couple living alone.

Keywords: assisted living; human sensing; point cloud; FMCW radars; DenseNet

1. Introduction

First-world societies are experiencing an increased life expectancy [1,2] coupled with
a decrease in birth rates [3]. Elderly individuals often tend to reside either alone or with
their spouse. Due to age-related challenges, individuals in this demographic often require
continuous or at least frequent monitoring, and hospitals are already grappling with
understaffing concerns [4]. In-home physical behavior monitoring systems hold a huge
potential to prevent several aging-related medical emergencies. For instance, predictions
related to falls in the elderly can be made by continuously observing their posture while
performing daily life activities [5,6].

Previously, cameras have been widely utilized for posture classification; however, their
use raises privacy concerns in home environments [7–9]. Radio transceivers such as radars
provide a wireless posture monitoring solution with less privacy concerns. In addition to
this, radar sensors are not directly affected by varying lighting conditions. Several authors
have investigated the use of radar in the healthcare and assisted living domains [10,11].
Consequently, human posture classification using radar sensor has garnered a large amount
of research attention lately [10,12,13].

Amongst radar technologies, a multi-input-multi-output (MIMO) frequency modu-
lated continuous wave (FMCW) radar can simultaneously extract the range, angle, and
the Doppler information of the target. Additionally, tasks related to multi-person posture
classification insensitive of angle-of-arrival (AoA) requires a holistic scene representa-
tion followed by semantic segmentation. In such scenarios, rather than relying on the
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range-Doppler or angle-based information separately, the radar point cloud-based data
representation schema can be adopted. In our work, FMCW radar point cloud data are
subjected to the signal processing and machine learning pipeline to detect the posture of
multiple persons.

1.1. Related Work

The task of multi-human detection has widely been studied for detection [14,15], track-
ing [16,17] people counting [18], and dynamic activity recognition tasks [19] using radar.
Detection is relatively simple in comparison to the later tasks. For instance, Choi et al. [15]
found multiple humans by computing peaks in distance axis. Sensing human vital signs
after movement detection can be used to confirm human presence [20]. Similarly, multi-
human tracking is often performed by clustering radar-returns followed by tracking with a
Kalman filter [17]. Multi-human activity recognition has begun to establish footprints in the
literature [19]. In comparison to static postures, dynamic activities provide a comparatively
high amount of micro-Doppler information, making dynamic activities easier to classify in
comparison to postures.

For static humans, radar point clouds can aid skeletal pose estimation as well as
posture classification. Pose estimation is suited for rehabilitation and physical fitness-
related applications [21–23]. However, without individual joint information, posture
classification alone also has the potential to provide detective and persuasive healthcare
solutions. Consequently, a considerable amount of work has been published surrounding
daily life posture classification. One of the earliest attempts to classify human posture
considered a pulsed radar to classify sitting, standing, and lying posture using forty
different features [24]. For similar postures, the authors in reference [25] used a decision
tree classifier driven by 33 features, and achieved an overall accuracy of 85%. Another
study [26] extracted point cloud representations of six different postures through a novel
framework and achieved a success rate of 54.6% by comparing the dimensions of the point
cloud with original postures. However, all of these studies were focused on single human
at a fixed distance and angle.

Recently, Zhao and co-workers [13] proposed an angle-insensitive posture recognition
system based on point cloud data extracted using FMCW radar. The point cloud-based
spectrograms images were used as input to the pre-trained AlexNet, which demonstrated
over 87% accuracy. However, only a single human subject (and single distance) was
considered for point cloud generation. Yang et al. [27] classified three postures at different
distances and angles for a single human subject using only range information, which may
not be very robust in real applications. Wu et al. [28] recognized three postures along
with heart rate estimation in their study; however, only three postures and a single human
subject were considered.

The authors in reference [29] recognized only asiting posture with five different poses
using FMCW radar and a feature-based support vector machine (SVM), which provided
96% accuracy. Another study opted to employ a lightweight convolutional neural network
(CNN) architecture on a voxelized point cloud to recognize sitting direction [30]. A recent
work extracted vital signs and detected fall posture in a single human subject [31]. Another
work classified seven postures of a walking pedestrian [32]. Similarly, De et al. [33] classified
two postures and one activity, and focused mainly on comparing different classification
techniques. Table 1 summarizes the related literature considering posture classification
works intended for (elderly) healthcare.

As stated earlier, elderly individuals tend to either live alone or with their spouses.
However, the prior literature suggests that the existing works consider only a single human
subject for posture classification [10,12,13], overlooking the scenario of an independently
living elderly couple. In addition, multiple distances and angles and overlapping human
subjects have not been studied so far.
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Table 1. Existing studies related to human posture classification (Tick represents if study possess the
mentioned characteristics).

Study Multiple
Humans

Posture
Combinations

Different
Distances

Different
Angles

Overlap
Case

[24] (2014) - 3 - -
[25] (2018) - 3 - - -
[26] (2021) - 6 - - -
[13] (2022) - 6 - -
[27] (2022) - 3 -
[28] (2022) - 3 - - -
[34] (2022) - 4 - - -
[29] (2023) - 5 - - -
[30] (2023) - 1 - - -
[31] (2024) - 4 - -
[32] (2024) - 6 - - -
[33] (2024) - 3 - - -
[35] (2024) - 3 - - -
[36] (2024) - 4 -

Ours 10

1.2. Our Work: Scope and Novelty

In this article, we propose a novel multi-human posture recognition framework using
a millimeter-wave (mmWave) radar point cloud and deep learning architecture. An off-
the-shelf (OTS) FMCW radar consisting of 12 transmitting and 16 receiving antennas is
used in this study. Four base postures from two human subjects are captured using MIMO
FMCW radar. Two humans collectively resulted in ten combinations of postures in each
data capturing scenario. The captured radar-returns are converted into 3D point cloud
data, and unsupervised clustering is used to separate the two targets. Once the postures
of two humans are separated, a DenseNet based deep learning architecture is utilized for
feature extraction and classification. The main contributions and novelty of our work are
as follows:

1. To the best of our knowledge, this is the first study to estimate human postures from
multiple (two) subjects using FMCW radar point cloud. An unsupervised clustering-
based strategy to separate human targets is presented. Consequently, such systems
can facilitate a detective and preventive healthcare system for elderly couple.

2. Additional experimentation with both humans present in a close proximity is also
performed, allowing a partial overlap between the two human subjects. The distance
between the clustering centroid of the two humans is evaluated to confirm the close
proximity. In such a case, the first cluster is considered as the first human subject
whereas the second and third clusters are combined together to reconstruct the posture
of the second human subject. Although the point cloud was visually deteriorated, the
deep learning algorithm was able to classify five posture combinations.

Deep learning-based approaches for radar-based activity and posture classification are
on the rise [4,37]. In this work, the posture point clouds are exported as an image, followed
by deep learning-based classification. CNN has been a dominant paradigm over the past
decades. A CNN structure relies on multiple layers of convolution and max-pooling to
learn features from image data, and ultimately, a soft-max layer converts feature vectors
into class probability. Stacking several layers to form a complex network is a well-known
approach in the literature.

Instead of linearly stacking convolutional layers, the formation of deep non-linearly
stacked convolutional models was originally introduced in 2012 when a complex CNN
structure termed as AlexNet outperformed the existing image classifiers [38]. Since then,
several complex structures have been proposed [39–41]. This study utilizes DenseNet archi-
tecture [41] to classify radar-generated point cloud images of human postures. DenseNet
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offers an improved gradient flow and implicit regularization to mitigate vanishing gradi-
ents and overfitting issues, respectively. In addition to this, in comparison to competing
architectures such as ResNet [42], DenseNet is computationally efficient and provides di-
versified features. DenseNet models have shown promising accuracy on point cloud data.

The rest of this paper is organized as follows: Section 2 presents the materials and
methods; Section 3 defines the experimental setup and data collection scenarios; Section 4
presents the results and discussion; and finally, Section 5 concludes the paper.

2. Materials and Methods

This section provides a detailed overview of the proposed framework, consisting of
radar signal acquisition and pre-processing followed by radar point cloud extraction and
posture classification.

2.1. Signal Acquisition and Pre-Processing

A FMCW radar frame consists of several chirps characterized by linearly increasing
frequency signals (see Figure 1). The transmitted frame x(t) can be represented as

x(t) = exp{j2π( f ct +
B

2T
t2), 0 ≤ t ≤ T, (1)

where fc is the initial frequency, T is the chirp time, and B is the bandwidth. The rate at
which chirp ramps up is determined by slope S and chirp time Tc. A higher bandwidth is
proportional to higher range resolution, which in turn corresponds to multiple reflections
from the human body and higher point cloud density. The corresponding signal reflected
from target present within the radar field-of-view (FOV) is collected at the receiver. The
received signal xr is the time-delayed and attenuated version of a transmitted signal
such that

xr(t) = exp{j2π( f c(t − td) +
B

2T
(t − td)

2). (2)

The term td is time taken by the transmitted chirp to collide with the target and be
received back at receiver antenna. Figure 1 illustrates the processing of the received signal,
where the first step is to pass the signal through a mixer to acquire a low frequency signal
termed as an intermediate frequency (IF) signal, which is expressed as

IF(t) = exp{j4π(
BR
cT

t +
R
λ
}), (3)

where λ is the wavelength of IF signal. For a MIMO radar, the transmitting and receiving
antennas can be used sequentially through time-division multiplexing (TDM) to form a
virtual antenna array. As expressed in Figure 1, the whole operation is repeated individually
for each receiving channel (Rx). The IF signals of each Rx within a defined coherent
processing interval (CPI) are sampled through an analogue-to-digital converter (ADC) and
stored in a three-dimensional array known as a radar data cube (RDC). The size of the RDC
array depends on the number of samples, number of chirps, and number of frames.

2.2. Point Cloud Generation

Figure 2 illustrates the point cloud generation framework from the raw data captured
for a two-person scenario. The RDC is passed through a Fast Fourier Transform (FFT)
computation block in a horizontal direction along the ADC samples. This FFT is often
termed as range-FFT [43,44], and the peaks in range-FFT define the distance (r) of targets
as illustrated in Figure 2. Next, another FFT (Doppler-FFT) is performed along the number
of chirps in a frame, which yields the velocity (v) of the target. The Doppler-FFT requires
the transmission of multiple chirps within a single frame.
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Figure 1. FMCW radar signal acquisition in MIMO configuration.
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Figure 2. Conceptual point cloud generation framework with two persons present at different distances.

In order to reduce ghost targets, a suitable target detection algorithm must be applied
on the range-Doppler map to detect the human target in the noisy environment. Constant
false alarm rate (CFAR) is a common choice for this purpose due to its ability to operate
under variable noise floor [30,45,46]. We implemented cell-averaging smallest of-CFAR
(CASO-CFAR) due to its ability to detect multiple adjacent targets in a radar FOV [47,48].

To extract the AoA, a third FFT along the receiving channels is performed individually
at each target range-bin to calculate azimuth (θ) and elevation (ϕ) angles. In this way, r, θ,
and ϕ collectively define the location of a single reflection from the human body in spherical
coordinates, and the overall reflections for an arbitrary frame f will be

Pf (r, θ, ϕ) = {(ri, θi, ϕi), i = 1, 2, . . . , I}, (4)

where Pf represents the collection of target reflections detected by CFAR for the frame
number f , and I is the total number of target reflections in a single frame. The velocity (v)
conveys the motion characteristics; however, it can be ignored while dealing with static
postures. The point cloud data in the Cartesian coordinates x, y, and z can be calculated
using r, θ, and the below:

Pf (x, y, z) =

xi
yi
zi

 =

risin(θi)cos(ϕi)
ricos(θi)cos(ϕi)

risin(ϕi)

, i = 0, 1, 2, . . . , N f r. (5)
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where the term N f r represents the total number of frames required to generate the posture
point cloud. The point cloud from multiple frames is accumulated together to form P,
which is further considered to extract the shape of a human present in the radar FOV:

P =
[

p1 p2 p3 . . . pN f r

]
. (6)

Once the point clouds are formed, the spatial and temporal characteristics such as
shape, position, and motion of a human target can be acquired in the point cloud domain.
Temporal modeling requires clustering within one frame, whereas spatial modeling, such
as for posture, requires frame aggregation [49].

2.3. Multiple Humans Detection with Unsupervised Clustering

The spatio-temporal information of human targets conveyed by the point cloud map
P also contains noise points and outliers due to interference and multi-path effects [50].
In addition, multiple humans also form a cluster of co-located points, suggesting the use
of an unsupervised clustering algorithm. Consequently, a clustering approach known as
density-based spatial clustering of applications with noise (DBSCAN) is used to reject the
noise and detach two human clusters at the same time. DBSCAN is a common preference
in radar-based point cloud processing [51,52]. The outputs C1, C2, and C3 of DBSCAN
represent the three clusters of co-located points such that

[C1, C2, C3] = dbscan(P), (7)

and the cluster centroids c1, c2, and c3, corresponding to the three clusters C1, C2, and C3,
are computed as

[c1, c2, c3] = [
∑ C1

n
, ∑ C2

n
, ∑ C3

n
]. (8)

Figure 3 briefly illustrates the methodology to separate the two human targets using
DBSCAN. In non-overlapping cases, clusters C1 and C2 are designated as human 1 and
human 2, respectively, and processed individually. The two postures are transformed
into images, and a deep learning algorithm is applied individually to both the images.
The two predictions are passed through an AND logic, where the overall prediction is
considered as correct only if both the postures are detected correctly.

Point cloud of two persons 

in standing posture

Target segregation 

through DBSCAN

Image projection of 

individual postures

Results accepted only when 

both predictions are correct

D
en

se
n

et
D

en
se

n
et

Posture 1 

prediction

DenseNet based 

individual predictions

Posture 2 

prediction

Final 

prediction
AND

−1 −1

1
 2

−1

Figure 3. Overall strategy to transform raw point cloud into images followed by posture prediction.

For the overlapping case, five posture combinations are considered, which are based
on three individual postures: standing, sitting on a chair, and lying down. Sitting on the
floor was not considered, since the available point cloud information was not enough to
generate the corresponding point cloud. In overlapping cases, the centroids of each cluster
are observed to judge whether the point clouds of the two participants are overlapping
each other or not. If the distance between the three centroids is smaller than the adjusted
threshold (th), an overlapping case is detected, and the third cluster is combined with
second cluster to form a single image. On the other hand, if the distance between two
clusters is higher than the th, the third cluster is ignored as noise.
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The aforementioned clustering approach separates the two human subjects in the
radar point cloud domains. As illustrated in Figure 3, the separated point clouds are further
saved as two independent 2D images in the (x,z) Cartesian domains. The point cloud
appeared to be symmetrical along the y-axis, which suggests that 2D x,z information can
effectively represent the overall posture data. Subsequently, an image classifier can be
trained to classify the independent posture of each human. Note that in single iteration,
the postures of both the humans are classified individually, and the overall prediction is
labeled as true only when both the predictions are correct.

2.4. Posture Classification Using Deep Learning

As stated earlier, non-linearly structured convolutional networks have emerged as a
promising solution in image recognition problems. In this study, several machine learning
architectures were evaluated for radar-based posture recognition work, and the best per-
forming architecture was adopted. The deep learning architecture considered in this study
is shown in Figure 4. Along with convolution and pooling layers, the network comprises a
complex block termed as a dense block, where all the dense block inputs and intermediate
outputs are connected to form a dense connection. Each dense block perpetuates the same
process, as illustrated in Figure 4. Subsequently, feature diversity is achieved for enhanced
performance. Our network consists of three dense blocks for feature learning, followed
by classification.

C
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Figure 4. DenseNet architecture for postures classification.

3. Experimental Setup

To validate the proposed two-human posture recognition framework, extensive exper-
imentation is carried out at different distances and angles, along with different overlaps.

3.1. Experimental Configurations

For data collection, we used mmWave radar, named MMWCAS-RF-EVM, manufac-
tured by Texas Instruments (Dallas, TX, USA). This radar consisted of 12 transmitting and
16 receiving antennas. A total of 192 receiving channels were formed using TDM-MIMO,
out of which 86 channels corresponded to the azimuth antenna array, and 4 channels
corresponded to the elevation array. The parameters for configuration are presented in
Table 2. A frame rate of 20 frames per second (FPS) was selected, while the total capture
time for a single data sample was set to 1 s. One of the data capturing scenarios is depicted
in Figure 5a, showing two participants sitting with 33% overlap in front of FMCW radar at
a distance of approximately 2 m. As illustrated in Figure 5b, to confirm the robustness of
proposed framework, the data were captured both in overlap and non-overlap scenarios.
The resulting posture combinations for the two non-overlapping human case scenarios are
illustrated in Figure 5c. Note that a single scenario was marked as correct recognition only
if both the postures were classified correctly.
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Table 2. Radar parameters used for data acquisition.

Radar Parameter Value / Description

Starting frequency 77 GHz
Total bandwidth span 3.3 GHz
Number of chirps 32
Frame rate 20 FPS
Number of frames 20
ADC samples per chirp 256
Number of Tx and Rx antennas 12 and 16
Azimuth and elevation antennas 86 and 4

(b) (a) 

FMCW 

Radar

2m 2.5m 3m
RADAR 1

2 2

2m 2.5m 3m

1

2

1

2

1

2

60 cm
RADAR

Target11

Target22

2

20 cm

Performed with 33% and 66% overlap

Both 
Lying 

on Bed 

Both 
Sitting 

on floor

Standing & 
Lying on bed

C#01 C#02 C#03 C#04 C#05 C#06 C#07 C#08 C#09 C#10

Standing 
& Sitting 
on chair

Sitting on 
chair & 
Lying on 

bed

Sitting 
on chair 
& floor

(c) 

Without overlap

Sitting on 
floor & 

Lying on 
bed

Both 
Standing

Both 
Sitting on 

chair

Standing 
& Sitting 
on floor

1

Figure 5. Experimental setup for data capture: (a) Two participants sitting in front of MIMO FMCW
radar, (b) all the data capturing locations, and (c) ten possible combinations for non-overlap scenarios.

3.2. Participant Demographics

Five participants were involved in the data capture scenarios, with an average height
and weight of 1.70 ± 0.38 m and 73.9 ± 8.6 kg, respectively. Given that the posture recogni-
tion experiments involved real human participants, an approval from the research ethics
committee at Hanyang University, Seoul, South Korea was received prior to experimen-
tation. The related Institutional Review Board (IRB) ID is HYU-2021-01-015. Additional
consent was also gathered from the involved human volunteers. Lacking the availabil-
ity of open-source datasets, radar-based research works have mainly been conducted by
capturing data first. In this work, we used 70% of the data for training purposes, and the
remaining 30% for test purposes. The dataset comprised a total of 900 images.

3.3. Data Collection for Non-Overlap Case

The data collection setup for the non-overlap cases is shown in Figure 5c. The
two participants performed four different postures at different distances and angles. The
considered postures were standing, sitting on a chair, sitting on the floor, and lying on a
bed. This scenario resulted in ten posture combinations, as shown in Figure 5c. A total of
600 samples were collected for non-overlapping postures of the two participants.

3.4. Data Collection for Overlap Cases

In real-world scenarios, it is not necessarily true that both participants will be at
different angles; instead, they might be at the same angle, i.e., one might be overlapping



Sensors 2024, 24, 7250 9 of 17

another. In such cases, the accuracy of any posture estimation system may drop, as partial
information from one of the postures is missing. To assess the impact of different degrees
of overlap, three postures named as standing, sitting on chair, and lying on bed were
considered. The fourth posture, sitting on floor, was not considered, since no line of
sight was available to generate the relevant point cloud. These three postures resulted in
five posture combinations for two-human scenarios.

The designed experimental setup is shown in Figure 6a–c. In the first case, although
both participants were visible to radar, they were in close proximity, as shown in Figure 5b.
For the second and third cases, one of the participants was completely visible to the
radar, while overlapping approximately one-third (33%) and two-thirds (66%) of the other
participant, respectively. The posture combinations for these three cases are depicted in
Figure 6. For the combined non-overlap and overlap cases, 900 images were collected
in total.

Both

Standing
Standing & 

Sitting on chair

Standing & Lying 

on bed

Both Sitting 

on chair

 

Sitting on chair & 

Lying on bed

(b) ~33% Overlap

Both

Standing
Standing & 

Sitting on chair

Standing & Lying 

on bed

Both Sitting 

on chair

 

Sitting on chair & 

Lying on bed

(c) ~66% Overlap

C#01 C#02 C#03 C#04 C#05

C#01 C#02 C#03 C#04 C#05

Both

Standing
Standing & 

Sitting on chair

Standing & Lying 

on bed

Both Sitting 

on chair

 

Sitting on chair & 

Lying on bed

(a)Non-Overlap

C#01 C#02 C#03 C#04 C#05

Figure 6. Posture combinations for non-overlap and overlap cases combined: (a) Non-overlap case
with 5 posture combinations, (b) ≈33% overlap, and (c) ≈66% overlap.

4. Results and Discussion
4.1. Point Cloud Visualization

Figure 7 shows the clustered point clouds and the corresponding images for all the
ten posture combinations of two humans in a non-overlapping scenario. The blue, green,
and red colors correspond to person one, person two, and noise artifacts, respectively.
The DBSCAN approach effectively clustered each human present in the radar FOV while
reducing the noise artifacts. For instance, Figure 7a shows the point clouds of persons
standing in front of the radar. Similarly, Figure 7b shows the point clouds of standing and
sitting human subjects.
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Figure 7. Point cloud of all the ten posture combinations: (a) Both standing, (b) both sitting, (c) both
lying down, (d) both sitting on floor (e) standing and sitting, (f) standing and lying down (g) standing
and sitting on floor, (h) sitting and lying down, (i) sitting on floor and lying down, and (j) sitting on
chair and lying down.

Radar data, represented as point clouds, are often beneficial for complex recognition
tasks such as semantic segmentation and multiple object recognition. The point clouds
shown in Figure 7 illustrate that once the point cloud of a human subject is exported as
an image, computer vision approaches can effectively learn the features and extract the
individual postures afterwards. The target separation results are illustrated in Figure 8
for convenience.

(a) (c)(b)

DBSCAN: Cluster 2 and 

cluster 1  are considered as 

person 1 and person 2 and 3rd

cluster is ignored 

Person 1

Person 2

DBSCAN with centroid 

consideration: Overlap is detected; 

cluster 1 and cluster 3 are merged as 

person 2 using range information

Person 1

Person 2

Point cloud of overlapping persons: Cluster 2

(green) corresponds to person 1; Cluster 1 (blue) 

and 3 (red) corresponds to person 2 

+ Cluster 1 O Cluster 2

*Cluster 3  • Noise

Person 1

Person 2

Person 1 Person 2

0−1 1

Figure 8. Radar point cloud for two overlapping human participants in standing and sitting on
chair positions: (a) data collection environment and extracted point cloud, (b) raw DBSCAN, and
(c) centroid-based overlap detection.

4.2. T-SNE Analysis of Opted Network

The t-distributed stochastic neighbor embedding (t-SNE) analysis is a frequently used
dimensionality reduction technique to visualize the complex dataset using low dimen-
sional space. Prior to the accuracy evaluation of the opted deep learning model, features
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visualization at the end of the learned network can be performed to visualize the features
distribution in lower dimensions. The performance of different networks in lower dimen-
sions using t-SNE analysis is presented in Figure 9a–e, which illustrates that the inter-class
separation for the learned features of ShuffleNet and DenseNet is higher than the other
networks. Within these two networks, inter-class separation for DenseNet based features
was the highest.

(c)

Sitting on Chair

Lying Down

Standing

Sitting on Floor

Legends

Dimension 1

D
im

e
n

s
io

n
 2

(b)

−2
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1
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−4
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−4

−2

0
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8

(d)

−5 0 5 10

4

2

0

−2
−5 0 5

(e)

Figure 9. T-SNE analysis for (a) 7-layered CNN, (b) 16-layered CNN, (c) 25-layered CNN,
(d) DenseNet, and (e) ShuffleNet.

DenseNet has a wider feature distribution in comparison to the other four networks.
Both DenseNet’s enhanced ability to learn the patterns present in the data and facilitate
improved discrimination between different classes more effectively can be attributed to the
presence of dense connections that each layer has with all the subsequent layers, allowing
increased flow of feature maps within the network [53]. Next, the performance of the opted
network is computed with multiple metrics.

4.3. Metrics for Performance Evaluation

Once all the point cloud images of all the postures were created, the dataset was
labeled and 70% of the data was used for training, whereas the remaining 30% was used for
test purposes. The dataset comprised a total of 900 images. Since the scope of classification
spanned over multiple classes, we evaluated the performance of proposed framework
through multiple metrics named as Precision, Speci f icity, Recall, F1-score, and the area un-
der the curve (AUC). Precision and Speci f icity quantify the accuracy of the true prediction
and false prediction of a particular class, respectively, in comparison to all the instances of
that class. Recall measures all the actual true instances. In short, Precision measures the
performance of a particular class to avoid false-positives for the positive class, Speci f icity
measures the performance of a particular class to avoid for the negative class, and Recall
measures the ability to reduce false-negatives. These terms can be expressed as,

Precision =
TP

TP + FP
. (9)

Speci f icity =
TN

TN + FP
. (10)

Recall =
TP

TP + FN
. (11)
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In (9)–(11), TP, FP, TN, and FN represent true-positive, false-positive, true-negative,
and false-negative, respectively. Precision and Recall collectively form the F1-score, which
can be termed as a harmonic mean between the two quantities defined as,

F1-Score =
2 × Precision × Recall

Precision + Recall
. (12)

The AUC value, which corresponds to the probability that the model ranks a randomly
chosen negative instance lower than a positive instance, can be computed from the area
under the receiver operating characteristics (ROC) curve by plotting recall or true positive
rate (TPR) against the false positive rate (FPR) defined as

FPR =
FP

FP + TN
. (13)

4.4. Performance Evaluation for Non-Overlap Case

When both participants are posed in a non-overlapping fashion, complete postures
can be retrieved using the radar point cloud, as illustrated in Figure 7. The corresponding
confusion matrix for this case is shown in Figure 10. The proposed framework achieved
a high accuracy of 96%. As stated earlier, the final prediction was considered as correct
only if both the postures were identified correctly (see Figure 3). Figure 10 suggests that
the sitting on ground posture was often mixed with the other posture, resulting in a higher
error rate. The rest of the performance metrics are reported in Table 3.

Predicted Class

C#01 C#02 C#03 C#04 C#05 C#06 C#07 C#08 C#09 C#10

T
ru

e C
la

ss

C#01 100% 11.1% 11.1%

C#02 88.8%

C#03 100%

C#04 100% 5.5% 5.5%

C#05 100%

C#06 100%

C#07 83.3%

C#08 100% 5.5%

C#09 94.4%

C#10 94.4%

Overall Accuracy 96%

Figure 10. Confusion matrix for all the ten posture combinations in non-overlapping cases.

Table 3. Evaluation of class-wise and mean accuracy, precision, recall, F1-score, specificity, and AUC
values for the ten posture combinations in non-overlapping cases.

Scenario Metric 1 2 3 4 5 6 7 8 9 10 Mean

Non-Overlap

Accuracy (%) 100 88.89 100 100 100 100 83.33 100 94.44 94.44 96.11
Precision (%) 94.74 100 90 100 100 100 100 75 100 94.44 95.42

Recall (%) 100 88.89 100 100 100 100 83.33 100 94.44 94.4 96.11
F1-Score (%) 97.30 94.12 94.74 100 100 100 90.91 85.71 97.14 94.44 95.44

Speci f icity (%) 99.35 100 98.69 100 100 100 100 98.15 100 99.35 99.55
AUC 0.99 0.94 0.99 1 1 1 0.92 0.99 0.97 0.97 0.98

4.5. Overall Accuracy Including Overlap and Non-Overlap Cases

The overall performance for the two overlapping and non-overlapping human sub-
jects was evaluated using the data capturing scenario introduced earlier in Figure 6. The
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proposed framework first detected the overlap using the DBSCAN algorithm as illustrated
in Figure 8. Since the DBSCAN clustering works on the principle of connected density, it
tended to divide the occluded postures into two separate clusters as illustrated in Figure 8a.
The point cloud of the first person is shown in green, whereas the point cloud of the second
person consists of two clusters shown in blue and red. DBSCAN, without considering the
centroid information to evaluate whether overlap occurred or not, may consider cluster 1
and cluster 2 as target 2 and target 1, and thus the upper body part of second person is
ignored, as illustrated in Figure 8b. On the other hand, the centroid information-assisted
DBSCAN clustering technique first detects an overlap if the centroids are present very near
to each other. Subsequently, the two clusters whose centroids are present at same range
are merged together to provide additional information about the occluded posture, as
shown in Figure 8c. This additional information further enhances the classification results
in overlapping cases.

The performance evaluation for the two overlapping human subjects is summarized
in Table 4. For all of the cases, considerable accuracy is observed; however, a decreasing
trend in accuracy is observed with an increase in the overlap between the two subjects.

Table 4. Evaluation of class-wise and mean accuracy, precision, recall, F1-score, specificity, and AUC
values for the combination of overlap and non-overlap cases.

Scenario Metric Both Standing Standing + Sitting Stand + Lie Down Sit + Sit Stand + Lie Down Mean

Non-Overlap

Accuracy (%) 100 100 100 97.78 98.89 99.33
Precision (%) 100 100 100 94.4 94.74 97.84

Recall (%) 100 100 100 94.4 100 98.89
F1-Score (%) 100 100 100 98.61 98.61 99.44

Speci f icity (%) 100 100 100 98.61 98.61 99.44
AUC 1.00 1.00 1.00 0.95 0.99 0.99

33% Overlap

Accuracy (%) 94.4 93.75 100 94.11 94.11 95.29
Precision (%) 94.4 93.75 94.74 100 94.11 95.41

Recall (%) 94.44 93.75 100 94.12 94.12 95.29
F1-Score (%) 94.44 93.75 97.3 96.97 94.12 95.32

Speci f icity (%) 98.53 98.57 98.53 100 95.55 98.84
AUC 0.97 0.96 0.99 0.97 0.96 0.97

66% Overlap

Accuracy (%) 94.4 94.4 100 83.3 83.3 91.1
Precision (%) 85 94.44 94.73 100 83.3 91.5

Recall (%) 94.4 94.4 100 83.33 83.33 91.1
F1-Score (%) 89.47 94.44 97.29 90.91 83.33 91.1

Speci f icity (%) 95.83 98.61 98.61 100 95.83 97.8
AUC 0.95 0.97 0.99 0.92 0.90 0.94

4.6. Comparison with Existing Studies

As stated earlier, the existing works often consider a single human target for posture
evaluation [28–31,34]. Due to a lack of target segregation mechanism in the related studies,
a direct comparison with the existing works cannot be performed. Nevertheless, in order
to verify the effectiveness of the proposed framework based on target segregation followed
by the DenseNet model, we compared several deep learning architectures on the generated
dataset. Prominent convolution-based deep learning models were evaluated against the
ten posture combinations shown earlier in Figure 5. The classification accuracy for each
network is reported in Figure 11. A CNN comprising of 6, 15, and 25 layers resulted in
40%, 69%, and 73% accuracy, respectively. Note that in the two-human scenarios, the
posture of both the participants must be correct. Another deep learning architecture
named ShuffleNet [40] was also considered for evaluation, which yielded 90% classification
accuracy. Contrary to this, DenseNet achieved 96% accuracy.
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Figure 11. Classification accuracy of different deep learning models.

5. Conclusions and Further Work

This paper presents a two-person posture recognition framework using a FMCW
radar-generated 3D point cloud and deep learning. Using a DBSCAN clustering approach,
two targets are separated, and the point cloud of each person is converted into an image. A
DesneNet framework is deployed to learn the features, followed by classification. Evalu-
ation at different distances and angles suggests that unlike existing works, the proposed
work is distance and angle-insensitive, and can recognize four postures from multiple
humans simultaneously, with an average accuracy of 96%. Additional evaluation for the
overlapping humans case suggests that for partial overlaps of 33% and 66%, the modified
DBSCAN can recognize standing, sitting on chair, and lying down postures with an average
success rate of above 90%.

This study considered four basic postures, named as standing, sitting on chair, sitting
on floor, and lying down. Additional real-world postures can be included to imitate
practical scenarios. Additionally, a lighter deep learning model for edge computing can be
considered in future. For the case of overlapping human subjects, the missing point cloud
data is not interpolated; instead, the targets are separated and fed to the deep learning
model individually. The presented framework algorithm can accurately classify when there
is a partial overlap between two humans separated by few centimeters. MIMO radar also
monitors the depth information along with the horizontal and vertical angles. However, a
strategy to mitigate the scenario of two closely located humans with no distance separation
has not been devised so far. Such an approach could efficiently increase the robustness
of multi-human posture detection works. Additionally, missing point interpolation could
significantly increase the accuracy in evaluation of overlapping human subjects.
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