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Abstract: This paper presents a deep learning-based Scan-vs-BIM methodology for evaluating
structural integrity through the extraction of features from As-Built scan and As-Planned Build-
ing Information Modeling (BIM) comparison data. Traditional Scan-vs-BIM frameworks often rely
on Scan-to-BIM processes to generate point cloud-based mesh models for comparison, which sig-
nificantly impairs computational efficiency. In contrast, the proposed streamlined Scan-vs-BIM
framework incorporates a deep neural network (DNN) model consisting of two neural networks:
one for structural integrity assessment and another for error type analysis. The model evaluates the
structural integrity of individual components in a sequential manner, repeating the process across all
elements to comprehensively assess the entire structure. Rather than converting point cloud data into
mesh models for comparison, this approach directly measures the spatial discrepancies between the
As-Built point cloud and As-Planned BIM, analyzing the distribution tendencies of these distance
values. Experimental validation on actual steel structures demonstrated that the proposed method
effectively predicts structural integrity, providing significant improvements in both accuracy and

computational performance.

Keywords: scan-vs-BIM; steel structure; deep learning; deep neural network (DNN); integrity
evaluation; 3D scanning

1. Introduction

Integrity evaluation is fundamental for assessing the production quality and safety
performance of construction projects, particularly in areas such as new construction, facility
management, safety inspections, remodeling, and repairs [1]. Traditionally, integrity evalu-
ation within the construction industry has been a manual process, reliant on the subjective
judgment, observation, and expertise of skilled workers, which often results in incomplete
and inaccurate reporting [2]. To mitigate these issues, recent research has focused on
developing more efficient integrity evaluation methodologies through the application of
information and communication technologies (ICTs) to transcend manual limitations [3].

Laser scanning has emerged as a widely adopted method for data collection in integrity
evaluations for construction projects [4]. Typically, it is employed to reconstruct As-Built
data, which is then used in “As-Planned vs. As-Built” comparison procedures [5]. Point
cloud-based As-Built verification methods, in general, depend on manually designed
models of real-world structures [6]. Consequently, there is an increasing demand for tools
capable of automating the processing of As-Built data and enhancing “As-Planned vs.
As-Built” comparison efficiency. In response, recent research efforts have concentrated on
automating construction progress monitoring, leading to rapid advancements in associated
theories and technologies [7].

A recent study has demonstrated that the “Scan-vs-BIM” framework, which com-
pares As-Built scan data with As-Planned Building Information Modeling (BIM) models,
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performs effectively in terms of geometric comparison [8]. Both As-Built scan data and
As-Planned BIM models used in the Scan-vs-BIM framework continue to evolve, while
the associated input costs decrease [9]. These processes facilitate the assessment of the
As-Built status of construction projects in a detailed, timely, and semantically accurate man-
ner [10]. Furthermore, converting As-Built scan-based point cloud data into mesh models
using the Scan-to-BIM framework, followed by comparison with As-Planned BIM models,
has significantly improved the accuracy and automation of “As-Planned vs. As-Built”
comparisons [11].

However, conventional Scan-to-BIM processes within the Scan-vs-BIM framework
are associated with several challenges: (1) individual structural integrity evaluation is
restricted, resulting in diminished reliability of structural models, and (2) the efficiency of
the process is hindered by the slow speed and significant memory requirements associated
with the creation of point cloud-based mesh models and the automatic determination of
structural error types [12]. Additionally, comparing As-Planned BIM models with As-Built
point clouds within the Scan-vs-BIM framework requires converting both data types into a
unified format (mesh models), thereby reducing the overall efficiency of the framework [13].
Therefore, a solution that can directly compare these data types in their original states
would greatly enhance the integrity evaluation process and address the shortcomings of
the current framework.

Recently, the application of deep learning to the construction industry has gained
considerable traction, yielding substantial improvements over traditional frameworks [14].
Deep learning has been increasingly applied to address complex challenges in the con-
struction industry, offering improvements in both speed and accuracy over traditional
methods. Akinosho et al. highlighted that deep learning models automate complex tasks
such as structural health monitoring, construction site safety assessment, building occu-
pancy modeling, and energy demand prediction [15]. Their analysis shows that deep
learning automates complex tasks and efficiently processes large datasets, reducing the
need for manual intervention and speeding up data processing. The model’s ability to
learn complex patterns and representations from data improves accuracy, providing bet-
ter predictive performance than traditional methods. However, challenges such as data
availability, the “black box” nature of deep learning models, and the need for specialized
expertise remain. Addressing these challenges is crucial for the wider adoption of deep
learning in the construction industry. Consequently, applying deep learning to the Scan-vs-
BIM framework presents a promising opportunity to overcome the limitations inherent in
conventional approaches. The aim of this study is to develop a novel deep learning-based
Scan-vs-BIM framework that directly compares As-Built scan data with As-Planned BIM
models without the need for mesh conversion, thereby improving computational efficiency
and accuracy in structural integrity evaluation. Specifically, we propose the distance deep
neural network (Distance-DNN) model, which evaluates structural integrity by analyzing
the distribution tendencies of distance values between the As-Built point cloud and the
As-Planned BIM model.

The remainder of this paper is organized as follows: Section 2 presents a literature
review related to Scan-vs-BIM and deep learning. Section 3 describes the methodology
and framework of the Distance-DNN-based Scan-vs-BIM process. A review of the model
training process and the training results of Distance-DNN are presented in Section 4.
Section 5 discusses the evaluation of Distance-DNN after applying it to an actual steel
structure case. Finally, Section 6 summarizes the conclusions of the study.

2. Literature Review
2.1. Scan-vs-BIM in Construction

Within the architectural, engineering, and construction (AEC) industry, traditional
integrity evaluation methodologies are predominantly manual-based. These approaches
rely heavily on subjective estimation, observational skills, and the expertise of professional
workers, rendering them prone to incomplete and inaccurate reporting [2]. Such reliance
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on human judgment introduces variability and inconsistencies in the assessment process.
To address these limitations, substantial research efforts are underway to develop efficient
and objective integrity assessment methods. Among these, three-dimensional (3D) laser
scanning has been proposed as a powerful tool for integrity evaluation due to its ability to
accurately capture the As-Built state in three dimensions [5].

The 3D laser scanning technique is one of the major computer vision technologies
that has been used since the 1990s [16]. It has the advantage of providing fast, accurate,
comprehensive, and detailed 3D data about the scanned scene. It can capture a scene
accurately in millimeters, and the captured information is saved as a 3D point cloud model
that is typically called an As-Built scene. The collected 3D point cloud can be used to create
an As-Built 3D Computer-Aided Design (CAD) model that can be applied to building
design, reconstruction projects, tracking of project progress, and quality control [9]. Despite
its numerous advantages, 3D laser scanning is not without its limitations. One of the
primary challenges associated with this technology is the time required to perform each
scan, particularly in complex environments where multiple scans from different vantage
points are needed to achieve adequate resolution and minimize physical obstructions
between the scanner and the target object [17].

The variability inherent in construction environments, coupled with the ambiguity
surrounding the standards for optimal scanning results, poses significant challenges for
practitioners seeking to adopt 3D laser scanning as a standard evaluation practice. In
recognition of these challenges, the US General Services Administration (GSA) has devel-
oped guidelines for procuring and evaluating 3D imaging services, with the objective of
clearly defining acceptable margins of error for 3D scan data [18]. The GSA’s deliverable
selection matrix, illustrated in Table 1, classifies the Level of Detail (LOD) into four levels.
At Level 1, the tolerance for the collected data is £51 mm, whereas at Level 4—the most
detailed level—the permissible tolerance is reduced to =3 mm. These classifications serve
as benchmarks for establishing acceptable error ranges and ensuring consistency in the
quality of 3D scan data used for construction integrity evaluations.

Table 1. Point cloud quality definition introduced by GSA.

Level of Detail (LOD) Tolerance (mm) Resolution (mm)
Level 1 +51 152 x 152
Level 2 +13 25 x 25
Level 3 +6 13 x 13
Level 4 +3 13 x 13

Three-dimensional laser scanning has become an essential tool for a range of construc-
tion activities, including surveying, earthmoving, monitoring concrete casting progress,
highway alignment, paving operations, and construction quality control [4]. It has emerged
as a highly prevalent data collection technique for integrity evaluation and is extensively
utilized in the reconstruction of As-Built data and in performing “As-Planned—As-Built
Comparisons” [5]. This technology offers a detailed and accurate representation of physi-
cal environments, thereby facilitating more reliable evaluations of construction processes
and outcomes.

Bosché and Haas [19] proposed a method for automated detection, recognition, and
identification of objects in laser-scanned point cloud data by leveraging prior information
from 3D CAD/BIM models. This concept was defined as “Scan-vs-BIM”. The data used
for detection are the range point clouds obtained from laser scans, representing the As-
Built environment of construction sites. The prior information consists of the detailed 3D
CAD models of the objects as designed (As-Planned). Their approach involves aligning
the As-Planned 3D models with the As-Built point cloud data to identify and retrieve
structural components within the scanned environment. This method was validated
through laboratory experiments, demonstrating efficient and robust retrieval of 3D CAD
objects from point cloud data. Additionally, they showcased how the approach could
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facilitate automated construction progress assessment by comparing the planned models
with the actual construction status [8]. Nguyen and Choi [20] proposed a 3D laser scan
collection methodology for data acquisition for on-site dimensional inspection of piping
systems in industrial plants. They proposed a Scan-vs-BIM framework with Random
Sample Consensus (RANSAC) that performs a comparison function between the collected
As-Built 3D point cloud and As-Planned 3D CAD.

Kim et al. [21] proposed the basic principle of project progress evaluation by applying
the Scan-vs-BIM concept through 3D point cloud data and 4D parameters of BIM. As-built
point cloud and As-Planned BIM comparison improves the efficiency and productivity of
construction project management. They found that the Scan-vs-BIM framework could monitor
the overall project status, including productivity analysis, progress, and quality verification,
and easily identify issues and predictable engineering tasks. Li et al. [22] conducted a study
to secure an accurate precast concrete model by applying the Scan-vs-BIM methodology
in a Virtual Trial Assembly (VTA) environment. They developed an automated modeling
approach to obtain As-Built point cloud models. The traditional Scan-vs-BIM method involves
constructing a mesh by projecting to the unit plane (xy, yz, and xz planes). Maalek [23]
developed an algorithm to increase the accuracy of point cloud processing and improved the
accuracy of the Scan-vs-BIM framework by assessing the pipe axis plane of the As-Built point
cloud data itself and projecting it there to implement a mesh.

In conclusion, 3D laser scanning and the Scan-vs-BIM framework have demonstrated
significant promise in enhancing construction project management, structural integrity
assessment, and quality control. The integration of these technologies into the construction
industry facilitates the transition from manual, labor-intensive evaluation methods to
automated, data-driven approaches. However, the approach of the Scan-vs-BIM framework
is still difficult to scale for real-time analysis. The reason is that the traditional framework
comparing the As-Built scan and As-Planned BIM takes a long time to apply in real time
and uses a lot of memory due to data transformation. Therefore, the existing methods for
Scan-vs-BIM need to be improved to be suitable for real-time analysis [11].

2.2. Deep Learning in Construction

Deep learning is a subordinate concept of machine learning in which a computer
learns patterns from previous experiences. The complex structure of large datasets is
obtained using a backpropagation algorithm that represents how the machine changes
the hidden parameters used to compute each layer’s representation from the previous
layer’s representation [24]. Artificial neural networks (i.e., the basic network concept in
deep learning) use machine learning algorithms to imitate biological neural networks [25].
In general, a deep learning model consists of an input layer, a hidden layer, and an output
layer. A deep neural network (DNN) literally means a deep learning model with multiple
layers of “deep” hidden layers [26].

Deep learning has improved productivity and efficiency in a variety of industries
owing to the automation of previously manual and time-consuming tasks [27]. Currently,
research studies aiming to improve the traditional diagnostic framework by applying
deep learning in the construction field are increasing. Traditional frameworks have been
improved by applying deep learning to equipment tracking, crack detection, construction
work management, sewage assessment, and 3D point cloud enhancement [14]. As a result
of previous studies, the framework applied with deep learning could guarantee faster
speed and accuracy compared to traditional methodologies.

For instance, Koo et al. [28] explored the use of 3D geometric deep neural networks,
specifically multi-view CNN (MVCNN) and PointNet, to automate the classification of
BIM element subtypes, such as doors and walls, in Industry Foundation Class (IFC) models.
Their approach addressed the limitations of the manual specification of semantics, which is
prone to errors and omissions. The MVCNN model achieved superior prediction perfor-
mance, confirming that deep neural networks can effectively detect subtle differences in
local geometries, enhancing the accuracy and efficiency of BIM element classification.
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Zhou et al. [29] proposed an end-to-end vision measurement framework for structural
health monitoring (SHM) using a novel deep neural network tracker called Siamese Single
Decoder Network (SiamSDN). This framework does not require manual feature extraction
or predefined motion areas; instead, it identifies the tracking object solely from the first
frame. In their experiments involving a shaking table test and UAV-based field tests,
the SiamSDN tracker improved displacement measuring accuracy by 66.16% and 57.54%,
respectively, compared to traditional feature point matching approaches, demonstrating
precise frequency characteristic acquisition.

Hu et al. [30] introduced a powerful deep learning-based 3D reconstruction method for
cable-stayed bridges. Their framework uses both multi-view images and photogrammetric
point clouds as inputs to an encoder—decoder network that models high-level structural
relations and low-level 3D geometric shapes. The method successfully reconstructed
bridge models with structural components and their relationships, achieving an average
F1 score of 99.01%, a Chamfer distance of 0.0259, and a mesh-to-cloud distance of 1.78 m.
This performance surpasses that of manual reconstruction approaches in spatial accuracy,
highlighting the method’s robustness to noise and partial scans.

Wang et al. [31] presented a novel fused BIM reconstruction approach for mechanical,
electrical, and plumbing (MEP) scenes by leveraging semantic information from images
and precise geometry from 3D LiDAR point clouds. They fine-tuned a state-of-the-art
deep learning model for the semantic segmentation of MEP components and developed
an instance-aware component extraction algorithm for LiDAR point clouds. Their method
demonstrated higher accuracy and efficiency compared to previous BIM reconstruction
methods, effectively handling complex MEP environments.

Perez-Perez et al. [32] proposed Scan2BIM-NET, an end-to-end deep learning method
for semantic segmentation of structural, architectural, and mechanical components in
point cloud data. Their approach classifies elements such as beams, ceilings, columns,
floors, pipes, and walls using two convolutional neural networks and one recurrent neural
network. Tested on 83 rooms from real-world industrial and commercial buildings, the
method achieved an average accuracy of 86.13%, significantly improving the accuracy of
semantic segmentation in the Scan-to-BIM process, particularly in under-ceiling areas with
closely spaced mechanical and structural elements.

Smith and Sarlo [33] developed an alternative segmentation method tailored specif-
ically to large-scale steel buildings. Instead of processing 3D point cloud data directly,
they utilized image processing techniques on 2D “slices” of the point cloud. By extracting
centroids of structural cross-sections using 2D convolution and projecting them back into
3D space, they constructed a 1D beamline model, including connections. This method
proved robust against variations in framing systems, clutter, and point cloud sparsity,
effectively handling complex geometries that traditional 3D point cloud segmentation
methods struggle with.

These studies demonstrate the effectiveness of deep learning in improving various
traditional frameworks within the construction industry by enhancing accuracy, efficiency,
and automation. However, applications of deep learning specifically in structural integrity
verification, particularly within the Scan-vs-BIM framework, remain limited.

Additionally, recent studies have demonstrated the effectiveness of deep learning
in detecting structural changes using camera images [34,35]. While camera images offer
high-resolution visual data, they may lack the precise spatial and geometric information
necessary for accurate structural integrity assessment. Three-dimensional laser scanning
provides detailed dimensional data that capture the exact spatial relationships and dimen-
sions of structural components, which is crucial for quantitative analysis in a Scan-vs-BIM
framework. However, integrating image-based methods with laser scanning could be a
potential area for future research, combining the strengths of both modalities.

In conclusion, the application of deep learning may improve the traditional Scan-
vs-BIM framework. Deep learning can replace the processing method that compares
As-Planned BIM and As-Built scan data in a single format in the traditional Scan-vs-BIM
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framework. This study collects comparison data by directly comparing two types of data
in the original state and proposes a deep learning model that can analyze the features of
these comparison data.

3. Methodology

The Distance-DNN-based Scan-vs-BIM framework proposed in this study aims to
evaluate the integrity of the target structure based on direct comparison data between the
As-Built 3D scan and As-Planned BIM. Evaluating the integrity of individual structural
components is crucial for pinpointing specific areas that may require maintenance or repair.
This level of granularity enables targeted interventions, reduces overall maintenance costs,
and enhances the safety and reliability of the structure [12]. Traditionally, generating BIM
models from point cloud data involves a Scan-to-BIM process where the point cloud is
manually or semi-manually converted into a mesh model. This involves identifying and
modeling structural elements by fitting geometric primitives (nodes, edges, or planes) to
the point cloud data.

However, the traditional process that relies on Scan-to-BIM in the Scan-vs-BIM frame-
work causes the following problems: First, individual integrity evaluation of structures is
not possible, and there is a lack of reliability in the generated structural models. Second,
in the process of creating a point cloud-based mesh model through Scan-to-BIM, it shows
slow speed and low efficiency due to large memory allocation. Third, the error type of
the structure cannot be automatically determined. The Scan-vs-BIM framework uses As-
Planned BIM and As-Built scan data. Comparing these two types of data in one format
(mesh) reduces the efficiency of the Scan-vs-BIM framework. However, Distance-DNN,
which analyzes the features through a direct comparison of the two types of data in an
unmodified state, resolves the shortcomings of the traditional framework and can show
strong performance and computational speed.

Figure 1 shows the flowchart of the proposed Distance-DNN-based Scan-vs-BIM
framework that performs structural integrity evaluation based on direct comparison data.
The proposed framework consists of the following steps: (1) preprocessing, (2) Scan-vs-
BIM, and (3) Distance-DNN. The framework evaluates the structural integrity of one single
structural object per process and repeats the same process for all structural objects to review
the integrity of the entire structure. The piecewise operation improves computational
efficiency by breaking down the complex shape into smaller, more manageable sections,
allowing for localized computations that require less memory and processing power. While
our current implementation executes these operations sequentially, they can be parallelized

to further enhance efficiency.
=

Import BIM DATA

e

Preprocessing
Get Target 3D
Bounding Space

Bounding Space Sampling Point

Inner Point Set
Bounding Space
Inner Surface

Get Distance & Index

»
Distance, Index Normalization L DNN ( Decp Neural Network ) Save Result

Scan-vs-BIM Distance-DNN

Figure 1. Flowchart of simplified Scan-vs-BIM.
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In the preprocessing step, a parameter-based bounding space of a BIM object is created
for single-structure evaluation. The bounding space becomes the reference for a single
operation. It performs the function of separating the BIM shape model and sampling the
points inside the bounding space. In the Scan-vs-BIM process, the geometric relationship
data of the point cloud and BIM are collected. The method of constructing and comparing
meshes through the Scan-to-BIM process of the traditional Scan-vs-BIM process requires
a lot of computation; thus, the processing speed is slow. However, the framework of this
study performs integrity evaluation by collecting only distance and index data, which
are direct comparison data. In the Distance-DNN process, the tendency of distance and
index data to perform a structural integrity evaluation function and a function to predict
structural error types is analyzed. A DNN model was constructed to perform two functions.

The proposed framework was implemented using Python programming language
(version 3.8) due to its extensive libraries and tools for scientific computing. For the
development and training of the Distance-DNN model, we utilized the TensorFlow deep
learning library (version 2.4), which provides robust support for constructing and training
neural networks. Data preprocessing and manipulation were performed using NumPy
(version 1.19) and Pandas (version 1.2) libraries, and visualization of results was achieved
using Matplotlib (version 3.3). All computations, including data processing and model
training, were conducted on a workstation equipped with an Intel Core i11 CPU, 64 GB
of RAM (Intel Corporation, Santa Clara, CA, USA), and an NVIDIA RTX 4080 Ti GPU
with 24 GB of VRAM (NVIDIA, Santa Clara, CA, USA). GPU acceleration was applied to
improve the training speed of the deep neural network.

3.1. Preprocessing

In the preprocessing stage, data are processed for comparison with point cloud and
BIM data. Using only essential data in BIM and point cloud analysis is the most cost-
effective and efficient way to manage data. Therefore, the structural integrity of one single
structural object is evaluated and the same is repeated for the entire structure to evaluate
its integrity. To evaluate the structural integrity of a single structure, it is necessary to
collect the As-Planned BIM shape information and As-Built point cloud sampling data
located around the target structural object. In the proposed process, the work bounding
space is defined based on the parameter values of the target structural object on the BIM
model, and the target object shape and point cloud group inside the bounding space are
separated. Through the preprocessing step, the processing speed increases, and memory
optimization can be achieved by reducing the amount of computations throughout the
framework. Even if the structure is not completely collected from the As-Built scan data,
structural integrity evaluation is possible even if only a certain number of points required
in the process are collected.

3.1.1. Bounding Space of Target Structural Object

When evaluating the integrity of a single structural object in the Scan-vs-BIM frame-
work, the most effective way is to compare only the shape of the target object with the
point cloud near the target structural object. The As-Built scan cannot be a standard for
work because it consists of point cloud data with scattered points without a fixed index.
Therefore, it should be defined based on the target structural object of As-Planned BIM
consisting of parameters. The target structural object of the BIM model contains various
data, and all of these data are defined as parameters. The structural object’s parameters
include the “start point” and “end point” of the object, the centerline connecting the two,
and the shape of the section. In this study, the work standards were clearly defined by
utilizing the characteristics of these BIM parameters. Therefore, in the preprocessing stage,
the bounding and work reference bounding spaces are defined based on the parameters of
the target structural object on the BIM model. The process of defining the bounding space
is shown in Figure 2.
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@ Obtain BIM Parameter

@ Check Section Shape
and Set Bound Radius

(3 Define as bounding space

Figure 2. Bounding space of target structural object.

First, the structural parameters are collected from the BIM model, which serves as the
basis for the analysis. These parameters include the centerline and cross-section shapes used
to construct the bounding space around the object. Second, the radius (R) of the bounding
space is set based on the cross-sectional shape. The R value is set in consideration of the
error range of the 3D scanner’s device and the general range recognized as a structural
error. The error range of the 3D scanner’s device was defined to be £51 mm, which is the
level of accuracy of the LOD Level 1 specified by GSA (Table 1). The structural error range
was defined to be £13 mm according to the Code of Standard Practice of the American
Institute of Steel Construction (AISC) [36]. Finally, in order for Distance-DNN to clearly
understand structural error types (Deflection, Tilt, Rotation, Error), an additional margin
was needed to understand the surrounding environment of the object. Therefore, set the
R value of the bounding space to the farthest position from the center reference section
(i.e., +199 mm). Third, based on the centerline, all ranges within the R value are defined as
bounding space. The bounding space created is a virtual 3D range made up of equation
values and becomes the reference for all preprocessing operations.

3.1.2. Extraction of Object Shape Inside Bounding Space

This process obtains all shape data inside the bounding space. The shape information
includes the shape of the target object and any fragmented shapes cut relative to the outside
of the object across the bounding space. The shape was modified based on a virtual space
predefined as the bounding space using a Boolean operation. Boolean operations on two
solids are based on intersection calculations and surface member classification [37].

The process of extraction of the object shape of an object inside the bounding space
using Boolean operations is shown in Figure 3. First, the list of all objects that intersect
in the bounding space was classified, and the Boolean operation was cut through based
on the outer space (split). Next, the process was used to exclude all shapes outside the
bounding space from the selection (remove). Finally, all objects inside and all the split
shapes were combined (merge). If the next operation is performed with multiple shapes
that are not merged into one, the distance between the point and all shapes that are not
merged must be calculated. Since only the minimum value has to be selected among them,
the amount of computations increases as much as the number of shapes. This issue adds
approximately 0.5 milliseconds to the analysis time of a single structural object, which
is negligible compared to the total processing time. In the context of analyzing an entire
structure with numerous components, this overhead constitutes less than 5% of the overall
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computation time, ensuring that the efficiency of the framework is maintained. However, in
the analysis of the entire structure, the computation time is overwhelmingly increased due
to this problem. Conversely, using the combined shape eliminates unnecessary calculations
and guarantees predictable calculation speed because the distance value to the point needs
to be calculated only once in extracting the distance value.

Figure 3. Extraction of object shape inside bounding space.

3.1.3. Extraction of Points Inside Bounding Space

In this process, all points in the bounding space were collected and a sampling process
was included for optimization. A geometric formula was applied to distinguish a point
inside the bounding space. The mathematics involved in this step are discussed in the
equations (Appendix A). Among the parameters of the target structural object, the “start
point” and “end point” are defined as p1 and p2, respectively; the target point to be checked
whether it is within the bounding space is defined as p0. If the calculated shortest distance
is smaller than the R value of the bounding space, it is considered an internal point.

The DNN needs to predefine the size of the input layer. Not all points within the
bounding space can be used as indicators of analysis. Therefore, it is necessary to predefine
the number of points to be input in the DNN-based integrity evaluation. In general, the
DNN uses an input size of the form power of 2 [26]. When the points collected on a general
structural column are uniformly arranged in the longitudinal direction, 512 points are
8 mm, 1024 points are 5 mm, and 2048 points are arranged at intervals of 2 mm. Structural
integrity can be assessed more accurately and in detail by using as many points as possible
and arranging them at small intervals. However, if a large number of points are used,
the amount of computations of the DNN increases, thus reducing the efficiency of the
framework [38]. Therefore, it is necessary to define the number of points according to the
appropriate criteria. Considering the mechanical error of the 3D scanner and the variables
of the field conditions, it was determined to configure the input data at intervals of 5 mm
and sample 1024 points as a reasonable standard for structural integrity evaluation.

The simplest way to sample a point cloud is to randomly select 1024 points. However,
random selection has a disadvantage in that the data structure is lost because the selected
point is concentrated only on a specific part and cannot maintain the data features of
the existing point cloud [39]. Therefore, a theoretical methodology for sampling rather
than random selection was presented. Farthest Point Sampling (FPS) is the most used
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method [40]. FPS works by starting at a point in the set and iteratively selecting the point
farthest from an already selected point [41]. These methods do not minimize geometric
errors and subsequent processing of a sampled point cloud is not possible, thus leading
to sub-optimal results [42]. In a recent study, SampleNet—a new differential relaxation
methodology for sampling from a point cloud that approximates the points sampled as
a mixture of points in the point cloud—was proposed. The approximation method of
SampleNet consistently acquires good results in classification and geometric reconstruction
applications [43]. By applying SampleNet to the proposed process, 1024 points were
sampled. Through SampleNet, the features of the point cloud can be clearly maintained,
and the framework can output consistent and stable results.

3.2. Scan-vs-BIM

Scan-vs-BIM collects geometric comparison data of point clouds and shapes. The dis-
tance between the sampled point cloud and the BIM shape is calculated to build the dataset.
The traditional Scan-vs-BIM framework requires high computational performance due to
the complex process of converting point cloud data into mesh models and performing
detailed geometric comparisons with BIM models. This mesh generation and alignment
process can take several hours per project, especially for large and complex datasets, and
demands significant memory and processing power. In some cases, the calculations can
take several days, depending on the scope of the structure. However, the proposed frame-
work can conduct integrity evaluation using only 3D distance and index data. Index data
refer to the normalized positional values of the sampled points along the structural object’s
length, derived from the BIM model’s parameters. Specifically, for each point in the point
cloud within the bounding space, we calculate its relative position along the centerline of
the structural component. This index value provides a standardized measure of where
each point lies along the length of the object. By combining distance data with these index
values, the model can understand the spatial distribution of deviations along the compo-
nent. Based on this method of transforming data structures, the algorithm can simplify the
dimensional structure it recognizes, providing fast and predictable computational speed
with fewer computational resources than existing frameworks [43].

Figure 4 shows the geometric comparison method of Scan-vs-BIM based on Distance-
DNN. First, the shortest distance was calculated in the 3D space of the point cloud data of
As-Built scans using coordinates and As-Planned BIM data. The method of calculating the
shortest distance between the point cloud data and the BIM shape uses the Closest Point
Method (CPM) to find the target point on the shape closest to the origin point [44]. Then,
the target-origin distance is calculated through the 3D coordinate system and stored in the
3D distance dataset.

N\
N Y
// Centerline

(@ Obtain Distance

P1 \—
(2 Obtain Index

I

(3 Normalization

Figure 4. Scan-vs-BIM based on Distance-DNN.
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A deep learning model is trained by extracting features from data. If the data input
to the model is scattered without criteria, it is difficult to achieve integrity evaluation. In
general, features are maintained by adding baseline data [26]. In this study, the parameter
index was collected by aligning the relative positions of the points with the model centerline
of the BIM parameters. Through the collected index data, the tendency of point cloud and
shape comparison data was identified.

Finally, the process performs data normalization. Normalization is an operation
in which all data are transformed to the same degree of scale. In this study, data were
adjusted based on a predefined error range scale. By adding the 3D scanner’s mechanical
error range of 51 mm and the structure’s error range of +13 mm, 64 mm was set as the
normalization bound. The collected distance values were divided by the normalization
bound and converted into float data between 0 and 1. Due to the nature of DNNs, float
data between 0 and 1 must be input; thus, data larger than the range value are fixed to 1
(i.e., the maximum value of the input format).

3.3. Distance-DNN

This process analyzes the features of distance and parameter index data collected in
the previous process to determine integrity evaluation and structural error types. In this
study, a DNN model was built to perform this function. The name of the proposed deep
learning model is Distance-DNN. Integrity evaluation can be performed quickly even with
an input value of 1024 x 2 consisting of 1024 distance data points and 1024 parameter data
points in the float format between 0 and 1.

Distance-DNN performs structural integrity evaluation and analysis of types of struc-
tural errors. Theoretically, a DNN structure cannot simultaneously perform more than one
function [26]. Therefore, each network that performs individual tasks must be configured,
and the framework unites the individual networks to accomplish their tasks. In this study,
an integrated framework divided into a structural integrity evaluation (SIE) network and a
structural error type analysis (SETA) network is proposed so that the Distance-DNN can
smoothly perform two functions. Here, the SIE network evaluates the structural integrity
of the input data, and the SETA network analyzes the types of structural errors.

This full network architecture is visualized in Figure 5, where the SIE and SETA
networks are structurally similar. The network sequentially analyzes features as input data
(1024 x 2), which go through a Multi-Layer Perceptron (MLP). The numbers in brackets are
the change in layer size. And the global max pooling layer to aggregate information crosses
all layers. While both networks share a similar base architecture for feature extraction, the
SIE network concludes with a single neuron output layer for regression (integrity rate),
using a linear activation function. In contrast, the SETA network ends with a multi-class
softmax output layer for the classification of structural error types. Finally, the output score
for the specified label is derived through the MLP. The SIE network evaluates only the
structural integrity and derives an output score for the “Fitting Rate”. The SETA network
needs to derive structural error types, and it is necessary to classify them. In this study, four
types of structural errors were classified as “Tilt”, “Deflection”, “Rotation”, and “Error”;
this was set as the output label of the SETA network. The output classes of the structural
error type analysis (SETA) network are defined as follows:

e Tilt: A deviation of the structural component from its intended vertical or
horizontal orientation.
Deflection: A bending or sagging of the component due to load or structural issues.
Rotation: A rotational displacement around the component’s axis.
Error: Any other form of structural discrepancy not covered by the above categories,
such as misalignment or incorrect placement.

The “Error” label includes all error types that are not included in “Tilt”, “Deflection”,
and “Rotation”. For example, if the structural object is installed in a different place than
the planned location or the intermediate joint member is different, it is included in the
“Error” label.
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Figure 5. Architecture of SIE and SETA networks.

The order of structural integrity evaluation using Distance-DNN is described as
follows: First, through the Scan-vs-BIM process, data consisting of 1024 distance data
points and 1024 parameter data points in a float format between 0 and 1 are loaded. The
data go through the SIE network, and the output score for “Fitting Rate” is calculated.
Afterwards, the output scores for the “Tilt”, “Deflection”, “Rotation”, and “Error” labels
are calculated through the SETA network. Performing cross-validation synthesizes the
derived structural integrity evaluation score and probability of each type of error and then
exports the results. The result is expressed as a percentage for each label, and all structural
objects are evaluated.

4. Training of Distance-DNN

Training a DNN model refers to the process of inversely calculating the weights for
the connected nodes between layers based on input and output data [26]. Therefore, input
and output data to train the Distance-DNN as an algorithm for integrity evaluation are
essential. In this study, two types of data were collected for training the Distance-DNN:
real project data and virtual data. Real project data were used to train the function of real
structural objects. Virtual data were used to train structural error types. The Distance-DNN
framework was implemented by training the SIE and SETA networks with the collected
data. The performance of Distance-DNN was evaluated in terms of the “accuracy” and
“loss” according to the learning results.

4.1. Data Collection

As-Built scan data and As-Planned BIM data of a real project were collected to build
training data. The structural object in the BIM model was separated, and only the point
cloud around the object was used. The Distance-DNN trained the distance and index data
features extracted from the collected real project data. However, the amount of Scan-vs-BIM
data collected from real data is not sufficient to train Distance-DNN.

In this study, the training data were obtained by augmentation of data through random
point sampling. In general, more than 100,000 point clouds are captured for one structural
object [45]. Only 1024 points required by Distance-DNN are randomly sampled, and
this is defined as a dataset. Through this method, augmentation was performed from a
single structural object’s data to hundreds of datasets. From the above process, a total
of 26,500 real project datasets were constructed.
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4.2. Virtual Dataset Generation

Distance-DNNSs for structural integrity evaluation cannot be trained using only a
limited real dataset. Although this was partially resolved through augmentation, there
is still a small amount of data. Additionally, there is a limit to collecting data showing
structural errors in real projects. A Distance-DNN trained only with data without structural
error determines that there is no error even when receiving actual structural error data.
Therefore, a dataset with clearly defined structural errors was generated in a 3D virtual
space. The dataset is prescriptive for structural errors, and an unambiguous training
process of the Distance-DNN on the types of structural errors is enabled.

A flowchart for generating a virtual dataset is illustrated in Figure 6. The process goes
through the following steps: First, a 3D model that reflects the original 3D model of the
structural object and structural errors is created. Next, the point cloud of the outer error
model is acquired using the 3D scanning methodology. Finally, the distance and index data
between the structural object model and point cloud are outputted. Through this process, a
total of 65,000 virtual datasets were constructed.

(a) (b) (c) (d)

Figure 6. Virtual dataset creation process: (a) normal object model, (b) error object model, (c) error
object model point cloud conversion, and (d) normal object and error point cloud overlap.

Figure 7 is a visualization of the created virtual dataset organized by type. The plot
below is the result of arranging the distance data based on parameters. The 3D data (x,
y, and z) went through dimensionality reduction and resulted in 2D data (distance and
index) and 1024 samples were sampled. However, it is still possible to determine the type
of structural error. The Distance-DNN also trained these features to derive results.

Figure 7. Virtual dataset of 3D model and plot of distance: (a) Error, (b) Bend, and (c) Tilt.
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4.3. Training Results

The training results are shown in Table 2. The SIE network performs integrity eval-
uation with 95.77% accuracy. This proves that the Scan-vs-BIM using Distance-DNN is a
very powerful solution in determining whether there is a simple structural error. The loss
rate due to estimation error was 0.03, and the error rate for data prediction was low. The
SETA network could classify structural error types with 68.97% accuracy. Although it is
less accurate than the SIE network, it could guarantee a certain level of reliability in the
assessment of the type of structural error. The loss rate is 0.04 and the prediction error rate
is as low as that of the SIE network. The Scan-vs-BIM framework of previous studies could
only check structural errors, but the Distance-DNN-based Scan-vs-BIM can simultaneously
evaluate integrity evaluation and determine error types.

Table 2. Results of SIE and SETA network evaluation.

Training Results SIE Network SETA Network
Accuracy rate 0.9577 0.6897
Loss rate 0.03 0.04

5. Evaluation

The Distance-DNN-based Scan-vs-BIM was applied to actual steel structures to con-
duct structural integrity evaluation experiments. The target steel structure covered an area
of 423 m? with a height of 10 m and included 184 structural objects (Figure 8). In the past,
it was constructed through As-Planned BIM and used as a factory. Three-dimensional
scanning data were collected at the time of completion for the remodeling of the structure,
and the point cloud data were collected using a Faro Focus3D X 330 laser scanner (FARO
Technologies, Inc., Lake Mary, FL, USA). This scanner has a range of up to 330 m and an
accuracy of £2 mm. During data acquisition, the scanner was set to a resolution of 1/5
(corresponding to approximately 122,000 points per second) and a quality setting of 4x to
balance between data density and scanning time. The total number of points acquired was
approximately 10 million. Structural deformation of the objects did not occur during the
process used. There were differences between the As-Built and As-Planned data due to the
addition of pipes and equipment (Figure 8).

The BIM model was created using Autodesk Revit 2022. BIM parameters were accessed
programmatically using Dynamo (version 2.17), allowing us to extract information such as
nodes, edges, and element geometries. The BIM model was constructed at LOD 200, with
structural object details accurately represented.

The experimental results for the SIE and SETA networks are listed in Table 3. The
integrity evaluation of structural column objects was conducted based on the Distance-
DNN framework. It took 42 ms to evaluate the integrity of all 20 structural column
objects. The integrity evaluation rate for one column object was calculated to be 2.1 ms and
was faster than the traditional Scan-vs-BIM framework. It also used less computational
resources. The network predicted that all columns were, on average, 94.68% accurate.
Additionally, as a result of the structural error type analysis, the proportion of the “Error”
label was high. This is attributed to the SETA network’s prediction that the probability of
“Error” among structural error types is highest because equipment and pipes are added
to the target structure. However, since only the point cloud around a single object was
included in the calculation process, and the structural object of the target steel structure was
not deformed, the SIE network predicted no difference between BIM and scan. From the
experiments, it was proved that the SIE and SETA networks could derive accurate results
for structural integrity evaluation and show faster operation speed than the traditional
Scan-vs-BIM framework.
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Figure 8. (a) As-Planned BIM structural model, (b) As-Built point cloud, and (c) inside view.
Table 3. Results of structural integrity evaluation of columns through Distance-DNN.

I VR Error Rate
Column ntegrity Rate Tilt Deflection  Rotation Error Total
1 0.97780 0.00067 0.00109 0.00369 0.01675 0.02220
2 0.93720 0.00073 0.00531 0.00810 0.04866 0.06280
3 0.93240 0.00124 0.00662 0.01031 0.04943 0.06760
4 0.93200 0.00162 0.00348 0.01103 0.05187 0.06800
5 0.94890 0.00205 0.00143 0.00703 0.04059 0.05110
6 0.93890 0.00142 0.00212 0.01085 0.04672 0.06110
7 0.93000 0.00240 0.00258 0.01122 0.05379 0.07000
8 0.93720 0.00149 0.00180 0.01085 0.04866 0.06280
9 0.94060 0.00165 0.00352 0.00929 0.04495 0.05940
10 0.96480 0.00062 0.00173 0.00573 0.02712 0.03520
11 0.97180 0.00073 0.00127 0.00469 0.02152 0.02820
12 0.94360 0.00108 0.00316 0.00920 0.04296 0.05640
13 0.94840 0.00109 0.00323 0.00787 0.03942 0.05160
14 0.93850 0.00172 0.00372 0.00937 0.04669 0.06150
15 0.94690 0.00096 0.00267 0.00832 0.04116 0.05310
16 0.94000 0.00106 0.00155 0.01001 0.04738 0.06000
17 0.94710 0.00145 0.00379 0.00671 0.04095 0.05290
18 0.94830 0.00198 0.00163 0.00871 0.03938 0.05170
19 0.94220 0.00099 0.00336 0.01015 0.04330 0.05780
20 0.96860 0.00102 0.00084 0.00457 0.02497 0.03140
Avg. 0.94676 0.00130 0.00274 0.00838 0.04081 0.05324




Appl. Sci. 2024, 14, 11383

16 of 19

To validate the computational efficiency of our proposed framework, we conducted
experiments comparing the processing times of the traditional Scan-to-BIM method and
our method under the same conditions. The traditional method required approximately
8 h to process the entire structural dataset, primarily due to the mesh generation and
alignment steps. In contrast, our method completed the same task in approximately 3 min,
demonstrating a reduction in processing time by over 95%. This efficiency gain is attributed
to the elimination of mesh-related computations and the use of distance and index data,
which simplify the evaluation process while maintaining accuracy. Based on this evidence,
the Distance-DNN-based framework proved to be a powerful structural integrity evaluation
solution, and it was able to improve the traditional Scan-vs-BIM framework.

6. Conclusions

This study presents and evaluates Distance-DNN, a deep learning model developed for
structural integrity evaluation by identifying features in As-Built scan data and comparing
them with As-Planned BIM data. The Distance-DNN-based Scan-vs-BIM methodology
proposed here diverges from traditional Scan-vs-BIM approaches, which typically involve
constructing comparative models and processing them through complex transformations.
Instead, the proposed framework integrates two distinct neural networks that perform
integrity evaluation and error type analysis, offering a comprehensive assessment of
structural integrity. Specifically, this study constructed a total of 26,500 real project datasets
through augmentation of existing project data and generated an additional 65,000 virtual
datasets within a 3D virtual environment featuring clearly defined structural errors. During
the training process, the structural integrity evaluation (SIE) network achieved an accuracy
of 95.77%, while the structural error type analysis (SETA) network attained an accuracy
of 68.97%. The respective loss rates of the two deep neural networks were 0.03 and 0.04,
reflecting minimal prediction errors. When applied to an actual steel structure, the trained
Distance-DNN demonstrated a verified accuracy of 94.2% in structural integrity evaluation.

Traditional Scan-vs-BIM approaches have posed challenges for real-time analysis due
to their substantial computational demands [11]. In contrast, the Distance-DNN-based
Scan-vs-BIM framework facilitates analysis by directly comparing As-Built scans with As-
Planned models, obviating the need for complex data transformations. Consequently, this
approach is computationally efficient, achieving a processing speed of 2.1 milliseconds per
object, thereby enabling real-time structural integrity analysis. Additionally, the Distance-
DNN framework is highly versatile and capable of evaluating the integrity of an object
based on its As-Planned geometry, even in the absence of detailed BIM data. Given its
robust computational speed and high accuracy, this framework holds significant potential
for application in construction scenarios where structural integrity evaluation is critical.

Despite these promising results, the study has several limitations that warrant fur-
ther investigation. First, the current framework has been primarily validated on lin-
ear structural components, such as columns and beams. While it can generalize across
various linear structural members, its applicability to non-linear or complex structural
components—such as curved beams, slabs, free-form structures, and elements with vari-
able cross-sections—remains unverified. The framework relies on consistent geometric
properties for feature extraction, which may not be present in complex geometries. This
limitation suggests that additional research is necessary to adapt the methodology for a
broader range of structural elements. Second, the SETA network achieved a lower accuracy
of 68.97% compared to the SIE network, indicating limitations in accurately classifying
specific types of structural errors. This reduced accuracy could impact the effectiveness
of targeted maintenance and repair strategies, as misclassification of error types may lead
to inappropriate remedial actions. Enhancing the classification performance of the SETA
network is therefore essential for the framework to provide more reliable diagnostic infor-
mation. Third, although the study utilized a substantial amount of augmented and virtual
datasets, the reliance on simulated data may not capture all the nuances of real-world
structural variations and environmental factors. Factors such as sensor noise, environ-
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mental conditions, and unforeseen structural anomalies present in actual construction
sites might affect the model’s performance. This potential gap could affect the model’s
generalizability when deployed in diverse construction scenarios, highlighting the need for
more extensive real-world data collection and validation. Lastly, the framework assumes
that the As-Planned BIM data are accurate and detailed. In practice, discrepancies in BIM
data quality, such as outdated information or modeling errors, could affect the integrity
evaluation, leading to potential false positives or negatives. This dependency on the quality
of input data necessitates the development of methods to assess and enhance BIM data
accuracy before analysis.

To address these limitations, future research efforts for the deep learning-based Scan-
vs-BIM framework should prioritize improving the preprocessing algorithms and the
accuracy of the error type estimation components. In addition, the focus should be on
extending the framework to accommodate these complex geometries to improve its gen-
eralizability and practical usefulness in various construction scenarios. In particular, it is
essential to improve the robustness, accuracy, and versatility of the Distance-DNN-based
Scan-vs-BIM framework. This will contribute to the development of a more comprehensive
structural integrity assessment tool that can handle a wide range of structural components
and real-world conditions. This will support the goal of promoting safer and more efficient
construction practices and performing accurate structural integrity assessments in real
time across a variety of construction scenarios, in line with the industry’s move towards
digitization and advanced analytics. In conclusion, these improvements will enable the
reconfiguration and optimization of neural network architectures, which will ultimately
contribute to the advancement of real-time analytic capabilities and the overall reliability
of the Scan-vs-BIM methodology.
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Appendix A. Inside Point Calculations

Among the parameters of the target structural object, the start point and end point are
defined as P1 and P2, respectively. A vector u on a straight line passing through P1 and P2
is derived.

Xy — X
. 2 1
Uu=1y2—-mn
2 — 21

The target point to be checked whether it is within the bounding space is defined as P.
The foot of the perpendicular from P to the Pj, P, line is defined as Py. The value of a vector
starting at point P and going to Py is prescribed and is organized as follows:

— —
‘PPO| = ‘PP1|Sil‘19
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Then, using the cross product calculation of vectors, the following formula is derived.
Finally, the minimum distance between the point and the line segment is derived. If
the calculated shortest distance is smaller than the R value of the bounding space, it is
considered an internal point.

- T -
u X PPy| = |u||PP|sin6
=g ﬁ X 1l
——  |u||PPy|sin® !
d = [PP| = = = =
u u
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